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We study the chance-constrained bin packing problem, with an application to hospital operating room

planning. The bin packing problem allocates items of random size that follow a discrete distribution to a set

of bins with limited capacity, while minimizing the total cost. The bin capacity constraints are satisfied with

a given probability. We investigate a big-M and a 0-1 bilinear formulation of this problem. We analyze the

bilinear structure of the formulation and use the lifting techniques to identify cover, clique and projection

inequalities to strengthen the formulation. We show that in certain cases these inequalities are facet defining

for a bi-linear knapsack constraint that arises in the reformulation. An extensive computational study is

conducted for the operating room planning problem that minimizes the number of open operating rooms.

The computational tests are performed using problems generated based on real data from a hospital. A

lower bound improvement heuristic is combined with the cuts proposed in this paper in a branch-and-cut

framework. The computations illustrate that the techniques developed in this paper can significantly improve

the performance of the branch-and-cut method. Problems with up to 1,000 scenarios are solved to optimality

in less than an hour. A safe-approximation based on conditional value at risk (CVaR) is also solved. The

computations show that the CVaR approximation typically leaves a gap of one operating room (e.g., six

instead of five) to satisfy the chance constraint.

Key words : chance-constrained stochastic programming, bin packing, bilinear integer program,

branch-and-cut, valid inequalities, operating room planning
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1. Introduction

The bin packing problem is to assign a set of items with positive size to bins so as to minimize the

total cost, while satisfying the bin capacity constraints. The bin packing problem has been applied

in various fields. Application examples include healthcare (Denton et al. 2010, Deng and Shen 2016),

scheduling (Reich et al. 2016, Song et al. 2018), transportation and logistics (Crainic et al. 2016,

Perboli et al. 2014), etc. For many practical bin packing problems, the item sizes are uncertain.

For instance, surgery duration is uncertain in healthcare operations management, as planners often

do not know the exact duration of a surgery in advance. Disregarding the uncertainty in item size

might provide a solution that violates the bin capacity constraints with an undesirable probability.

In a stochastic programming framework, the chance constraint paradigm can be employed to

overcome the above concern. More specifically, chance-constrained bin packing problem requires

that the bin capacity constraints are satisfied with a prespecified probability. For instance, the

chance constraints provide a probabilistic guarantee for each operating room to finish the assigned

surgeries without overtime. Ensuring that operating room shifts end at a specified time is desirable

to achieve a work-life balance of the service providers.

In this paper, we study the (CBP) problem:

(CBP) minimize
x,y

∑
j∈J

cajxj +
∑
i∈I

∑
j∈J

cbijyij (1a)

subject to yij ≤ xj, ∀i∈ I, j ∈J , (1b)∑
j∈J

yij = 1, ∀i∈ I, (1c)

P

{∑
i∈I

ξiyij ≤ tj

}
≥ 1− ε, ∀j ∈J , (1d)

xj ∈ {0,1}, yij ∈ {0,1}, ∀i∈ I, j ∈J , (1e)

where I := {1, . . . , |I|} is a collection of items and J := {1, . . . , |J |} is a collection of bins. caj

is the nonnegative cost for opening bin j, and cbij is the nonnegative cost for assigning item i

to bin j. ξ = (ξ1, . . . , ξ|I|)
> is a vector of random sizes with a joint probability distribution P.

We assume that the random vector ξ are drawn from a finite support of N scenarios {ξω}ω∈Ω,

where Ω = {1, . . . ,N}. Hence, the distribution P can be characterized using a probability vector

(p1, . . . , pN)> such that pω ≥ 0 and
∑
ω∈Ω

pω = 1. We let ξωi denote the size of item i for the scenario

ω ∈Ω, ε∈ [0,1] is the level of chance satisfaction, and tj is the capacity of bin j. The binary variable

xj indicates if bin j is open, and the binary variable yij indicates if item i is assigned to bin j. Let

x= (x1, . . . , x|I|)
>, yj = (y1j, . . . , y|I|j)

>, y = (y1, . . . ,y|J |)
>. The objective (1a) is to minimize the

total cost for opening bins and assignments of items to the open bins. Constraints (1b) guarantee
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that item i can be assigned to bin j only if bin j is open. Constraints (1c) enforce that each item i

is assigned to exactly one bin. Constraints (1d) restrict the bin capacity for bin j with probability

1− ε. Constraints (1e) define binary variables xj and yij. In a special case all caj are equal, cbij = 0,

∀i∈ I, j ∈J ; and the problem reduces to that of finding the minimum number of bins to pack the

items.

1.1. Literature Review on Chance-Constrained Programs

Chance-constrained programs (CCPs) were introduced by Charnes and Cooper (1959). Since then,

CCP has been extensively studied in terms of new methodological developments and its applica-

tions. For more details about CCP, readers are referred to Ahmed and Shapiro (2008), Nemirovski

(2012), Birge and Louveaux (2011) and references therein. CCP problems are generally very dif-

ficult to solve because of their non-convex feasible region (Ahmed and Shapiro 2008). Moreover,

chance constraint does not necessarily preserve the smoothness of the original constraints (Hu et al.

2013). Only in the case of normally distributed random variate, they admit a second-order cone

program formulation (Song et al. 2014). In many situations, however, the probability distributions

are not normally distributed. This is the case when considering surgery times in the operating

room, which are observed to follow a log-normal distribution.

1.1.1. Convex Conservative Approximations of Chance-Constrained Programs A

number of approaches have been developed to obtain a solution of CCP. One possible approach is

to use a convex conservative approximation of CCP. This includes the use of Bernstein approxi-

mation (Nemirovski and Shapiro 2006), and CVaR approximation (Rockafellar et al. 2000, Wang

and Ahmed 2008). The Bernstein approximation is applicable when the components of the ran-

dom vector are independent and moment-generating functions are computable. This approximation

is efficient to solve. Unfortunately, however, the Bernstein approximation can be very conserva-

tive. The CVaR approximation is the best conservative convex approximation (Nemirovski 2012),

even though it is also conservative (see Appendix B regarding CVaR approximation of (CBP)). It

remains computationally challenging to solve CVaR approximations (Nemirovski 2012). Neverthe-

less, it is a worthy consideration for a difficult problem.

1.1.2. Mixed-Integer Formulation of Chance-Constrained Programs Under this

framework, one assumes that the true probability distribution of ξ is replaced by a finite number of

samples. In order to satisfy the chance constraint, Luedtke and Ahmed (2008) use a mixed-integer

formulation. The formulation ensures that a correct number of sampled constraints are satisfied.

This has motivated a number of studies to model chance-constrained programs under the assump-

tion of finite distributional support, and using its formulation as a mixed-integer linear program

(MILP) (Luedtke et al. 2010, Küçükyavuz 2012, Luedtke 2014, Zhao et al. 2017, Peng et al. 2018,
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Ahmed and Xie 2018). The justification for using a finite sample-based approximation is in the

fact that, as the sample size increases, the performance of the method is closer to the true case

(Pagnoncelli et al. 2009). Nevertheless, it poses a formidable computational challenge, in particu-

lar when technology matrices are random, as is the case with the chance constrained bin packing

problems. Therefore, cutting plane methods with enhanced strategies for CCP have been proposed

in the literature (Ruszczyński 2002, Tanner and Ntaimo 2010, Luedtke 2014, Qiu et al. 2014, Xie

and Ahmed 2016). Recently, some efficient computational procedures (i.e. Lagrangian relaxation,

scenario decomposition) for obtaining the lower bound are also developed (Watson et al. 2010,

Ahmed et al. 2017, Deng et al. 2017). The aforementioned papers only study the generic CCP and

none of them exploit the constraint structure of CCP.

1.2. Literature Review on Chance-Constrained Bin Packing

In terms of chance-constrained bin packing problem, Kleinberg et al. (2000) applied stochastic

bin packing to bandwidth allocation for bursty connections in high-speed networks. The authors

developed an approximation algorithm to solve the chance-constrained model. Shylo et al. (2012)

modeled the stochastic operating room scheduling problem by embedding probabilistic capacity

constraints to restrict the overtime. They assumed that surgery durations follow a multivariate

normal distribution, and formulated the model as a MILP problem. Deng and Shen (2016) devel-

oped a decomposition method with accelerating strategies proposed in the literature for solving

chance-constrained appointment scheduling problem. Zhang et al. (2015) considered the two-stage

stochastic and distributionally robust chance-constrained bin packing problems with binary assign-

ment and continuous bin extension decisions. Problems with 500 scenarios and a probability of

0.9 were solved by a column generation based branch-and-price method within the time limit of

an hour. Zhang et al. (2018) studied the distributionally robust chance-constrained bin packing

problem with mean-covariance information. They formulated the problem as a second order cone

program, and developed valid inequalities to improve the algorithmic performance in a branch-

and-cut framework.

The work most related to ours is the article by Song et al. (2014), where the authors considered

the chance-constrained problem with a single bin. In their model, a subset of items was selected,

so as to maximize the total profit while satisfying a single chance constraint. Song et al. (2014)

proposed a probabilistic cover formulation and used the lifting technique proposed by Zemel (1989)

to obtain the probabilistic cover inequalities for the finite scenario models. They also provided a

coefficient strengthening procedure for the big-M reformulation.
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1.3. Contributions of this Paper

This paper makes the following contributions. The problem studied in this paper is a generalization

of Song et al. (2014) in that it has multiple bins and chance constraints. The framework in Song

et al. (2014) considers the single bin case. Additionally, to solve the (CBP) problem the algorithmic

approach developed here is different from the probabilistic cover approach in Song et al. (2014).

Specifically,

• We first formulate (CBP) as a binary bilinear program. We show that this formulation provides

a stronger relaxation than the strengthened big-M reformulation of (CBP).

