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We study the chance-constrained bin packing problem, with an application to hospital operating room
planning. The bin packing problem allocates items of random size that follow a discrete distribution to a set
of bins with limited capacity, while minimizing the total cost. The bin capacity constraints are satisfied with
a given probability. We investigate a big-M and a 0-1 bilinear formulation of this problem. We analyze the
bilinear structure of the formulation and use the lifting techniques to identify cover, clique and projection
inequalities to strengthen the formulation. We show that in certain cases these inequalities are facet defining
for a bi-linear knapsack constraint that arises in the reformulation. An extensive computational study is
conducted for the operating room planning problem that minimizes the number of open operating rooms.
The computational tests are performed using problems generated based on real data from a hospital. A
lower bound improvement heuristic is combined with the cuts proposed in this paper in a branch-and-cut
framework. The computations illustrate that the techniques developed in this paper can significantly improve
the performance of the branch-and-cut method. Problems with up to 1,000 scenarios are solved to optimality
in less than an hour. A safe-approximation based on conditional value at risk (CVaR) is also solved. The
computations show that the CVaR approximation typically leaves a gap of one operating room (e.g., six

instead of five) to satisfy the chance constraint.
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1. Introduction

The bin packing problem is to assign a set of items with positive size to bins so as to minimize the
total cost, while satisfying the bin capacity constraints. The bin packing problem has been applied
in various fields. Application examples include healthcare (Denton et al. 2010, Deng and Shen 2016),
scheduling (Reich et al. 2016, Song et al. 2018), transportation and logistics (Crainic et al. 2016,
Perboli et al. 2014), etc. For many practical bin packing problems, the item sizes are uncertain.
For instance, surgery duration is uncertain in healthcare operations management, as planners often
do not know the exact duration of a surgery in advance. Disregarding the uncertainty in item size
might provide a solution that violates the bin capacity constraints with an undesirable probability.
In a stochastic programming framework, the chance constraint paradigm can be employed to
overcome the above concern. More specifically, chance-constrained bin packing problem requires
that the bin capacity constraints are satisfied with a prespecified probability. For instance, the
chance constraints provide a probabilistic guarantee for each operating room to finish the assigned
surgeries without overtime. Ensuring that operating room shifts end at a specified time is desirable
to achieve a work-life balance of the service providers.

In this paper, we study the (CBP) problem:

(CBP) minmi]glize Z cixj+ Z Z & yis (1a)

JjeT i€l jeJ
Subject to Yij S Zj, Vi 61—7] € ja (1b)
Zyijzl, VieT, (1c)
JET
P{Zfiyijﬁtj}21& vVied, (1d)
i€T
x; €{0,1},y,;, € {0,1}, VieI,jed, (le)
where 7 := {1,...,|Z]} is a collection of items and J := {1,...,[J|} is a collection of bins. c§

is the nonnegative cost for opening bin j, and ci-’j is the nonnegative cost for assigning item ¢
to bin j. € = (&,...,&z)" is a vector of random sizes with a joint probability distribution P.
We assume that the random vector & are drawn from a finite support of N scenarios {£€“},cq,
where Q = {1,...,N}. Hence, the distribution P can be characterized using a probability vector
(p1,--.,pn) " such that p, >0 and > p,=1. We let £ denote the size of item i for the scenario
we N, ee€l0,1] is the level of chancewseaizcisfaction, and t; is the capacity of bin j. The binary variable
x; indicates if bin j is open, and the binary variable y;; indicates if item 4 is assigned to bin j. Let
x=(z1,...,x7) ", y; = Wy yzy) > Y= (Y1,-..,yp7) . The objective (la) is to minimize the

total cost for opening bins and assignments of items to the open bins. Constraints (1b) guarantee
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that item 4 can be assigned to bin j only if bin j is open. Constraints (1c) enforce that each item 4
is assigned to exactly one bin. Constraints (1d) restrict the bin capacity for bin j with probability
1 —e. Constraints (le) define binary variables z; and y;;. In a special case all ¢} are equal, cfj =0,
VieZ,j € J; and the problem reduces to that of finding the minimum number of bins to pack the

items.

1.1. Literature Review on Chance-Constrained Programs

Chance-constrained programs (CCPs) were introduced by Charnes and Cooper (1959). Since then,
CCP has been extensively studied in terms of new methodological developments and its applica-
tions. For more details about CCP, readers are referred to Ahmed and Shapiro (2008), Nemirovski
(2012), Birge and Louveaux (2011) and references therein. CCP problems are generally very dif-
ficult to solve because of their non-convex feasible region (Ahmed and Shapiro 2008). Moreover,
chance constraint does not necessarily preserve the smoothness of the original constraints (Hu et al.
2013). Only in the case of normally distributed random variate, they admit a second-order cone
program formulation (Song et al. 2014). In many situations, however, the probability distributions
are not normally distributed. This is the case when considering surgery times in the operating

room, which are observed to follow a log-normal distribution.

1.1.1. Convex Conservative Approximations of Chance-Constrained Programs A
number of approaches have been developed to obtain a solution of CCP. One possible approach is
to use a convex conservative approximation of CCP. This includes the use of Bernstein approxi-
mation (Nemirovski and Shapiro 2006), and CVaR approximation (Rockafellar et al. 2000, Wang
and Ahmed 2008). The Bernstein approximation is applicable when the components of the ran-
dom vector are independent and moment-generating functions are computable. This approximation
is efficient to solve. Unfortunately, however, the Bernstein approximation can be very conserva-
tive. The CVaR approximation is the best conservative convex approximation (Nemirovski 2012),
even though it is also conservative (see Appendix B regarding CVaR approximation of (CBP)). It
remains computationally challenging to solve CVaR approximations (Nemirovski 2012). Neverthe-

less, it is a worthy consideration for a difficult problem.

1.1.2. Mixed-Integer Formulation of Chance-Constrained Programs Under this
framework, one assumes that the true probability distribution of £ is replaced by a finite number of
samples. In order to satisfy the chance constraint, Luedtke and Ahmed (2008) use a mixed-integer
formulation. The formulation ensures that a correct number of sampled constraints are satisfied.
This has motivated a number of studies to model chance-constrained programs under the assump-
tion of finite distributional support, and using its formulation as a mixed-integer linear program

(MILP) (Luedtke et al. 2010, Kiiglikyavuz 2012, Luedtke 2014, Zhao et al. 2017, Peng et al. 2018,
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Ahmed and Xie 2018). The justification for using a finite sample-based approximation is in the
fact that, as the sample size increases, the performance of the method is closer to the true case
(Pagnoncelli et al. 2009). Nevertheless, it poses a formidable computational challenge, in particu-
lar when technology matrices are random, as is the case with the chance constrained bin packing
problems. Therefore, cutting plane methods with enhanced strategies for CCP have been proposed
in the literature (Ruszczynski 2002, Tanner and Ntaimo 2010, Luedtke 2014, Qiu et al. 2014, Xie
and Ahmed 2016). Recently, some efficient computational procedures (i.e. Lagrangian relaxation,
scenario decomposition) for obtaining the lower bound are also developed (Watson et al. 2010,
Ahmed et al. 2017, Deng et al. 2017). The aforementioned papers only study the generic CCP and

none of them exploit the constraint structure of CCP.

1.2. Literature Review on Chance-Constrained Bin Packing

In terms of chance-constrained bin packing problem, Kleinberg et al. (2000) applied stochastic
bin packing to bandwidth allocation for bursty connections in high-speed networks. The authors
developed an approximation algorithm to solve the chance-constrained model. Shylo et al. (2012)
modeled the stochastic operating room scheduling problem by embedding probabilistic capacity
constraints to restrict the overtime. They assumed that surgery durations follow a multivariate
normal distribution, and formulated the model as a MILP problem. Deng and Shen (2016) devel-
oped a decomposition method with accelerating strategies proposed in the literature for solving
chance-constrained appointment scheduling problem. Zhang et al. (2015) considered the two-stage
stochastic and distributionally robust chance-constrained bin packing problems with binary assign-
ment and continuous bin extension decisions. Problems with 500 scenarios and a probability of
0.9 were solved by a column generation based branch-and-price method within the time limit of
an hour. Zhang et al. (2018) studied the distributionally robust chance-constrained bin packing
problem with mean-covariance information. They formulated the problem as a second order cone
program, and developed valid inequalities to improve the algorithmic performance in a branch-
and-cut framework.

