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A Data-Driven Model of Virtual Power Plants
in Day-Ahead Unit Commitment

Sadra Babaei, Student Member, IEEE, Chaoyue Zhao , Member, IEEE, and Lei Fan , Member, IEEE

Abstract—Due to the increasing penetration of distributed en-
ergy resources (DERs), power system operators face significant
challenges of ensuring the effective integration of DERs. The vir-
tual power plant (VPP) enables DERs to provide their valuable
services by aggregating them and participating in the wholesale
market as a single entity. However, the available capacity of VPP
depends on its DER outputs, which is time varying and not exactly
known when the independent system operator runs the day-ahead
unit commitment engine. In this study, we develop a model to
evaluate the physical characteristics of the VPP, i.e., its maximum
capacity and ramping capabilities, given the uncertainty in wind
power output and load consumption. The proposed model is based
on a distributionally robust optimization approach that utilizes
moment information (e.g., mean and covariance) of the unknown
parameter. We reformulate the model as a binary second-order
conic program and develop a separation framework to address it.
We first solve a two-stage problem and then benchmark it with a
multi-stage case. Case studies are conducted to show the perfor-
mance of the proposed approach.

Index Terms—Electricity market, virtual power plant, distribu-
tionally robust optimization.

NOMENCLATURE

A. Sets

N g Set of generators.
T Set of time periods.

B. Parameters

SUi Start-up cost for generator i.
SDi Shut-down cost for generator i.
NLi No load cost for generator i.
CUg

i Maximal generation capacity for generator i.
CDg

i Minimal generation capacity for generator i.
UTi Minimum up-time for generator i.
DTi Minimum down-time for generator i.
RUi Ramp-up limit for generator i.
RUi Start-up ramp-up limit for generator i.
RDi Ramp-down limit for generator i.
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RDi Shut-down ramp-down limit for generator i.
Lint Load level inside the VPP in time period t.
Cg
i (.) Fuel cost function of generator i.

xs0 Initial storage level.
ηs+ Discharging efficiency of storage unit.
ηs− Charging efficiency of storage unit.
CUs+

t Maximum discharging level of storage unit in time pe-
riod t.

CUs−
t Maximum charging level of storage unit in time period

t.
CUs Capacity of storage unit.
λCt Capacity price in time period t.

C. First Stage Decision Variables

y+
it Binary variable to indicate if generator i is started up in

time period t.
y−it Binary variable to indicate if generator i is shut down

in time period t.
yoit Binary variable to indicate if generator i is on in time

period t.
yCt Capacity offered by a VPP to the ISO for time period

t.
yRUt Ramp-Up limit offered by a VPP to the ISO for time

period t.
yRDt Ramp-Down limit offered by a VPP to the ISO for time

period t.

D. Second Stage Decision Variables

xgit Power produced by generator i in time period t.
xs+t Amount of power discharged by storage unit in time

period t.
xs−t Amount of power absorbed by storage unit in time pe-

riod t.
xvpp
t Total power generation of a VPP in time period t.

E. Random parameter

ξt Virtual net load consumption in time period t.

I. INTRODUCTION

W ITH the influx of distributed energy resources (DERs),
passive power networks are going through a transforma-

tion, from a centralized to a decentralized scheme, to enhance
the flexibility and reliability of the system by offering more
resources to the grid operator [1], [2]. However, since each in-
dividual distributed energy resource has small capacities and is
lack of controllability over its outputs, small distributed energy
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resource is either excluded from participating in the wholesale
energy market or it is not able to participate in a cost-effective
manner. Currently, Independent System Operators (ISOs) have
limited control over the DERs connected to the grid, because
most of these DERs are invisible to ISOs. Moreover, due to the
computational limitation, ISOs are not able to simultaneously
co-optimize schedules of conventional generators and a huge
number of DERs across the grid. Accordingly, the development
of an entity in the wholesale market as a market participant
to represent and operate these DERs, becomes an important ap-
proach to facilitate the utilization of renewable energy resources
and modernization of electricity grid. As an aggregator, the vir-
tual power plant (VPP) [3] acts as an intermediary between the
DERs and ISO, and allows small DERs to be pooled and actively
participate in the wholesale energy markets. Such a bundled en-
tity alleviates the ISO from having to obtain additional reserves
or other ancillary service products for mitigating renewables in-
termittency. The concept of VPP is successfully implemented in
Belgium and Netherlands [4], and is exploited in Germany and
United Kingdom [5]. In July 2018, the first trial of VPP initiated
by Tesla, has been successfully set up in South Australia, which
is expected to generate 250 MW of solar power and 650 MWh
of battery storage capacity [6]. Moreover, [7] investigates the
method to estimate the operation and cost of VPP and report
the study of a VPP project on an 11 KV system in Brixton by
using the data from UK Power Network, and [8] reports the
studies of VPPs across cities in the iURBAN project. However,
although via aggregation, the VPP enlarges the visibility of DER
units to ISOs in consideration of market participation and oper-
ation, it is still challenging to transform all the information of
aggregated DERs into one bid with standard attributes such as
maximum capacity, ramping restrictions, so that it can fit ISOs’
bidding offer schema and the wholesale market’s mechanism. In
addition, submitting inaccurate parameters in the ISOs’ market
clear engine can jeopardize the grid operation. In this study, we
provide a framework to characterize and evaluate the standard
attributes/parameters in the VPP’s bid submitted to the ISO that
can optimize its entire portfolio as an aggregation of distributed
energy resources.