• We use the binary bilinear formulation to obtain several new valid inequalities for (CBP). In

particular, we consider the binary bilinear knapsack set obtained from a single row and scenario in

the bilinear constraints. We propose cover and clique inequalities for the convex hull of the set by

using the lifting technique. We show that these inequalities are facet-defining. We also linearize the

bilinear formulation using additional binary variables and project the relaxation of the linearization

formulation onto the space of the original variables to generate projection inequalities.

• We incorporate the valid inequalities within a branch-and-cut framework to solve the strength-

ened big-M reformulation of (CBP). Computational experiments for operating room scheduling

problem using real data from a hospital is conducted to demonstrate the computational improve-

ment from the proposed techniques. For the problem that minimizes the number of bins, we present

a lower bound generation technique based on relaxing the scenario variables. We find that this

technique significantly improves the algorithmic performance in our computational experiments.

The performance is further improved by a systematic inclusion of the developed inequalities.

• Using the techniques developed in this paper, we solved models having up to 1,000 scenarios

with ε= 0.05,0.15 within two hours and ε= 0.1 within an hour, which outperform the approach

from Song et al. (2014). Several models remained unsolved (gap ≥ 1) when using commercial

solver only. We compared the results with a CVaR approximation, and find that CVaR formulation

typically leaves a gap of one room to the optimal number of rooms required to satisfy the chance

constraint. Moreover, it does not seem to provide any computational benefit.

1.4. Organization

The remainder of this paper is organized as follows. Section 2 formulates (CBP) as a binary

program and adapts the technique of Song et al. (2014) to strengthen its big-M coefficients. We

then present an alternative binary bilinear formulation for (CBP). We show that this bilinear

formulation has a tighter relaxation than the big-M formulation. We explore the structure of the

bilinear formulation to develop three classes of valid inequalities in Section 3. Specifically, we show

in Section 3.1 how the sequential lifting technique can be used to generate facet-defining cover and
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clique inequalities. We linearize the bilinear formulation and study the projection inequalities for

(CBP) in Section 3.2. In Section 4 we incorporate the valid inequalities within a branch-and-cut

solution scheme to solve the strengthened big-M reformulation of (CBP), and propose a lower

bound improvement heuristic to accelerate the computation for the problem that minimizes the

number of bins. Section 5 reports computational results on (CBP) formulation with application

to operating room planning, and confirm the efficiency of the techniques developed in this paper.

Section 6 concludes the paper with a summary of the important findings. Appendix A provides

CVaR approximation of (CBP). Appendix B gives a performance comparison of (CBP) solutions

with CVaR approximation. Appendix C gives the proofs of some propositions and theorems. An

algorithm based on the probabilistic cover approach, generalized to our problem, are given in

Appendix D.

2. Reformulations of (CBP)

We first formulate (CBP) as a binary integer program and use the big-M coefficient strengthening

procedure from Song et al. (2014) for (CBP) in Section 2.1. By applying the techniques in Luedtke

(2014) we obtain mixing set inequalities for (CBP) in Section 2.1.2. We then present an alternative

binary bilinear reformulation for (CBP) in Section 2.2. A result on the strength of this binary

bilinear formulation is given in this section.

2.1. Big-M Reformulation for (CBP)

Let us introduce a binary variable zωj to indicate if bin j satisfies the bin capacity constraint for

each scenario ω ∈Ω, namely,

zωj =

1, if
∑
i∈I

ξωi yij ≤ tj,

0, otherwise.

Note that zωj = 1 ensures that
∑
i∈I

ξωi yij ≤ tj. Otherwise, the constraint
∑
i∈I

ξωi yij ≤ tj is violated.

Without loss of generality, we assume that ξωi < tj, ∀i ∈ I, j ∈ J , ω ∈ Ω. For j ∈ J , let zj =

(z1
j , . . . , z

N
j )>, z = (z1, . . . ,z|J |)

>.

Using the big-M approach, the chance constraints (1d) can be written as

∑
i∈I

ξωi yij + (Mω
j − tj)zωj ≤Mω

j , ∀j ∈J , ω ∈Ω, (2a)∑
ω∈Ω

pωz
ω
j ≥ 1− ε, ∀j ∈J , (2b)

where Mω
j is a constant with sufficiently large value, guaranteeing that constraints (2a) hold when

zωj = 0. (CBP) with new constraints (2a) and (2b) may provide a weak linear programming (LP)
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relaxation bound if Mω
j is chosen naively. For example, a choice is possible by taking Mω

j :=
∑
i∈I

ξωi .

Note that for j ∈J , ω ∈Ω, Mω
j is valid for constraints (2a) if

Mω
j ≥ M̄ω

j := maximize
yj

{∑
i∈I

ξωi yij

∣∣∣P{∑
i∈I

ξiyij ≤ tj

}
≥ 1− ε, yj ∈ {0,1}|I|

}
. (3)

We now describe a coefficient strengthening procedure for strengthening this big-M formulation.

The procedure borrows ideas from Qiu et al. (2014) and Song et al. (2014). We then develop the

mixing set inequalities for (CBP) by applying the techniques in Luedtke (2014).

2.1.1. Coefficient Strengthening Procedure Given j ∈ J , and ω ∈Ω, let us consider the

following problem (4) for each k ∈Ω,

mω
j (k) = maximize

yj

{∑
i∈I

ξωi yij

∣∣∣∑
i∈I

ξki yij ≤ tj, yj ∈ {0,1}|I|
}
. (4)

Now sort mω
j (k) in a non-decreasing order such that mω

j (k1)≤ . . .≤mω
j (kN). The following propo-

sition gives an upper bound for M̄ω
j .

Proposition 1. For j ∈ J and ω ∈ Ω, mω
j (kq+1) is an upper bound for M̄ω

j , where q :=

max
{
l :
∑l

j=1 pkj ≤ ε
}

. Furthermore, (2a) may be replaced by∑
i∈I

ξωi yij +mω
j (kq+1)(zωj − 1)≤mω

j (ω)zωj . (5)

Hence, (CBP) can be formulated as the binary integer program (6):

(IP) minimize
x,y,z

∑
j∈J

cajxj +
∑
i∈I

∑
j∈J

cbijyij (6a)

subject to (1b), (1c), (1e), (2b), (5)

zωj ∈ {0,1} ∀j ∈J , ω ∈Ω. (6b)

Proof See Appendix C.1. �

Solving (IP) with the above big-M coefficient strengthening strategy may be time-consuming as

the number of problems in (4) significantly increases with |J | and N . For i∈ I, ω ∈Ω, we assume

that ξωi is non-negative integer, in computational experiments, we use dynamic programming based

approach to solve (4) effectively.

2.1.2. Mixing Set Inequalities Mixing set inequalities were introduced by Atamtürk et al.

(2000) and Günlük and Pochet (2001). Recently, Luedtke et al. (2010) and Luedtke (2014) used

them in strengthening the mixed integer programming formulation of chance-constrained programs.

By applying the techniques in Luedtke (2014), we obtain the mixing set inequalities (7) for (CBP)

in Proposition 2.
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Proposition 2. Given j ∈J , and ω ∈Ω, let τ = {τ1, . . . , τl} ⊆ {k1, . . . , kq} with mω
j (τ1)≤ . . .≤

mω
j (τl). Then the inequality

∑
i∈I

ξωi yij +
l∑

n=1

(
mω
j (τn+1)−mω

j (τn)
)
zτnj ≤mω

j (kq+1) (7)

is valid for (CBP), where mω
j (τl+1) =mω

j (kq+1) and q is determined from Proposition 1.

Proof See Appendix C.2. �

2.2. Binary Bilinear Integer Reformulation for (CBP)

The problem (IP) in Section 2.1 is derived by using the big-M approach to guarantee that con-

straints (2a) hold when zωj = 0. We now provide an alternative formulation for (CBP).

Let binary variables zωj be defined as in Section 2.1, and consider the following formulation (8):

(BIP) minimize
x,y,z

∑
j∈J

cajxj +
∑
i∈I

∑
j∈J

cbijyij (8a)

subject to (1b), (1c), (1e), (2b), (6b)∑
i∈I

ξωi yijz
ω
j ≤mω

j (ω)zωj , ∀j ∈J , ω ∈Ω. (8b)

The following proposition shows the equivalence of (BIP) and (IP). A proof can be found in

Appendix C.3.

Proposition 3. Let (x∗,y∗) be an optimal solution of (CBP). Then there exists z∗ such that

(x∗,y∗,z∗) is an optimal solution of (BIP). Conversely, if (x∗,y∗,z∗) is an optimal solution of

(BIP), then (x∗,y∗) is an optimal solution of (CBP). �

Let (RIP) and (RBIP) be the relaxation problems of (IP) and (BIP) respectively, where the

integrality restriction on the variables x,y, and z are relaxed. The feasible solution sets in terms of

(x,y,z) to (RIP) and (RBIP) are denoted by XRIP and XRBIP . The following relationship between

(RIP) and (RBIP) motivates us to explore the binary bilinear formulation.

Proposition 4. XRBIP ⊆XRIP .

Proof Let (x,y,z)∈XRBIP . We have∑
i∈I

ξωi yijz
ω
j −

∑
i∈I

ξωi yij −mω
j (kq+1)(zωj − 1) = (zωj − 1)

(∑
i∈I

ξωi yij −mω
j (kq+1)

)
≥ 0.

Consequently, the following inequality holds,∑
i∈I

ξωi yij +mω
j (kq+1)(zωj − 1)≤

∑
i∈I

ξωi yijz
ω
j ≤mω

j (ω)zωj .

Therefore, (x,y,z)∈XRIP , proving that XRBIP ⊆XRIP . �

Proposition 4 shows that (BIP) provides a stronger relaxation than the relaxation possible from

the strengthened big-M approach.
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3. Valid Inequalities Using the Bilinear Formulation

We now show how the formulation proposed in Section 2.2 can be used to generate valid inequalities

for (CBP). Our analysis relies on investigating a binary bilinear knapsack set.

