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P H Y S I C S

Universal relations for ultracold reactive molecules
Mingyuan He1,2,3*, Chenwei Lv1*, Hai-Qing Lin4, Qi Zhou1,5†

The realization of ultracold polar molecules in laboratories has pushed physics and chemistry to new realms. In 
particular, these polar molecules offer scientists unprecedented opportunities to explore chemical reactions in 
the ultracold regime where quantum effects become profound. However, a key question about how two-body 
losses depend on quantum correlations in interacting many-body systems remains open so far. Here, we present 
a number of universal relations that directly connect two-body losses to other physical observables, including the 
momentum distribution and density correlation functions. These relations, which are valid for arbitrary micro-
scopic parameters, such as the particle number, the temperature, and the interaction strength, unfold the critical 
role of contacts, a fundamental quantity of dilute quantum systems, in determining the reaction rate of quantum 
reactive molecules in a many-body environment. Our work opens the door to an unexplored area intertwining 
quantum chemistry; atomic, molecular, and optical physics; and condensed matter physics.

INTRODUCTION
In a temperature regime down to a few tens of nanokelvin, highly 
controllable polar molecules provide scientists with a powerful appa-
ratus to study a vast range of new quantum phenomena in condensed 
matter physics, quantum information processing, and quantum 
chemistry (1–14), such as exotic quantum phases (15–18), quantum 
gates with fast switching times (19, 20), and quantum chemical 
reactions (9–13). In all these studies, the two-body loss is an essen-
tial ingredient leading to non-Hermitian phenomena. Similar to 
other chemical reactions, collisions between molecules may yield 
certain products and release energies, which allow particles to es-
cape the traps. For instance, a prototypical reaction, KRb + KRb → 
K2 + Rb2, is the major source causing the loss of KRb molecules. 
Undetectable complexes may also form, resulting in losses in the 
system of interest (10, 11).

Whereas chemical reactions are known for their complexities, 
taking into account quantum effects imposes an even bigger chal-
lenge to both physicists and chemists. The exponentially large de-
grees of freedom and quantum correlations built upon interactions 
make it difficult to quantitatively analyze the reactions. A standard 
approach is to consider two interacting particles, the reaction rate of 
which is trackable (21, 22). Although these results are applicable in 
many-body systems when the temperature is high enough and cor-
relations between different pairs of particles are negligible, with de-
creasing the temperature, many-body correlations become profound 
and this approach fails. In particular, in the first realization of a de-
generate Fermi gas of polar molecules, unusual behaviors of two-
body losses were observed (12). In the absence of electric fields, the 
dipole moment vanishes and these polar molecules interact with 
van der Waals interactions. With decreasing the temperature, the 
suppression of the loss rate no longer agrees with the Bethe-Wigner 
threshold. Experimental results also indicated that the temperature 
dependence of the density fluctuation is similar to that of the loss 

rate (12, 14). A theory fully incorporating quantum many-body ef-
fects is, therefore, desired to understand the chemical reaction rate 
at low temperatures.

In this work, we show that universality exists in chemical reac-
tions of ultracold reactive molecules. We implement contacts, the 
central quantity in dilute quantum systems (23–25), to establish uni-
versal relations between the two-body loss rate and other quantities 
including the momentum distribution and the density correlation 
function. Previously, two-body losses of zero-range potentials host-
ing inelastic s-wave scatterings were correlated to the s-wave con-
tact (26, 27). In reality, chemical reactions happen in a finite range. 
Many systems are also characterized by high-partial-wave scatterings. 
For instance, single-component fermionic KRb molecules interact 
with p-wave scatterings (1, 12). It is thus required to formulate a 
theory applicable to generic short-range reactive interactions. To 
concretize discussions, we focus on single-component fermionic 
molecules. All our results can be straightforwardly generalized to 
other systems with arbitrary short-range interactions.

RESULTS
Loss rate and contacts

The Hamiltonian of N reactive molecules is written as	

	​​ H = ​ ​ 
i
​ ​​[​​ − ​ ​ħ​​ 2​ ─ 2M ​ ​∇​i​ 

2​ + ​V​ ext​​(​r​ i​​ ) ​]​​ + ​ ​ 
i>j

​​U(​r​ i​​ − ​r​ j​​)​​	 (1)

where M is the molecular mass, Vext(r) is the external potential, and 
U(r) is a two-body interaction, as shown in Fig. 1. The many-body 
wave function, (r1, r2, …, rN), satisfies the time-dependent 
Schrödinger equation

	​ iħ ​∂​ t​​ (​r​ 1​​, ​r​ 2​​, … , ​r​ N​​ ) = H(​r​ 1​​, ​r​ 2​​, … , ​r​ N​​)​	 (2)

In the absence of electric fields, U(r) is a short-range interaction 
with a characteristic length scale, r0. When ∣r ∣> r0, U(r) = 0. Chemical 
reactions happen in an even shorter length scale, r* < r0. We adopt 
the one-channel model using a complex U(r) = UR(r) + iUI(r) to 
describe the chemical reaction (22), where UI(r) ≤ 0. When ∣r ∣  > r*, 
UI(r) = 0. Using the Lindblad equation that models the losses by jump 
operators, the same universal relations can also be derived (Materials 
and Methods).
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Universal relations arise from a length scale separation in dilute 
quantum systems, ​​r​​ *​ < ​ r​ 0​​ ≪ ​ k​F​ −1​​, where ​​k​F​ −1​​, the inverse of the Fermi 
momentum, captures the average interparticle separation. When 
the distance between two molecules is much smaller than ​​k​F​ −1​​, we 
obtain

	​ (​r​ 1​​, ​r​ 2​​, … , ​r​ N​​ ) ​ 
∣​r​ ij​​∣≪​k​F​ −1​

   ⎯⎯ ⟶ ​ ​ ​ 
m,ϵ

​​ ​​ m​​(​r​ ij​​; ϵ ) ​G​ m ​​(​R​ ij​​; E − ϵ)​	 (3)

where rij = ri − rj denotes the relative coordinates of the ith and 
the jth molecules and Rij = {(ri + rj)/2, rk ≠ i, j} is a short-hand nota-
tion including coordinates of their center of mass and all other par-
ticles. m(rij; ϵ) is a p-wave wave function with a magnetic quantum 
number m = 0, ± 1, which is determined solely by the two-body 
Hamiltonian, H2 = − (ħ2/M)∇2 + U(rij), as all other particles are far 
away from the chosen pair in the regime, ​|​r​ ij​​ | ≪ ​ k​F​ −1​​. Gm (Rij; E − ϵ) 
includes all many-body effects, which depend on the center of mass 
of the ith and the jth molecules and all other N − 2 molecules, and 
can be viewed as a “normalization factor” of the two-body wave 
function m(rij; ϵ). E is the total energy of the many-body system. ϵ, 
the colliding energy, is no longer a good quantum number in a 
many-body system, and a sum shows up in Eq. 3. Since both a con-
tinuous spectrum and discrete bound states may exist, we use the 
notation of sum other than an integral.