Existing literature on the operation and scheduling of the VPP
mostly seeks to optimize the dispatching of resources within the
VPP so as to maximize its profitability. References [9], [10]
consider the self-scheduling operation of the VPP, which means
that the VPP only submits energy quantities to ISO, instead of
quantity-price bid pairs. Price-based unit commitment models
are proposed in [11], [12] to develop the bidding strategy for a
VPP that behaves as a price-taker in the market, since the VPP is
assumed to be a relatively small entity that has less impact on the
market clearing price compared to the other market participants.
In [13], a large scale of wind farm-energy storage system is
studied as a price maker. The behavior of rival participants is
taken into account using the residual demand curve. In [14] and
[15], a bilevel problem for the optimal bidding strategy of VPP is
addressed, in which the upper level aims to maximize the profit
of VPP, and the lower level calculates the ISO day-ahead market
clearing price. In [9], VPPs are allowed to establish bilateral
contracts to hedge against the volatility of the electricity market.

The idea of introducing VPPs as ancillary service providers is
investigated in [16], [17]. A detailed literature review about the
scheduling problem of VPP is presented in [18].

Another key direction of studying VPP focuses on manag-
ing the uncertain parameters like renewable generation out-
put and load consumption. Stochastic programming (SP) has
been extensively utilized for this purpose [19], [20]. Using
this approach, the uncertain parameters are characterized by
a set of scenarios based on the estimated probability distribu-
tion. For example, [21] studies a two-stage stochastic program-
ming model for the optimal offering strategy of a VPP in the
day-ahead and balancing markets. The uncertain wind power
and market price are represented by a set of equi-probable
scenarios. A major obstacle of SP is that fixing a particular
probability distribution of the uncertain parameter may yield
to biased solutions with unreliable out-of-sample performance.
Moreover, SP usually suffers from the curse of dimensional-
ity, which means that the computational difficulty surges expo-
nentially in the number of scenarios, and makes it impractical
to solve large scale problems. As an alternative approach, ro-
bust optimization (RO) aims at constructing an uncertainty set
to characterize the uncertain parameter, and allows the uncer-
tain parameter to run adversely within the constructed uncer-
tainty set to guarantee the feasibility of the optimal solution.
For instance, in [22], [23], confidence bounds are constructed
for the uncertain wind and market price, and robust bidding
strategy models are proposed for a VPP consisting of price-
responsive demands, wind power plants, and storage units. How-
ever, the RO approach is criticized as its over-conservativeness
since it ignores the probabilistic nature of unknown param-
eters and the solution is solely based on the worst-case
scenario.

To cope with the limitations of stochastic and robust opti-
mization approaches, distributionally robust (DR) optimization
models have been developed (see e.g., [24], [25]). According
to this approach, the probability distribution of the uncertain
parameters is itself subject to uncertainty. In fact, the proba-
bility distribution is merely known to be within an ambiguity
set, which can be characterized using certain statistical prop-
erties (e.g., estimation of mean and covariance). To guarantee
the robustness of the approach, DR approach finds a solution
that minimizes the worst-case expected cost over the ambigu-
ity set. Unlike the traditional SP that exploits a collection of
representative scenarios based on an estimated probability dis-
tribution to characterize the uncertain parameters, and thereby
has no robustness to the error of distribution estimation, DR
models release the assumption on any particular distribution.
Therefore, this approach can accommodate the estimation error
on the distribution due to the noisiness and incompleteness of
the data, and also avoid the computational prohibition of sce-
nario enumerations. Furthermore, contrary to the classical RO
that is basically a distribution-free approach and minimize the
total cost based on a worst-case scenario, DR models account for
distributional knowledge through the ambiguity set, and mini-
mizes the total expected cost based on a worst-case distribution
over a set of probability distributions (ambiguity set). Hence,
DR models trigger to less conservative solutions.
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Because of these advantages, DR models have been success-
fully applied in power system problems under uncertainties,
including contingency-constrained unit commitment [26], unit
commitment with wind power integration [27], reserve schedul-
ing [28], and optimal power flow [29]. However, most of the
works fail to consider the physical limits (i.e., the support space)
for the uncertain parameters, which is essentially critical in many
applications. For example, renewable generators (e.g., wind tur-
bines) have a limited capacity that cannot be exceeded from. The
resulted solutions in these works, though restricted by the set
of the distributions, are more conservative since the uncertain
parameter itself can take very large positive or negative value
even with its distribution still being within the range. Modeling
of dependencies among the uncertain parameters (e.g., renew-
able energy outputs) is another crucial feature that is usually
captured by including covariance matrix in the ambiguity set.
Despite importance, there are limited studies in this regard. [28]
stipulates that the covariance of uncertain renewable outputs ex-
actly matches the empirical covariance obtained from data and
formulates a semi-definite program, and [30] bounds the corre-
lation between pairs of wind farms generations and proposes a
second-order conic program.