3.1. Strong Inequalities for Single Binary Bilinear Knapsack

We assume that j ∈J , ω ∈Ω are fixed in this section. Let us consider the following binary bilinear

knapsack set,

Fjω =

{
(yj, z

ω
j )∈ {0,1}|I|×{0,1}

∣∣∣∑
i∈I

ξωi yijz
ω
j ≤mω

j (ω)zωj

}
.

We use conv(·) to denote the convex hull of a set. The inequalities valid for conv(Fjω) are also

valid for (CBP). We now develop a binary bilinear lifting technique to derive valid inequalities

for the set conv(Fjω). More specifically, we develop two different types of valid inequalities. The

first one is obtained using a general form of cover inequalities. The second is obtained using clique

inequalities as the seed inequalities, and computing the lifting coefficients for the variable zωj .

3.1.1. Lifted Cover Inequalities Lifting techniques have been used to develop valid inequal-

ities for the binary linear knapsack problem (see, for example Zemel (1989), Gu et al. (1998, 2000)).

We now show its applicability to the binary bilinear knapsack set Fjω. Let us first consider a 0-1

knapsack constraint
∑
i∈I

ξωi yij ≤mω
j (ω).

Let

Qjω =

{
yj ∈ {0,1}|I|

∣∣∣∑
i∈I

ξωi yij ≤mω
j (ω)

}
.

Note that the set Qjω is obtained from Fjω for zωj = 1. If
∑
i∈C

ξωi >mω
j (ω), the set C ⊆ I is called a

cover. The cover C is minimal if no subset of C is a cover. It is straightforward to see that the cover

inequality
∑
i∈C

yij ≤ |C|− 1 is valid for conv(Qjω). A stronger cover inequality is obtained when the

cover is minimal. In this paper, let C be a minimal cover. The cover inequality is obtained from a

restricted set of variables. The coefficients for the remaining variables, as given in∑
i∈C

yij +
∑
i∈I\C

αiyij ≤ |C|− 1, (9)

are obtained from a lifting procedure, where the lifting coefficient αi is computed sequentially

(Zemel 1989). Let π = {π1, . . . , π|I\C|} be a sequence of set I\C. For k = 1, . . . , |I\C|, the lifting

problem is as follows:

objπk := maximize
yj

∑
i∈C

yij +

πk−1∑
i=π1

αiyij

subject to
∑
i∈C

ξωi yij +

πk−1∑
i=π1

ξωi yij ≤mω
j (ω)− ξωπk ,

yij ∈ {0,1}, i∈ C
⋃
{π1, ..., πk−1}.
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The following result from Padberg (1973) shows that the inequalities (9) are facet-defining for

conv(Qjω).

Lemma 1 (Padberg (1973)). For k= 1, . . . , |I\C|, let απk = |C|−1−objπk . The inequality (9)

is facet-defining for conv(Qjω). �

Facet-defining inequalities for conv(Fjω) can be obtained from the facet-defining inequalities in

Lemma 1.

Proposition 5. The inequality ∑
i∈C

yij + zωj ≤ |C| (10)

is valid for conv(Fjω).

Proof For zωj = 1 and zωj = 0, it is easy to verify that inequality (10) is valid for conv(Fjω). �

Theorem 1. The lifted cover inequality∑
i∈C

yij +
∑
i∈I\C

αiyij + γ(zωj − 1)≤ |C|− 1 (11)

is facet-defining for conv(Fjω), where γ =
∑
i∈I\C

αi + 1.

Proof Let

γ = maximize
yj ,z

ω
j

∑
i∈C

yij +
∑
i∈I\C

αiyij − |C|+ 1

1− zωj
subject to (yj, z

ω
j )∈Fjω, zωj = 0.

 ⇐⇒
γ = maximize

yj

∑
i∈C

yij +
∑
i∈I\C

αiyij − |C|+ 1

subject to yij ∈ {0,1}, ∀i∈ I.

We have γ =
∑
i∈I\C

αi + 1. Hence, (11) is valid for conv(Fjω) when zωj = 0. Because of the validity

of inequality (9), (11) is valid for conv(Fjω) when zωj = 1.

When zωj = 1, there exists n feasible points of variables yj that are affinely independent and

satisfy inequality (11) at equality as the facet-defining inequalities in Lemma 1. Similarly, when

zωj = 0, yj = 1|I|, where 1|I| is a 1×|I| vector of all ones. Thus, the |I|+1 feasible points are affinely

independent and satisfy inequality (11) at equality. Therefore, we conclude that the inequality (11)

is facet-defining for conv(Fjω). �

We can restrict the feasible region of yj using the additional constraints in (CBP) to compute a

better value of the coefficient γ in (11), by considering additional constraint in (1d) using k ∈Ω\{ω}.

Theorem 2. For k ∈Ω\{ω}, let

δk = maximize
yj∈{0,1}|I|

∑
i∈C

yij +
∑
i∈I\C

αiyij − |C|+ 1 (12a)

subject to
∑
i∈I

ξki yij ≤mk
j (k). (12b)
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Sort δk in a nondecreasing order such that δk1
≤ . . .≤ δkN−1

. Let q be defined as in Proposition 1,

then δkq+1
is an upper bound on γ, and (11) is a valid inequality for (CBP) when γ = δkq+1

.

Proof Since y satisfies constraints (1d), the inequality (11) is valid for (CBP) when

γ = maximize
yj ,z

ω
j

∑
i∈C

yij +
∑
i∈I\C

αiyij − |C|+ 1

1− zωj
(13a)

subject to (yj, z
ω
j )∈Fjω, zωj = 0 (13b)

P

{∑
i∈I

ξiyij ≤ tj

}
≥ 1− ε. (13c)

Since zωj = 0, (13) can be rewritten as

γ = maximize
yj∈{0,1}|I|

∑
i∈C

yij +
∑
i∈I\C

αiyij − |C|+ 1 (14a)

subject to
∑

k∈Ω\{ω}

pk1

{∑
i∈I

ξki yij ≤ t

}
≥ 1− ε. (14b)

Let y∗j be an optimal solution of (14). Then, there exists at least one k′ ∈ {k1, . . . , kq+1} such

that
∑
i∈I

ξk
′
i y
∗
ij ≤ tj, otherwise, (14b) is violated by y∗j . Therefore, y∗j is a feasible solution of (12)

for k= k′. We have δkq+1
≥ δk′ ≥ γ, and (11) is a valid inequality for (CBP) when γ = δkq+1

. �

3.1.2. General Lifted Cover Inequality As noted by Gu et al. (1998), a more general form

of the cover inequality in the binary linear knapsack problem is as follows:∑
i∈C\D

yij +
∑
i∈I\C

αiyij +
∑
i∈D

βiyij ≤ |C\D|+
∑
i∈D

βi− 1, (15)

where set D⊆ C. Computing the coefficients α and β is called up-lifting and down-lifting, respec-

tively. When D = ∅, inequality (15) is same as the inequality (9). Gu et al. (1998) argued that

inequality (15) resulted in a more effective branch-and-cut algorithm.

The following sequence of problems are solved to obtain the down-lifting coefficients. Let κ=

{κ1, ..., κ|D|} be a sequence in the set D. For k= 1, · · · , |D|, let

objκk = maximize
yj∈{0,1}|I|

∑
i∈C\D

yij +
∑
i∈I\C

αiyij +

κk−1∑
i=κ1

βiyij

subject to
∑
i∈I

ξωi yij ≤mω
j (ω),

yκkj = 0, yij = 1, i∈ {κk+1, ..., κ|D|}.

Lemma 2 (Gu et al. (1998)). For k = 1, . . . , |D|, let βκk = objκk −
∑κk−1

i=κ1
βi − |C\D|+ 1. The

inequality (15) is facet-defining for conv(Qjω). �
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Next, we consider the general lifted cover inequality for conv(Fjω).

Theorem 3. The general lifted cover inequality∑
i∈C\D

yij +
∑
i∈I\C

αiyij +
∑
i∈D

βiyij + γ(zωj − 1)≤ |C\D|+
∑
i∈D

βi− 1 (16)

is facet-defining for conv(Fjω), where γ =
∑
i∈I\C

αi + 1.

Proof The proof is similar to that for Theorem 1 in Section 3.1.1. It is given in Appendix

C.4. �

By applying the coefficient strengthening procedure to the coefficient γ we have the following

result.

Theorem 4. For k ∈Ω\{ω}, let

δ1
k = maximize

yj∈{0,1}|I|

∑
i∈C\D

yij +
∑
i∈I\C

αiyij +
∑
i∈D

βiyij − |C\D|−
∑
i∈D

βi + 1

subject to
∑
i∈I

ξki yij ≤mk
j (k).

Sort δ1
k in a nondecreasing order such that δ1

k1
≤ . . .≤ δ1

kN−1
. Let q be defined as in Proposition 1,

then δ1
kq+1

is an upper bound on γ, and the inequality (16) is valid for (CBP) when γ = δ1
kq+1

.

Proof The proof is similar to the proof of Theorem 2 in Section 3.1.1. It is given in Appendix

C.5. �

Given a linear programming relaxation solution, the separation problem is to find a valid inequal-

ity that is violated by this solution. We use a heuristic procedure similar to the one in Gu et al.

(1998) and Kaparis and Letchford (2008) for the binary bilinear knapsack problem. This heuristic

is given in Algorithm 1.

The separation heuristic needs to compute up-lifting and down-lifting coefficients αi, βi, ∀i∈ I,

and γ. Several previous papers have given methods for lifting coefficients’ computation. Balas (1975)

showed that one can compute the upper and lower bound of the lifting coefficients in linear time.

Zemel (1989) proposed a dynamic programming algorithm for calculating the lifting coefficients

exactly. Gu et al. (2000) used valid superadditive lifting functions to get lower and upper bounds

for the lifting coefficients. In our computational experiments, we used dynamic programming to

calculate the coefficients.