The work most related to ours is the article by Song et al. (2014), where the authors considered
the chance-constrained problem with a single bin. In their model, a subset of items was selected,
so as to maximize the total profit while satisfying a single chance constraint. Song et al. (2014)
proposed a probabilistic cover formulation and used the lifting technique proposed by Zemel (1989)
to obtain the probabilistic cover inequalities for the finite scenario models. They also provided a

coeflicient strengthening procedure for the big-M reformulation.
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1.3. Contributions of this Paper

This paper makes the following contributions. The problem studied in this paper is a generalization
of Song et al. (2014) in that it has multiple bins and chance constraints. The framework in Song
et al. (2014) considers the single bin case. Additionally, to solve the (CBP) problem the algorithmic
approach developed here is different from the probabilistic cover approach in Song et al. (2014).
Specifically,

e We first formulate (CBP) as a binary bilinear program. We show that this formulation provides
a stronger relaxation than the strengthened big-M reformulation of (CBP).

e We use the binary bilinear formulation to obtain several new valid inequalities for (CBP). In
particular, we consider the binary bilinear knapsack set obtained from a single row and scenario in
the bilinear constraints. We propose cover and clique inequalities for the convex hull of the set by
using the lifting technique. We show that these inequalities are facet-defining. We also linearize the
bilinear formulation using additional binary variables and project the relaxation of the linearization
formulation onto the space of the original variables to generate projection inequalities.

e We incorporate the valid inequalities within a branch-and-cut framework to solve the strength-
ened big-M reformulation of (CBP). Computational experiments for operating room scheduling
problem using real data from a hospital is conducted to demonstrate the computational improve-
ment from the proposed techniques. For the problem that minimizes the number of bins, we present
a lower bound generation technique based on relaxing the scenario variables. We find that this
technique significantly improves the algorithmic performance in our computational experiments.
The performance is further improved by a systematic inclusion of the developed inequalities.

e Using the techniques developed in this paper, we solved models having up to 1,000 scenarios
with € =0.05,0.15 within two hours and € = 0.1 within an hour, which outperform the approach
from Song et al. (2014). Several models remained unsolved (gap > 1) when using commercial
solver only. We compared the results with a CVaR approximation, and find that CVaR formulation
typically leaves a gap of one room to the optimal number of rooms required to satisfy the chance

constraint. Moreover, it does not seem to provide any computational benefit.

1.4. Organization

The remainder of this paper is organized as follows. Section 2 formulates (CBP) as a binary
program and adapts the technique of Song et al. (2014) to strengthen its big-M coefficients. We
then present an alternative binary bilinear formulation for (CBP). We show that this bilinear
formulation has a tighter relaxation than the big-M formulation. We explore the structure of the
bilinear formulation to develop three classes of valid inequalities in Section 3. Specifically, we show

in Section 3.1 how the sequential lifting technique can be used to generate facet-defining cover and
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clique inequalities. We linearize the bilinear formulation and study the projection inequalities for
(CBP) in Section 3.2. In Section 4 we incorporate the valid inequalities within a branch-and-cut
solution scheme to solve the strengthened big-M reformulation of (CBP), and propose a lower
bound improvement heuristic to accelerate the computation for the problem that minimizes the
number of bins. Section 5 reports computational results on (CBP) formulation with application
to operating room planning, and confirm the efficiency of the techniques developed in this paper.
Section 6 concludes the paper with a summary of the important findings. Appendix A provides
CVaR approximation of (CBP). Appendix B gives a performance comparison of (CBP) solutions
with CVaR approximation. Appendix C gives the proofs of some propositions and theorems. An
algorithm based on the probabilistic cover approach, generalized to our problem, are given in

Appendix D.

2. Reformulations of (CBP)

We first formulate (CBP) as a binary integer program and use the big- M coefficient strengthening
procedure from Song et al. (2014) for (CBP) in Section 2.1. By applying the techniques in Luedtke
(2014) we obtain mixing set inequalities for (CBP) in Section 2.1.2. We then present an alternative
binary bilinear reformulation for (CBP) in Section 2.2. A result on the strength of this binary

bilinear formulation is given in this section.

2.1. Big-M Reformulation for (CBP)
Let us introduce a binary variable 2% to indicate if bin j satisfies the bin capacity constraint for

each scenario w € {2, namely,

1, i ) &y, <ty
Z;) = i€
0, otherwise.

Note that z¢ =1 ensures that _ &“y;; <t;. Otherwise, the constraint ) &y;; <t; is violated.

€T i€z
Without loss of generality, we assume that £ <t;, VieZ,j7€ J,we Q. For j€J, let z; =
(2}, 20) T 2= (21, ., 219 .

Using the big-M approach, the chance constraints (1d) can be written as

D &y + (MY —t)2y <MY, VieJ,weQ, (2a)
i€l
> pu>1-¢, Vied, (2b)
we

where M¥ is a constant with sufficiently large value, guaranteeing that constraints (2a) hold when

z¢ =0. (CBP) with new constraints (2a) and (2b) may provide a weak linear programming (LP)
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relaxation bound if M is chosen naively. For example, a choice is possible by taking My := 3 £¥.
i€z
Note that for j € J,w € Q, M is valid for constraints (2a) if

Mjw Z 7;” = maximize {Zf;ﬂyl])ﬂm {Zézy” S t]} Z 1-— &, Y; S {0, 1}I|} . (3)
vi i€Z i€z

We now describe a coefficient strengthening procedure for strengthening this big-M formulation.
The procedure borrows ideas from Qiu et al. (2014) and Song et al. (2014). We then develop the

mizing set inequalities for (CBP) by applying the techniques in Luedtke (2014).

2.1.1. Coefficient Strengthening Procedure Given j € 7, and w € §2, let us consider the
following problem (4) for each k € Q,

m; (k) = maximize {Z & Yis ‘ > &y <ty y; € {0,131 } . (4)

i€T i€z
Now sort m¢ (k) in a non-decreasing order such that m¢ (k) <... <m¥(ky). The following propo-

sition gives an upper bound for M e

PROPOSITION 1. For j € J and w € Q, m{(kyy1) is an upper bound for ]\7[7“, where q :=
max {l : Z;:lpk]. < 5}. Furthermore, (2a) may be replaced by
D& g () (25 = 1) < mj(w)z5 (5)
i€Z
Hence, (CBP) can be formulated as the binary integer program (6):
(IP) mi{r;iyrgize Z cixy+ Z Z Sy (6a)

Jj€ET i€L jET

subject to (1b), (1c), (1e), (2b),(5)
27 €{0,1} VieJ,well (6b)

Proof See Appendix C.1. [

Solving (IP) with the above big-M coefficient strengthening strategy may be time-consuming as
the number of problems in (4) significantly increases with || and N. For i € Z,w € ), we assume
that & is non-negative integer, in computational experiments, we use dynamic programming based

approach to solve (4) effectively.

2.1.2. Mixing Set Inequalities Mixing set inequalities were introduced by Atamtiirk et al.
(2000) and Giinliik and Pochet (2001). Recently, Luedtke et al. (2010) and Luedtke (2014) used
them in strengthening the mixed integer programming formulation of chance-constrained programs.
By applying the techniques in Luedtke (2014), we obtain the mixing set inequalities (7) for (CBP)

in Proposition 2.
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PROPOSITION 2. Given j€J, and w €, let T ={7y,..., 71} C{k1,..., kg} with m$ () <... <

m¥ (7). Then the inequality

Zgwyw + Z 7_n+1 (Tn)) " < m (ktﬁl) (7)

i€L

is valid for (CBP), where m& (741) =m¢ (kyy1) and q is determined from Proposition 1.
Proof See Appendix C.2. [J
2.2. Binary Bilinear Integer Reformulation for (CBP)
The problem (IP) in Section 2.1 is derived by using the big-M approach to guarantee that con-

straints (2a) hold when 2% =0. We now provide an alternative formulation for (CBP).

Let binary variables z% be defined as in Section 2.1, and consider the following formulation (8):

(BIP) mlcrbuyrrilze Z cir;+ Z Z CiiYij (8a)

jeT i€l jeJ

subject to (1b),(1c),(1e),(2b), (6b)
D ey <m(w)z, Vjie T, we. (8b)
i€l

The following proposition shows the equivalence of (BIP) and (IP). A proof can be found in
Appendix C.3.

PROPOSITION 3. Let (x*,y*) be an optimal solution of (CBP). Then there exists z* such that
(x*,y*,z*) is an optimal solution of (BIP). Conversely, if (x*,y*,z*) is an optimal solution of
(BIP), then (x*,y*) is an optimal solution of (CBP). O

Let (RIP) and (RBIP) be the relaxation problems of (IP) and (BIP) respectively, where the
integrality restriction on the variables @, vy, and z are relaxed. The feasible solution sets in terms of
(z,y,z) to (RIP) and (RBIP) are denoted by Xr;p and Xgp;p. The following relationship between
(RIP) and (RBIP) motivates us to explore the binary bilinear formulation.