This paper presents a two-stage DR model for the VPPs
participation in the wholesale market. The VPP is a profit-driven
entity that participates in the day-ahead wholesale market by
submitting the cost curve and other related parameters like its
maximum capacity and ramping limits to ISO. The goal is to
find these standard attributes in the VPP’s bid submitted to the
ISO that can optimize its entire portfolio. The ISO collects such
bidding information from all participants and run the reliability
unit commitment to decide about the generation amount of each
participant. Thus, the optimal solutions, i.e., the bidding param-
eter information of VPP will be served as an input for the ISO’s
unit commitment run. Furthermore, we consider two uncertain-
ties in the model, i.e., the uncertain renewable energy output,
and the unknown energy cleared by the ISO. We represent these
two uncertainties with one parameter: the virtual net load, which
is defined as the energy cleared by the ISO minus the renewable
generation. It is assumed that in the first stage (day-ahead
market), the VPP determines its total capacity and ramping
limits to be reported to ISO that can optimize its entire portfolio
by considering the physical constraints and the uncertain virtual
net load. The second stage will give the first-stage a recourse,
so that in the real-time operating day, after knowing the virtual
net load, the VPP is able to supply enough power as it reported,
by controlling its generation level of its conventional generators
and power storage level. Using available moment information
such as the empirical mean and covariance matrix of VPP’s
virtual net load that are learned from the data, we construct
a second-order conic (SOC) representable ambiguity set for
the unknown probability distribution, and reformulate the DR
problem as a second-order conic programming (SOCP), which
is efficiently solvable by off-the-shelf solvers like CPLEX. The
objective of the model is to minimize the worst-case expected
total cost over all probability distributions of the virtual net load
in the ambiguity set. The conservativeness of the model can be
adjusted based on the preference of the VPP operator. That is,

if the VPP operator utilizes more information about the virtual
net load data, the ambiguity set becomes smaller and the model
becomes less conservative accordingly. On the contrary, if the
VPP operator ignores the moment information on probability
distribution and just utilizes the boundary information of the
virtual net load (i.e., upper and lower bound), the proposed
model is reduced to a traditional robust optimization model.
Moreover, the proposed ambiguity set is able to capture the
temporal dependencies among different time periods in the
virtual net load profile by considering the covariance matrix.

A more realistic approach to model the VPP’s problem is
to allow the sequential revelation of the uncertain virtual net
load and restrict the dispatch decisions to only hinge on the
virtual net load observed up to the current time period. This
restriction is called the non-anticipativity of dispatch decisions
and the resulting formulation describes a multi-stage model. The
main advantage of the multi-stage model over the two-stage
approach is that the former framework caters for a dynamic
decision making, where the VPP operator has the opportunity
to update its knowledge about uncertain outcomes as they unfold
in periods. Using linear decision rules, we extend the two-stage
model to the multi-stage case, where recourse decisions take the
form of a linear function of uncertain virtual net loads and a set
of auxiliary variables.

The contributions of this study are summarized as follows:
1) We propose an innovative distributionally robust opti-

mization model to help VPPs to optimally characterize
the parameters in their bidding offers to ISO for the relia-
bility unit commitment run.

2) The DR model can effectively manage the intrinsic un-
certainty arising from virtual net load consumption. An
tractable reformulation of the proposed DR model is de-
rived, which can be implemented effectively by off-the-
shelf solvers.

3) To better capture the nonanticipativity of the uncertainty,
we extend the two-stage case to a multi-stage DR problem
by using linear decision rules, and benchmark it with the
two-stage DR model.

The rest of the paper is organized as follows. In Section II,
we formulate the two-stage and multi-stage DR models, and
describe the ambiguity set of virtual net load probability dis-
tributions. In Section III, we derive a separation framework to
address the DR models. Finally, in Section IV, we demonstrate
the effectiveness of two-stage and multi-stage models through
several case studies.

II. MATHEMATICAL FORMULATION

We consider a VPP consisting of conventional generators, a
wind farm, an energy storage unit, and non-flexible customers.
Before submitting its bids to the day-ahead market, the VPP uti-
lizes the moment information of virtual net load to construct an
ambiguity set of virtual net load probability distribution. Using
the ambiguity set and the physical characters of each conven-
tional generators, the VPP determines the offering information
needed to be submitted to the ISO, i.e., capacity, ramping limits,
and cost curve in such a way that it minimizes the worst-case

Authorized licensed use limited to: University of Washington Libraries. Downloaded on December 30,2021 at 20:12:38 UTC from IEEE Xplore.  Restrictions apply. 



