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Universal relations for ultracold reactive molecules
Mingyuan He>3*, Chenwei Lv'*, Hai-Qing Lin* Qi Zhou'>'

The realization of ultracold polar molecules in laboratories has pushed physics and chemistry to new realms. In
particular, these polar molecules offer scientists unprecedented opportunities to explore chemical reactions in
the ultracold regime where quantum effects become profound. However, a key question about how two-body
losses depend on quantum correlations in interacting many-body systems remains open so far. Here, we present
a number of universal relations that directly connect two-body losses to other physical observables, including the
momentum distribution and density correlation functions. These relations, which are valid for arbitrary micro-
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scopic parameters, such as the particle number, the temperature, and the interaction strength, unfold the critical
role of contacts, a fundamental quantity of dilute quantum systems, in determining the reaction rate of quantum
reactive molecules in a many-body environment. Our work opens the door to an unexplored area intertwining
quantum chemistry; atomic, molecular, and optical physics; and condensed matter physics.

INTRODUCTION

In a temperature regime down to a few tens of nanokelvin, highly
controllable polar molecules provide scientists with a powerful appa-
ratus to study a vast range of new quantum phenomena in condensed
matter physics, quantum information processing, and quantum
chemistry (I1-14), such as exotic quantum phases (15-18), quantum
gates with fast switching times (19, 20), and quantum chemical
reactions (9-13). In all these studies, the two-body loss is an essen-
tial ingredient leading to non-Hermitian phenomena. Similar to
other chemical reactions, collisions between molecules may yield
certain products and release energies, which allow particles to es-
cape the traps. For instance, a prototypical reaction, KRb + KRb —
K, + Rb,, is the major source causing the loss of KRb molecules.
Undetectable complexes may also form, resulting in losses in the
system of interest (10, 11).

Whereas chemical reactions are known for their complexities,
taking into account quantum effects imposes an even bigger chal-
lenge to both physicists and chemists. The exponentially large de-
grees of freedom and quantum correlations built upon interactions
make it difficult to quantitatively analyze the reactions. A standard
approach is to consider two interacting particles, the reaction rate of
which is trackable (21, 22). Although these results are applicable in
many-body systems when the temperature is high enough and cor-
relations between different pairs of particles are negligible, with de-
creasing the temperature, many-body correlations become profound
and this approach fails. In particular, in the first realization of a de-
generate Fermi gas of polar molecules, unusual behaviors of two-
body losses were observed (12). In the absence of electric fields, the
dipole moment vanishes and these polar molecules interact with
van der Waals interactions. With decreasing the temperature, the
suppression of the loss rate no longer agrees with the Bethe-Wigner
threshold. Experimental results also indicated that the temperature
dependence of the density fluctuation is similar to that of the loss
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rate (12, 14). A theory fully incorporating quantum many-body ef-
fects is, therefore, desired to understand the chemical reaction rate
at low temperatures.

In this work, we show that universality exists in chemical reac-
tions of ultracold reactive molecules. We implement contacts, the
central quantity in dilute quantum systems (23-25), to establish uni-
versal relations between the two-body loss rate and other quantities
including the momentum distribution and the density correlation
function. Previously, two-body losses of zero-range potentials host-
ing inelastic s-wave scatterings were correlated to the s-wave con-
tact (26, 27). In reality, chemical reactions happen in a finite range.
Many systems are also characterized by high-partial-wave scatterings.
For instance, single-component fermionic KRb molecules interact
with p-wave scatterings (1, 12). It is thus required to formulate a
theory applicable to generic short-range reactive interactions. To
concretize discussions, we focus on single-component fermionic
molecules. All our results can be straightforwardly generalized to
other systems with arbitrary short-range interactions.