Although m(rij; ϵ) depends on the details of U(rij) when ∣rij ∣ < r0, 
it is universal when ​​r​ 0​​ <  |​r​ ij​​ | ≪ ​ k​F​ −1​​, as a result of vanishing inter-
action in this regime. We define ​​​ m​​(​r​ ij​​; ϵ ) = ​φ​ m​​(|​r​ ij​​ | ;ϵ ) ​Y​ 1m​​(​​   r​​ ij​​)​, 
where ​​Y​ 1m​​(​​   r​​ ij​​)​ is the p-wave spherical harmonics. Whereas many 
resonances exist, the phase shift of the scattering between KRb mol-
ecules is still a smooth function of the energy, due to the large aver-
age line width of these resonances, which far exceeds the mean level 
spacing of the bound states (21). The phase shift, , then has a 
well-defined expansion, ​​​q​ϵ​ 

3​ cot​[​​η​(​​ ​q​ ϵ​​​)​​​]​​  =  − 1 / ​v​ p​​ + ​q​ϵ​ 
2​ / ​r​ e​​​​, where vp and re 

are the p-wave scattering volume and effective range, respectively, 
both of which are complex for reactive interactions. qϵ = (ϵM/ħ2)1/2. 
Consequently, ​​φ​ m​​(|​r​ ij​​ | ;  ϵ ) = ​φ​m​ (0)​(|​r​ ij​​ | ) + ​q​ϵ​ 

2 ​ ​φ​m​ (1)​(|​r​ ij​​ | ) + O(​q​ϵ​ 
4 ​)​, where

	​​ φ​m​ (0)​(|​r​ ij​​ | ) ​ 
​r​ 0​​<|​r​ ij​​|≪​k​F​ −1​

   ⎯⎯ ⟶ ​ ​  1 ─ 
​∣ ​r​ ij​​ ∣​​ 2​

 ​ − ​ 1 ─ ​v​ p​​ ​ ​ 
|​r​ ij​​| ─ 3  ​​	 (4)

	​​ φ​m​ (1)​(|​r​ ij​​ | ) ​ 
​r​ 0​​<|​r​ ij​​|≪​k​F​ −1​

   ⎯⎯ ⟶ ​ ​ 1 ─ ​r​ e​​ ​ ​ 
|​r​ ij​​| ─ 3  ​ + ​ 1 ─ ​v​ p​​ ​ ​ 

​∣ ​ r​ ij​​ ∣​​ 3​
 ─ 30  ​ + ​ 1 ─ 2 ​​	 (5)

To simplify expressions, we have considered isotropic p-wave 
interactions, φ( ∣ rij ∣ ) = φm( ∣ rij ∣ ) and G(Rij; E − ϵ) = Gm(Rij; E − ϵ), 
and suppressed other partial waves in the expressions, which do not 
show up in universal relations relevant for single-component fermi-
onic molecules.

Using Eqs. 1 to 3, we find that the decay of the total particle 
number is captured by

	​​ ∂​ t​​ N  =  − ​  ħ ─ 
8 ​​​ 2​ M

 ​ ​ ​ 
=1

​ 
3
  ​ ​​ ​​ ​C​ ​​​	 (6)

where the three contacts are written as

	​​ C​ 1​​ =  3 ​(4)​​ 2​ N(N − 1 ) ∫ d ​R​ ij​​ ​∣ ​ g​​ (0)​ ∣​​ 
2
​​	 (7)

	​​ C​ 2​​ =  6 ​(4)​​ 2​ N(N − 1 ) ∫ d ​R​ ij​​ Re(​g​​ (0)*​ ​g​​ (1)​)​	 (8)

	​​ C​ 3​​ =  6 ​(4)​​ 2​ N(N − 1 ) ∫ d ​R​ ij​​ Im(​g​​ (0)*​ ​g​​ (1)​)​	 (9)

∫dRij = ∫d[(ri + rj)/2]drk ≠ i,j and ​​g​​ (s)​  = ​ ​ ϵ​​ ​q​ϵ​ 
2s​ G(​R​ ij​​; E − ϵ) ​. As shown 

later, C1 determines the leading term in the large momentum tail, 
similar to systems without losses (28–31). In contrast, C2,3 are new 
quantities in systems with two-body losses.
 in Eq. 6 are microscopic parameters determined purely by the 

two-body physics. In our one-channel model, their explicit expres-
sions are given by

	​​ κ​ 1​​  =  − ​ M ─ 
​ħ​​ 2​

 ​ ​∫0​ 
∞

 ​​ ​U​ I​​(r ) ​​∣​​ ​φ​​ (0)​(r ) ​∣​​​​ 2​ ​r​​ 2​ dr​	 (10)

	​​ ​​ 2​​ =  − ​ M ─ 
​ħ​​ 2​

 ​ Re​(​​​∫0​ 
∞

 ​​ ​U​ I​​(r ) ​φ​​ (0)*​(r ) ​φ​​ (1)​(r ) ​r​​ 2​ dr​)​​​​	 (11)

	​​ ​​ 3​​  = ​  M ─ 
​ħ​​ 2​

 ​ Im​(​​​∫0​ 
∞

 ​​ ​U​ I​​(r ) ​φ​​ (0)*​(r ) ​φ​​ (1)​(r ) ​r​​ 2​ dr​)​​​​	 (12)

where r = ∣r∣. If U(r) is modeled by two square well potentials, one 
for its real part and the other for its imaginary part, then 1,2,3 can 
be evaluated explicitly. For simplicity, we set ​U(r ) = − ​​   U ​​ R​​ − i ​​   U ​​ I​​​ 
when ∣r∣ ≤ r0 = r* and 0 elsewhere. Changing the ratio r0/r* does 
not change any results qualitatively. Figure 2 shows how 1,2,3 de-
pend on ​​​ ˜  U ​​ I​​​ when ​​​ ˜  U  ​​ R​​​ is fixed at various values including those cor-
responding to small and divergent vp in the absence of ​​​ ˜  U ​​ I​​​. 
When ​​​ ˜  U  ​​ I​​ =  0​, 1,2,3 = 0. With increasing ​​​   U ​​ I​​​, 1,2,3 change non-
monotonically and all approach zero when ​​​   U ​​ I​​​ is large, indicating a 
vanishing reaction rate in the extremely large UI limit.

Equation 6 is universal for any particle number and any short-
range interactions with arbitrary interaction strengths, as well as 
any real external potential. It separates C, which fully capture the 
many-body physics, from two-body parameters, , which are inde-
pendent on the particle number and the temperature. Therefore, 
even when microscopic details of the reactive interaction, for in-
stance, the exact expression of U(r), are unknown,  can still be 
accessed in systems whose C are easily measurable (Supplementary 
Materials). Equation 6 also holds for any many-body eigenstates, 
and a thermal average does not change its form. Therefore, Eq. 6 

U (r)

r
0

r
r

r k
F

1

k
F

1

Fig. 1. A length scale separation in dilute molecules. The blue (red) solid spheres 
represent potassium (rubidium) atoms. Inside the dashed circle are two molecules, 
the separation between which is much smaller than the average interparticle spac-
ing, ​|r | ≪ ​ k​F​ 

−1​​. The enlarged plot of the regime inside the dashed circle is a sche-
matic of the chemical reaction. The green solid curve represents the real part of the 
interaction, UR(r). The imaginary part of the interaction, UI(r), is nonzero only in the 
shaded area, where the reaction happens.
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does apply for any finite temperatures, provided that the reac-
tion rate is slow compared to the time scale of establishing quasi-
equilibrium in the many-body system, i.e., the many-body system 
has a well-defined temperature at any time. Under this situation, 
C should be understood as their thermal averages.

We have found that 1 and 2 can be rewritten as familiar 
parameters. ​​​​ 1​​ = Im​(​​ ​v​p​ −1​​)​​​​ and 2 = Im [ − 1/(2re)] (Materials and 
Methods). In contrast, to our best knowledge, 3 is a new parameter 
that has not been addressed in previous works. Similar to 2, 3 can 
be expressed as the difference between the extrapolation of the two-
body wave function in the regime ∣r ∣ > r0 toward the origin and the 
realistic wave function at short distance, ∣r ∣ < r0 (Materials and 
Methods). Equation 6 can be rewritten as

	​​ ​∂​ t​​ N  =  − ​  ħ ─ 
8 ​​​ 2​ M

 ​​[​​Im​(​​ ​v​p​ −1​​)​​ ​C​ 1​​ − ​ 1 ─ 2 ​ Im​(​​ ​r​e​ 
−1​​)​​ ​C​ 2​​ + ​​ 3​​ ​C​ 3​​​]​​​​	 (13)

For s-wave inelastic scatterings due to complex zero-range inter-
actions, the first term on the right-hand side of Eq. 13 was previously 
derived, with vp replaced by the complex s-wave scattering length 
(26). For a generic short-range interaction, all three contacts and all 
three microscopic parameters are required, as shown in Eqs. 6 and 
13. In particular, when 2,3 are comparable to or even larger than 1, 
the other two terms cannot be ignored. This expression allows us to 
directly connect the two-body loss rate to a wide range of physical 
quantities.