5128 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 34, NO. 6, NOVEMBER 2019

expected cost. We present the DR model as follows:

min
y

∑

t∈T

∑

i∈N g

(SUiy
+
it + SDiy

−
it + NLiy

o
it)

−
∑

t∈T
λCt y

C
t + max

P∈D
EP [Q(y, ξ)], (1a)

s.t. yoit − yoi,t−1 = y+
it − y−it , ∀i ∈ N g , t ∈ T , (1b)

−yoi,t−1 + yoit − yoik ≤ 0,

∀i ∈ N g , t ∈ T , 1 ≤ k − (t− 1) ≤ UTi , (1c)

yoi,t−1 − yoit + yoik ≤ 1,

∀i ∈ N g , t ∈ T , 1 ≤ k − (t− 1) ≤ DTi , (1d)

yCt ≤
∑

i∈N g

CUg
i y

o
it − Lint , ∀t ∈ T , (1e)

yRUt ≤
∑

i∈N g

(RUiy
o
i,t−1 + RUiy

+
it ), ∀t ∈ T , (1f)

yRDt ≤
∑

i∈N g

(RDiy
o
it + RDiy

−
it), ∀t ∈ T , (1g)

yoit , y
+
it , y

−
it ∈ {0, 1}, ∀i ∈ N g , t ∈ T , (1h)

where y := (yo ,y+ ,y−,yC,yRU,yRD ) denotes first-stage de-
cisions, D indicates the ambiguity set of virtual net load proba-
bility distribution, and Q(y, ξ) represents the operating cost for
a given first-stage decision y and realized virtual net load ξ, and
it can be calculated as follows:

Q(y, ξ) = min
x

∑

t∈T

∑

i∈N g

Cg
i (xgit), (2a)

s.t. xvpp
t =

∑

i∈N g

xgit + xs+t − xs−t , ∀t ∈ T , (2b)

ξt ≤ xvpp
t ≤ yCt , ∀t ∈ T , (2c)

xvpp
t − xvpp

t−1 ≤ yRUt , ∀t ∈ T , (2d)

xvpp
t−1 − xvpp

t ≤ yRDt , ∀t ∈ T , (2e)

CDg
i y

o
it ≤ xgit ≤ CUg

i y
o
it , ∀i ∈ N g , t ∈ T , (2f)

xgit − xgi,t−1 ≤ RUiy
o
i,t−1 + RUiy

+
it , ∀i ∈ N g , t ∈ T ,

(2g)

xgi,t−1 − xgit ≤ RDiy
o
t + RDiy

−
it , ∀i ∈ N g , t ∈ T , (2h)

0 ≤ ηs+xs+t ≤ CUs+
t , ∀t ∈ T , (2i)

0 ≤ ηs−xs−t ≤ CUs−
t , ∀t ∈ T , (2j)

0 ≤ xs0 +
∑

j∈[1:t]

(
ηs−xs−j − 1

ηs+
xs+j

)
≤ CUs ,∀t ∈ T ,

(2k)

where x := (xg ,xs+ ,xs−,xvpp) denotes the second-stage de-
cisions, including the conventional generation amount, storage
charging/discharging amount and total generation level. In the
above formulation (1)–(2), the objective function (1a) is to

minimize the worst-case expected total net cost, i.e., total cost
minus the potential revenue by selling the capacity to the grid.
The total cost includes start-up, shut-down, no load, and fuel
costs. The potential revenue is assumed to be linearly depend-
ing on the value of offered capacity to ISO. Note that we do not
put the potential revenue from selling power to the customers
in the objective since it is a constant value in our model. Con-
straints (1b) indicate the commitment relationship among y+

it ,
y−it , and yoit . Constraints (1c) and (1d) represent minimum up-
time and minimum down-time limits, respectively. Constraints
(1e) define an upper bound for the total capacity offered by
VPP to ISO, which is the total available capacity, minus the
load inside the VPP. Constraints (1f) and (1g) characterize the
ramp-up and ramp-down limits offered by VPP to ISO. The
objective of formulation (2) is to minimize the total operating
cost, while respecting dispatch and storage related constraints.
More precisely, Cg

i (xgit) represents the quadratic fuel cost func-
tion corresponding to the generation level xgit , and it can be
estimated by a N-piece-wise linear function as follows:

xcit ≥ δni y
o
it + �ni x

g
it , ∀n = 1, . . . , N, i ∈ N g , t ∈ T .

(3)

Constraints (2b) calculate the total power generation by the
VPP. Constraints (2c) describe that the total generation amount
of VPP should satisfy the virtual net load, and also should not
exceed the capacity level. Constraints (2d) and (2e) describe
ramp-up and ramp-down limits for the VPP. Constraints (2f)-
(2h) describe generation as well as ramping limits for the con-
ventional generators inside the VPP. Constraints (2i)-(2j) de-
scribe upper bounds for the amount of discharge and charge
levels. Finally, constraints (2k) enforce energy storage limits for
the storage unit.

After solving the above models (1)–(2), the first-stage deci-
sions including the capacity yCt and ramping limits yRUt and
yRDt of the VPP can be found. As for the cost curve, since the
storage unit is only responsible for smoothing out the sched-
uled generation levels by absorbing power when the demand is
low and generating power in peak demand hours, it does not
impact on the cost curve. Therefore, the cost curve submitted
to the ISO will have the similar shape as the cost curve of con-
ventional generators, except a shift because of the wind power
output, as illustrated in Fig. 1. The reason for shifting the curve
is that the conventional generators will be started up only when
the wind power output is not enough to met the demand.