RESULTS
Loss rate and contacts
The Hamiltonian of N reactive molecules is written as

2
H=1| - J2V] + Veu(r)) | + LUK~ ) (1)

where M is the molecular mass, Vx(r) is the external potential, and
U(r) is a two-body interaction, as shown in Fig. 1. The many-body
wave function, ¥(ry, 1, ..., ry), satisfies the time-dependent
Schrédinger equation
1ho,¥(ry,ra....,ry)= HP(ry,r....ry) 2)
In the absence of electric fields, U(r) is a short-range interaction
with a characteristic length scale, 7o. When |r |> 1y, U(r) = 0. Chemical
reactions happen in an even shorter length scale, r* < ro. We adopt
the one-channel model using a complex U(r) = Ug(r) + iUj(r) to
describe the chemical reaction (22), where Uj(r) < 0. When |r|>r¥,
Ux(r) = 0. Using the Lindblad equation that models the losses by jump
operators, the same universal relations can also be derived (Materials
and Methods).
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Fig. 1. Alength scale separation in dilute molecules. The blue (red) solid spheres
represent potassium (rubidium) atoms. Inside the dashed circle are two molecules,
the separation between which is much smaller than the average interparticle spac-
ing, |r|< k'F1. The enlarged plot of the regime inside the dashed circle is a sche-
matic of the chemical reaction. The green solid curve represents the real part of the
interaction, Ug(r). The imaginary part of the interaction, U/(r), is nonzero only in the
shaded area, where the reaction happens.

Universal relations arise from a length scale separation in dilute
quantum systems, r*<ry < k', where k., the inverse of the Fermi
momentum, captures the average interparticle separation. When
the distance between two molecules is much smaller than k;l, we
obtain

-1
Y(ry,ro, --~,1'N)|r1]|—<<kF’ mzellfm(rij;e) G.(RE-€) (3)
where r;; = r; - r; denotes the relative coordinates of the ith and
the jth molecules and R;; = {(r; + 1})/2, 1 2, j} is a short-hand nota-
tion including coordinates of their center of mass and all other par-
ticles. y,,(r;j; €) is a p-wave wave function with a magnetic quantum
number m = 0, £ 1, which is determined solely by the two-body
Hamiltonian, H, = — (hA/M)V? + U(r,]) as all other partlcles are far
away from the chosen pair in the regime, |r;|< k. G, (Rj; E - €)
includes all many-body effects, which depend on the center of mass
of the ith and the jth molecules and all other N — 2 molecules, and
can be viewed as a “normalization factor” of the two-body wave
function y,,(r;; €). E is the total energy of the many-body system. €,
the colliding energy, is no longer a good quantum number in a
many-body system, and a sum shows up in Eq. 3. Since both a con-
tinuous spectrum and discrete bound states may exist, we use the
notation of sum other than an integral.

Although ,,(r;; €) depends on the details of U(r;) when |r;;| <rq,
it is universal when ro < |r;;|< k', as a result of vanishing inter-
action in this regime. We define y,,(rj; €)= @u(|rij|;e) Yim(Es),
where Y1,(F;) is the p-wave spherical harmonics. Whereas many
resonances exist, the phase shift of the scattering between KRb mol-
ecules is still a smooth function of the energy, due to the large aver-
age line width of these resonances, which far exceeds the mean level
spacing of the bound states (21). The phase shift, n, then has a
well-defined expansion, g cot[ (qe)] = -1/vp+ qo/1, where vpand 7,
are the p-wave scattering volume and effective range, respectwely
both of which are complex for reactive mteractlons Ge = (EM/h2
Consequently, gu(|rylse) = @5 (|r4) +47 @ (|r3) +O(g), where

-1
0O(Irs) ro<|ryl<ky 1 @
l
ij |I'ij|2 Vp 3
He etal., Sci. Adv. 2020; 6 : eabd4699 18 December 2020

_ 3
ro<rgl<ky eyl Ivgl® o
¢$)(|rﬁ|) e 3 TV,30 12 ®)

To simplify expressions, we have considered isotropic p-wave
interactions, @(|r;;|) = @m(|r;;|) and G(R;; E - €) = Gu(Ry E — €),
and suppressed other partial waves in the expressions, which do not
show up in universal relations relevant for single-component fermi-
onic molecules.