PROPOSITION 4. XRBIP - XRIP~

Proof Let (x,y,2) € Xrprp. We have

foyij z; Zf Yij —m5 (kg1)(2f = 1) = (2 — 1) (Zf Yij — q+1)> > 0.

i€T ieT i€T
Consequently, the following inequality holds,
Zf;“yij +m (kg1)(2y —1) < Z&”Z/ijzf <mf(w)2y .
1€l €L
Therefore, (x,y,z) € Xrrp, proving that Xgrprp C Xgrp. O
Proposition 4 shows that (BIP) provides a stronger relaxation than the relaxation possible from

the strengthened big-M approach.
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3. Valid Inequalities Using the Bilinear Formulation
We now show how the formulation proposed in Section 2.2 can be used to generate valid inequalities

for (CBP). Our analysis relies on investigating a binary bilinear knapsack set.

3.1. Strong Inequalities for Single Binary Bilinear Knapsack

We assume that j € J,w € Q) are fixed in this section. Let us consider the following binary bilinear
knapsack set,

Fiw= {(yj,z;) €{0,1}" x {0, 1}‘ D & < m;f(w)z;f’} :
i€

We use conv(-) to denote the convex hull of a set. The inequalities valid for conv(Fj,) are also
valid for (CBP). We now develop a binary bilinear lifting technique to derive valid inequalities
for the set conv(Fj,). More specifically, we develop two different types of valid inequalities. The
first one is obtained using a general form of cover inequalities. The second is obtained using clique

inequalities as the seed inequalities, and computing the lifting coefficients for the variable 2.

3.1.1. Lifted Cover Inequalities Lifting techniques have been used to develop valid inequal-
ities for the binary linear knapsack problem (see, for example Zemel (1989), Gu et al. (1998, 2000)).
We now show its applicability to the binary bilinear knapsack set Fj,. Let us first consider a 0-1
knapsack constraint ) £y <m¥ (w).

1€L
Let
Q= {yj € {0,1}"

Note that the set Q;, is obtained from F,, for z¢ =1. If > > m]@(w), the set C C 7 is called a

> &y <mf(w)} :

i€l

ieC
cover. The cover C is minimal if no subset of C is a cover. It is straightforward to see that the cover

inequality > y;; <|C| —1 is valid for conv(Q,,). A stronger cover inequality is obtained when the
ieC
cover is minimal. In this paper, let C be a minimal cover. The cover inequality is obtained from a

restricted set of variables. The coefficients for the remaining variables, as given in

Zyij + Z ;yi; <|C| -1, 9)

ieC 1€I\C
are obtained from a lifting procedure, where the lifting coefficient «; is computed sequentially
(Zemel 1989). Let m = {my,...,mz\c|} be a sequence of set Z\C. For k =1,...,|Z\C|, the lifting

problem is as follows:
T—1
obj, = maximizeZyij + Z Y5
Yi ieC ——
Tk—1
subject to Y &7y;+ Y &y <mf (W) — €5,

i€C =11

yije{071}7 iECU{ﬂ'l,...,ﬂ'k_l}.
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The following result from Padberg (1973) shows that the inequalities (9) are facet-defining for
conv(Qj,)-

LEMMA 1 (Padberg (1973)). Fork=1,...,|Z\C|, let ar, = |C| —1—0bjx,. The inequality (9)
is facet-defining for conv(Q;,). O

Facet-defining inequalities for conv(Fj,) can be obtained from the facet-defining inequalities in

Lemma 1.

ProprosITION 5. The inequality

> g+ <] (10)

ieC

is valid for conv(Fj, ).
Proof For 24 =1 and 2 =0, it is easy to verify that inequality (10) is valid for conv(Fj,). O

THEOREM 1. The lifted cover inequality

Zyiﬂr Z iy +7(z7 = 1) <[C[ -1 (11)

ieC 1€Z\C
is facet-defining for conv(F;,), where y= > «a;+1.
i€T\C
Proof Let
DY+ Do iy —[Cl+1 o
iec i€T\C Y = maximize Zyij + Z oy — |Cl+1

v = maximize
Yj:25

subject to (y;,2;) € Fju, 27 =0.

1— 2% — J ieC i€T\C
subject to y;; € {0,1}, VieT.

We have v = iezz:\c a; +1. Hence, (11) is valid for conv(F;,,) when z¥ = 0. Because of the validity
of inequality (9), (11) is valid for conv(Fj,) when 2% = 1.

When 27 =1, there exists n feasible points of variables y; that are affinely independent and
satisfy inequality (11) at equality as the facet-defining inequalities in Lemma 1. Similarly, when
2¢ =0, y; = 1)z, where 17 is a 1 x |Z| vector of all ones. Thus, the |Z|+1 feasible points are affinely
independent and satisfy inequality (11) at equality. Therefore, we conclude that the inequality (11)
is facet-defining for conv(F,,). O

We can restrict the feasible region of y; using the additional constraints in (CBP) to compute a

better value of the coefficient « in (11), by considering additional constraint in (1d) using k € Q\{w}.

THEOREM 2. For ke Q\{w}, let

0, = maximize g Yij + E a;y;; —|Cl+1 (12a)
yye{o.31F =2 i€T\C
: k k
subject to g &y <mj (k). (12b)

i€l
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Sort 0y, in a nondecreasing order such that oy, < ... <0y, _,. Let q be defined as in Proposition 1,

then 6y, is an upper bound on vy, and (11) is a valid inequality for (CBP) when v = gy,

q+1°

Proof Since y satisfies constraints (1d), the inequality (11) is valid for (CBP) when
>yt > iy —|Cl+1

ieC i€I\C

maximize 13a
7= maxin = (13a)
subject to (y;,2;) € Fju, 27 =0 (13Db)
i€
Since 24 =0, (13) can be rewritten as

= maximize Zyw + Z a;y;; — [Cl+1 (14a)

y {013 =2 ieT\C
subject to Z prl {Zﬁfy” < t} >1—c. (14Db)

keQ\{w} i€T

Let y; be an optimal solution of (14). Then, there exists at least one k' € {ki,...,kg41} such
that ff/y;fj <t;, otherwise, (14b) is violated by y;. Therefore, y; is a feasible solution of (12)
i€z
for k=k'. We have d,_,, > 0p >, and (11) is a valid inequality for (CBP) when v=d;,,,. O

3.1.2. General Lifted Cover Inequality As noted by Gu et al. (1998), a more general form
of the cover inequality in the binary linear knapsack problem is as follows:
Z Yij + Z QY + Zﬂiyij <|C\D|+ Zﬁi -1, (15)
i€C\D i€T\C i€D ieD
where set D C C. Computing the coeflicients a and 3 is called up-lifting and down-lifting, respec-
tively. When D = @, inequality (15) is same as the inequality (9). Gu et al. (1998) argued that
inequality (15) resulted in a more effective branch-and-cut algorithm.

The following sequence of problems are solved to obtain the down-lifting coefficients. Let k =

{K1,...,K|p|} be a sequence in the set D. For k=1,--- ,|D|, let
K1
obj,, = maximilgt‘a Z Yij + Z Q;Yi; + Z Biyij
v €O et ieT\C i=k1
: w w
subject to Zﬁi yi; <mj (w),
i€T
Ui =0, yi =1, i € {Fky1,-s KD}

LEMMA 2 (Gu et al. (1998)). For k=1,...,|D|, let B, = obj., — > 5.1 Bi — |C\D| + 1. The
inequality (15) is facet-defining for conv(Q,,). O
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Next, we consider the general lifted cover inequality for conv(F;,).

THEOREM 3. The general lifted cover inequality
STyt Y Y Byt -1 <IO\DI+ > B -1 (16)
i€C\D i€T\C i€D i€D

is facet-defining for conv(F;,), where y= > a;+1.
i€T\C

Proof The proof is similar to that for Theorem 1 in Section 3.1.1. It is given in Appendix
C4. O
By applying the coefficient strengthening procedure to the coefficient v we have the following

result.

THEOREM 4. For k€ Q\{w}, let

(5; = maximize Z Yij + Z ;Y + Z@yu - ‘C\D’ - Zﬁz +1

ij{O,l}IZ‘ i€C\D i€Z\C i€D i€D
. k k
subject to Zéi Yij Sm; (k).
ieT

Sort 6}, in a nondecreasing order such that 5;1 <...< 5;1\,71. Let q be defined as in Proposition 1,

1
kgt1”

then 5,iq+1 is an upper bound on vy, and the inequality (16) is valid for (CBP) when v =20

Proof The proof is similar to the proof of Theorem 2 in Section 3.1.1. It is given in Appendix
C.5. O

Given a linear programming relaxation solution, the separation problem is to find a valid inequal-
ity that is violated by this solution. We use a heuristic procedure similar to the one in Gu et al.
(1998) and Kaparis and Letchford (2008) for the binary bilinear knapsack problem. This heuristic
is given in Algorithm 1.