A. Abstract Formulation

For notation brevity, we recast the problem into the following
compact matrix formulation:

min
y∈Y

cT y + max
P∈D

EP [Q(y, ξ)], (4a)

with

Q(y, ξ) = min
x

{
dT x : Ay + Bx ≥ h − Mξ

}
, (4b)

where cT y indicates commitment costs minus capacity value,
Y represents the first-stage constraints (1b)–(1h), dT x indicates
the operating cost, and Ay + Bx ≥ h − Mξ represents the
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Fig. 1. An example of cost curve.

second-stage constraints (2a)–(2k) for a fixed commitment and
offering decision y and virtual net load realization ξ.

B. Ambiguity Set Construction

We construct an ambiguity set D of the virtual net load prob-
ability distribution by using its moment information. This ambi-
guity set can capture the dynamics of virtual net load evolution
over time periods. Another main feature of this ambiguity set
is that since it is a second-order conic representable set [31],
it can be reformulated as a second-order conic program, which
can be solved by many commercial solvers. More precisely, the
ambiguity set is constructed as:

D =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

P ∈ P0(RT)

∣∣∣∣∣∣∣∣∣∣∣∣

P (ξ ∈ Ω) = 1,
EP [ξ] = μ,

EP [(ξ − μ)2 ] ≤ γ,
EP

[( ∑t
i=k (ξi − μi)

)2
]
≤ γ̄kt ,

∀k ≤ t,

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(5)

where P0(.) is the set of all probability distributions, T = |T |
is the number of time periods, Ω is the support space of ξ
and defined by Ω = [ξ, ξ], μ is the estimation of the mean
value of uncertain virtual net load ξ, and parameters γ and γ̄
are used to adjust the conservativeness of the optimal solution,
which can capture the VPP operator’s risk attitude. A risk-averse
VPP operator may select larger values for these parameters
to enrich the ambiguity set with more distributions, and thus
arrive at a more robust solution. On the other hand, a risk-prone
VPP operator may tend to choose smaller values of γ and γ̄ to
exclude pathological distributions with the moment information
far away from the sample ones, and thus obtain less conservative
solutions. In the above set (5), the first constraint incorporates
a range for the virtual net load. The second constraint ensures
that ξ, given by any distribution in D, has the same mean as the
empirical mean, while the third constraint bound the variance
of ξ. Finally, the last constraint captures the virtual net load

correlations across time periods. Indeed, this constraint ensures
that the variance of sum of the virtual net loads during the time
window [k, t] is bounded by γ̄kt . In practice, the ambiguity
set (5) is characterized by parameters ξ, ξ,μ,γ, and γ̄, which
can be learned from historical data. Consider N data samples
{ξ�}N�=1 of ξ such that ξ� = [ξ1 , ξ2 , ..., ξT], ξ and ξ can be
set to be .05- and .95-quantiles of random virtual net load,
respectively, μ and γ can be chosen as the sample mean μ =
N−1 ∑N

�=1 ξ
� and sample variance γ = N−1 ∑N

�=1(ξ
� − μ)2 .

γ̄kt can be determined by summing up specific elements in the
covariance matrix of ξ, i.e., γ̄kt = fTktΣfkt , where fkt is a vector
with ith element equals to one if i is within the time window
[k, t], and zero otherwise, and Σ denotes sample covariance
matrix Σ = N−1 ∑N

�=1(ξ
� − μ)(ξ� − μ)T .

As explained in [32], in order to derive a tractable reformu-
lation for the DR problems with the ambiguity set (5), it is
equivalent to work with the following lifted ambiguity set:

D =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩
P ∈ P0

(
RT×T× T(T+ 1 )

2

)

∣∣∣∣∣∣∣∣∣

P (ξ ∈ Ω) = 1,
EP [ξ] = μ,

EP [u] ≤ γ
EP [vkt ] ≤ γ̄kt , ∀k ≤ t,

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(6)

where Ω is the lifted support set and defined as follows:

Ω =

⎧
⎪⎨

⎪⎩
(ξ,u,v)

∣∣∣∣∣∣∣

ξ ≤ ξ ≤ ξ,
(ξ − μ)2 ≤ u,
( ∑t

i=k (ξi − μi)
)2 ≤ vkt , ∀k ≤ t,

⎫
⎪⎬

⎪⎭
(7)

That is, D includes set of marginal distributions of ξ, where
the joint distribution of (ξ,u,v) is in D.

C. Multi-Stage Formulation

The main assumption of the two-stage model is that all of
the real-time dispatch decisions are made simultaneously at the
beginning of the operating day. However, the unit commitment
problem is inherently sequential. That means the uncertain vir-
tual net load is revealed as the time progresses, and dispatch
decisions at each period are made after knowing the realization
of uncertain parameters up to that period (non-anticipativity en-
forcement). In other words, the VPP operator first observes the
uncertain virtual net load of the first period ξ1 , and then takes
real-time decisions x1(ξ1) of the first period. Subsequently, the
virtual net load of second period ξ2 is realized, and then the
VPP operator takes real-time decisions x2(ξ1 , ξ2) of the sec-
ond period accordingly. This alternating process continues over
the entire T periods. We present the multi-stage DR model as
follows:

min
y∈Y,x(.)