Using Eqgs. 1 to 3, we find that the decay of the total particle
number is captured by

N = SEMEKC )

where the three contacts are written as
C1=3(n)’ N - 1) [dR;( @) @)
Cy=6(4m)>N(N - 1) [dR;iRe(g " g V) )
C5=6(4m)> NN - 1) [ dRIm(g @ g ™) )

JdR;; = [d[(x; + x})/2]dr 4 ;j and g¥ = Eeqé G(Rj;E — €). As shown
later, C; determines the leading term in the large momentum tail,
similar to systems without losses (28-31). In contrast, C, 3 are new
quantities in systems with two-body losses.

K, in Eq. 6 are microscopic parameters determined purely by the
two-body physics. In our one-channel model, their explicit expres-
sions are given by

K = —%ﬁ Uir) | 9O |’ r2dr (10)
k2= —%Re(] N U1<r><p<°’*<r)cp<‘><r>r2dr) (11)
xa=21m(fo U)o ) )

where r= |r|.If U(r) is modeled by two square well potentials, one
for its real part and the other for its imaginary part, then «; 3 can
be evaluated explicitly. For simplicity, we set U(r) = -Ug — iU;
when |r| < ry=r*and 0 elsewhere. Changing the ratio ro/r* does
not change any results qualitatively. Figure 2 shows how «; ;3 de-
pend on U; when Uy is fixed at various values including those cor-
responding to small and divergent v, in the absence of U,.
When U; =0, k1,3 = 0. With increasing U}, x;, 3 change non-
monotonically and all approach zero when U is large, indicating a
vanishing reaction rate in the extremely large U; limit.

Equation 6 is universal for any particle number and any short-
range interactions with arbitrary interaction strengths, as well as
any real external potential. It separates C,, which fully capture the
many-body physics, from two-body parameters, «,, which are inde-
pendent on the particle number and the temperature. Therefore,
even when microscopic details of the reactive interaction, for in-
stance, the exact expression of U(r), are unknown, x, can still be
accessed in systems whose C, are easily measurable (Supplementary
Materials). Equation 6 also holds for any many-body eigenstates,
and a thermal average does not change its form. Therefore, Eq. 6
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B,

Fig. 2. Dependence of the three microscopic parameters on interactions. (A to C) 7, represents the scattering volume when U, = 0.0 is in the unit of hz/(MrS).
K1,2,3 are in the unit of r53, r51, and ’511 respectively. When ¥, crosses zero, the location of the maximum of «; (k3) first approaches and then leaves the origin, and «; (k3)

remains positive (negative). In contrast, k, quickly changes from positive to negative at small values of U, when 7,, crosses zero. In the large U; limit, all three parameters

vanish, as shown by the insets.

does apply for any finite temperatures, provided that the reac-
tion rate is slow compared to the time scale of establishing quasi-
equilibrium in the many-body system, i.e., the many-body system
has a well-defined temperature at any time. Under this situation,
C, should be understood as their thermal averages.

We have found that x; and x;, can be rewritten as familiar
parameters. k= Im( v,}l) and x, = Im [ — 1/(2r.)] (Materials and
Methods). In contrast, to our best knowledge, k3 is a new parameter
that has not been addressed in previous works. Similar to x5, k3 can
be expressed as the difference between the extrapolation of the two-
body wave function in the regime | r | > 1y toward the origin and the
realistic wave function at short distance, |r |<ry (Materials and
Methods). Equation 6 can be rewritten as

Im(vp > Cy -

For s-wave inelastic scatterings due to complex zero-range inter-
actions, the first term on the right-hand side of Eq. 13 was previously
derived, with v, replaced by the complex s-wave scattering length
(26). For a generic short-range interaction, all three contacts and all
three microscopic parameters are required, as shown in Egs. 6 and
13. In particular, when K 3 are comparable to or even larger than x;,
the other two terms cannot be ignored. This expression allows us to
directly connect the two-body loss rate to a wide range of physical
quantities.