3.1.3. 2-Clique Inequalities If ξωi + ξωk >mω
j (ω) for all i, k ∈ K and i 6= k, the set K ⊆ I is

called a 2-clique. A clique is called maximal if it is not a proper subset of any other cliques. Let K
be maximal clique. For each maximal 2-clique set K, the following inequality is valid for conv(Qjω)∑

i∈K

yij ≤ 1. (17)
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Algorithm 1: General Lifted Cover Inequality Separation Heuristic

1 Given the current relaxation optimal solution (x∗,y∗,z∗), Let I0 = {i∈ I : y∗ij = 0}.

2 Sort y∗j in non-increasing order such that y∗i1j ≥ ...≥ y
∗
i|I|j

, let S = {i1, ..., i|I|}.

3 for ω= 1, . . . ,N do

4 if zω∗j = 1 then

5 Insert an item from the head of S, until obtain a cover C.

6 Delete elements from the cover to get a minimal cover C.

7 Let set D= {i∈ C : y∗ij = 1}.

8 Calculate up-lifting coefficient αi for i∈ I\{C
⋃
I0}.

9 if
∑

i∈C\D
y∗ij +

∑
i∈I\{C

⋃
I0}
αiy

∗
ij > |C\D|− 1 then

10 Calculate down-lifting coefficient βi for i∈D.

11 Calculate up-lifting coefficient αi for i∈ I0\C.

12 For k ∈Ω\{ω}, calculate δ1
k.

13 Let γ = δ1
kq+1

.

14 Obtain the violated general lifted cover inequality (16).

15 end

16 end

17 end

To obtain valid inequalities for conv(Fjω), we use (17) as a seed and calculate the lifting coefficient

for the variable zωj .

Theorem 5. Let K be a maximal clique for Fjω. Then the following inequality is facet-defining

for conv(Fjω): ∑
i∈K

yij +µ(zωj − 1)≤ 1, (18)

where µ= |K|− 1.

Proof The lifting coefficient µ is given by

µ= maximize
yj ,z

ω
j

∑
i∈K

yij − 1

1− zωj
(19a)

subject to (yj, z
ω
j )∈Fjω, zωj = 0. (19b)

It is easy to verify that the optimal solution y∗ij = 1, ∀i∈K. Therefore, the best lifting coefficient is

µ= |K|−1. Consider the points zωj = 0, yj = 1|I|; for zωj = 1, |K| feasible point: i∈K, yij = 1, ykj = 0,
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∀k ∈ I\i; and |I\K| feasible point: i ∈ I\K, yij = 1, ∃l ∈K such that ζωi + ζωl ≤mω
j (ω), let ylj = 1,

ykj = 0, ∀k ∈ I\{l ∪ i}. It is easy to verify that these |I|+ 1 points are affinely independent and

satisfy inequality (18) at equality. Therefore, inequality (18) is facet-defining for conv(Fjω). �

We can use constraints (1d) to restrict the feasible region of yj in (19). This yields a strengthened

lifted coefficient µ. Instead of solving a chance-constrained problem, the following proposition gives

an upper bound on µ.

Theorem 6. For k ∈Ω\{ω}, let

λk = maximize
yj∈{0,1}|I|

∑
i∈K

yij − 1

subject to
∑
i∈I

ξki yij ≤mk
j (k),

Sort λk in a nondecreasing order such that λk1
≤ . . .≤ λkN−1

. Let q be defined as in Proposition 1,

then λkq+1
is an upper bound on µ, and (18) is valid for (CBP) when µ= λkq+1

.

Proof The proof is similar to that of Theorem 2 in Section 3.1.1. It is given in Appendix C.6. �

We use the heuristic given in Algorithm 2, similar to the one in Nemhauser and Sigismondi

(1992), to solve the separation problem for obtaining the clique inequalities.

Algorithm 2: 2-Clique Inequalities Separation Heuristic

1 Given the current relaxation optimal solution (x∗,y∗,z∗).

2 Sort y∗ in non-increasing order such that y∗i1j ≥ ...≥ y
∗
i|I|j

, let S = {i1, ..., i|I|}.

3 for ω= 1, . . . ,N do

4 if zω∗j = 1 then

5 Insert an item from the head of S to obtain a clique set K.

6 if
∑
i∈K

y∗ij > 1 then

7 Calculate λk, for k ∈Ω\{ω}.

8 Let µ= λkq+1
.

9 Obtain the 2-clique inequality (18).

10 end

11 end

12 end
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3.2. Projection Inequalities

We now reformulate (BIP) as MILP using additional binary variable uωij, for i ∈ I, j ∈ J , ω ∈ Ω.

Let uωj = (uω1j, . . . , u
ω
|I|j)

> and u= {u1
11, . . . , u

N
|I||J |}. We derive valid inequalities for (CBP) based

on this formulation. The basic idea of deriving the inequalities is from Benders feasibility cuts. The

following proposition gives a MILP formulation for (CBP). A proof can be found in Appendix C.7.

Proposition 6. Let (x∗,y∗,z∗) be an optimal solution of (BIP). Then, there exists u∗ such

that (x∗,y∗,z∗,u∗) is an optimal solution of

minimize
x,y,z,u

∑
j∈J

cajxj +
∑
i∈I

∑
j∈J

cbijyij (20a)

subject to (1b), (1c), (1e), (2b), (6b)∑
i∈I

ξωi u
ω
ij ≤mω

j (ω)zωj , ∀j ∈J , ω ∈Ω, (20b)

uωij ≤ yij, uωij ≤ zωj , ∀i∈ I, j ∈J , ω ∈Ω, (20c)

yij + zωj −uωij ≤ 1, uωij ≥ 0, ∀i∈ I, j ∈J , ω ∈Ω. (20d)

Conversely, if (x∗,y∗,z∗,u∗) is an optimal solution of (20), then (x∗,y∗,z∗) is an optimal solution

of (BIP). �

We now describe an approach for generating valid inequalities from the formulation given in

(20). For j ∈J , and ω ∈Ω, let us consider the subproblem with variable uωj as follows:

minimize
uωj ≥0

0 (21a)

subject to
∑
i∈I

ξωi u
ω
ij ≤mω

j (ω)zωj , (21b)

uωij ≤ yij, uωij ≤ zωj , ∀i∈ I, (21c)

yij + zωj −uωij ≤ 1, ∀i∈ I. (21d)

Given (ŷ, ẑ) ∈ XRIP , if (ŷ, ẑ) violates constraints (8b), it is possible to identify a supporting

hyperplane at (ŷ, ẑ) by solving the dual of (21):

maximize
µ1,µ2,µ3,µ4

−mω
j (ω)ẑωj µ

1−
∑
i∈I

ŷijµ
2
i − ẑωj

∑
i∈I

µ3
i +
∑
i∈I

(ŷij + ẑωj − 1)µ4
i (22a)

subject to ξωi µ
1 +µ2

i +µ3
i −µ4

i ≥ 0, ∀i∈ I, (22b)

where µ1, µ2, µ3, and µ4 are dual variables for constraints (21b)-(21d), respectively.

Theorem 7. The projection inequality∑
i∈I

(µ̂4
i − µ̂2

i )yij + (
∑
i∈I

µ̂4
i −
∑
i∈I

µ̂3
i −mω

j (ω)µ̂1)zωj ≤
∑
i∈I

µ̂4
i , (23)

where µ̂1, µ̂2, µ̂3, and µ̂4 is an extreme ray of (22), is valid for (CBP).
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Proof Given (ŷ, ẑ)∈XRIP , strong duality implies that problem (22) is unbounded when (ŷ, ẑ)

violates constraints (21). Therefore, we have∑
i∈I

(µ̂4
i − µ̂2

i )ŷij + (
∑
i∈I

µ̂4
i −
∑
i∈I

µ̂3
i −mω

j (ω)µ̂1)ẑωj −
∑
i∈I

µ̂4
i > 0.

Hence, the theorem follows. �

Note that the inequalities in (23) are obtained by considering the dual problem (22) for each

j ∈ J , and ω ∈Ω. It is possible to combine multiple j and ω (possible all) in generating Benders-

type inequalities. It can be achieved by considering the following problem:

minimize
u

0 (24)

subject to (20b)− (20d).

Let v1, v2, v3, and v4 are dual variables of constraints (20b)-(20d), respectively.

Theorem 8. The combined projection cut is given by:∑
i∈I

∑
j∈J

∑
ω∈Ω

(v̂4
ijω − v̂2

ijω)yij +
∑
j∈J

∑
ω∈Ω

(
∑
i∈I

v̂4
ijω −

∑
i∈I

v̂3
ijω −mω

j (ω)v̂1
jω)zωj ≤

∑
i∈I

∑
j∈J

∑
ω∈Ω

v̂4
ijω, (25)

where v̂1, v̂2, v̂3, and v̂4 is an extreme ray of the dual of (24).

Proof The proof is similar to the proof of Theorem 7. �

4. Branch-and-Cut Solution Scheme

We illustrate the use of valid inequalities presented in the previous sections within a branch-and-

cut framework. We make use of Algorithm 3 to solve the strengthened big-M reformulation (IP)

of (CBP), and show the use of cover, clique, and projection inequalities in the branch-and-cut

method. Let LB and UB denote the current lower and upper bound of (CBP), and N denote the

set of remaining nodes in the branch-and-cut search tree. Algorithm 3 provides an outline of the

branch-and-cut framework.

At each node we solve a relaxation problem to obtain an optimal solution (x∗,y∗,z∗) and objec-

tive value obj∗. If (x∗,y∗,z∗) is fractional, we solve the corresponding problems to find violated

inequalities. If valid inequalities are found, we add the violated inequalities to the LP relaxation

problems. Otherwise, we continue branching. If (x∗,y∗,z∗) is integral, we update the upper bound,

if possible.