Universal relations with other physical quantities
We first consider the momentum distribution, which has a univer-
sal behavior when ∣k ∣ ≪ 1/r0 but is much larger than all other mo-
mentum scales, including kF, the inverses of the scattering length 
and the thermal wavelength. We define the total angular averaged 
momentum, n(∣ k ∣) = m = 0, ± 1 ∫dnm(k), where  is the solid 
angle

	​ n(|k | ) → ​   ​C​ 1​​ ─ 
​∣ k  ∣​​ 2​

 ​​	 (14)

Once n(∣ k ∣) is measured, the first term in Eqs. 6 and 13 is known. 
For radio frequency (RF) spectroscopy in molecules, similar to that 
for atoms, Eq. 14 also indicates that such spectroscopy has a univer-

sal tail, ​( ) → [(​​ RF​​ V ) / (8 ​​​ 2​ ) ] ​C​ 1​​ ​(ħ / M)​​ −1/2​​, where  is the RF 
frequency, RF is the RF Rabi frequency, and V is the volume of the 
system. It is worth mentioning that, for atoms with elastic p-wave 
interactions, Eq. 14 describes the leading term of the large momen-
tum tail (28–31). We have not found that the subleading term 
∼∣k∣−4 has connections to two-body losses.

Another fundamentally important quantity in condensed matter 
physics is the density correlation function, S(r) = ∫ dR〈n(R + 
r/2)n(R − r/2)〉, which measures the probability of having two 
particles separated by a distance r. Using Eqs. 3 to 5, S(r) can be 
evaluated explicitly in the regime, ​​r​ 0​​ <  |r | ≪ ​ k​F​ −1​​. To enhance the 
signal-to-noise ratio, S(r) can be integrated over a shell with inner 
and outer radii, x and x + D, respectively. Such an integrated den-
sity correlation is given by ​P(x, D ) = ​∫x

​ x+D ​​ drS(r)​, and

	​​  
​​​ ∂ P(x, D) ─ ∂ D  ​​|​​​ 

D→0
​​  = ​   1 ─ 

16 ​​​ 2​
 ​​{​​ ​C​ 1​​ ​ 1 ─ 

​x​​ 2​
 ​ + ​ 1 ─ 2 ​ ​C​ 2​​​

​    
​ − ​[​​2Re​(​​ ​ 1 ─ ​v​ p​​ ​​)​​ ​C​ 1​​ − Re​(​​ ​ 1 ─ ​r​ e​​ ​​)​​ ​C​ 2​​ + Im​(​​ ​ 1 ─ ​r​ e​​ ​​)​​ ​C​ 3​​​]​​ ​ x ─ 3 ​​}​​​

​​	 (15)

Again, other partial waves have been suppressed in the expres-
sion, as their contributions are given by different spherical harmonics. 
Fitting ∂P(x, D)/∂D∣D → 0 measured in experiments using the power 
series in Eq. 15 allows one to obtain all three contacts, C1,2,3, pro-
vided that vp and re are known. If these two parameters are un-
known, then it is necessary to include higher-order terms in the 
expansion (Materials and Methods).

We emphasize that, no matter whether thermodynamic quantities 
and correlation functions can be computed accurately in theories, 
Eqs. 6 and 13 to 15 allow experimentalists to explore how contacts 
determine chemical reactions in interacting few-body and many-
body systems. In the strongly interacting regime where exact theo-
retical results are not available, these universal relations become 
most powerful.

Temperature dependence of the loss rate
It is useful to illuminate our results using some examples. For a two-
body system in free space, the center of mass and the relative 
motion are decoupled. ϵ in Eqs. 7 to 9 becomes a good quantum 
number, i.e., G(Rij; E − ϵ) becomes a delta function in the energy 
space. For scattering states with ϵ > 0, we consider the wave function, 
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Fig. 2. Dependence of the three microscopic parameters on interactions. (A to C) ​​​ ̃ v ​​ p​​​ represents the scattering volume when ​​​ ̃ U ​​ I​​ =  0​. ​​​ ̃ U ​​ I​​​ is in the unit of ​​​ħ​​ 2​ / ​(​​ ​Mr​0​ 2​​)​​​​. 
1,2,3 are in the unit of ​​r​0​ −3​​, ​​r​0​ −1​​, and ​​r​0​ −1​​, respectively. When ​​​ ̃ v ​​ p​​​ crosses zero, the location of the maximum of 1 (3) first approaches and then leaves the origin, and 1 (3) 
remains positive (negative). In contrast, 2 quickly changes from positive to negative at small values of  ​​​ ̃ U ​​ I​​​ when ​​​ ̃ v ​​ p​​​ crosses zero. In the large  ​​​ ̃ U ​​ I​​​ limit, all three parameters 
vanish, as shown by the insets.
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[2](r1, r2) = c(R12)(r12),where c(R12) is a normalized wavefunc-
tion of the center of mass and ​(​r​ 12​​ ) = ​√ 

_
 8 / V ​ [ i / (cot  − i ) ] [cot  ​j​ 1​​

(​q​ ϵ​​ | ​r​ 12​​ | ) − ​n​ 1​​(​q​ ϵ​​ | ​r​ 12​​ | ) ] ​​ m​​ ​Y​ 1m​​(​​   r​​ 12​​)​. Figure  3 shows the dependence 
of C1 on ​​​   U  ​​ I​​​ when ​​​ ~ v ​​ p​​​ is fixed at various values. Results for a bound 
state are also shown. With increasing ​​​   U ​​ I​​​, C1 approaches a nonzero 
constant in both cases. Here, ​​​C​ 2​​ =  2 ​C​ 1​​ Re​(​​ ​q​ϵ​ 

2 ​​)​​​​. C3 = 0 if we consider a 
scattering state. In contrast, ​​​C​ 3​​  =  2 ​C​ 1​​ Im​(​​ ​q​ϵ​ 2 ​​)​​​​ for a bound state. An-
alytical results in the limits, vp = 0±, ∞, are shown in Table 1.

We use the second-order virial expansion to study a thermal gas 
at high temperatures. The partition function is written as ​Z  = ​
Z​ 0​​ + ​e​​ 2/(​k​ B​​T)​ ​​ ​E​ c​​,n​​(​e​​ −(​E​ c​​+​ϵ​ n​​)/(​k​ B​​T)​ − ​e​​ −(​E​ c​​+​ϵ​n​ 0 ​​)​​/(​k​ B​​T)​)​, where Z0 is the parti-
tion function of noninteracting fermions,  is the chemical potential, 
and Ec = ħ2K2/(4M) is the energy of the center of mass motion car-
rying a momentum K. ϵn and ​​ϵ​n​ 0 ​​ are the eigenenergies of the relative 
motion with and without interactions, respectively. On the basis of 
the results of the two-body problem, thermal averaged contacts are 
derived using 〈C〉T = Z−1e2/(kBT)(Ece

−Ec/(kBT))(nC(ϵn)e−ϵn/(kBT)). 
Using N = kBT∂ ln Z, we eliminate  and obtain 〈C〉T as a function 
of N and T. Analytical expressions in the limits, vp = 0±, ∞, are 
shown in Table 2.

Table 2 may shed light on some recent experiments conducted 
in the weakly interacting regime (9, 12). Although vp > 0, it is likely 
that bound states are not occupied, i.e., the system is prepared at 
the upper branch. Therefore, C3 = 0. In a homogenous system, we 
obtain

	​​  
​∂​ t​​ N = ​  144 ​​​ 2​ ─ h  ​ Im(​v​ p​​ ) ​Nnk​ B​​ T

​   
​+ ​ 360 ​​​ 2​ ─ h  ​ Im​(​​ ​ 

​v​ p​​
 ─ 

​v​p​ * ​
 ​ ​r​e​ 

−1​​)​​ ​ 
M ​∣​v​ p​​∣​​ 2 ​

 ─ 
​ħ​​ 2​

 ​ ​ Nnk​B​ 2 ​ ​T​​ 2​​
​​	 (16)

A previous work derived the first term in Eq. 16 using a different 
approach (22). However, a complete expression needs to include 
the contribution from re, which leads to a different power of the 
dependence on T. A recent experiment has shown the deviation 
from the linear dependence on T (12). However, it is worth investi-
gating whether such deviation comes from the second term in 
Eq. 16 or some other effects, particularly correlations beyond the 
description of the second-order virial expansion.