The separation heuristic needs to compute up-lifting and down-lifting coefficients «;, 3;, Vi € Z,
and 7. Several previous papers have given methods for lifting coefficients’ computation. Balas (1975)
showed that one can compute the upper and lower bound of the lifting coefficients in linear time.
Zemel (1989) proposed a dynamic programming algorithm for calculating the lifting coefficients
exactly. Gu et al. (2000) used valid superadditive lifting functions to get lower and upper bounds
for the lifting coefficients. In our computational experiments, we used dynamic programming to

calculate the coefficients.

3.1.3. 2-Clique Inequalities If £ + & > m$(w) for all 4,k € K and i # k, the set K C T is
called a 2-clique. A clique is called maximal if it is not a proper subset of any other cliques. Let IC
be maximal clique. For each maximal 2-clique set K, the following inequality is valid for conv(Q;.,)

D Ty <l (17)

i€
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Algorithm 1: General Lifted Cover Inequality Separation Heuristic

1 Given the current relaxation optimal solution (x*,y*,2*), Let Zy = {i € Z: y;; = 0}.
2 Sort yj in non-increasing order such that y; ;> ... > Yizio let S = {i1,.... %7}

3 forw=1,...,N do

4 if 27" =1 then
5 Insert an item from the head of S, until obtain a cover C.
6 Delete elements from the cover to get a minimal cover C.
7 Let set D={i€C:y;; =1}.
8 Calculate up-lifting coefficient «; for i € Z\{C|JZo}.
9 if > v+ > ay;;>|C\D| -1 then
i€C\D i€T\{CUZo}
10 Calculate down-lifting coefficient j; for i € D.
11 Calculate up-lifting coefficient «; for i € Zy\C.
12 For k € Q\{w}, calculate 4;.
13 Let y=6y, .-
14 Obtain the violated general lifted cover inequality (16).
15 end
16 end
17 end

To obtain valid inequalities for conv(Fj,), we use (17) as a seed and calculate the lifting coefficient

for the variable 2%
THEOREM 5. Let K be a maximal clique for F;,. Then the following inequality is facet-defining

for conv(F;,):

D i tp(zy—1)<1, (18)
i€k
where p=|K|— 1.
Proof The lifting coefficient u is given by

Zyij_l

/1 = maximize <~ (19a)
Y525 1-— Z‘f
subject to (y;,2;) € Fju, 27 =0. (19b)

It is easy to verify that the optimal solution y;; =1, Vi € K. Therefore, the best lifting coefficient is
p=|K|—1. Consider the points 2 =0, y; = 1)7); for 24’ =1, |K] feasible point: i € IC, y;; = 1, y; = 0,
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Vk € T\i; and |Z\K] feasible point: i € Z\K, y;; = 1, 3 € K such that ¢ + (" <m¥(w), let y; =1,
yr; =0, Yk € I\{l Ui}. It is easy to verify that these |Z| + 1 points are affinely independent and
satisfy inequality (18) at equality. Therefore, inequality (18) is facet-defining for conv(F;,). O
We can use constraints (1d) to restrict the feasible region of y; in (19). This yields a strengthened
lifted coefficient . Instead of solving a chance-constrained problem, the following proposition gives

an upper bound on u.

THEOREM 6. For k€ Q\{w}, let

A = maximié‘e E yij — 1
yje{oal} icK

subject to Zﬁf%j < mf(k’)’

i€l

Sort A, in a nondecreasing order such that A\, <...< A, . Let q be defined as in Proposition 1,

then Ay, ., is an upper bound on p, and (18) is valid for (CBP) when =\

q+1 q+1°

Proof The proof is similar to that of Theorem 2 in Section 3.1.1. It is given in Appendix C.6. [J
We use the heuristic given in Algorithm 2, similar to the one in Nemhauser and Sigismondi

(1992), to solve the separation problem for obtaining the clique inequalities.

Algorithm 2: 2-Clique Inequalities Separation Heuristic

1 Given the current relaxation optimal solution (x*,y*, z*).
2 Sort y* in non-increasing order such that y; ;> ... > y;kmj, let S = {i1,.... %7}

3 forw=1,...,N do

4 if 27" =1 then
5 Insert an item from the head of S to obtain a clique set K.
6 if > y;;>1 then
iek
7 Calculate Ay, for k€ Q\{w}.
8 Let p= A, ;-
9 Obtain the 2-clique inequality (18).
10 end
11 end

12 end
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3.2. Projection Inequalities

We now reformulate (BIP) as MILP using additional binary variable u;, for i € Z,j € J,w € Q.
Let uy = (uy),...,uy;)" and w={uy,...,ufy, 5 }. We derive valid inequalities for (CBP) based
on this formulation. The basic idea of deriving the inequalities is from Benders feasibility cuts. The

following proposition gives a MILP formulation for (CBP). A proof can be found in Appendix C.7.

PROPOSITION 6. Let (x*,y*,z*) be an optimal solution of (BIP). Then, there exists u* such

that (x*,y*,z*,u*) is an optimal solution of

mlglrznqllze Z cir;+ Z Z CiiYij (20a)

jeT i€T jeg
subject to (1b), (1c),(1e),(2b), (6b)
D Eug <md (w)z, VieJ,we, (20b)
€T
u < Yij, Uy < 27 VieZ,jeJ,weq, (20c¢)
Yij + 27 —u <1 ug >0, VieljeJ,well. (20d)

Conversely, if (x*,y*,z*,u*) is an optimal solution of (20), then (x*,y*,z*) is an optimal solution
of (BIP). O

We now describe an approach for generating valid inequalities from the formulation given in

(20). For j € J, and w € Q, let us consider the subproblem with variable u? as follows:

minimize 0 (21a)
u‘]‘.’ZO
subject to fouf] <mj(w)zy, (21b)
i€z
u < Yij, Uiy < 27 Viel, (21c¢)
Yij +27 —ui <1, Viel. (21d)

Given (g, 2) € Xrrp, if (y,2) violates constraints (8b), it is possible to identify a supporting
hyperplane at (g, 2) by solving the dual of (21):

maximize —m¢ (w)z5p' — Z Gijhs — 25 Z s + Z@” +2¢ — 1) (22a)
o B ieT ieT ieT
subject to 7u' + p? + p — pi >0, Viel, (22b)

where p', p?, p?, and p* are dual variables for constraints (21b)-(21d), respectively.

THEOREM 7. The projection inequality

D (= + Ot =k —ms(w)ph)zy <>k, (23)

1€L 1€L 1€L 1€L

where fit, fi?, (13, and p* is an extreme ray of (22), is valid for (CBP).
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Proof Given (g, 2) € Xrrp, strong duality implies that problem (22) is unbounded when (g, 2)
violates constraints (21). Therefore, we have
D = g+ (Y =y} —m (@)t = Y >0
i€l €L 1€L i€L
Hence, the theorem follows. [
Note that the inequalities in (23) are obtained by considering the dual problem (22) for each
jeJ, and w e Q. It is possible to combine multiple 7 and w (possible all) in generating Benders-
type inequalities. It can be achieved by considering the following problem:

minimize 0 (24)

subject to (20b) — (20d).

Let v', v?, v*, and v* are dual variables of constraints (20b)-(20d), respectively.

THEOREM 8. The combined projection cut is given by:

2.2 D (@ =0y + 3, > Q0 =) o —m P20 s (29)

€L jET weN JET weQ €T i€l €L jET weN

where ', ©2, ©3, and ©* is an extreme ray of the dual of (24).

Proof The proof is similar to the proof of Theorem 7. [

4. Branch-and-Cut Solution Scheme

We illustrate the use of valid inequalities presented in the previous sections within a branch-and-
cut framework. We make use of Algorithm 3 to solve the strengthened big-M reformulation (IP)
of (CBP), and show the use of cover, clique, and projection inequalities in the branch-and-cut
method. Let LB and UB denote the current lower and upper bound of (CBP), and A denote the
set of remaining nodes in the branch-and-cut search tree. Algorithm 3 provides an outline of the
branch-and-cut framework.

At each node we solve a relaxation problem to obtain an optimal solution (x*,y*, z*) and objec-
tive value obj*. If (x*,y*, 2*) is fractional, we solve the corresponding problems to find violated
inequalities. If valid inequalities are found, we add the violated inequalities to the LP relaxation
problems. Otherwise, we continue branching. If (x*,y*, z*) is integral, we update the upper bound,
if possible.