In addition to adding the valid inequalities, efficiently exploring the branch-and-cut tree is also

an important consideration in solving our problem. Next, we present a strategy that has helped in

significantly reducing the size of the branch-and-cut tree. Specifically, we solve integer programs

to obtain an improved lower bound for the optimal objective value.
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Algorithm 3: Branch-and-Cut Implementation

1 Initialize UB = +∞, LB =−∞ and N = ∅.

2 Initialize Nodelist N = {o}, where o is a branching node without constraints.

3 while (N is nonempty) do

4 Select a node o∈N .

5 Update, N ←N/{o}.

6 Optimize the LP relaxation problem of (IP) at the node o.

7 if the generated an optimal solution (x∗,y∗,z∗) with objective obj∗ <UB then

8 if (x∗,y∗,z∗) is fractional then

9 if the violated inequalities (16), (18) or (23) are found then

10 Add the violated inequalities to LP relaxation problem.

11 Go back to line 6.

12 end

13 else

14 Branch, resulting in nodes o∗ and o∗∗.

15 N ←N ∪{o∗, o∗∗}.

16 end

17 end

18 else

19 Update UB, UB = obj∗.

20 end

21 end

22 end

23 return UB and its corresponding optimal solution (x∗,y∗,z∗).

4.1. Calculating the Lower Bound

A standard method to compute a lower bound for (CBP) is to relax all the integer variables and

solve the relaxation LP problem. Note that in our model variables x, y, and z are binary. Let v∗

be the optimal value of (CBP). We first solve the relaxation of (IP) referred as (RIPz) in which

only the integrality restriction on variables z is relaxed. We obtain the optimal objective value

v∗r and a solution (x∗r,y
∗
r ) of this problem. In our experiments, we observe that the lower bound

generated in this way is generally such that v∗r < v∗. To improve the lower bound, we further

solve (IP) with the given objective value v∗r . If the problem is feasible, the lower bound v∗r is the

optimal value of (CBP), and we have an optimal solution. Otherwise, we update the lower bound
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by letting the lower bound be equal to v∗r + δ, where δ is an appropriate value. Since x and y are

binary, when caj and cbij are integer valued, all possible values of cajxj + cbijyij are integer. Then v1 =

min{
∑
j∈J

cajxj +
∑

i∈I,j∈J
cbijyij :

∑
j∈J

cajxj +
∑

i∈I,j∈J
cbijyij > v

∗
r ,x∈ {0,1}|J |,y ∈ {0,1}|I|×|J |} provides an

improved lower bound, and we can choose δ = v1− v∗r . The approach is effective, specially for the

problem that minimizes the number of bins to pack items in (CBP). In this special case δ= 1. We

now continue to solve the feasibility problem, with this improved lower bound. Algorithm 4 provides

formal description of this lower bound improvement heuristic for the problem that minimizes the

number of bins. A finite number (K) of updates to the lower bound are performed, when possible.

Algorithm 4: The Lower Bound Improvement Heuristic

1 Initialize: Let lower bound of (CBP) LB =−∞.

2 Initialize: Let κ= 1, and K, T represent the iteration and time limit respectively.

3 Optimize the relaxation problem (RIPz) with the time limit T .

4 Obtain the optimal number of opening bins nκ∗r , and corresponding lower bound LB.

5 while (κ≤K) do

6 Fix the variable x in (CBP) with nκ∗r .

7 if nκ∗r is the optimal number of opening bins of (CBP) then

8 Obtain an optimal solution of (CBP), and go to line 14.

9 end

10 else

11 Update nκ∗r = nκ∗r + 1, and the lower bound LB. κ= κ+ 1.

12 end

13 end

14 return LB and the optimal solution of (CBP) if exists.

5. Computational Experiments

In this section, we test our approach on an operating room (OR) scheduling problem. The problem

assigns a set I of surgeries with random duration ζi, ∀i∈ I, to a set J of ORs, so as to minimize

the number of opened ORs. An OR j has time limit tj, ∀j ∈J . The overtime constraints for ORs

are given by chance constraints which ensure that the probability of overtime is no more than a

given parameter ε.
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In what follows, in Section 5.1 we provide implementation details and implementation param-

eters. Section 5.2 discusses the performance of valid inequalities (described in Section 3) and the

lower bound improvement heuristic (described in Section 4.1). A comparison with CVaR approxi-

mation is given in Appendix B.

5.1. Implementation Details

We used real data from a large public hospital in Beijing, China to show the performance of the

proposed algorithm. The collected data set has 5,721 surgical durations for nine major surgery

types from 2015/01 to 2015/10. This data is used to specify the surgery probability distribution

for each surgery type. Table 1 gives the mean, and standard deviation of the surgery duration, and

percentage for each surgery type. In our problem generation, we assume that 18 surgeries (mean

number of surgeries) are performed in a day. We use this number and the percentage of surgeries

of a given type to calculate the number of surgeries for each surgery type performed in a day.

The calculations are rounded to the nearest integer while ensuring that 18 surgeries are performed

each day. As in Spangler et al. (2004), we also observed that a surgery duration is characterized

by a Log-Normal distribution. In the problem generation, we sample a surgery duration from the

Log-Normal distribution with the mean and standard deviation shown in Table 1. We then convert

the surgery durations to the nearest 15 minutes interval, while ensuring that the surgery durations

are never below 15 minutes. We generated five instances for each sample size. A maximum of eight

ORs are available for the surgeries. A time limit of 10 hours is used for each OR, i.e., tj := 10

hours, ∀j ∈ J . Note that for the problem that minimize the number of opened ORs caj := 1, and

cbij := 0, ∀i∈ I, j ∈J .

Table 1 For each surgery type, the mean (mean), standard deviation (std) in hours, and the percentage for

each surgery type (percentage) are reported

surgery type mean (hrs) std (hrs) percentage

Gynaecology 1.1 1.3 0.29

Galactophore 1.6 1.0 0.15

Lymphatic 3.2 1.1 0.14

Ear 2.8 1.7 0.13

Urology 2.3 1.7 0.07

Vascular 2.6 1.5 0.07

Obstetrics 1.5 0.5 0.06

Joint 2.8 1.3 0.06

Orthopeadic 3.2 1.8 0.03
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In our implementation of the valid inequality finding procedure (described in Section 3), we add

the identified valid inequalities that are violated by the current solution by a minimum violation

threshold. The inequalities (18) and (23) are added if they have violation at least 10−4, and (16) is

added if it has a relative violation of at least 0.3, defined as the absolute violation of the cut divided

by |C\D|. The valid inequalities in Section 3 are generated repeatedly until one of the following

stopping criteria is met: no cut is available with the violation threshold, or the improvement on the

objective value of LP relaxation is less than 0.2 at the node of the branch-and-cut tree. We add

the violated inequalities (23) and (18) only at the root node of the branch-and-bound tree when

the gap is no more than 1, where the gap is given by UB−LB. At each round of cut (23) and (18)

generation, for each j ∈J , we only use one pair of (j,ω), ∀ω ∈Ω such that the corresponding valid

inequality is the most violated inequality. We add the valid inequalities (16) at all the nodes that

are at a depth less than 3. We keep only the efficient cuts, which are identified by optimization

solver, in the branch-and-cut tree at the end of this procedure.

All experiments are coded in the programming language C using the callable libraries of IBM

CPLEX, version 12.71. A laptop with Intel(R) 2.80 GHz processor and 16 GB RAM is used for

computation on a 64-bit computer using Windows operating system. Only one thread is used for all

computations. We turned off CPLEX presolve procedure when implementing the branch-and-cut

algorithm because we needed to use CPLEX callback function to work on the original problem in

our testing. A proper node selection strategy is used in the branch-and-cut algorithm: let x have the

highest priority and z have the lowest priority. Thus, during branching, x is given preference over y,

and y is preferred over z. For all instances, we use the runtime limit of 10 hours. For instances that

could not be solved to optimality, we give the number of ORs opened in the sub-optimal solution

and the optimal number of ORs when it is known from the computations performed in a different

algorithm. We report the solution time (in seconds) for the instances solved to optimality within

the runtime limit.

5.2. Discussion on the Algorithmic Performance

In Section 5.2.1, we presents the performance of different variants of the lower bound improvement

heuristic (Algorithm 4) for (CBP). The performance of the branch-and-cut algorithm (Algorithm 3)

with the proposed lower bound improvement heuristic and valid inequalities is discussed in Section

5.2.2. A comparison with a generalization of the probabilistic cover approach for our problem is

given in Section 5.2.3.

5.2.1. Performance of Lower Bound Improvement Heuristic for (CBP) We now dis-

cuss our results on the lower bound improvement heuristic presented in Algorithm 4 for (CBP).

The level of chance satisfaction ε ∈ {0.05,0.1,0.15} and N ∈ {100,500,1000} are used in problem
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generation. Valid inequalities were not added when performing computations for results discussed

in this section. We compare the following three different variants to illustrate the performance of

the lower bound improvement heuristic. Note that all the variants used the strengthened big-M

reformulation (IP) of (CBP).

• CPX: refers to using branch-and-cut algorithm without an initial lower bound for (CBP).

• LBH0: refers to using the optimal objective value of (RIPz), i.e., K = 0 in Algorithm 4, as an

initial lower bound of the branch-and-cut algorithm for (CBP).

• LBH1: refers to using Algorithm 4 with K = 1 as an initial lower bound of branch-and-cut

algorithm for (CBP).

Table 2 presents the solution details, including the average time for the lower bounding heuristic

and the branch-and-cut algorithm, the average total time spent to solve (CBP), the average number

of nodes for the branch-and-cut algorithm and the number of opened ORs, the number of solved

instances from the five instances, and the proportion of instances where the lower bound is equal to

the optimal objective value. We found that using Algorithm 4 with K = 2 for computing an initial

lower bound for the branch-and-cut algorithm for (CBP) (LBH2) and LBH1 have comparable

performance for most of the instances. Thus, the results of LBH2 are not presented in Table 2. The

time required for the strengthened big-M computation in the reformulation is typically less than 4

seconds, and therefore not included in the table.