As a harmonic trap exists in experiments, the dependence on T 
could be completely different. We use the local density approxima-
tion to obtain the total contacts by integrating local contacts. As a 
result, ​​C​​ 

trap​  = ​ [( ​k​ B​​ T ) / (M ​​​ 2​ ) ]​​ 3/2​ ​C​ ​​(0)​, where  is trapping fre-

quency and C(0) are the contact densities at the center of the trap 
(Supplementary Materials). Consequently

	​​ 

​∂​ t​​ ​N​​ trap​  = ​  18 ​√ 
_

 π ​ ─ h  ​ ​(M ​ω​​ 2​)​​ 
​3 _ 2​
​ Im(​v​ p​​ ) ​(​N​​ trap​)​​ 2​ ​  1 ─ 

​√ 
_

 ​k​ B​​ T ​
 ​

​    
​+  ​ 45 ​√ 

_
 π ​ ─ h  ​ ​(M ​ω​​ 2​)​​ 

​3 _ 2​
​ Im​(​​ ​ 

​v​ p​​
 ─ 

​vp​​ *​
 ​ ​r​e​ 

−1​​) ​​ ​ 
M ​∣ ​ v​ p​​ ∣​​ 2 ​

 ─ 
​ħ​​ 2​

 ​ ​ (​N​​ trap​)​​ 2​ ​√ 
_

 ​k​ B​​ T ​​
​​	 (17)

The first term decreases with increasing T, in sharp contrast to 
the homogeneous case. In a trap, the molecular cloud expands when 
the temperature increases such that densities and the total contacts 
decrease for a fixed N. Similarly, the second term increases slower 
than the result in homogenous systems with increasing T. Alterna-
tively, we could consider the density at the center of the trap, the 
decay rate of which linearly depends on T again (Supplementary 
Materials). Whereas the temperature dependence of the loss rate in 
the trap can be qualitatively obtained from the result in a homoge-
nous system by considering a temperature-dependent volume ∼T3/2 
(12), a rigorous calculation as aforementioned is required to obtain 
the exact numerical factors in Eq. 17.

DISCUSSION
Although we have used the high-temperature regime as an example 
to explain Eqs. 6 and 13 to 15, we need to emphasize that these uni-
versal relations are powerful tools at any temperatures. In partic-
ular, at lower temperatures, contacts are no longer proportional to 
N2, directly reflecting the critical roles of many-body correlations in 
determining the reaction rate. For instance, below the superfluid 
transition temperature, contacts may be directly related to 
superfluid-order parameters (32, 33). Universal relations con-
structed here thus offer us a unique means to explore the interplay 
between the chemical reaction and symmetry breaking in quantum 
many-body systems.

We also would like to point out that the density fluctuation mea-
sured in experiments (12, 14), f(rs) = 〈n2(rs)〉 − 〈n(rs)〉2, is different 
from the density-density correlation, S(r), studied in our work. 
Whereas S(r) directly tells us all contacts by capturing the probabil-
ity of having two particles as a function of r, their relative coordi-
nate, f(rs) traces the compressibility ∂n/∂ as a function of rs, the 
single-particle coordinate. Since the pressure, P, is controlled by 
contacts and other thermodynamical quantities can be derived 
from P (34), how the compressibility and f(rs) are related to contacts 
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Fig. 3. Contacts of a two-body system. (A) C1 (in the unit of ​​r​0​ 4​ / V​) of a scattering 
state as a function of  ​​​ ̃ U ​​ I​​​ [in the unit of ​​​ħ​​ 2​ / ​(​​ ​Mr​0​ 2​​)​​​​] when ​​​ ̃ v ​​ p​​​ is fixed at various values. 
qϵ = 0.01/r0. (B) C1 (in the unit of r0) of a bound state as a function of  ​​​ ̃ U ​​ I​​​ [in the unit 
of ​​​ħ​​ 2​ / ​(​​ ​Mr​0​ 2​​)​​​​].

Table 1. Analytical expressions for contacts Cv of two particles in 
different limits. Lines 1 and 2 show the results in the weakly interacting 
regime and those at resonance, respectively. vp → 0± (∞) means vp → 0± + 
0i (∞ + 0i) on the complex plane. Line 3 includes the results for bound 
states, in which a single angular momentum m is considered. 

vp C1 C2 C3

vp → 0± ​12 ​(4)​​ 3​ ​q​ϵ​ 2​ ​∣​v​ p​​∣​​ 2​ / V​ ​​2 ​C​ 1​​ Re​(​​ ​q​ϵ​ 2​​)​​​​ 0

vp → ∞ ​12 ​(4)​​ 3​ ​q​ϵ​ −2​ ​∣​r​ e​​∣​​ 2​ / V​ ​​2 ​C​ 1​​ Re​(​​ ​q​ϵ​ 2​​)​​​​ 0

Bound 2(4)2 Re ( − re) ​​2 ​C​ 1​​ Re​(​​ ​q​ϵ​ 2​​)​​​​ ​​2 ​C​ 1​​ Im​(​​ ​q​ϵ​ 2​​)​​​​
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and the loss rate remains an interesting open question worthy of 
exploration.

In current experiments (12, 14), the electric field is absent and 
the unpolarized molecules interact with each other with the van der 
Waals potential. Once an electric field is turned on, the dipole-
dipole interaction between polarized molecules, ~1/∣r∣3, decays 
slower and has a longer range. For any power-law potentials, 
A/∣r∣n, if n > 2, then the scattering theory applies and a character-
istic length of the range of the interaction can be defined as ​​ ~ r ​  = ​
(M | A | / ​ħ​​ 2​)​​ 1/(n−2)​​ (35). In dilute systems, once ​​k​ F​​​ ~ r ​ ≪  1​ is satisfied, 
universal relations rise from such a length scale separation. The de-
tails of the interaction, such as n of the power-law potential, deter-
mine the low energy expansion of the phase shift and microscopic 
parameters in the universal relations. It will be interesting to study 
how the electric field influences contacts, universal relations, and 
the decay rate of molecules. It is also worth mentioning a subtlety in 
the p-wave scattering when n = 6. It has been theoretically predicted 
that an extra term linearly dependent on the momentum should 
exist in the phase shift (36, 37). Whereas current experiments have 
not found evidence for extra contacts associated with this term yet 
(31), it will be useful to explore whether such a term may affect con-
tacts, chemical reactions, and any other observables in many-body 
systems.

In addition to macroscopic systems, multibody correlations can 
also be studied in mesoscopic traps with controllable particle num-
bers. For instance, a recent experiment has found that the loss rate 
in a deep optical lattice, where each lattice site traps a few molecules, 
deviates substantially from the result in a large trap (38). Optical 
tweezers have also been implemented to study quantum effects in 
collisions or chemical reactions of a few particles (39, 40). Contacts 
of these few-body systems may be evaluated exactly and thus pro-
vide us with quantitative results of how multibody correlations de-
termine two-body collisions and quantum chemical reactions.

More broadly, our results unfold intriguing universality in non-
Hermitian systems. Recently, there have been extensive interest in 
studying open systems, where very rich non-Hermitian phenomena 
have been identified (41, 42). However, most of these studies have 
been focusing on either noninteracting systems or the weakly inter-
acting regime where perturbative or mean-field approaches apply. 
Universal relations derived here are valid for any interaction 
strengths and thus deliver a unique tool to tackle interacting 
non-Hermitian systems and to unfold possible universal behaviors 
behind the complexity in quantum systems coupled to environ-
ment. We hope that our work will stimulate more studies of con-

tacts and universal relations to bridge quantum chemistry; atomic, 
molecular, and optical physics; and condensed matter physics.