(
cT y + max

P∈D
EP

[
dT x(ξ[t],u[t])

])
(8a)

s.t. Ay + Bx(ξ[t],u[t]) ≥ h − Mξ[t], ∀(ξ,u) ∈ Ω, (8b)

where x(ξ[t],u[t]) denotes that the dispatch decision at time pe-
riod t is a function of the uncertain virtual net load as well as the
auxiliary random variable associated with the lifted ambiguity
set realized up to time period t, and minx(.) can be interpreted as
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optimizing over the policies, i.e., functions of random variables.
Solving problem (8) is challenging since dispatch decisions are
general functions of all past uncertain parameter realizations,
instead of a finite vector of decision variables [33]. An effec-
tive approach on addressing this fully adaptive problem is to
apply the linear decision rule technique, which restricts the dis-
patch decisions to be linear functions of the uncertain parame-
ters ([27], [34], [35]). More precisely, we define the following
policies for decision variables xgit , x

s+
it , x

s−
it , x

vpp
it :

xit
(
ξ[t],u[t]

)
= x0

it + x1
itξt + x2

itut . (9)

Notice that linear coefficients (x0 ,x1 ,x2) are considered as de-
cision variables in the problem and they are defined separately
for decision variable xgit , x

s+
it , x

s−
it , x

vpp
it . Furthermore, in these

policies it is assumed that the second-stage decision variables
are affine functions of both primary and auxiliary random pa-
rameters. [32] has shown that this enhanced linear decision rule
can significantly improve the computational results compared
with the one restricting to the primary random parameters only.
In addition, with the decision rule defined in (9), the nonantici-
pativity requirement can be met automatically.

III. SOLUTION METHODOLOGY

In this section, we develop solution methods for the two-stage
DR problem (4) and multi-stage DR problem (8), respectively.

A. Solution Method for Two-Stage DR

First, we dualize the second-stage worst-case expectation
problem maxP∈D EP [Q(y, ξ)] and obtain the following dual
problem:

min
η ,λ,β,α

η + μT λ + γT β + γ̄Tα (10a)

s.t. η ≥ F (y,λ,β,α), (10b)

with

F (y,λ,β,α) = max
(ξ,u,v)∈Ω

Q(y, ξ) − λT ξ − βT u −αT v,

(10c)

where η,λ,β,α are dual variables associated with the con-
straints in the ambiguity set (6). Note that we can add a slack
variable in constraint (2c) to ensure the feasibility of the second-
stage problem and in return consider a penalty cost for under-
generation in the objective function. Since the second-stage
linear problem Q(y, ξ) is feasible and bounded, strong dual-
ity holds and Q(y, ξ) can be replaced by its dual formulation.
Hence, the subproblem (10c) can be equivalently formulated as
follows:

F (y,λ,β,α)

= max
(ξ,u,v)∈Ω

max
π∈Π

πT (h − Mξ − By) − λT ξ − βT u −αT v,

(11)

where Π = {π ≥ 0 : πT B = d} is the set of dual variables of
Q(y, ξ). Since the feasible regions Π and Ω are separable, the
optimal solution of problem (11) occurs at extreme points of

these regions. Therefore, if we denote all the extreme points
of Π as {π∗

i }Ii=1 and exchange the order of two maximization
operations, i.e., max(ξ,u,v)∈Ω and maxπ∈Π , F (y,λ,β,α) can
be further reformulated as follows:

F (y,λ,β,α)

= max
πi ,∀i

max
(ξ,u,v)∈Ω

π∗
i
T(h − Mξ − By) − λT ξ − βT u −αT v.

(12)

Since the inner maximization problem in (12) is bounded with
non-empty interior, conic duality can be applied. Taking dual
of inner maximization problem in (12) leads to (details are
provided in the Appendix A):

F (y,λ,β,α) = max
πi ,∀i

π∗
i
T (h − By)

+ min
ψ

ξ
T
τ̄ − ξT τ̃ − μT θ̄ +

1
2
1T (θ̂ − θ̃)

−
∑

t∈T

∑

k∈[1:t]

∑

i∈[k :t]

μiφ̄kt +
1
2
1T (φ̂− φ̃), (13a)

s.t. τ̃t − τ̄t + θ̄t + φ̄ = et T
(
MT π∗

i + λ
)
, ∀t ∈ T , (13b)

1
2
(θ̃t + θ̂t) = βt, ∀t ∈ T , (13c)

1
2
(φ̃kt + φ̂kt) = αkt , ∀t ∈ T , k ≤ t, (13d)