a[N:— }z

8Sn°M (13)

( )C2+K3C3

Universal relations with other physical quantities

We first consider the momentum distribution, which has a univer-
sal behavior when |k | <« 1/ry but is much larger than all other mo-
mentum scales, including kg, the inverses of the scattering length
and the thermal wavelength. We define the total angular averaged
momentum, n(|k|) =X, -0, +1 [dQn,,(k), where Q is the solid
angle

G

k
n(|k[) - TE

(14)

Once n( |k|) is measured, the first term in Egs. 6 and 13 is known.
For radio frequency (RF) spectroscopy in molecules, similar to that
for atoms, Eq. 14 also indicates that such spectroscopy has a univer-
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sal tail, N(w) = [(Qre V) /(87%) 1 C; (ho/M) ™V, where o is the RF
frequency, Qg is the RF Rabi frequency, and V is the volume of the
system. It is worth mentioning that, for atoms with elastic p-wave
interactions, Eq. 14 describes the leading term of the large momen-
tum tail (28-31). We have not found that the subleading term
~| k| ™ has connections to two-body losses.

Another fundamentally important quantity in condensed matter
physics is the density correlation function, S(r) = [ dR(n(R +
r/2)n(R — r/2)), which measures the probability of having two
particles separated by a distance r. Using Egs. 3 to 5, S(r) can be
evaluated explicitly in the regime, ro < |r|< k;'. To enhance the
signal-to-noise ratio, S(r) can be integrated over a shell with inner
and outer radii, x and x + D, respectiveg' Such an integrated den-
sity correlation is given by P(x,D )= I“ drS(r), and

dP(x,D)|

1
= Ci— C
oD |D—>0 l6m { 1‘x ’

(e r(Hem@els)

Again, other partial waves have been suppressed in the expres-
sion, as their contributions are given by different spherical harmonics.
Fitting dP(x, D)/dD | p , o measured in experiments using the power
series in Eq. 15 allows one to obtain all three contacts, C, , 3, pro-
vided that v, and r, are known. If these two parameters are un-
known, then it is necessary to include higher-order terms in the
expansion (Materials and Methods).

We emphasize that, no matter whether thermodynamic quantities
and correlation functions can be computed accurately in theories,
Egs. 6 and 13 to 15 allow experimentalists to explore how contacts
determine chemical reactions in interacting few-body and many-
body systems. In the strongly interacting regime where exact theo-
retical results are not available, these universal relations become
most powerful.

Temperature dependence of the loss rate

It is useful to illuminate our results using some examples. For a two-
body system in free space, the center of mass and the relative
motion are decoupled. € in Eqgs. 7 to 9 becomes a good quantum
number, i.e., G(Rj; E — €) becomes a delta function in the energy
space. For scattering states with € > 0, we consider the wave function,

30f8

1202 ‘0€ 10quuedd(] uo S10°00UdIos mmm//:sdpy woly papeojumo(]



SCIENCE ADVANCES | RESEARCH ARTICLE

‘P[z](rl, ;) = 0. (R2)y(r2),where ¢(Ry,) is a normalized wavefunc-
tion of the center of mass and y(ry,) = V8n/V [i/(cot n — i) ][cot nj;
(ge|r12]) —n1(ge|r12|) 120 Yim(E12). Figure 3 shows the dependence
of C; on U; when ¥ p is fixed at Various~values. Results for a bound
state are also shown. With increasing Uy, C; approaches a nonzero
constant in both cases. Here, C, =2 C; Re( qﬁ) C; =0 if we consider a
scattering state. In contrast, C3 =2 C; Im( ,2) for a bound state. An-
alytical results in the limits, v,= 0%, o, are shown in Table 1.