In addition to adding the valid inequalities, efficiently exploring the branch-and-cut tree is also
an important consideration in solving our problem. Next, we present a strategy that has helped in
significantly reducing the size of the branch-and-cut tree. Specifically, we solve integer programs

to obtain an improved lower bound for the optimal objective value.
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Algorithm 3: Branch-and-Cut Implementation

1

2

3

4

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Initialize UB = +o00, LB= —0c0 and N = &.
Initialize Nodelist N'= {0}, where o is a branching node without constraints.

while (N is nonempty) do

Select a node o € NV.
Update, N < N /{o}.
Optimize the LP relaxation problem of (IP) at the node o.
if the generated an optimal solution (x*,y*,z*) with objective obj* < UB then
if (x*,y*,z*) is fractional then
if the violated inequalities (16), (18) or (23) are found then
Add the violated inequalities to LP relaxation problem.
Go back to line 6.
end
else
Branch, resulting in nodes o* and o**.
N+~ NU{o*, 0"}
end
end
else
Update UB, UB = o0bj*.
end
end
end
return UB and its corresponding optimal solution (x*,y*, z*).

4.1. Calculating the Lower Bound

A standard method to compute a lower bound for (CBP) is to relax all the integer variables and

solve the relaxation LP problem. Note that in our model variables x, y, and z are binary. Let v*

be the optimal value of (CBP). We first solve the relaxation of (IP) referred as (RIP,) in which

only the integrality restriction on variables z is relaxed. We obtain the optimal objective value

*
v,

and a solution (x},y’) of this problem. In our experiments, we observe that the lower bound

generated in this way is generally such that v’ < v*. To improve the lower bound, we further

solve (IP) with the given objective value v?. If the problem is feasible, the lower bound v} is the

optimal value of (CBP), and we have an optimal solution. Otherwise, we update the lower bound
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by letting the lower bound be equal to v} +J, where J is an appropriate value. Since « and y are

binary, when ¢} and ci-’]- are integer valued, all possible values of cjz; + ci?jyij are integer. Then v, =

min{ }° cfz+ X iyt 2 a3 ey > vl x € {0,131y € {0, 1}7X171} provides an
JjeET €L, jET JET 1€L,jET

improved lower bound, and we can choose § =v; —v;. The approach is effective, specially for the

problem that minimizes the number of bins to pack items in (CBP). In this special case § =1. We

now continue to solve the feasibility problem, with this improved lower bound. Algorithm 4 provides

formal description of this lower bound improvement heuristic for the problem that minimizes the

number of bins. A finite number (K') of updates to the lower bound are performed, when possible.

Algorithm 4: The Lower Bound Improvement Heuristic

1 Initialize: Let lower bound of (CBP) LB = —co.
2 Initialize: Let k =1, and K, T represent the iteration and time limit respectively.
3 Optimize the relaxation problem (RIP,) with the time limit 7.

4 Obtain the optimal number of opening bins n/*, and corresponding lower bound LB.

5 while (k< K) do

6 Fix the variable  in (CBP) with n/*.
7 if nf* is the optimal number of opening bins of (CBP) then
8 ‘ Obtain an optimal solution of (CBP), and go to line 14.
9 end
10 else
11 ‘ Update nf* =nf* + 1, and the lower bound LB. k =k + 1.
12 end
13 end

14 return LB and the optimal solution of (CBP) if exists.

5. Computational Experiments

In this section, we test our approach on an operating room (OR) scheduling problem. The problem
assigns a set Z of surgeries with random duration (;, Vi € Z, to a set J of ORs, so as to minimize
the number of opened ORs. An OR j has time limit ¢;, Vj € J. The overtime constraints for ORs
are given by chance constraints which ensure that the probability of overtime is no more than a

given parameter €.
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In what follows, in Section 5.1 we provide implementation details and implementation param-
eters. Section 5.2 discusses the performance of valid inequalities (described in Section 3) and the
lower bound improvement heuristic (described in Section 4.1). A comparison with CVaR approxi-

mation is given in Appendix B.

5.1. Implementation Details

We used real data from a large public hospital in Beijing, China to show the performance of the
proposed algorithm. The collected data set has 5,721 surgical durations for nine major surgery
types from 2015/01 to 2015/10. This data is used to specify the surgery probability distribution
for each surgery type. Table 1 gives the mean, and standard deviation of the surgery duration, and
percentage for each surgery type. In our problem generation, we assume that 18 surgeries (mean
number of surgeries) are performed in a day. We use this number and the percentage of surgeries
of a given type to calculate the number of surgeries for each surgery type performed in a day.
The calculations are rounded to the nearest integer while ensuring that 18 surgeries are performed
each day. As in Spangler et al. (2004), we also observed that a surgery duration is characterized
by a Log-Normal distribution. In the problem generation, we sample a surgery duration from the
Log-Normal distribution with the mean and standard deviation shown in Table 1. We then convert
the surgery durations to the nearest 15 minutes interval, while ensuring that the surgery durations
are never below 15 minutes. We generated five instances for each sample size. A maximum of eight
ORs are available for the surgeries. A time limit of 10 hours is used for each OR, i.e., t; :=10
hours, Vj € J. Note that for the problem that minimize the number of opened ORs ¢} :=1, and
& =0,VieZjeJ.

Table 1 For each surgery type, the mean (mean), standard deviation (std) in hours, and the percentage for

each surgery type (percentage) are reported

surgery type mean (hrs) std (hrs) percentage

Gynaecology 1.1 1.3 0.29
Galactophore 1.6 1.0 0.15
Lymphatic 3.2 1.1 0.14
Ear 2.8 1.7 0.13
Urology 2.3 1.7 0.07
Vascular 2.6 1.5 0.07
Obstetrics 1.5 0.5 0.06
Joint 2.8 1.3 0.06

Orthopeadic 3.2 1.8 0.03
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In our implementation of the valid inequality finding procedure (described in Section 3), we add
the identified valid inequalities that are violated by the current solution by a minimum violation
threshold. The inequalities (18) and (23) are added if they have violation at least 10~*, and (16) is
added if it has a relative violation of at least 0.3, defined as the absolute violation of the cut divided
by |C\D|. The valid inequalities in Section 3 are generated repeatedly until one of the following
stopping criteria is met: no cut is available with the violation threshold, or the improvement on the
objective value of LP relaxation is less than 0.2 at the node of the branch-and-cut tree. We add
the violated inequalities (23) and (18) only at the root node of the branch-and-bound tree when
the gap is no more than 1, where the gap is given by UB —LB. At each round of cut (23) and (18)
generation, for each j € J, we only use one pair of (j,w), Yw € Q such that the corresponding valid
inequality is the most violated inequality. We add the valid inequalities (16) at all the nodes that
are at a depth less than 3. We keep only the efficient cuts, which are identified by optimization
solver, in the branch-and-cut tree at the end of this procedure.

All experiments are coded in the programming language C using the callable libraries of IBM
CPLEX, version 12.71. A laptop with Intel(R) 2.80 GHz processor and 16 GB RAM is used for
computation on a 64-bit computer using Windows operating system. Only one thread is used for all
computations. We turned off CPLEX presolve procedure when implementing the branch-and-cut
algorithm because we needed to use CPLEX callback function to work on the original problem in
our testing. A proper node selection strategy is used in the branch-and-cut algorithm: let x have the
highest priority and z have the lowest priority. Thus, during branching, x is given preference over y,
and y is preferred over z. For all instances, we use the runtime limit of 10 hours. For instances that
could not be solved to optimality, we give the number of ORs opened in the sub-optimal solution
and the optimal number of ORs when it is known from the computations performed in a different
algorithm. We report the solution time (in seconds) for the instances solved to optimality within

the runtime limit.

5.2. Discussion on the Algorithmic Performance

In Section 5.2.1, we presents the performance of different variants of the lower bound improvement
heuristic (Algorithm 4) for (CBP). The performance of the branch-and-cut algorithm (Algorithm 3)
with the proposed lower bound improvement heuristic and valid inequalities is discussed in Section
5.2.2. A comparison with a generalization of the probabilistic cover approach for our problem is

given in Section 5.2.3.

5.2.1. Performance of Lower Bound Improvement Heuristic for (CBP) We now dis-
cuss our results on the lower bound improvement heuristic presented in Algorithm 4 for (CBP).