√
θ̄2
t + θ̃2

t ≤ θ̂t , ∀t ∈ T , (13e)
√
φ̄2
kt + φ̃2

kt ≤ φ̂kt , ∀t ∈ T , k ≤ t, (13f)

where 1 is a vector whose elements are all one, et is an unit
vector whose tth component is one and zero otherwise, and
ψ := {τ̄ , τ̃ , θ̄, θ̃, θ̂, φ̄, φ̃, φ̂} are dual variables associated with
the constraints in the inner maximization, i.e., constraints in
Ω (7). We rewrite the inner minimization problem in (13) in
a compact form: min{bTψ : Eψ �κ fα+ gβ + pλ + qπ∗},
where �κ denotes the generalized inequality respect to some
cone κ. Now, by considering the second-stage dual formulation
(10) and replacing F (y,λ,β,α) in (10c) with formulation (13),
the original DR optimization problem (4) is equivalent to:

min
y ,η ,λ,β,α,ψi

cT y + η + μT λ + γT β + γ̄Tα (14a)

s.t. η ≥ π∗
i
T (h − By) + bTψi , ∀i = 1, . . . , I, (14b)

Eψi �κ fα+ gβ + pλ + qπ∗
i , ∀i = 1, . . . , I, (14c)

y ∈ Y, (14d)

where ψi is a vector of decisions corresponding to the extreme
pointπ∗

i . Notice here that in (14b), we release the maximization
operation in (13a) since it is equivalent to restrict the constraint
(14b) holds for every extreme pointπ∗

i , and we release the mini-
mization operation in (13a) since it is equivalent to the existence
of a feasible solution of constraint (14b) with constraint (14c).
The above problem (14) has an appropriate structure to apply a
two-level decomposition algorithm. More precisely, in the kth
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Algorithm 1: Solution Procedure for Problem (14).

1: Initialize iteration index i = 0, and set I = ∅.
2: repeat
3: Solve the master problem (15). Let (y, η,λ,β,α) be

the optimal solution.
4: Solve the subproblem problem F (y,λ,β,α) in (11)

using the Algorithm 2. Let π∗
i+1 be the optimal

solution.
5: I = I ∪ {π∗

i+1}.
6: Define the new variable ψi+1 and the corresponding

constraints (15b)–(15c).
7: i = i+ 1.
8: until η ≥ F (y,λ,β,α).

Output: (y, η,λ,β,α) is the optimal solution.

iteration, we solve the following master problem:

min
y ,η ,λ,β,α,ψi

cT y + η + μT λ + γT β + γ̄Tα (15a)

s.t. η ≥ π∗
i
T (h − By) + bTψi , ∀i ≤ k, (15b)

Eψi �κ fα+ gβ + pλ + qπ∗
i , ∀i ≤ k, (15c)

y ∈ Y, (15d)

to obtain the first-stage decisions. Then, the master problem (15)
can be augmented iteratively (i.e., adding new variables ψi and
the corresponding cuts) using the information provided by the
subproblem (11). The more detailed procedure for solving the
problem (14) is summarized in Algorithm 1.

Observe that since the feasible region Π includes finite num-
ber of extreme points, the Algorithm 1 converges in finite num-
ber of steps. Details are provided in the Appendix B. Also,
notice that the Algorithm 1 is a natural extension of the column-
and-constraint generation algorithm proposed in [36], where the
polyhedron uncertainty set is extended to a SOC set. A similar
extension is proposed in [37] to solve the robust AC optimal
power flow problem.

To solve the subproblem, we need to evaluate F (y,λ,β,α)
at each iteration of Algorithm 1, which is a second-order conic
problem with a quadratic objective function. We employ the
Alternative Separation Heuristic (ASH) to solve this problem.
The basic idea behind this framework is to obtain the optimal
(ξ,u,v) of F (y,λ,β,α) with a fixed π, and then fixed the
obtained (ξ,u,v) to find the optimal π of F (y,λ,β,α). This
back and forth procedure continues until the optimality gap is
no more than a predefined level. Since the feasible region Π is
a polyhedron, the ASH converges to a KKT point of (11) in a
finite number of iterations [37], [38]. The ASH framework is
summarized in Algorithm 2.

B. Solution Method for Multi-Stage DR

In order to solve the multi-stage DR model (8) using linear
decision rules (9), we can apply a duality-based approach to
reformulate the problem. More specifically, similar to the previ-
ous approach we start from dualizing the worst-case expectation

Algorithm 2: Alternative Separation Heuristic for Solving
Subproblem (11).

1: Pick a π̂ ∈ Π, and optimality gap ε̂
2: repeat
3: Fix π = π̂ and solve (11). Let (ξ̂, û, v̂) be the

optimal solution with objective value Υ1 .
4: Fix (ξ,u,v) = (ξ̂, û, v̂) and solve (11). Let π̂ be the

optimal solution with objective value Υ2 .
5: until |Υ1 − Υ2 | ≤ ε̂.

Output: Υ1 is the estimation of F (y,λ,β,α) with
solution π̂.

problem maxP∈D EP [Q(y, ξ)]. Thus, (8) is equivalent to:

min
y∈Y,x0 ,x1 ,x2

cT y + min
η ,λ,β,α

η + μT λ + γT β + γ̄Tα (16a)

s.t. η ≥ max
(ξ,u,v)∈Ω

dT x(ξ[t],u[t])

− λT ξ − βT u −αT v, (16b)

Ay − h ≥ max
(ξ,u,v)∈Ω

−Bx(ξ[t],u[t]) − Mξ. (16c)

By substituting (9) into the above formulation, constraints
(16b) and (16c) become:

η ≥ max
(ξ,u,v)∈Ω

dT (x0 + ξT x1 + uT x2)

− λT ξ − βT u −αT v, (17a)

Ay − h ≥ max
(ξ,u,v)∈Ω

−B(x0 + ξT x1 + uT x2) − Mξ.