MATERIALS AND METHODS
The Lindblad equation
We consider a Lindblad master equation

	​ ħ ​ d ─ dt ​  =  − i [ H,  ] + D [ ]​	 (18)

where H is the Hamiltonian that describes the unitary part of the 
time evolution and the dissipator D describes the loss due to inelas-
tic collisions

	​​
​D​[​​ρ​]​​  =  − ∫ d ​x​ 1​​ d ​x​ 2​​ ​1 _ 2​ Γ​(​​ ∣  ​x​ 1​​ − ​x​ 2​​ ∣  ​)​​​(​​2Ψ​(​​ ​x​ 2​​​)​​Ψ​(​​ ​x​ 1​​​)​​ ​ρΨ​​ †​​(​​ ​x​ 1​​​)​​ ​Ψ​​ †​​(​​ ​x​ 2​​​)​​​

​    
​− ​{​​ ​Ψ​​ †​​(​​ ​x​ 1​​​)​​ ​Ψ​​ †​​(​​ ​x​ 2​​​)​​Ψ​(​​ ​x​ 2​​​)​​Ψ​(​​ ​x​ 1​​​)​​, ρ​}​​​)​​​

 ​ ​	
		  (19)

(x) is the fermionic field operator satisfying {(x), †(x′)} = 
(3)(x − x′). (1/2)( ∣ x1 − x2 ∣ ) describes a finite range dissipation. 
The loss rate of the total particle number, dN/dt = ∫dx(d/dt)Tr(n(x)), 
n(x) = †(x)(x), is written as

	​​ 

​​dN _ dt ​  =  − ​ 1 _ ħ​ Tr​(​​∫ dx ​Ψ​​ †​​(​​x​)​​Ψ​(​​x​)​​∫d ​x​ 1​​ d ​x​ 2​​ ​1 _ 2​ Γ​(​​  ∣ ​x​ 1​​ − ​x​ 2​​ ∣ ​)​​​

​    

​×​[​​2Ψ​(​​ ​x​ 2​​​)​​Ψ​(​​ ​x​ 1​​​)​​ ​ρΨ​​ †​​(​​ ​x​ 1​​​)​​ ​Ψ​​ †​​(​​ ​x​ 2​​​)​​​

   ​   
− ​​{​​ ​Ψ​​ †​​(​​ ​x​ 1​​​)​​ ​Ψ​​ †​​(​​ ​x​ 2​​​)​​Ψ​(​​ ​x​ 2​​​)​​Ψ​(​​ ​x​ 1​​​)​​, ρ​}​​​]​​​)​​​

​    
​           = − ​ 1 _ ħ​∫ d ​x​ 1​​ d ​x​ 2​​ dxΓ​(​​​|​​ ​x​ 1​​ − ​x​ 2​​​|​​​)​​Tr​(​​ρ​[​​ ​Ψ​​ †​​(​​ ​x​ 1​​​)​​ ​Ψ​​ †​​(​​ ​x​ 2​​​)​​,​

​    

​​Ψ​​ †​​(​​x​)​​Ψ​(​​x​)​​​]​​Ψ​(​​ ​x​ 2​​​)​​Ψ​(​​ ​x​ 1​​​)​​​)​​​

​   

​        = ​ 2 _ ħ​∫ dxdx′Γ​(​​​|​​x′ − x​|​​​)​​〈 ​Ψ​​ †​​(​​x​)​​ ​Ψ​​ †​​(​​x′​)​​Ψ​(​​x′​)​​Ψ​(​​x​)​​〉​

 ​​	  (20)

This equation is valid for any finite range dissipator. In the ap-
proximation of zero-range dissipators,  = g(3)(x − x′), it reduces to 
(43–45)

	​​  dN ─ dt ​  = ​  2 ─ ħ ​ g∫ dx〈 ​Ψ​​ †​(x ) ​Ψ​​ †​(x ) Ψ(x ) Ψ(x ) 〉​	 (21)

The work in (43) considered two-component fermions and ob-
tained d〈N1〉/dt = d〈N2〉/dt = − [ħ/(2m)] Im (1/a)C, where N1 (N2) 
is the number of spin-up (spin-down) fermions, a is the s-wave 
scattering length, and C is the s-wave contact.

Table 2. Analytical expressions for thermal averaged contacts 〈Cv〉T in different limits. Lines 1 and 2 show the results in the weakly interacting regime. 
When vp is positive, bound states exist and their contributions are included in line 1. Line 3 includes the results at resonance. ND is the number of dimers. 
T = [(2ħ2)/(MkBT)]1/2 is the thermal wavelength. 

vp 〈C1〉T 〈C2〉T 〈C3〉T

vp → 0+ ​​
72 ​(2)​​ 4​ ​∣ ​ v​ p​​ ∣​​ 2​ ​​T​ −2​ Nn

​   
  + 2 ​(4)​​ 2​ Re(− ​r​ e​​ ) ​N​ D​​

  ​​ ​​
360 ​(2π)​​ 5​ ​∣​v​ p​​∣​​ 2​ ​λ​T​ −4​ Nn

​   
​+ 4 ​(4π)​​ 2​ Re(− ​r​ e​​ ) Re​(​​ ​r​ e​​ / ​v​ p​​​)​​ ​N​ D​​​

​​ ​​4 ​(4π)​​ 2​ Re(− ​r​ e​​ ) Im​(​​ ​r​ e​​ / ​v​ p​​​)​​ ​N​ D​​​​

vp → 0− ​72 ​(2)​​ 4​ ​∣​v​ p​​∣​​ 2​ ​​T​ −2​ Nn​ ​360 ​(2)​​ 5​ ​∣​v​ p​​∣​​ 2​ ​​T​ −4​ Nn​ 0

vp → ∞ ​24 ​(4)​​ 2​ ​∣ ​r​ e​​ ∣​​ 2​ ​​T​ 2 ​ Nn​ 12(4)3∣re∣2Nn 0
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We emphasize that Eq. 20 is equivalent to results derived from the 
Hamiltonian with a complex interaction, as shown in Eq. 24 in the 
next section, provided that we identify UI and , i.e., UI(∣x′ − x∣) = 
(∣x′ − x∣). Thus, universal relations derived from the Lindblad equation 
are the same as those shown here since the probability of having 
more than two particles within a distance smaller than r0 is negligi-
ble in dilute systems satisfying ​​r​ 0​​  ≪ ​ k​F​ −1​​.

Decay rate
In the presence of complex short-range interactions, the many-body 
wave function satisfies

	​​ iħ ​∂​ t​​ (​r​ 1​​, ​r​ 2​​, … , ​r​ N​​ ) = ​[​​​ ​ 
i=1

​ 
N
 ​​[​​ − ​ ​ħ​​ 2​ ─ 2M ​ ​∇​i​ 

2​ + ​V​ ext​​(​r​ i​​ ) ​]​​ + ​ ​ 
i>j

​​U(​r​ ij​​ ) ​]​​(​r​ 1​​, ​
r​ 2​​, … , ​r​ N​​)​​		  (22)

For any finite-size system, net current vanishes at the boundary. 
We obtain

	​​ ∂​ t​​ N  = ​  4 ─ ħ ​ ​​ i>j​​∫ d ​R​ ij​​ d ​r​ ij​​ ​U​ I​​(​r​ ij​​ ) ​∣ (​R​ ij​​, ​r​ ij​​ ) ∣​​ 2​​	 (23)

which is equivalent to a second quantization form using fermionic 
operators

	​​ ∂​ t​​ N = ​ 2 ─ ħ ​∫ dxd​x ′ ​ ​U​ I​​(|​x ′ ​ − x | ) 〈 ​​​ †​(x ) ​​​ †​(​x ′ ​ ) (​x ′ ​ ) (x ) 〉​	 (24)

Using Eq. 3 and ​ϵ ​​ m​​(​r​ ij​​; ϵ ) = [− (​ħ​​ 2​ / M ) ​∇​​r​ ij​​​ 2 ​ + U(​r​ ij​​ ) ] ​​ m​​(​r​ ij​​; ϵ)​, 
we obtain

	​​ 

2i ​ Σ​ 
j>i

​​∫ d ​R​ ij​​ ​∫0​ 
​r​ 0​​

 ​​d ​r​ ij​​ ​∣Ψ(​R​ ij​​, ​r​ ij​​ ) ∣​​ 2​ ​U​ I​​(​r​ ij​​)

​   

− ​ Σ​ 
j>i

​​∫ d ​R​ ij​​ ​∫0​ 
​r​ 0​​

 ​​d ​r​ ij​​ [ ​Ψ​​ *​(​R​ ij​​, ​r​ ij​​)

​   

​   × Σ​ m,ϵ​​ ϵ ​G​ m​​(​R​ ij​​; E − ϵ ) ​ψ​ m​​(​r​ ij​​; ϵ ) ] 