The level of chance satisfaction € € {0.05,0.1,0.15} and N € {100,500,1000} are used in problem
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generation. Valid inequalities were not added when performing computations for results discussed
in this section. We compare the following three different variants to illustrate the performance of
the lower bound improvement heuristic. Note that all the variants used the strengthened big-M
reformulation (IP) of (CBP).

e CPX: refers to using branch-and-cut algorithm without an initial lower bound for (CBP).

e LBHO: refers to using the optimal objective value of (RIP,), i.e., K =0 in Algorithm 4, as an
initial lower bound of the branch-and-cut algorithm for (CBP).

e LBHI: refers to using Algorithm 4 with K =1 as an initial lower bound of branch-and-cut

algorithm for (CBP).
Table 2 presents the solution details, including the average time for the lower bounding heuristic
and the branch-and-cut algorithm, the average total time spent to solve (CBP), the average number
of nodes for the branch-and-cut algorithm and the number of opened ORs, the number of solved
instances from the five instances, and the proportion of instances where the lower bound is equal to
the optimal objective value. We found that using Algorithm 4 with K =2 for computing an initial
lower bound for the branch-and-cut algorithm for (CBP) (LBH2) and LBH1 have comparable
performance for most of the instances. Thus, the results of LBH2 are not presented in Table 2. The
time required for the strengthened big-M computation in the reformulation is typically less than 4
seconds, and therefore not included in the table.

From Table 2 we observe that when solving (CBP), initialization of the lower bound using
Algorithm 4 significantly outperforms the one without an initial lower bound computation for most
of the instances. For ¢ = 0.1, the lower bound obtained using Algorithm 4 with K =1 gives the
optimal objective value for almost all the instances, indicating that for K =1 provides a lower
bound with reasonably good quality. However, it does increase the average time of calculating
the lower bound by almost a factor of 10. Recall that one more binary program is being solved.
However, LBH1 is still more effective than LBHO in terms of the average total time spent to solve
(CBP). In particular, LBHO reduces this time by an average of more than 7%, LBH1 further reduce
the time by 68%. For harder instances (N = 1000), LBH1 solves all the five instances within 1
hour. The improvement can be explained by the fact that the extra restriction on x reduces the
feasible region, and consequently decreases the number of nodes explored to prove optimality. For
€ =0.05 and 0.15, we see from Table 2 that the average lower bound time taken by LBH1 increases
significantly. This yields a comparable performance with LBHO in terms of the total solution time

and the proportion of instances that are solved to optimality.

5.2.2. Performance of Lower Bound Improvement Heuristic and Valid inequalities

In this section, we discuss the usefulness of adding inequalities, while also using the lower bound
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Table 2

The average CPU time (seconds) for the lower bounding heuristic (LBH-AvT) and the branch-and-cut

(B&C-AvT), the average total time (seconds) spent to solve (CBP) (AvT), the average number of nodes for the

branch-and-cut algorithm (# of nodes), the number of opened ORs (# of ORs) and the number of solved

instances from the five instances (solved), the proportion that the lower bound is equal to optimal objective value

(A).
€ N approach LBH-AvT B&C-AvT AvT # of nodes # of ORs solved A
CPX 0.0 3724 3724 67454  [6,6,6,6,6] 5/5 0
100 LBHO 2.1 152.0 154.1 24,503 [6, 6, 6, 6, 6] 5/5 0
LBH1 84.9 0.7 85.6 364 [6, 6, 6, 6, 6] 5/5 1
CPX 0.0 5,287.0 5,287.0 43,503 [6, 6, 6, 6, 6] 5/5 0
0.05 500 LBHO 30.5 3,156.3 3,186.8 26,919 [6, 6, 6, 6, 6] 5/5 0
LBHI  3,183.8 1.7 3,185.5 140  [6,6,6,6,6] 5/5 1
CPX 0.0  19,900.6 19,900.6 70,726 [6, (5,6), 6, 6, 6] 4/5 0
1000 LBHO 71.3 8,824.3  §8,895.7 20,042 [6, 6, 6, 6, 6] 5/5 0
LBH1 7,062.0 10.1 7,072.1 78 [6, 6, 6, 6, 6] 5/5 1
CPX 0.0 1,744.5 1,744.5 547,776 [6, 5, 5, 5, 5] 5/5 0
100 LBHO 1.2 1,499.0  1,500.2 433,573 [6, 5, 5, 5, 5] 5/5 0
LBH1 5.7 523.3 528.9 116,292 [6, 5, 5, 5, 5] 5/5 0.8
CPX 0.0 2,182.0 2,182.0 26,392 [5, 5, 5, 5, 5] 5/5 0
0.1 500 LBHO 14.3 1,581.7  1,596.0 22,962 [5, 5, 5, 5, 5] 5/5 0
LBH1 142.1 479.0 621.2 11,163 [5, 5, 5, 5, 5] 5/5 1
CPX 0.0 13,101.2 13,101.2 59,711 [5, (6,4), 5, 5, 5] 4/5 0
1000 LBHO 33.5  15,498.7 15,533.1 89,513 [(6,4), 5, 5, 5, 5] 4/5 0
LBH1 474.9 1,401.8 1,876.6 9,876 [5, 5, 5, 5, 5] 5/5 1
CPX 0.0 154.5 154.5 13,232 [5, 5, 5, 5, 5] 5/5 0
100 LBHO 0.9 120.9 121.8 8,077 [5, 5, 5, 5, 5] 5/5 0
LBH1 87.6 04 88.0 103 [5, 5, 5, 5, 5] 5/5 1
CPX 0.0 1,460.0 1,460.0 6,993 [5, 5, 5, 5, 5] 5/5 0
0.15 500 LBHO 14.3 1,282.9 1,297.2 6,345 [5, 5, 5, 5, 5] 5/5 0
LBH1 1,441.0 3.8 1,444.8 78 [5, 5, 5, 5, 5] 5/5 1
CPX 0.0 5,353.2  5,353.2 7,511 [5, 5, 5, 5, 5] 5/5 0
1000 LBHO 25.2 49834 4,948.6 6,669 [5, 5, 5, 5, 5] 5/5 0
LBHI  5,126.4 104 5,139.7 64  [5,5555 5/5 1

improvement heuristic. We use Algorithm 4 with K =1 (LBH1) to obtain an initial lower bound

for the branch-and-cut algorithm. We consider the sample size N € {100,500,1000}. Since for the

level of chance satisfaction ¢ =0.05,0.15, the average time for the branch-and-cut algorithm is less
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than 11 seconds after completing LBH1, we only consider problems with ¢ = 0.1 in this section.
We consider the following five variants:

e Cover: refers to adding the general lifted cover inequalities (16) to LBHI.

o C&C: refers to adding the general lifted cover inequalities (16) and 2-clique inequalities (18)
to LBH1.

e Proj: refers to adding the projection inequalities (23) to LBHI.

e P&C: refers to adding the projection inequalities (23) and 2-clique inequalities (18) to LBH1.

e B&C: refers to adding the projection inequalities (23), lifted cover (16) and 2-clique inequalities

(18) to LBHI.
For C&C, we only added the violated clique inequalities when we could not find any lifted cover
inequality at the root node. For P&C, we only added the violated clique inequalities when we could
not find any projection inequality at the root node. For B&C, we added the 2-clique inequalities (18)
when we could not find any the projection inequality (23), and added the lifted cover when there is
no violated inequality (23) and (18). We could not find a setting for the mixing set inequalities (7)
that improved the performance. For several harder instances (N = 500, 1000), the use of mixing set
inequalities resulted in a worse performance. This might be due to the default search mechanism in
CPLEX. However, it is unclear of a modification to this search mechanism will provide improved
result. Table 3 reports the average total time spent to solve (CBP), the average number of nodes
for the branch-and-cut algorithm, the number of opened ORs, the number of solved instances from
the five generated instances, and the average number of cuts for (CBP).

The results in Tables 2 and 3 show that adding the general lifted cover and projection inequalities
provide significant improvements in the solution time and the number of processed nodes for the
harder instances (N = {500,1000}). For problems with N = 1000 scenarios, the average solution
time is decreased by more than 40% on average by using the inequalities. However, for the instances
(N =100) the improvement from adding the projection inequalities is modest. Moreover, adding the
lifted cover and 2-clique inequalities performs better than the version that only uses the lifted cover
inequalities except for the 100 scenario instances. In Table 3, we also observe that for the harder
instances (N = {500,1000}) adding the projection inequalities and clique inequalities performs

comparably to the version that uses the cover and clique inequalities.

5.2.3. Comparison with the Probability Cover Approach The results in this section
are for the harder problems that are generated for ¢ = 0.1 and N € {500,1000}. We compare the
performance of the following approaches:

e B&C: is described in Section 5.2.2.

e BPC: is the probability cover approach from Song et al. (2014) adapted for the (CBP) problem.