From Table 2 we observe that when solving (CBP), initialization of the lower bound using

Algorithm 4 significantly outperforms the one without an initial lower bound computation for most

of the instances. For ε = 0.1, the lower bound obtained using Algorithm 4 with K = 1 gives the

optimal objective value for almost all the instances, indicating that for K = 1 provides a lower

bound with reasonably good quality. However, it does increase the average time of calculating

the lower bound by almost a factor of 10. Recall that one more binary program is being solved.

However, LBH1 is still more effective than LBH0 in terms of the average total time spent to solve

(CBP). In particular, LBH0 reduces this time by an average of more than 7%, LBH1 further reduce

the time by 68%. For harder instances (N = 1000), LBH1 solves all the five instances within 1

hour. The improvement can be explained by the fact that the extra restriction on x reduces the

feasible region, and consequently decreases the number of nodes explored to prove optimality. For

ε= 0.05 and 0.15, we see from Table 2 that the average lower bound time taken by LBH1 increases

significantly. This yields a comparable performance with LBH0 in terms of the total solution time

and the proportion of instances that are solved to optimality.

5.2.2. Performance of Lower Bound Improvement Heuristic and Valid inequalities

In this section, we discuss the usefulness of adding inequalities, while also using the lower bound
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Table 2 The average CPU time (seconds) for the lower bounding heuristic (LBH-AvT) and the branch-and-cut

(B&C-AvT), the average total time (seconds) spent to solve (CBP) (AvT), the average number of nodes for the

branch-and-cut algorithm (# of nodes), the number of opened ORs (# of ORs) and the number of solved

instances from the five instances (solved), the proportion that the lower bound is equal to optimal objective value

(∆).

ε N approach LBH-AvT B&C-AvT AvT # of nodes # of ORs solved ∆

0.05

100

CPX 0.0 372.4 372.4 67,454 [6, 6, 6, 6, 6] 5/5 0

LBH0 2.1 152.0 154.1 24,503 [6, 6, 6, 6, 6] 5/5 0

LBH1 84.9 0.7 85.6 364 [6, 6, 6, 6, 6] 5/5 1

500

CPX 0.0 5,287.0 5,287.0 43,503 [6, 6, 6, 6, 6] 5/5 0

LBH0 30.5 3,156.3 3,186.8 26,919 [6, 6, 6, 6, 6] 5/5 0

LBH1 3,183.8 1.7 3,185.5 140 [6, 6, 6, 6, 6] 5/5 1

1000

CPX 0.0 19,900.6 19,900.6 70,726 [6, (5,6), 6, 6, 6] 4/5 0

LBH0 71.3 8,824.3 8,895.7 20,042 [6, 6, 6, 6, 6] 5/5 0

LBH1 7,062.0 10.1 7,072.1 78 [6, 6, 6, 6, 6] 5/5 1

0.1

100

CPX 0.0 1,744.5 1,744.5 547,776 [6, 5, 5, 5, 5] 5/5 0

LBH0 1.2 1,499.0 1,500.2 433,573 [6, 5, 5, 5, 5] 5/5 0

LBH1 5.7 523.3 528.9 116,292 [6, 5, 5, 5, 5] 5/5 0.8

500

CPX 0.0 2,182.0 2,182.0 26,392 [5, 5, 5, 5, 5] 5/5 0

LBH0 14.3 1,581.7 1,596.0 22,962 [5, 5, 5, 5, 5] 5/5 0

LBH1 142.1 479.0 621.2 11,163 [5, 5, 5, 5, 5] 5/5 1

1000

CPX 0.0 13,101.2 13,101.2 59,711 [5, (6,4), 5, 5, 5] 4/5 0

LBH0 33.5 15,498.7 15,533.1 89,513 [(6,4), 5, 5, 5, 5] 4/5 0

LBH1 474.9 1,401.8 1,876.6 9,876 [5, 5, 5, 5, 5] 5/5 1

0.15

100

CPX 0.0 154.5 154.5 13,232 [5, 5, 5, 5, 5] 5/5 0

LBH0 0.9 120.9 121.8 8,077 [5, 5, 5, 5, 5] 5/5 0

LBH1 87.6 0.4 88.0 103 [5, 5, 5, 5, 5] 5/5 1

500

CPX 0.0 1,460.0 1,460.0 6,993 [5, 5, 5, 5, 5] 5/5 0

LBH0 14.3 1,282.9 1,297.2 6,345 [5, 5, 5, 5, 5] 5/5 0

LBH1 1,441.0 3.8 1,444.8 78 [5, 5, 5, 5, 5] 5/5 1

1000

CPX 0.0 5,353.2 5,353.2 7,511 [5, 5, 5, 5, 5] 5/5 0

LBH0 25.2 4,983.4 4,948.6 6,669 [5, 5, 5, 5, 5] 5/5 0

LBH1 5,126.4 10.4 5,139.7 64 [5, 5, 5, 5, 5] 5/5 1

improvement heuristic. We use Algorithm 4 with K = 1 (LBH1) to obtain an initial lower bound

for the branch-and-cut algorithm. We consider the sample size N ∈ {100,500,1000}. Since for the

level of chance satisfaction ε= 0.05,0.15, the average time for the branch-and-cut algorithm is less
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than 11 seconds after completing LBH1, we only consider problems with ε = 0.1 in this section.

We consider the following five variants:

• Cover: refers to adding the general lifted cover inequalities (16) to LBH1.

• C&C: refers to adding the general lifted cover inequalities (16) and 2-clique inequalities (18)

to LBH1.

• Proj: refers to adding the projection inequalities (23) to LBH1.

• P&C: refers to adding the projection inequalities (23) and 2-clique inequalities (18) to LBH1.

• B&C: refers to adding the projection inequalities (23), lifted cover (16) and 2-clique inequalities

(18) to LBH1.

For C&C, we only added the violated clique inequalities when we could not find any lifted cover

inequality at the root node. For P&C, we only added the violated clique inequalities when we could

not find any projection inequality at the root node. For B&C, we added the 2-clique inequalities (18)

when we could not find any the projection inequality (23), and added the lifted cover when there is

no violated inequality (23) and (18). We could not find a setting for the mixing set inequalities (7)

that improved the performance. For several harder instances (N = 500,1000), the use of mixing set

inequalities resulted in a worse performance. This might be due to the default search mechanism in

CPLEX. However, it is unclear of a modification to this search mechanism will provide improved

result. Table 3 reports the average total time spent to solve (CBP), the average number of nodes

for the branch-and-cut algorithm, the number of opened ORs, the number of solved instances from

the five generated instances, and the average number of cuts for (CBP).

The results in Tables 2 and 3 show that adding the general lifted cover and projection inequalities

provide significant improvements in the solution time and the number of processed nodes for the

harder instances (N = {500,1000}). For problems with N = 1000 scenarios, the average solution

time is decreased by more than 40% on average by using the inequalities. However, for the instances

(N = 100) the improvement from adding the projection inequalities is modest. Moreover, adding the

lifted cover and 2-clique inequalities performs better than the version that only uses the lifted cover

inequalities except for the 100 scenario instances. In Table 3, we also observe that for the harder

instances (N = {500,1000}) adding the projection inequalities and clique inequalities performs

comparably to the version that uses the cover and clique inequalities.

5.2.3. Comparison with the Probability Cover Approach The results in this section

are for the harder problems that are generated for ε= 0.1 and N ∈ {500,1000}. We compare the

performance of the following approaches:

• B&C: is described in Section 5.2.2.

• BPC: is the probability cover approach from Song et al. (2014) adapted for the (CBP) problem.

The implementation details are presented in Appendix D.
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Table 3 The average total time (seconds) spent to solve (CBP) (AvT), the average number of nodes for the

branch-and-cut algorithm (# of nodes), the number of opened ORs (# of ORs), the number of solved instances

from the five instances (solved), and the average number of cuts (# of cuts) for (CBP) are reported, the valid

inequalities are added only at the root nodes, and K = 1 in Algorithm 4 is used for these computations

N approach AvT # of nodes # of ORs solved # of cuts

100

Cover 251.5 62,737 [6, 5, 5, 5, 5] 5/5 10

C&C 252.8 63,076 [6, 5, 5, 5, 5] 5/5 23

Proj 514.0 115,418 [6, 5, 5, 5, 5] 5/5 11

P&C 514.0 115,418 [6, 5, 5, 5, 5] 5/5 11

B&C 251.4 65,789 [6, 5, 5, 5, 5] 5/5 17

500

Cover 410.9 5,166 [5, 5, 5, 5, 5] 5/5 14

C&C 244.2 2,740 [5, 5, 5, 5, 5] 5/5 22

Proj 250.5 1,789 [5, 5, 5, 5, 5] 5/5 8

P&C 250.5 1,789 [5, 5, 5, 5, 5] 5/5 8

B&C 250.5 1,789 [5, 5, 5, 5, 5] 5/5 8

1000

Cover 1,073.3 3,876 [5, 5, 5, 5, 5] 5/5 11

C&C 1,028.9 3,536 [5, 5, 5, 5, 5] 5/5 13

Proj 1,130.4 5,122 [5, 5, 5, 5, 5] 5/5 5

P&C 1,011.6 4,483 [5, 5, 5, 5, 5] 5/5 8

B&C 818.6 2,134 [5, 5, 5, 5, 5] 5/5 9

In order to compare the proposed methods, for each setting, ten instances are considered. These

are labeled as N −#, where # denotes the instance number. Table 4 reports the total time spent

to solve (CBP), the number of nodes, the number of cuts and ORs for these approaches.