We use the second-order virial expansion to study a thermal gas
at high temperatures The partition function is written as Z =
Zo + e MDY En(e ~(Eren/kal) _  ~(Ecrer)/ D) where Z, is the parti-
tion function of noninteracting fermions, y is the chemical potential,
and E, = B2K*/(4M) is the ener§y of the center of mass motion car-
rying a momentum K. €, and €, are the eigenenergies of the relative
motion with and without interactions, respectively. On the basis of
the results of the two-body problem, thermal averaged contacts are
derived using (C)r = Z 'e 2wtk T)(Z “E/UDy(3,.C (€)' KD,
Using N = kgT0, In Z, we eliminate p and obtain (C,)r as a function
of N and T. Analytical expressions in the limits, v, = 0%, , are
shown in Table 2.

Table 2 may shed light on some recent experiments conducted
in the weakly interacting regime (9, 12). Although v, > 0, it is likely
that bound states are not occupied, i.e., the system is prepared at
the upper branch. Therefore, C; = 0. In a homogenous system, we
obtain

2
3N = 14 1m(v,) Nnks T
16
3607‘tI Yp 1 M|Vp|2 Nk2T2 (16)
h v Te h2

A previous work derived the first term in Eq. 16 using a different
approach (22). However, a complete expression needs to include
the contribution from r,, which leads to a different power of the
dependence on T. A recent experiment has shown the deviation
from the linear dependence on T (12). However, it is worth investi-
gating whether such deviation comes from the second term in
Eq. 16 or some other effects, particularly correlations beyond the
description of the second-order virial expansion.

As a harmonic trap exists in experiments, the dependence on T
could be completely different. We use the local density approxima-
tion to obtain the total contacts by integrating local contacts. As a
result, C™ = [(nkgT)/(M®?)]**C,(0), where o is trapping fre-

A, B
— &, = —100r3 108 210 —_—, = 17}
4 L,, = —lro | == - ¥, = 1.5}
= 070 ‘103 N Ty = 31§
b, = 11 200 ——D, = 10007
' 0 N\, » 0
3 Tp = 10007 L otrseseaas

107 1072 10} < 190

4 y \
2%"0‘?’:\\
N 180
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‘ T Maraesssy 170
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G

Fig. 3. Contacts of a two-body system. (A) C; (in the unit of rg/V) of a scattering
state as a function of U, [in the unit ofhz/(le,)] when 7, is fixed at various values.
Ge = 0.01/ro. (B) C; (in the unit of ro) of a bound state as a function of U, [in the unit
of h?/ (Mr)1.
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Table 1. Analytical expressions for contacts C, of two particles in
different limits. Lines 1 and 2 show the results in the weakly interacting
regime and those at resonance, respectively. v, — 0 () means v, — 0. +
0i (% + 0i) on the complex plane. Line 3 includes the results for bound
states, in which a single angular momentum m is considered.

Vp G C; (&
Vp = 0 12(4m)3q? |vp | YV 2CiRe(q2) 0
Up=> 62 12(4m)3q2 |re| IV 2CiRe(q?) 0
Bound 2(4m)?Re (—ro) 2CiRe(q?) 2GIm(q?)

quency and C,(0) are the contact densities at the center of the trap
(Supplementary Materials). Consequently

3
athrap — 18\/_(M )ZIm(vp)(Ntrap)z

kg T

5 2k (g Ml (0
+ ﬂ(MOJZ)zIm(_Prel) 4 (Ntrap) \/kB_T
h vj K>
The first term decreases with increasing T, in sharp contrast to
the homogeneous case. In a trap, the molecular cloud expands when
the temperature increases such that densities and the total contacts
decrease for a fixed N. Similarly, the second term increases slower
than the result in homogenous systems with increasing T. Alterna-
tively, we could consider the density at the center of the trap, the
decay rate of which linearly depends on T again (Supplementary
Materials). Whereas the temperature dependence of the loss rate in
the trap can be qualitatively obtained from the result in a homoge—
nous system by considering a temperature-dependent volume ~T°/?
(12), arigorous calculation as aforementioned is required to obtain
the exact numerical factors in Eq. 17.