​   + ​ Σ​ 
j>i

​​∫ d ​R​ ij​​ ​∫0​ 
​r​ 0​​

 ​​d ​r​ ij​​ [ Ψ(​R​ ij​​, ​r​ ij​​)​   

​      × Σ​ m,ϵ​​ ​ϵ​​ *​ ​G​m​ * ​(​R​ ij​​; E − ϵ ) ​ψ​m​ * ​(​r​ ij​​; ϵ ) ]

​   

       = ​ ​ħ​​ 2​ ─ M ​ ​ Σ​ 
j>i

​​∫ d ​R​ ij​​ ​∫0​ 
​r​ 0​​

 ​​d ​r​ ij​​ [ ​Ψ​​ *​(​R​ ij​​, ​r​ ij​​ ) ​∇​​r​ ij​​​ 2 ​ Ψ(​R​ ij​​, ​r​ ij​​)

​   

    − Ψ(​R​ ij​​, ​r​ ij​​ ) ​∇​​r​ ij​​​ 2 ​ ​Ψ​​ *​(​R​ ij​​, ​r​ ij​​ ) ]

 ​​		 
		  (25)

Note that, for the system with isotropic interactions U(r) = U(∣r∣) 
and ​​​ m​​(​r​ ij​​; ϵ ) = φ(|​r​ ij​​ | ; ϵ ) ​Y​ 1m​​(​​   r​​ ij​​)​, one has (29)

	​​ v​ p​​ = ​ 
​r​0​ 3​

 ─ 3 ​ ​  ​r​ 0​​ ς − 2 ─ 
​r​ 0​​ ς + 1

 ​​	 (26)

	​​  1 ─ ​r​ e​​ ​  =  − ​ 1 ─ ​r​ 0​​ ​ − ​ 
​r​0​ 2​

 ─ 3 ​ ​ 1 ─ ​v​ p​​ ​ + ​ 
​r​0​ 5​

 ─ 45 ​ ​  1 ─ 
​(​v​ p​​)​​ 2​

 ​ − ​∫0​ 
​r​ 0​​

 ​​ ​[​φ​​ (0)​(r ) ]​​ 
2
​ ​r​​ 2​ dr​	 (27)

where ς = {∂ ln [rφ(r; ϵ)]/∂r}∣ϵ = 0. On the basis of Eqs. 4, 5, and 27, we 
define ​​C​1m​ s​s ′ ​ ​ = ​ (4)​​ 2​ N(N − 1 ) ∫ d ​R​ ij​​ ​g​m​ (s)*​ ​g​m​ (​s ′ ​)​​, ​​g​m​ (s)​ = ​ ​ ϵ​​ ​q​ϵ​ 

2s​ ​G​ m​​(​R​ ij​​; E − ϵ)​, and ​​
C​ 1m​​  = ​ C​1m​ 00 ​​ and obtain

	​​

​​Σ​ m​ ​​[​​Im​(​​ − ​v​p​ −1​​)​​ ​C​ 1m​​ + ​ 1 ─ 2 ​ Im​(​​ ​r​e​ 
−1​​)​​​(​​ ​C​1m​ 01 ​ + ​C​1m​ 10 ​​)​​​

​       ​− i ​κ​ 3​​​(​​ ​C​1m​ 01 ​ − ​C​1m​ 10 ​​)​​ + O​(​​ ​(E − ​E​​ *​)​​ 
2
​​)​​​]​​​​   

= ​ ​(4π)​​ 2​ 2M ─ 
​ħ​​ 2​

 ​ ​  Σ​ 
i>j

​​∫ d ​R​ ij​​ ​∫0​ 
​r​ 0​​

 ​​d ​r​ ij​​ ​​|​​​ Σ​ m,ϵ​​ ​G​ m​​​(​​ ​R​ ij​​; E − ϵ​)​​ ​ψ​ m​​​(​​ ​r​ ij​​; ϵ​)​​​|​​​​ 2​ ​U​ I​​(​r​ ij​​)

​​

(28)

which leads to Eqs. 10 to 12,

	​​​ ​ 1​​  =  Im​(​​ ​v​p​ −1​​)​​  =  − ​ M ─ 
​ħ​​ 2​

 ​ ​∫0​ 
∞

 ​​ ​drr​​ 2​ ​​|​​ ​φ​​ (0)​(r ) ​|​​​​ 2​ ​U​ I​​(r)​​	 (29)

	​​ ​ 2​​ =  Im(− ​r​e​ 
−1​ / 2 ) = − ​ M ─ 

​ħ​​ 2​
 ​ Re (​∫0​ 

∞
 ​​ ​drr​​ 2​ ​φ​​ (0)*​(r ) ​φ​​ (1)​(r ) ​U​ I​​(r ) )​	(30)

	​​​ ​ 3​​ =  − ​∫0​ 
​r​ 0​​

 ​​ { ​[​Imφ​​ (0)​(r ) ]​​ 
2
​ − ​[Im ​​   φ​​​ (0)​(r ) ]​​ 

2
​}​r​​ 2​ dr   

 
  = ​  M ─ 

​ħ​​ 2​
 ​ Im ​(​​​∫0​ 

∞
 ​​ ​drr​​ 2​ ​φ​​ (0)*​(r ) ​φ​​ (1)​(r ) ​U​ I​​(r ) ​)​​​​		

		  (31)

where ​​​   φ​​​ (0)​(r)​ is a wave function obtained from extending the actual 
wave function φ(0)(r) outside the potential (r > r0) into the regime 
r  < r0. We obtain Eq. 13

	​​​ ∂​ t​​ N  =  − ​  ħ ─ 
8 ​​​ 2​ M

 ​​[​​Im​(​​ ​v​p​ −1​​)​​ ​C​ 1​​ − ​ 1 ─ 2 ​ Im​(​​ ​r​e​ 
−1​​)​​ ​C​ 2​​ + ​​ 3​​ ​C​ 3​​​]​​​​	 (32)

where C1 = mC1m, ​​​C​ 2​​ =  2 ​​ m​​ Re​(​​ ​C​1m​ 01 ​​)​​​​, and ​​​C​ 3​​  =  2 ​​ m​​ Im​(​​ ​C​1m​ 01 ​​)​​​​. 
The above equation leads to Eqs. 7 to 9 by considering Gm(Rij; E − ϵ) = 
G(Rij; E − ϵ).

Momentum distribution
Similar to systems with real interactions (30), using ​n(k ) = ​​i=1​ N  ​∫ ​
∏ j≠i​ ​​ d ​r​ j​​ ​​|​​∫ d ​r​ i​​ (​r​ 1​​, ​r​ 2​​, … , ​r​ N​​ ) ​e​​ −ik⋅​r​ i​​​​|​​​​ 2​ ​, we obtain

	​ n(k ) ​ 
​k​ F​​≪|k|≪​r​0​ −1​

   ⎯⎯ ⟶ ​ ​  ​C​ 1​​ ─ 
3 ​​|​​k​|​​​​ 2​

 ​ ​​ m​ ​ ​​|​​ ​Y​ 1m​​(​̂  k​ ) ​|​​​​ 2​​	 (33)

which leads to

	​ n(|k | ) = ∫ dn(k ) = ​ ​C​ 1​​ ─ 
​​|​​k​|​​​​ 2​

 ​​	 (34)

Density correlations
The density correlation function S(r) = ∫ dR〈n(R + r/2)n(R − r/2)〉 
can be rewritten as

	​​ 
S(r ) = N(N − 1 ) ∫ (​∏ k≠i,j​ ​​ d ​r​ k​​)

​   
× ​​|​​Ψ​(​​ ​r​ 1​​, … , ​r​ i​​  =  R + ​ r ─ 2 ​, … , ​r​ j​​  =  R − ​ r ─ 2 ​, … , ​r​ N​​​)​​​|​​​​ 2​

​​	 (35)

In the regime, ​r  ≪ ​ k​F​ −1​​, S(r) is written as

	​​
​S(r ) = N(N − 1 ) ∫ d ​R​ ij​​ ​Σ​ m​ ​ ​​|​​ ​Y​ 1m​​(​   r​ ) ​|​​​​ 2​​[​​ ​​|​​ ​φ​m​ (0)​(r ) ​|​​​​ 2​ ​​|​​ ​g​m​ (0)​​|​​​​ 2​​