The results in Table 4 indicate that BPC is also able to solve the large-scale instances but it

takes longer than our implementation of B&C, especially for the instances with N = 500. The

solution time saved by B&C is up to 90%, and the search tree size is reduced by over 99%. On

average, solution times for 500 scenario models is reduced by a factor of approximately 5, and for

1000 scenario models it is reduced by a factor of approximately 1.5. Song et al. (2014) also added

a type of projection cut to improve the performance of the BPC algorithm for the single chance

constraint model. In our computations the projection cuts introduced by Song et al. (2014) did

not benefit the multiple chance constraints setting of the (CBP) problem.

6. Concluding Remarks

This paper investigated the chance-constrained bin packing problem. We formulated the model as

a 0-1 bilinear program and developed three classes of valid inequalities from the bilinear formula-

tion. Computational results showed that the three valid inequalities combined with a lower bound
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Table 4 Algorithmic 3 comparison with four exact approaches, where we report the total time spent to solve

(CBP) (time) in seconds, the number of nodes ( nodes), and the number of cuts (cuts) for each instance

instance
time # of nodes # of cuts # of ORs

B&C BPC B&C BPC B&C BPC B&C BPC

500-1 98.4 1,028.4 218 869,176 2 6,538 5 5

500-2 227.7 894.4 580 811,260 0 5,568 5 5

500-3 110.8 1,008.2 218 869,176 2 6,538 5 5

500-4 613.8 1,158.2 7,658 1,501,493 2 4,853 5 5

500-5 201.6 635.9 270 855,766 2 4,826 5 5

500-6 103.3 1,411.4 1,547 1,599,748 0 4,848 5 5

500-7 226.3 2,340.0 3,054 1,594,015 2 7,831 5 5

500-8 250.2 1,579.7 420 1,950,550 1 5,166 5 5

500-9 599.9 1,132.9 7,658 1,501,493 2 4,853 5 5

500-10 223.9 2,595.0 1,567 1,484,011 5 8,923 5 5

Average 265.6 1,378.4 2,319 1,303,669 2 5,994 5 5

1000-1 598.4 762.7 1,020 958,747 0 4,929 5 5

1000-2 882.0 1,701.9 2,584 1,068,529 2 8,054 5 5

1000-3 396.0 1,593.2 810 1,220,706 3 6,807 5 5

1000-4 668.0 1,733.0 1,070 1,571,896 3 5,969 5 5

1000-5 1,548.7 1,110.3 5,186 819,237 1 7,068 5 5

1000-6 1,014.9 1,567.5 1,999 1,482,643 1 5,812 5 5

1000-7 931.8 1,103.1 3,306 1,730,061 4 4,623 5 5

1000-8 998.3 1,485.5 1,825 1,255,048 2 5,933 5 5

1000-9 1,386.7 1,474.7 2,619 1,554,822 7 5,480 5 5

1000-10 926.4 1,246.2 1,617 1,178,122 4 5,949 5 5

Average 935.1 1,377.8 2,204 1,283,981 3 6,062 5 5

computation heuristic allow us to solve models with up to 1,000 scenarios for the chance constraints

specified at 0.95, 0.90 and 0.85 satisfaction of the bins needing to pack items with random sizes.

The data for our computational tests was generated based on a real data set for a hospital operat-

ing room surgery assignment problem. We also observed that the CVaR approximation for the test

problems was generally not tight. Our attempt to solve larger problems (e.g., with 1,500 scenarios)

met with partial success. Specifically, for these problem B&C and BPC discussed in Section 5.2.3

could solve only 1 out of the 5 problem instances with a 10 hour CPU time limit. It is unclear if

the generalization of the probabilistic cover approach Song et al. (2014) can be combined with the

approach developed in the current paper. It remains a topic of future research.
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Ruszczyński, A., 2002. Probabilistic programming with discrete distributions and precedence constrained

knapsack polyhedra. Mathematical Programming 93 (2), 195–215.

Shylo, O. V., Prokopyev, O. A., Schaefer, A. J., 2012. Stochastic operating room scheduling for high-volume

specialties under block booking. INFORMS Journal on Computing 25 (4), 682–692.

Song, G., Kowalczyk, D., Leus, R., 2018. The robust machine availability problem–bin packing under uncer-

tainty. IISE Transactions 50 (11), 997–1012.
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Appendix A: CVaR Approximation

In this section, we briefly review the CVaR approximation. We first consider the case where ξ is a N -

dimensional continuous random vector. Note that p(y) := P
{∑
i∈I

ξiyij > tj

}
= E

[
1(0,+∞)(

∑
i∈I

ξiyij − tj)
]
.

Because 1(0,+∞)(·) is a step function, let φ(·) be a convex approximation of 1(0,+∞)(·) such that φ(·) ≥

1(0,+∞)(·). Clearly, a φ(·) with smaller value gives a better approximation of 1(0,+∞)(·). CVaR approximation

uses φ(x, τ) = 1
τ

[τ +x]
+

to approximate 1(0,+∞)(x), where [·]+ = max{0, ·}. The CVaR approximation of the

chance constraint is given as:

inf
τ>0

E

1

τ

[
τ +

∑
i∈I

ξiyij − tj

]+
≤ ε

⇔CVaRε

{∑
i∈I

ξiyij − tj

}
= inf
η∈R

η+
1

ε
E

[∑
i∈I

ξiyij − tj − η

]+
≤ 0.

When ξ is N -dimensional discrete random vector, according to Ahmed and Xie (2018), the CVaR approxi-

mation is also valid.

Proposition 7. The CVaR approximation of (CBP) can be reformulated as

(CVaR) minimize
x,y,η,ρ

∑
j∈J

cajxj +
∑
i∈I

∑
j∈J

cbijyij (26a)

subject to (1a), (1b), (1d)

η+
1

ε

∑
ω∈Ω

pωρ
ω
j ≤ 0 ∀j ∈J (26b)

η+ ρωj ≥
∑
i∈I

ξωi yij − tj ∀j ∈J , ω ∈Ω (26c)

ρ≥ 0. (26d)

Proof Let (x,y, η,ρ) be a solution of (CVaR). We now prove that (x,y) is a feasible solution of (CBP).

For all j ∈J , let Ω0
j = {ω ∈Ω :

∑
i∈I

ξωi yij − tj > 0}. If
∑
ω∈Ω0

j

pω ≤ ε holds, it implies (x,y) is a feasible solution

of (CBP). According to constraints (26b) and (26c),

η+
1

ε

∑
ω∈Ω0

j

pω

(∑
i∈I

ξωi yij − tj − η

)
≤ 0.

Let Hj = minω∈Ω0
j
ξωi yij − tj , then we have ∑

ω∈Ω0
j

pω ≤
−εη
Hj − η

≤ ε,

where the second inequality in the above expression is because η ≤ 0. Hence, (x,y) is a feasible solution of

(CBP). �

Appendix B: Approximation Comparison

In this section, we compare the computational results for (CBP) with the CVaR approximation formulation

(26) (denoted by (CVaR)), which is presented in Appendix A. We set the runtime limit to 2 hours. We
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use B&C described in Section 5.2.2 to solve (CBP). We report the average, maximum, minimum time, the

number of opened ORs, the number of solved instances from the five instances for ε= 0.1 in Table 5.

Table 5 The average (AvT), maximum (max), minimum (min) CPU solution time (seconds), the number of

opened ORs (# of ORs) and the number of solved instances from the five generated instances (solved), for the

B&C of (CBP) and CVaR approximation

N model AvT max min # of ORs solved

100
CBP 528.9 2,424.7 5.2 [6, 5, 5, 5, 5] 5/5

CVaR 88.1 221.3 2.5 [7, 6, 6, 6, 7] 5/5

500
CBP 621.2 905.6 220.5 [5, 5, 5, 5, 5] 5/5

CVaR 398.8 600.1 35.1 [6, (6,7), 6, (6,7), 6] 3/5

1000
CBP 1,876.6 4,637.3 595.3 [5, 5, 5, 5, 5] 5/5

CVaR – – – [(6,7), (6,7), (6,7), (6,7), (6,7)] 0/5

“–” means that no instance can be solved to optimality within the runtime limit.

We can see from Table 5 that (CBP) has a better performance than the CVaR approximation formulation

in terms of the number of solved instances. We notice that the CVaR approximation can only solve 3 out

of 5 instances within the runtime limit when N = 500, and cannot solve any instance to optimality when

N = 1000. The CVaR approximation solutions open more ORs. For example, for the 100 scenario instances,

the CVaR approximation opens 6 or 7 ORs, while (CBP) only opens 5 or 6 ORs. Therefore, the CVaR

approximation formulation is more conservative than (CBP).

Appendix C: Proof

C.1. Proof of Proposition 1

Let y∗j be an optimal solution of (3). Then, there exists at least one k′ ∈ {k1, . . . , kq+1} such that
∑
i∈I

ξk
′

i y
∗
ij ≤ tj .

Otherwise, we have
∑
i∈I

ξki y
∗
ij > tj , for k ∈ {k1, . . . , kq+1}. Since

∑q+1
j=1 pkj > ε, the inequality P

{∑
i∈I

ξiy
∗
ij ≤ tj

}
≥

1− ε is violated. This is a contradiction. Therefore, y∗j is a feasible solution of (4) with k = k′. We have

mω
j (kq+1)≥mω

j (k′)≥
∑
i∈I

ξωi y
∗
ij = M̄ω

j . Thus, mω
j (kq+1) is an upper bound for M̄ω

j .

Based on the definition of mω
j (ω), we have

∑
i∈I

ξωi yij ≤mω
j (ω). Let Mω

j =mω
j (kq+1). By replacing tj with

mω
j (ω), constraints (2a) are reformulated as (5). Hence, (CBP) can be formulated as the binary integer

program (6).