DISCUSSION

Although we have used the high-temperature regime as an example
to explain Egs. 6 and 13 to 15, we need to emphasize that these uni-
versal relations are powerful tools at any temperatures. In partic-
ular, at lower temperatures, contacts are no longer proportional to
N2, directly reflecting the critical roles of many-body correlations in
determining the reaction rate. For instance, below the superfluid
transition temperature, contacts may be directly related to
superfluid-order parameters (32, 33). Universal relations con-
structed here thus offer us a unique means to explore the interplay
between the chemical reaction and symmetry breaking in quantum
many-body systems.

We also would like to point out that the density fluctuation mea-
sured in experiments (12, 14), f(r;) = (nz(rs)) - (n(rs))z, is different
from the density-density correlation, S(r), studied in our work.
Whereas S(r) directly tells us all contacts by capturing the probabil-
ity of having two particles as a function of r, their relative coordi-
nate, f(r;) traces the compressibility dn/dp as a function of r,, the
single-particle coordinate. Since the pressure, P, is controlled by
contacts and other thermodynamical quantities can be derived
from P (34), how the compressibility and f(r;) are related to contacts
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Table 2. Analytical expressions for thermal averaged contacts (C,)r in different limits. Lines 1 and 2 show the results in the weakly interacting regime.
When v, is positive, bound states exist and their contributions are included in line 1. Line 3 includes the results at resonance. Np is the number of dimers.

Ar = [ri?)/(MkgT)]'/2 is the thermal wavelength.
Vp (Ci)r

(G (G)r

72(2m)* | v, | *25% Nn

Vp— 0y
+2(4n)*Re(~r.) Np

vp— 0

Vp —

24(4m)? |re| 222Nn

and the loss rate remains an interesting open question worthy of
exploration.

In current experiments (12, 14), the electric field is absent and
the unpolarized molecules interact with each other with the van der
Waals potential. Once an electric field is turned on, the dipole-
dipole interaction between polarized molecules, ~1/ | r |, decays
slower and has a longer range. For any power-law potentials,
Allr|",if n > 2, then the scattering theory applies and a character-
istic length of the range of the interaction can be defined as 7 =
M |A|/h2)”("_2) (35). In dilute systems, once kpFf <1 is satisfied,
universal relations rise from such a length scale separation. The de-
tails of the interaction, such as n of the power-law potential, deter-
mine the low energy expansion of the phase shift and microscopic
parameters in the universal relations. It will be interesting to study
how the electric field influences contacts, universal relations, and
the decay rate of molecules. It is also worth mentioning a subtlety in
the p-wave scattering when # = 6. It has been theoretically predicted
that an extra term linearly dependent on the momentum should
exist in the phase shift (36, 37). Whereas current experiments have
not found evidence for extra contacts associated with this term yet
(31), it will be useful to explore whether such a term may affect con-
tacts, chemical reactions, and any other observables in many-body
systems.

In addition to macroscopic systems, multibody correlations can
also be studied in mesoscopic traps with controllable particle num-
bers. For instance, a recent experiment has found that the loss rate
in a deep optical lattice, where each lattice site traps a few molecules,
deviates substantially from the result in a large trap (38). Optical
tweezers have also been implemented to study quantum effects in
collisions or chemical reactions of a few particles (39, 40). Contacts
of these few-body systems may be evaluated exactly and thus pro-
vide us with quantitative results of how multibody correlations de-
termine two-body collisions and quantum chemical reactions.