​    
​+ ​φ​m​ (0)​(r ) ​φ​m​ (1)*​(r ) ​g​m​ (1)*​ ​g​m​ (0)​ + ​φ​m​ (1)​(r ) ​φ​m​ (0)*​(r ) ​g​m​ (0)*​ ​g​m​ (1)​​]​​​

 ​​	 (36)

where r = ∣ r∣. The integral over a shell allows us to obtain

	​​
​P(x, D ) = ​∫x​ 

x+D
 ​​drS(r ) = ​  1 ─ 

​(4π)​​ 2​
 ​ ​Σ​ m​ ​​∫x​ 

x+D
 ​​ ​r​​ 2​ dr​[​​ ​φ​m​ (0)​(r ) ​φ​m​ (0)*​(r ) ​C​ 1m​​​

​    
​+ ​φ​m​ (0)​(r ) ​φ​m​ (1)*​(r ) ​C​1m​ 10 ​ + ​φ​m​ (1)​(r ) ​φ​m​ (0)*​(r ) ​C​1m​ 01 ​​]​​​

 ​​	
			 
		  (37)
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Using Eqs. 4 and 5, we obtain

	​​ 

​​​ ∂ P(x, D) ─ ∂ D  ​​|​​​ 
D→0

​​  = ​   1 ─ 
16 ​π​​ 2​

 ​​{​​ ​C​ 1​​ ​ 1 ─ 
​x​​ 2​

 ​ + ​C​ 2​​ ​ 1 ─ 2 ​​

​    
​+ ​[​​ − 2Re​(​​ ​ 1 ─ ​v​ p​​ ​​)​​ ​C​ 1​​ + Re​(​​ ​ 1 ─ ​r​ e​​ ​​)​​ ​C​ 2​​ − Im​(​​ ​ 1 ─ ​r​ e​​ ​​)​​ ​C​ 3​​​]​​ ​ x ─ 3 ​​

​    
​+ ​[​​ − ​ 2 ─ 3 ​ Re​(​​ ​ 1 ─ ​v​ p​​ ​​)​​ ​C​ 2​​ − Im​(​​ ​ 1 ─ ​v​ p​​ ​​)​​ ​C​ 3​​​]​​ ​ ​x​​ 3​ ─ 5 ​​

​    

​+ ​[​​ ​  1 ─ 
​​|​​ ​v​ p​​​|​​​​ 2​

 ​ ​C​ 1​​ − Re​(​​ ​  1 ─ ​v​ p​​ * ​r​ e​​
 ​​)​​ ​C​ 2​​ + Im​(​​ ​  1 ─ ​v​ p​​ * ​r​ e​​

 ​​)​​ ​C​ 3​​​]​​ ​ ​x​​ 4​ ─ 9 ​ − ​  ​C​ 2​​ ─ 
90 ​​|​​ ​v​ p​​​|​​​​ 2​

 ​ ​x​​ 6​​}​​​

​​		
		

(38)
where the first line recovers Eq. 15 and the second line includes 
higher-order terms. When vp and re are known, the first line readily 
allows experimentalists to obtain C1,2,3 by fitting the experimental 
data. When vp and re are unknown, the second line is required to 
obtain C, vp, and re.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/51/eabd4699/DC1

REFERENCES AND NOTES
	 1.	 K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Pe’er, B. Neyenhuis, J. J. Zirbel, 

S. Kotochigova, P. S. Julienne, D. S. Jin, J. Ye, A high phase-space-density gas of polar 
molecules. Science 322, 231–235 (2008).

	 2.	 J. Deiglmayr, A. Grochola, M. Repp, K. Mörtlbauer, C. Glück, J. Lange, O. Dulieu, R. Wester, 
M. Weidemüller, Formation of ultracold polar molecules in the rovibrational ground 
state. Phys. Rev. Lett. 101, 133004 (2008).

	 3.	 P. K. Molony, P. D. Gregory, Z. H. Ji, B. Lu, M. P. Köppinger, C. R. Le Sueur, C. L. Blackley, 
J. M. Hutson, S. L. Cornish, Creation of ultracold 87Rb133Cs molecules in the rovibrational 
ground state. Phys. Rev. Lett. 113, 255301 (2014).

	 4.	 T. Takekoshi, L. Reichsöllner, A. Schindewolf, J. M. Hutson, C. R. Le Sueur, O. Dulieu, 
F. Ferlaino, R. Grimm, H.-C. Nägerl, Ultracold dense samples of dipolar rbcs molecules 
in the rovibrational and hyperfine ground state. Phys. Rev. Lett. 113, 205301 (2014).

	 5.	 T. Shimasaki, M. Bellos, C. D. Bruzewicz, Z. Lasner, D. DeMille, Production of rovibronic-
ground-state RbCs molecules via two-photon-cascade decay. Phys. Rev. A 91,  
021401 (2015).

	 6.	 J. W. Park, S. A. Will, M. W. Zwierlein, Ultracold dipolar gas of fermionic 23Na40K molecules 
in their absolute ground state. Phys. Rev. Lett. 114, 205302 (2015).

	 7.	 M. Y. Guo, B. Zhu, B. Lu, X. Ye, F. D. Wang, R. Vexiau, N. Bouloufa-Maafa, G. Quéméner, 
O. Dulieu, D. J. Wang, Creation of an ultracold gas of ground-state dipolar 23Na87Rb 
molecules. Phys. Rev. Lett. 116, 205303 (2016).

	 8.	 L. W. Cheuk, L. Anderegg, Y. C. Bao, S. Burchesky, S. Yu, W. Ketterle, K.-K. Ni, J. M. Doyle, 
Observation of collisions between two ultracold ground-state CaF molecules. Phys. Rev. 
Lett. 125, 043401 (2020).

	 9.	 S. Ospelkaus, K.-K. Ni, D. Wang, M. H. G. de Miranda, B. Neyenhuis, G. Quéméner, 
P. S. Julienne, J. L. Bohn, D. S. Jin, J. Ye, Quantum-state controlled chemical reactions 
of ultracold potassium-rubidium molecules. Science 327, 853–857 (2010).

	 10.	 X. Ye, M. Y. Guo, M. L. González-Martínez, G. Quéméner, D. J. Wang, Collisions of ultracold 
23Na87Rb molecules with controlled chemical reactivities. Sci. Adv. 4, eaaq0083 
(2018).

	 11.	 P. D. Gregory, M. D. Frye, J. A. Blackmore, E. M. Bridge, R. Sawant, J. M. Hutson, 
S. L. Cornish, Sticky collisions of ultracold RbCs molecules. Nat. Commun. 10, 3104 
(2019).

	 12.	 L. De Marco, G. Valtolina, K. Matsuda, W. G. Tobias, J. P. Covery, J. Ye, A degenerate Fermi 
gas of polar molecules. Science 363, 853–856 (2019).

	 13.	 M.-G. Hu, Y. Liu, D. D. Grimes, Y.-W. Lin, A. H. Gheorghe, R. Vexiau, N. Bouloufa-Maafa, 
O. Dulieu, T. Rosenband, K.-K. Ni, Direct observation of bimolecular reactions of ultracold 
KRb molecules. Science 366, 1111–1115 (2019).

	 14.	 W. G. Tobias, K. Matsuda, G. Valtolina, L. De Marco, J.-R. Li, J. Ye, Thermalization 
and sub-Poissonian density fluctuations in a degenerate molecular fermi gas. Phys. Rev. 
Lett. 124, 033401 (2020).

	 15.	 H. P. Büchler, E. Demler, M. Lukin, A. Micheli, N. Prokof’ev, G. Pupillo, P. Zoller, Strongly 
correlated 2D quantum phases with cold polar molecules: Controlling the shape 
of the interaction potential. Phys. Rev. Lett. 98, 060404 (2007).

	 16.	 N. R. Cooper, G. V. Shlyapnikov, Stable topological superfluid phase of ultracold polar 
fermionic molecules. Phys. Rev. Lett. 103, 155302 (2009).

	 17.	 N. Y. Yao, A. V. Gorshkov, C. R. Laumann, A. M. Läuchli, J. Ye, M. D. Lukin, Realizing 
fractional chern insulators in dipolar spin systems. Phys. Rev. Lett. 110, 185302  
(2013).