The implementation details are presented in Appendix D.
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Table 3  The average total time (seconds) spent to solve (CBP) (AvT), the average number of nodes for the
branch-and-cut algorithm (# of nodes), the number of opened ORs (# of ORs), the number of solved instances
from the five instances (solved), and the average number of cuts (# of cuts) for (CBP) are reported, the valid

inequalities are added only at the root nodes, and K =1 in Algorithm 4 is used for these computations

N approach AvT # of nodes # of ORs solved # of cuts

Cover 2515 62,737 6,5, 5, 5, 5] 5/5 10
00 C&C 2528 63,076 6,5, 5, 5, 5] 5/5 23
Proj 5140 115,418 6,5, 5, 5, 5] 5/5 11
P&C 5140 115418 6,5, 5, 5, 5] 5/5 11
B&C 2514 65,789 6,5, 5, 5, 5] 5/5 17
Cover  410.9 5,166 5,5, 5, 5, 5] 5/5 14
- C&C 244.2 2,740 5,5, 5, 5, 5] 5/5 22
Proj 250.5 1,789 [5, 5, 5, 5, 5] 5/5 8
P&C 250.5 1,789 [5, 5, 5, 5, 5] 5/5 8
B&C 250.5 1,789 [5, 5, 5, 5, 5] 5/5 8
Cover  1,073.3 3,876 5,5, 5, 5, 5] 5/5 11
1000 C&C  1,028.9 3,536 5,5, 5, 5, 5] 5/5 13
Proj  1,130.4 5,122 5,5, 5, 5, 5] 5/5 5
P&C  1,011.6 4,483 5,5, 5, 5, 5] 5/5 8
B&C 818.6 2,134 5,5, 5, 5, 5] 5/5 9

In order to compare the proposed methods, for each setting, ten instances are considered. These
are labeled as N — #, where # denotes the instance number. Table 4 reports the total time spent
to solve (CBP), the number of nodes, the number of cuts and ORs for these approaches.

The results in Table 4 indicate that BPC is also able to solve the large-scale instances but it
takes longer than our implementation of B&C, especially for the instances with N = 500. The
solution time saved by B&C is up to 90%, and the search tree size is reduced by over 99%. On
average, solution times for 500 scenario models is reduced by a factor of approximately 5, and for
1000 scenario models it is reduced by a factor of approximately 1.5. Song et al. (2014) also added
a type of projection cut to improve the performance of the BPC algorithm for the single chance
constraint model. In our computations the projection cuts introduced by Song et al. (2014) did

not benefit the multiple chance constraints setting of the (CBP) problem.

6. Concluding Remarks
This paper investigated the chance-constrained bin packing problem. We formulated the model as
a 0-1 bilinear program and developed three classes of valid inequalities from the bilinear formula-

tion. Computational results showed that the three valid inequalities combined with a lower bound
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Table 4 Algorithmic 3 comparison with four exact approaches, where we report the total time spent to solve

(CBP) (time) in seconds, the number of nodes ( nodes), and the number of cuts (cuts) for each instance

) time # of nodes # of cuts # of ORs
mStance TToeC BPC  B&C  BPC  B&C BPC  B&C BPC
500-1 08.4 1,0284 218 869,176 2 6,538 5 5
500-2 227.7 894.4 580 811,260 0 5,568 5 5
500-3 1108 1,0082 218 869,176 2 6,538 5 5
500-4 6138 1,158.2 7,658 1,501,493 2 4,853 5 5
500-5 201.6 635.9 270 855,766 2 4,826 5 5
500-6 1033 14114 1,547 1,599,748 0 4,848 5 5
500-7 926.3 2,340.0 3,054 1,594,015 2 7.831 5 5
5008 2502 1,579.7 420 1,950,550 1 5,166 5 5
500-0  599.9 1,132.9 7,658 1,501,493 2 4,853 5 5
500-10 223.9 2,595.0 1,567 1,484,011 5 8,923 5 5
Average  265.6 13784 2,319 1,303,669 2 5,994 5 5
1000-1 598.4 762.7 1,020 958,747 0 4,929 5 5
10002 882.0 1,701.9 2,584 1,068,529 2 8054 5 5
1000-3 396.0 1,593.2 810 1,220,706 3 6,807 5 5
10004 668.0 1,733.0 1,070 1,571,896 3 5,969 5 5
1000-5  1,548.7 1,110.3 5186 819,237 1 7,068 5 5
1000-6 1,014.9 1,567.5 1,999 1,482,643 1 5,812 5 5
1000-7 9318 1,103.1 3,306 1,730,061 4 4,623 5 5
1000-8 998.3 1,485.5 1,825 1,255,048 2 5,933 5 5
1000-0  1,386.7 14747 2,619 1,554,822 7 5480 5 5
1000-10 926.4 1,246.2 1,617 1,178,122 4 5,949 5 5
Average  935.1 13778 2204 1,283,981 3 6,062 5 5

computation heuristic allow us to solve models with up to 1,000 scenarios for the chance constraints

specified at 0.95, 0.90 and 0.85 satisfaction of the bins needing to pack items with random sizes.

The data for our computational tests was generated based on a real data set for a hospital operat-

ing room surgery assignment problem. We also observed that the CVaR approximation for the test

problems was generally not tight. Our attempt to solve larger problems (e.g., with 1,500 scenarios)

met with partial success. Specifically, for these problem B&C and BPC discussed in Section 5.2.3

could solve only 1 out of the 5 problem instances with a 10 hour CPU time limit. It is unclear if

the generalization of the probabilistic cover approach Song et al. (2014) can be combined with the

approach developed in the current paper. It remains a topic of future research.
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Appendix A: CVaR Approximation

In this section, we briefly review the CVaR approximation. We first consider the case where ¢ is a N-

dimensional continuous random vector. Note that p(y) := P{Zgiylj > t]} =E [1(0,400) (2 &wis — ;)]
€T i€

Because 1¢g,4o0)() is a step function, let ¢(-) be a convex approximation of 1y 4oo)(-) such that ¢(-) >

1(0,400)(:). Clearly, a ¢(-) with smaller value gives a better approximation of 19 y.)(-). CVaR approximation

+

uses ¢(z,7) =L [+ z]* to approximate 1(o 1 o0)(2), where []* = max{0,-}. The CVaR approximation of the

chance constraint is given as:

+
TJerz‘?JijQ‘] <e

i€l

inf E 1
>0 T

+
Zfzyz] —t; —77] <0.

i€l

1
& E Y —t; » = inf ~“E
CVaR., { & tj} 717r61R n+ 5

i€
When ¢ is N-dimensional discrete random vector, according to Ahmed and Xie (2018), the CVaR approxi-

mation is also valid.

PROPOSITION 7. The CVaR approzimation of (CBP) can be reformulated as

(CVaR) minimize Z cixy + Z Z i (26a)
Seme e i€z jeT
subject to (1a), (1b), (1d)
1 “ .
N+ =Y pepi <0 Vied (26b)
we
Nt =Dy —t VieJ wen (26¢)
€T
p=>0. (26d)

Proof Let (x,y,n, p) be a solution of (CVaR). We now prove that (x,y) is a feasible solution of (CBP).
Forall j€J,let Q) ={weQ:} &y, —t; >0} If 3 p, <e holds, it implies (,y) is a feasible solution

i€T weQ]Q

of (CBP). According to constraints (26b) and (26¢),
1
1L S (S -n-0) <o
wEQJQ i€

Let H; =min,cqo £’y;; —t;, then we have
J

where the second inequality in the above expression is because < 0. Hence, (x,y) is a feasible solution of

(CBP). O

Appendix B: Approximation Comparison

In this section, we compare the computational results for (CBP) with the CVaR approximation formulation

(26) (denoted by (CVaR)), which is presented in Appendix A. We set the runtime limit to 2 hours. We
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use B&C described in Section 5.2.2 to solve (CBP). We report the average, maximum, minimum time, the

number of opened ORs, the number of solved instances from the five instances for e = 0.1 in Table 5.

Table 5  The average (AvT), maximum (max), minimum (min) CPU solution time (seconds), the number of
opened ORs (# of ORs) and the number of solved instances from the five generated instances (solved), for the
B&C of (CBP) and CVaR approximation

N model AvT max min # of ORs solved
100 CBP 528.9  2,424.7 5.2 [6, 5, 5, 5, 5] 5/5
CVaR 88.1 221.3 2.5 [7, 6,6, 6, 7] 5/5
500 CBP 621.2 905.6 220.5 [5, 5, 5, 5, 5] 5/5
CVaR 398.8 600.1 35.1 [6, (6,7), 6, (6,7), 6] 3/5
1000 CBP 1,876.6  4,637.3 595.3 [5, 5, 5, 5, 5] 5/5
CVaR - - - 16,7),(6,7), (6,7), (6,7), (6,7)] 0/5

“.»

means that no instance can be solved to optimality within the runtime limit.

We can see from Table 5 that (CBP) has a better performance than the CVaR approximation formulation
in terms of the number of solved instances. We notice that the CVaR approximation can only solve 3 out
of 5 instances within the runtime limit when N = 500, and cannot solve any instance to optimality when
N =1000. The CVaR approximation solutions open more ORs. For example, for the 100 scenario instances,
the CVaR approximation opens 6 or 7 ORs, while (CBP) only opens 5 or 6 ORs. Therefore, the CVaR

approximation formulation is more conservative than (CBP).