More broadly, our results unfold intriguing universality in non-
Hermitian systems. Recently, there have been extensive interest in
studying open systems, where very rich non-Hermitian phenomena
have been identified (41, 42). However, most of these studies have
been focusing on either noninteracting systems or the weakly inter-
acting regime where perturbative or mean-field approaches apply.
Universal relations derived here are valid for any interaction
strengths and thus deliver a unique tool to tackle interacting
non-Hermitian systems and to unfold possible universal behaviors
behind the complexity in quantum systems coupled to environ-
ment. We hope that our work will stimulate more studies of con-

He etal., Sci. Adv. 2020; 6 : eabd4699 18 December 2020

360 2n)° | v, | *27* Nn
+4(47m)’Re(=re) Re( re/v,) Np

4(4m)>Re(=re) Im( re/v,) Np

12(4m)° | re| 2Nn 0

tacts and universal relations to bridge quantum chemistry; atomic,
molecular, and optical physics; and condensed matter physics.

MATERIALS AND METHODS
The Lindblad equation
We consider a Lindblad master equation

dp

i -i[H,p]+D|[p]

(18)
where H is the Hamiltonian that describes the unitary part of the
time evolution and the dissipator D describes the loss due to inelas-
tic collisions

—J‘dxldxzél"(\ X| — X, \) (2‘I‘(XZ)‘I‘(X1) p‘PT(xl) ‘PT(XZ)

(¥ () ¥ () ¥ (x)¥(x1).p})

¥(x) is the fermionic field operator satisfying {¥(x), Yi(x)} =
8(3)(x - x'). (1/2)I'(| x; — x2|) describes a finite range dissipation.
The loss rate of the total particle number, dN/dt = [dx(d/d)Tr(n(x)p),
n(x) = VP (x)W(x), is written as

Dlp] =

(19)

‘Z—Ij = —%Tr(fdx‘PT(x)‘I‘(x)fdxldXZ%F(|x1—x2|)
X[Z‘I‘(xz)‘l’(xl) p‘{”(xl)‘l”(xz)
~{7(x) ¥ (x)¥(x2) ¥(x1).p}])
= —%fdxldxzdxl“qxl - x2|)Tr<p[‘PT(x1) ‘I‘T(xz),
W () (x) | ¥ (x2) ¥ (x1))
= %fdxdx’l“( x - x|)<‘I‘T(x) ‘I‘f(x’)‘P(x’)‘I’(x»

(20)

This equation is valid for any finite range dissipator. In the ap-
proximation of zero-range dissipators, I' = g8 (x — x), it reduces to
(43-45)

AN~ 2 ofax(W'(x) P (x) Wx) P(x))

The work in (43) considered two-component fermions and ob-
tained d{N;)/dt = d(N,)/dt = — [h/(2nm)] Im (1/a)C, where N7 (N,)
is the number of spin-up (spin-down) fermions, a is the s-wave
scattering length, and C is the s-wave contact.

@1
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We emphasize that Eq. 20 is equivalent to results derived from the
Hamiltonian with a complex interaction, as shown in Eq. 24 in the
next section, provided that we identify Urand I, ie,, Ul(|x' - x|) =
I'(| x" = x| ). Thus, universal relations derived from the Lindblad equation
are the same as those shown here since the probability of having
more than two particles within a distance smaller than ry is negligi-
ble in dilute systems satisfying ro < k.

Decay rate
In the presence of complex short-range interactions, the many-body
wave function satisfies

iha,‘P(rl,rz,

y R o2
)rN) = |:i§1|: - M V[ + Vext(ri)
ry,...,ry)

+ E,U(rij)]‘l‘(rl,
j (22)

For any finite-size system, net current vanishes at the boundary.

We obtain
AN = %ijdezjdr,-jU](rij) ¥R, 1) 2 (23)

which is equivalent to a second quantization form using fermionic
operators

o;N = %fdxdx’ Ul(|x' - x|) ('Y E)PE)P(X)) (24)

Using Eq. 3 and ey,(rjze)=[-(h*/M) V7, + Ur;) [ym(r;;€),
we obtain

To
o %
- [dR;[odry[ ¥ Rjry)
X n;,ee Gm(RU’E —€ ) Wm(riﬁ €]
ro
+Z[dR;[odry[¥(Ryry) 05
x 2. € GL(RGE - )y (rie)]
2 ro .
=R JaRy [y deg [ W Ryrp) VE Ry xy
~Y(R;r;j) V7, ¥ (Rjr;) ]