C.2. Proof of Proposition 2

In order to prove that the inequality (7) is valid, let (yj , z
ω
j ) be a feasible solution of (CBP), and n∗ =

min
{
n∈ {1, . . . , l} : zτnj = 1

}
. Then we have

∑
i∈I

ξ
τn∗
i yij ≤ tj and zτnj = 0, for n∈ {1, . . . , n∗− 1}. Thus, yj is a

feasible solution of (4) for k= τn∗ , which indicates
∑
i∈I

ξωi yij ≤mω
j (τn∗). Therefore,

∑
i∈I

ξωi yij +
l∑

n=1

(
mω
j (τn+1)−mω

j (τn)
)
zτnj ≤mω

j (τn∗) +

l∑
n=n∗

(
mω
j (τn+1)−mω

j (τn)
)
zτnj
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≤mω
j (τn∗) +

l∑
n=n∗

(
mω
j (τn+1)−mω

j (τn)
)

=mω
j (kq+1).

This completes our proof.

C.3. Proof of Proposition 3

We first prove that (x∗,y∗,z∗) is an optimal solution of (BIP). According to constraints (1d), we have∑
ω∈Ω

pω1

{∑
i∈I

ξωi y
∗
ij ≤ tj

}
≥ 1− ε, where 1{·} is an indicator function, which returns 1 if the expression in

{·} is true. Since 1

{∑
i∈I

ξωi y
∗
ij ≤ tj

}
= zω∗j , zω∗j satisfies constraints (2b) based on the definition of mω

j (ω).

Therefore, zω∗j satisfies constraints (2b) and (8b), proving that (x∗,y∗,z∗) is a feasible solution of (BIP).

On the other hand, suppose that (x̂, ŷ, ẑ) is an optimal solution of (BIP). We now show that (x̂, ŷ)

is a feasible solution of (CBP). When ẑωj = 1, we have
∑
i∈I

ξωi ŷij ≤ mω
j (ω). Hence, constraints (2b) imply

P
{∑
i∈I

ξiŷij ≤ tj
}
≥ 1 − ε. We have that (x̂, ŷ) is also a solution of (CBP). Since (x∗,y∗) is an optimal

solution of (CBP),
∑
j∈J

caj x̂j +
∑
i∈I

∑
j∈J

cbij ŷij ≥
∑
j∈J

cajx
∗
j +
∑
i∈I

∑
j∈J

cbijy
∗
ij . Hence, (x∗,y∗,z∗) is an optimal solution

of (BIP). Conversely, it is easy to verify that if (x∗,y∗,z∗) is an optimal solution of (BIP), then (x∗,y∗) is

an optimal solution of (CBP). Q.E.D.

C.4. Proof of Theorem 3

We first prove that (16) is valid for conv(Fjω). When zωj = 1, (16) is valid for conv(Fjω) due to the valid

of (15). When zωj = 0, since γ = maximize
yj∈{0,1}|I|

∑
i∈C\D

yij +
∑

i∈I\C
αiyij +

∑
i∈D

βiyij − |C\D|−
∑
i∈D

βi + 1 =
∑

i∈I\C
αi + 1,

indicating (16) is also valid for conv(Fjω).

When zωj = 1, there exists n feasible points of variables yj that are affinely independent and satisfy

inequality (16) at equality as the facet defining of (15). Similarly, when zωj = 0, yj = 1|I|, where 1|I| is a

1×|I| vector of all ones. Thus, the |I|+ 1 feasible points are affinely independent and satisfy inequality (11)

at equality. Therefore, we conclude that the inequality (11) is facet-defining for conv(Fjω). �

C.5. Proof of Theorem 4

Let

γ = maximize
yj∈{0,1}|I|

∑
i∈C\D

yij +
∑
i∈I\C

αiyij +
∑
i∈D

βiyij − |C\D|−
∑
i∈D

βi + 1 (27a)

subject to
∑

k∈Ω\{ω}

pk1

{∑
i∈I

ξki yij ≤ t

}
≥ 1− ε. (27b)

Then (16) is valid for conv(Fjω).

Let y∗j be an optimal solution of (27), then, there exists at least one k′ ∈ {k1, . . . , kq+1} ⊆ {Ω\{ω}} such

that
∑
i∈I

ξk
′

i y
∗
ij ≤ tj . Therefore, y∗j is a feasible solution of δ1

k′ . We have δ1
kq+1
≥ δ1

k′ ≥ γ. Hence, (16) is a valid

inequality for (CBP) when γ = δ1
kq+1

. �
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C.6. Proof of Theorem 6

Let

µ= maximize
yj∈{0,1}|I|

∑
i∈K

yij − 1 (28a)

subject to
∑

k∈Ω\{ω}

pk1

{∑
i∈I

ξki yij ≤ t

}
≥ 1− ε. (28b)

Then (18) is valid for conv(Fjω).

It is straightforward to verify that λkq+1
≥ µ. Hence, (18) is a valid inequality for (CBP) when µ= λkq+1

. �

C.7. Proof of Proposition 6

Let u∗ = y∗z∗. For j ∈J , and ω ∈Ω, we have

mω
j (ω)zω∗j ≥

∑
i∈I

ξωi y
∗
ijz

ω∗
j =

∑
i∈I

ξωi u
ω∗
ij .

Since y∗,z∗ are binary variables, constraints (20b)-(20d) hold. Therefore, (x∗,y∗,z∗,u∗) is a solution of (20).

Now suppose (x̂, ŷ, ẑ, û) is an optimal solution of (20). If ẑωj = 0,

mω
j (ω)ẑωj ≥

∑
i∈I

ξωi û
ω
ij =

∑
i∈I

ξωi ŷij ẑ
ω
j .

Otherwise,

mω
j (ω)ẑωj ≥

∑
i∈I

ξωi û
ω
ij =

∑
i∈I

ξωi ŷij =
∑
i∈I

ξωi ŷij ẑ
ω
j .

Hence, (x̂, ŷ, ẑ) is a solution of (BIP), which implies
∑
j∈J

caj x̂j +
∑
i∈I

∑
j∈J

cbij ŷij ≥
∑
j∈J

cajx
∗
j +
∑
i∈I

∑
j∈J

cbijy
∗
ij . There-

fore, (x∗,y∗,z∗,u∗) is an optimal solution of (20). In a similar way, we can prove that if (x∗,y∗,z∗,u∗) is

an optimal solution of (20), then (x∗,y∗,z∗) is an optimal solution of (BIP). The proposition follows. �

Appendix D: Implementation Details for BPC

We formulate (CBP) as a probability cover problem:

(BPC) minimize
x,y

∑
j∈J

cajxj +
∑
i∈I

∑
j∈J

cbijyij (29a)

subject to yij ≤ xj , ∀i∈ I, j ∈J , (29b)∑
j∈J

yij = 1, ∀i∈ I, (29c)

∑
i∈Cj

yij ≤ |Cj | − 1, ∀j ∈J ,Cj ∈P, (29d)

xj ∈ {0,1}, yij ∈ {0,1}, ∀i∈ I, j ∈J , (29e)

where Cj is a minimal probability cover such that P

{ ∑
i∈Cj

ξi ≤ tj

}
< 1− ε, for j ∈ J . Then we lift (29d)

to derive a strong valid inequality based on the method proposed in Song et al. (2014). For j ∈ J , let
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π̄j = {π̄1j , . . . , π̄|I\Cj |j} be a sequence of I\Cj , and the coefficients for yij be ᾱij . The lifting problem is as

follows: for j ∈J and k= {1, . . . , |I\Cj |}

objπ̄kj
:= maximize

yj

∑
i∈Cj

yij +

π̄k−1,j∑
i=π̄1j

ᾱijyij

subject to P

∑
i∈Cj

ξiyij +

π̄k−1,j∑
i=π̄1j

ξiyij ≤ tj − ξπk

≥ 1− ε,

yij ∈ {0,1}, i∈Cj
⋃
{π̄1j , ..., π̄k−1,j}.

The lifting coefficient ᾱπ̄kj ,j = |Cj | − 1− objπ̄kj
. A sequential lifting strategy to approximate the value of

the lifting coefficients was given in Algorithm 1 in Song et al. (2014). We used the same algorithm to lift

the coefficients in our case. We then strengthen the lifted probabilistic cover inequalities by multiplying the

right-hand side with the variable xj .

Let ( ˆBPC) be (BPC) without constraints (29d). At each round of cut generation, we search for violated

lifted probabilistic cover inequalities. If the solution (x̂, ŷ) of the relaxation problem of ( ˆBPC) is integral,

we add an available violated lifted probabilistic cover inequality. We found that adding a violated lifted

probabilistic cover inequality at fractional solution (x̂, ŷ) was less efficient. Hence, the implementation adds

these inequalities after a binary solution of the problem generated after each fractional solution is obtained.

Algorithm 5 gives an overview of the implementation.
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Algorithm 5: (BPC) Implementation

1 Initialize UB = +∞, LB =−∞ and N = ∅.

2 Initialize Nodelist N = {o}, where o is a branching node without constraints.

3 while (N is nonempty) do
4 Select a node o∈N , N ←N/{o}.

5 Optimize the LP relaxation problem of ( ˆBPC) in the node o.

( ˆBPC) minimize
x,y

∑
j∈J

cajxj +
∑
i∈I

∑
j∈J

cbijyij

subject to (29b), (29c)(29e)

6 Obtain the optimal solution (x̂, ŷ) and objective value ˆobj.

7 if ˆobj <UB then
8 if (x̂, ŷ) is integral then
9 if ∃Cj ∈P such that ŷj violates (29d), for j ∈J then

10 Add the violated lifted probabilistic cover inequalities to ( ˆBPC). Go to line 5.

11 end

12 else

13 Update UB, UB = ˆobj.

14 end
15 end

16 else
17 Branch, resulting in nodes o∗ and o∗∗, N ←N ∪{o∗, o∗∗}.

18 end
19 end
20 end

21 return UB and its corresponding optimal solution (x̂, ŷ).
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