Appendix C: Proof
C.1. Proof of Proposition 1

Let y; be an optimal solution of (3). Then, there exists at least one k" € {k1,..., ko4 1} such that ) Ef/yjj <t,.
i€z
Otherwise, we have Z:Ié’“y” >t;, for k€ {ki,...,k,41}. Since Z lpk > ¢, the inequality P Z &yl <t
1€
1 — ¢ is violated. This is a contradiction. Therefore, y* is a feasible solution of (4) with k k'. We have

m¥ (kgy1) >mé (k') > E &2y;; = M. Thus, m¢ (k,41) is an upper bound for M.
Based on the deﬁn1t1on of m¥(w), we have }_ &“y;; <m¥(w). Let M =m (kyy1). By replacing t; with

i€L

m¢ (w), constraints (2a) are reformulated as (5). Hence, (CBP) can be formulated as the binary integer

program (6).
C.2. Proof of Proposition 2

In order to prove that the inequality (7) is valid, let (y;,z¥) be a feasible solution of (CBP), and n* =
min {n € {1,...,1} : 2J" =1}. Then we have ZfT"*y” <t;and z;" =0, for n€ {1,...,n* —1}. Thus, y; is a

feasible solution of (4) for k = 7,~, which mdlcates > &Yy <m (1,+). Therefore,
i€L
l
Z{“yw + Z “(Tag1) —ms (1)) 27" <m (T + Z (M (Tag1) —mS (12)) 2]

i€L n=n*
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!

<m (1) + Y (M8 (Taga) =m (7)) =mS (k).

n=n*

This completes our proof.

C.3. Proof of Proposition 3

We first prove that (z*,y*,z*) is an optimal solution of (BIP). According to constraints (1d), we have

> pol {Z §lyr; < tj} >1—¢, where 1{-} is an indicator function, which returns 1 if the expression in
weR i€Z

{-} is true. Since 1 {Z Elyp; <ty p =24, 29" satisfies constraints (2b) based on the definition of m¢(w).
i€z
Therefore, 2* satisfies constraints (2b) and (8b), proving that (x*,y*,2*) is a feasible solution of (BIP).
On the other hand, suppose that (&,y,2) is an optimal solution of (BIP). We now show that (&,9)

is a feasible solution of (CBP). When 2¢ =1, we have }_ {#7;; < m¢(w). Hence, constraints (2b) imply
i€L

P> &0, <tjp >1—e. We have that (&,9) is also a solution of (CBP). Since (z*,y*) is an optimal
i€z
solution of (CBP), Z AL+ > i > Z csxr 435 Y cby;;. Hence, (x*,y*, 2%) is an optimal solution
€Ljed 161]6.7
of (BIP). Conversely, it is easy to verify that 1f (z*,y*,z*) is an optimal solution of (BIP), then (x*,y*) is

an optimal solution of (CBP). Q.E.D.

C.4. Proof of Theorem 3
We first prove that (16) is valid for conv(Fj,). When 2¢ =1, (16) is valid for conv(Fj.) due to the valid
of (15). When z¥ =0, since v = maximize > yi; + > cyi; + > Biyi; —|C\D| = > Bi+1= > a;+1,
y;€{0,1}Z1 jee\p ieT\C i€D i€D i€T\C

indicating (16) is also valid for conv(Fj,,).

When 2z¢ =1, there exists n feasible points of variables y; that are affinely independent and satisfy
inequality (16) at equality as the facet defining of (15). Similarly, when 2¢ =0, y; = 17, where 17 is a
1 x |Z| vector of all ones. Thus, the |Z|+ 1 feasible points are affinely independent and satisfy inequality (11)

at equality. Therefore, we conclude that the inequality (11) is facet-defining for conv(F;,). O

C.5. Proof of Theorem 4

Let

~ = maximize Z Yij + Z ;Y + Zﬁzy” —|C\D| - Zﬁz +1 (27a)

v; €{0, 137! ieC\D ieT\C i€D ieD
subject to Z Pl {Z{fy” < t} >1—c. (27b)
kEQ\{w} €T

Then (16) is valid for conv(F;,).
Let y; be an optimal solution of (27), then, there exists at least one k' € {ky,..., ko 1} € {Q\{w}} such
that Z &' yr, <t;. Therefore, y: is a feasible solution of 6},. We have Ok, = 0j =v. Hence, (16) is a valid

mequahty for (CBP) when ~ = §} O

kgt
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C.6. Proof of Theorem 6
Let

{4 = maximize Z Yi; — 1 (28a)

ij{o’l}‘Il 1€
subject to Z prl {foyw < t} >1—e. (28b)
keQ\{w} ieZ
Then (18) is valid for conv(Fj.,).
It is straightforward to verify that A ,, > u. Hence, (18) is a valid inequality for (CBP) when =\ _,,. O

a+1
C.7. Proof of Proposition 6
Let u* =y*z*. For j € J, and w € (), we have
w2y €y =) €
€L i€L
Since y*, z* are binary variables, constraints (20b)-(20d) hold. Therefore, (z*,y*, z*,u*) is a solution of (20).

Now suppose (&, 9, 2,u) is an optimal solution of (20). If 2¥ =0,

me(w)Ey >y i =Y &

i€L i€
Otherwise,
w)ze > Zéwfj S = &0,
€T i€l i€
Hence, (2,9, 2) is a solution of (BIP), which implies Z AT+ > i > Z i+ > chyr. There-
i€lTjed €L jeT

fore, (x*,y*, z*,u*) is an optimal solution of (20). In a similar way, we can prove that if (x*,y*, z*,u*) is

an optimal solution of (20), then (x*,y*,z*) is an optimal solution of (BIP). The proposition follows. [J

Appendix D: Implementation Details for BPC

We formulate (CBP) as a probability cover problem:

(BPC) minimize Stz Y (29a)

JET 1€ jeT

subject to y;; <z, VieZ,jeJ, (29Db)
Zyij =1, VieZ, (29¢)
JjeET
>y <10 -1, VieJ,C e, (29d)
i€C;y
z; €{0,1},y;; €{0,1}, VieZ,jeJ, (29¢)

where C; is a minimal probability cover such that P¢ > & <t;, » <1—¢, for j € J. Then we lift (29d)
i€Cy
to derive a strong valid inequality based on the method proposed in Song et al. (2014). For j € J, let
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;= {71,---»Ti7\c,1;} be a sequence of Z\C}, and the coefficients for y;; be &;;. The lifting problem is as
follows: for j € J and k={1,...,|Z\C;|}

Th—1,j

Objﬁ-k]. = maXimiZe yij + dijyij
’ ieC; i=71

Th—1,j

subject to P Z &yi; + Z Eyij <t;j—&., p >1—¢,

ieC; 1=
yi; € {0,1}, 1€C} U{ﬁ'u,---,ﬁ'k—l,j}-

The lifting coefficient @z, ; =[C;| — 1 — objz, . A sequential lifting strategy to approximate the value of
the lifting coefficients was given in Algorithm 1 in Song et al. (2014). We used the same algorithm to lift
the coefficients in our case. We then strengthen the lifted probabilistic cover inequalities by multiplying the
right-hand side with the variable z;.

Let (BPC) be (BPC) without constraints (29d). At each round of cut generation, we search for violated
lifted probabilistic cover inequalities. If the solution (&,y) of the relaxation problem of (Bf’C) is integral,
we add an available violated lifted probabilistic cover inequality. We found that adding a violated lifted
probabilistic cover inequality at fractional solution (&,q) was less efficient. Hence, the implementation adds
these inequalities after a binary solution of the problem generated after each fractional solution is obtained.

Algorithm 5 gives an overview of the implementation.
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Algorithm 5: (BPC) Implementation

1

2

3
4

5

10

11

12
13

14
15

16
17

18
19
20

21

Initialize UB = +o00, LB= —oc and N = @.
Initialize Nodelist N'= {0}, where o is a branching node without constraints.

while (N is nonempty) do
Select a node 0 € Ny, N+ N /{o}.

Optimize the LP relaxation problem of (BPC) in the node o.
(BPC) miriilglize Z ¢+ Z Z i
’ jeg €T jeT

subject to (29b), (29¢)(29e)

Obtain the optimal solution (&, ) and objective value obj.
if obj < UB then
if (&,9) is integral then
if 3C; € & such that g; violates (29d), for j € J then
‘ Add the violated lifted probabilistic cover inequalities to (BPC). Go to line 5.

end

else
| Update UB, UB = obj.

end
end

else
| Branch, resulting in nodes o* and o**, N <~ N'U{0",0*"}.

end
end
end

return UB and its corresponding optimal solution (&, g).
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