	 18.	 S. V. Syzranov, M. L. Wall, V. Gurarie, A. M. Rey, Spin–orbital dynamics in a system of polar 
molecules. Nat. Commun. 5, 5391 (2014).

	 19.	 D. DeMille, Quantum computation with trapped polar molecules. Phys. Rev. Lett. 88, 
067901 (2002).

	 20.	 S. F. Yelin, K. Kirby, R. Côté, Schemes for robust quantum computation with polar 
molecules. Phys. Rev. A 74, 050301 (2006).

	 21.	 M. Mayle, G. Quéméner, B. P. Ruzic, J. L. Bohn, Scattering of ultracold molecules 
in the highly resonant regime. Phys. Rev. A 87, 012709 (2013).

	 22.	 Z. Idziaszek, P. S. Julienne, Universal rate constants for reactive collisions of ultracold 
molecules. Phys. Rev. Lett. 104, 113202 (2010).

	 23.	 S. Tan, Energetics of a strongly correlated Fermi gas. Ann. Phys. 323, 2952–2970  
(2008).

	 24.	 S. Tan, Large momentum part of a strongly correlated Fermi gas. Ann. Phys. 323, 
2971–2986 (2008).

	 25.	 S. Tan, Generalized virial theorem and pressure relation for a strongly correlated Fermi 
gas. Ann. Phys. 323, 2987–2990 (2008).

	 26.	 E. Braaten, H.-W. Hammer, Universal relation for the inelastic two-body loss rate. J. Phys. B 
46, 215203 (2013).

	 27.	 S. Laurent, M. Pierce, M. Delehaye, T. Yefsah, F. Chevy, C. Salomon, Connecting few-body 
inelastic decay to quantum correlations in a many-body system: A weakly coupled 
impurity in a resonant Fermi gas. Phys. Rev. Lett. 118, 103403 (2017).

	 28.	 S. M. Yoshida, M. Ueda, Universal high-momentum asymptote and thermodynamic 
relations in a spinless Fermi gas with a resonant p-wave interaction. Phys. Rev. Lett. 115, 
135303 (2015).

	 29.	 Z. H. Yu, J. H. Thywissen, S. Z. Zhang, Universal relations for a Fermi gas close to a p-wave 
interaction resonance. Phys. Rev. Lett. 115, 135304 (2015).

	 30.	 M. Y. He, S. L. Zhang, H. M. Chan, Q. Zhou, Concept of a contact spectrum and its 
applications in atomic quantum Hall states. Phys. Rev. Lett. 116, 045301 (2016).

	 31.	 C. Luciuk, S. Trotzky, S. Smale, Z. H. Yu, S. Z. Zhang, J. H. Thywissen, Evidence for universal 
relations describing a gas with p-wave interactions. Nat. Phys. 12, 599–605 (2016).

	 32.	 S.-L. Zhang, M. Y. He, Q. Zhou, Contact matrix in dilute quantum systems. Phys. Rev. A 95, 
062702 (2017).

	 33.	 S. M. Yoshida, M. Ueda, p-wave contact tensor: Universal properties of axisymmetry-
broken p-wave Fermi gases. Phys. Rev. A 94, 033611 (2016).

	 34.	 T.-L. Ho, Q. Zhou, Obtaining the phase diagram and thermodynamic quantities of bulk 
systems from the densities of trapped gases. Nat. Phys. 6, 131–134 (2010).

	 35.	 H. Friedrich, Scattering Theory (Springer, 2013).
	 36.	 N. F. Mott, H. S. W. Massey, The Theory of Atomic Collisions (Clarendon, 1965).
	 37.	 B. Gao, Quantum-defect theory of atomic collisions and molecular vibration spectra. 

Phys. Rev. A 58, 4222 (1998).
	 38.	 A. Goban, R. B. Hutson, G. E. Marti, S. L. Campbell, M. A. Perlin, P. S. Julienne, J. P. D’Incao, 

A. M. Rey, J. Ye, Emergence of multi-body interactions in a fermionic lattice clock. Nature 
563, 369–373 (2018).

	 39.	 A. M. Kaufman, B. J. Lester, C. M. Reynolds, M. L. Wall, M. Foss-Feig, K. R. A. Hazzard, 
A. M. Rey, C. A. Regal, Two-particle quantum interference in tunnel-coupled optical 
tweezers. Science 345, 306–309 (2014).

	 40.	 L. Anderegg, L. W. Cheuk, Y. Bao, S. Burchesky, W. Ketterle, K.-K. Ni, J. M. Doyle, An optical 
tweezer array of ultracold molecules. Science 365, 1156–1158 (2019).

	 41.	 E. J. Bergholtz, J. C. Budich, F. K. Kunst, Exceptional Topology of Non-Hermitian Systems. 
arXiv:1912.10048 [cond-mat.mes-hall] (20 December 2019).

	 42.	 K. Yamamoto, M. Nakagawa, K. Adachi, K. Takasan, M. Ueda, N. Kawakami, Theory 
of non-Hermitian fermionic superfluidity with a complex-valued interaction. Phys. Rev. 
Lett. 123, 123601 (2019).

	 43.	 E. Braaten, H.-W. Hammer, G. P. Lepage, Lindblad equation for the inelastic loss 
of ultracold atoms. Phys. Rev. A 95, 012708 (2017).

	 44.	 S. Dürr, J. J. García-Ripoll, N. Syassen, D. M. Bauer, M. Lettner, J. I. Cirac, G. Rempe, 
Lieb-Liniger model of a dissipation-induced Tonks-Girardeau gas. Phys. Rev. A 79, 023614 
(2009).

	 45.	 J. J. García-Ripoll, S. Dürr, N. Syassen, D. M. Bauer, M. Lettner, G. Rempe, J. I. Cirac, 
Dissipation-induced hard-core boson gas in an optical lattice. New J. Phys. 11, 013053 
(2009).

Acknowledgments: We thank J. Ye and A. M. Rey for helpful discussions. Funding: Q.Z. and 
C.L. are supported by NSF PHY 1806796. M.H. is supported by HKRGC through HKUST3/CRF/13G. 

D
ow

nloaded from
 https://w

w
w

.science.org on D
ecem

ber 30, 2021

http://advances.sciencemag.org/cgi/content/full/6/51/eabd4699/DC1
http://advances.sciencemag.org/cgi/content/full/6/51/eabd4699/DC1
https://arxiv.org/abs/1912.10048


He et al., Sci. Adv. 2020; 6 : eabd4699     18 December 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

8 of 8

M.H. and H.-Q.L. acknowledge the financial support from NSAF U1930402 and computational 
resources from the Beijing Computational Science Research Center. Author contributions: 
Q.Z. conceived the idea. M.H., C.L., H.-Q.L., and Q.Z. contributed to all aspects of this work. Q.Z. 
and H.L. supervised the project. Competing interests: The authors declare that they have no 
competing interests. Data and materials availability: All data needed to evaluate the 
conclusions in the paper are present in the paper and/or the Supplementary Materials. 
Additional data related to this paper may be requested from the authors.

Submitted 24 June 2020
Accepted 3 November 2020
Published 18 December 2020
10.1126/sciadv.abd4699

Citation: M. He, C. Lv, H.-Q. Lin, Q. Zhou, Universal relations for ultracold reactive molecules. Sci. 
Adv. 6, eabd4699 (2020).

D
ow

nloaded from
 https://w

w
w

.science.org on D
ecem

ber 30, 2021



Use of think article is subject to the Terms of service

Science Advances (ISSN 2375­2548) is published by the American Association for the Advancement of Science. 1200 New York Avenue
NW, Washington, DC 20005. The title Science Advances is a registered trademark of AAAS.
Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim
to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY­NC).

Universal relations for ultracold reactive molecules
Mingyuan HeChenwei LvHai­Qing LinQi Zhou

Sci. Adv., 6 (51), eabd4699. • DOI: 10.1126/sciadv.abd4699

View the article online
https://www.science.org/doi/10.1126/sciadv.abd4699
Permissions
https://www.science.org/help/reprints­and­permissions

D
ow

nloaded from
 https://w

w
w

.science.org on D
ecem

ber 30, 2021

https://www.science.org/about/terms-service