Note that, for the system with isotropic interactions U(r)=U(|r | )
and y,,(r; €)= @(|r|; €) Y1,4(F5), one has (29)

3
ro rog—Z
=0 26
vp 3 r,c+1 (26)
5 ,
1 _ 1 ’%1 o 1 °T (0 2 5
r—e——r—o—gﬁﬂ“g(‘}p)z—fo [0 rar  @7)

where ¢ = {0 In [rq(r; €)]/0r} | = o. On the basis of Egs. 4, 5, and 27, we
define lsm: (4m)> N(N — l)de,»ng;?*gf;‘?, gﬁ;‘? = Zeqzﬁ“' Gu(RjE - €), and
Ci, = C1Org and obtain

%[Im( ~vp") Cim + %Im( ) (ki)
_,'K3< - Cﬁ) + O( (E - E*)2>]

_ (4m)*2M

PP > G,,,(R,»j;E—e)\pm(rij;e)rU[(rij)

(28)

ngdRi;J(r)odrij
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which leads to Egs. 10 to 12,

K = Im(v,;l) - [ ar |90 utn @9)

K; =Im(-r;'/2) = —%Re <f: drr” () 9V (r) Us(r) > (30)
k3 = —Jo {Ime@(") 1’ - m () 1'}rdr

- M ([o arg e ) U )
k (31)

whereq)(o)(r) is a wave function obtained from extending the actual
wave function (p(o)(r) outside the potential (r > ro) into the regime
r < ro. We obtain Eq. 13

N = — zM[Im<vgl)C1—%Im<r§1>C2+K3C3] (32)

8n

where C; =%,,Cim, Cs =22m Re( C(l),ln), and C; = 22,,, Im( C?;).
The above equation leads to Egs. 7 to 9 by considering G,,,(R;; E — €) =

G(R,J, E - 6).

Momentum distribution

Similar to systems with real interactions (30), using n(k)= Zl\i 1.[
—ik-rj|2 . !

H#idrj“dr,"l’(rl,rz, orN)e | , we obtain

krx|k|<ry'! C© 2
(i) =K<y L 2| Vi) | (33)
31k
which leads to
C
n(|k|)=J.dQn(k):ﬁ (34)

Density correlations
The density correlation function S(r) = [ dR(n(R + r/2)n(R - r/2))
can be rewritten as

Sr)=NW - 1) [(TTkzijdre)

x ¥ (ry,.ori = R+ 5,y = R—g,.._,rN)r (35)

In the regime, r < k;l, S(r) is written as

5= NN - 1) fary %] 1@ [T 00| 69 (36)

) @) 81 g+ 0 () @ () 2 8|

where r = | r|. The integral over a shell allows us to obtain

1 > X+Dr2dr Oy 0Dy C
(471:)2 m_[x [(pm( )(pm ( ) 1m

o ()0 (1) Ch + 0 () 9, (1) €1,

x+D
PG.D)=[, drS(r)=

(37)

60f8

1202 ‘0€ 10quuedd(] uo S10°00UdIos mmm//:sdpy woly papeojumo(]



SCIENCE ADVANCES | RESEARCH ARTICLE

Using Eqgs. 4 and 5, we obtain

dP(x,D)| 1 1 1
= Ci=5+ G5
aD |, 16x2| a2 2

[m()ecne(He-m(Ho]s

2 X
e el
1 X X6
——C ——]C+1Im = -
|Vp|2 b VpTe ’ * ]9 90|Vp|2
(38)

where the first line recovers Eq. 15 and the second line includes
higher-order terms. When v, and r, are known, the first line readily
allows experimentalists to obtain Cj 3 by fitting the experimental
data. When v, and r, are unknown, the second line is required to
obtain C, vy, and r..

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/51/eabd4699/DC1
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