(17b)

Note that constraints (17a) and (17b) have the same structure.
In the following, we derive a reformulation for the constraint
(17a). Similar approach can be done for constraint (17b). Ap-
plying strong duality, (17a) can be written as:

η − dT x0 ≥ min
χ∈Ξ(d,x1 ,x2 )

gT χ, (18)

where χ and Ξ(d,x1 ,x2) are the corresponding dual variables
and dual feasible region of the constraints in Ω with respect to
(ξ,u,v), and g is also derived from the definition of Ω. Note
that since the second-order cone is self-dual, feasible region Ξ
has a similar structure to Ω.

Relation (18) is further equivalent to the existence of χ ∈
Ξ(d,x1 ,x2) such that η − dT x0 ≥ gT χ. Thus, using duality-
based approach, constraints (17a)–(17b) can be reformulated as
a finite number of linear and second-order conic constraints.
As a result, the original problem (16) can be reformulated as
a single minimization problem involving new added variables
and constraints.

IV. CASE STUDY

In this section, we first apply the two-stage DR model based
on a real data set to provide the operation of the VPP. Second, we
test the performance of two-stage and multi-stage DR models
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TABLE I
GENERATOR DATA

TABLE II
FUEL DATA

Fig. 2. Virtual net load profile.

for various simulated data sets. All the experiments are imple-
mented in the C++ language with CPLEX 12.6 on a computer
with Intel Xeon 3.2 GHz and 8 GB memory.

A. Data Preparation

We consider a VPP including three conventional generators, a
wind farm, a storage unit, and a set of loads that all are located in
a single bus in the system. The characteristics of the generators
are shown in Tables I–II. The load and wind power outputs are
collected from PJM market website [39] and scaled down to fit
the test system.

The mean value together, upper and lower limits of the
virtual net load profile are depicted in Fig. 2. We assume that
the capacity and efficiency of the storage unit on both absorbing
and generating electricity are 100 MW and 0.9, respectively.
The load consumption inside the VPP and the capacity
price are randomly simulated from intervals [4, 20]MWs and
$[5,30]/MW, respectively. The penalty cost for load shedding is
set to be $6000/MWh. In addition, for the comparative studies in
Sections IV-D and IV-C, we consider various numerical settings
to evaluate the performance of DR models. More precisely, we
randomly generate 5,000 samples of virtual net load consump-
tion ξ such that each ξt follows a normal distribution with mean

Fig. 3. Capacity offered to ISO.

μt ∈ [50, 80], standard deviation σt = μtε with ε ∈ {0.1, 0.2},
and correlation coefficient ζ ∈ {0, 0.25, 0.5, 0.75, 1}. These
5,000 samples comprise the support set Ω, which will be used
later to build the ambiguity set.

B. VPP Offering Parameters

We solve the two-stage DR model to determine the VPP of-
fering parameters. The offering capacity at each time period is
reported in Fig. 3. The optimal ramp-up and ramp-down pa-
rameters are obtained 75 MW/h for periods 19, 20, and 21, and
85 MW/h for other periods. As it can be seen in Fig. 3, there is a
significant reduction in offering capacity at time periods 18 and
20. The reason is that the capacity price at these periods sud-
denly drops to its minimum level. To recover this unexpectedly
low capacity price, the generator G1, which is more expensive
thanG2 andG3, is turned off at these periods. On the other hand,
the VPP offers higher level of capacity at time periods like 1,2,
and 22 since the inside load is low at these periods. In order to
investigate the performance of the DR model in the real time
operations, we fixed the optimal unit commitment and offering
decisions and solve the dispatch problem for a realized virtual
net load. The total power generation by conventional generators,
storage operation, and the realized virtual net load are shown in
Fig. 4. We can observe that the storage unit absorbs the power
during the periods that the virtual net load is low (e.g., periods
5–6), and generates the power during the periods that the virtual
net load is high (e.g., 8–10). More specifically, the storage unit
absorbs 70MW power at period 5 (valley demand hour) when
the wind power output is higher than the grid demand, and gen-
erates 43MW at period 17 to preclude from load shedding when
the expensive generator G1 is offline at this period. Thus, we
can conclude that the storage unit significantly contributes to
the VPP flexibility.

C. Comparing With Robust Optimization

In this subsection, we compare the two-stage DR (TDR)
model with the RO approach. For this purpose, since the VPP
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Fig. 4. Optimal dispatch decisions.

TABLE III
TWO-STAGE DR VS. TWO-STAGE RO

operator has limited information of Ω, we build the ambiguity
set of virtual net load probability distribution by choosing 50
samples from Ω, and calculating the parameters ξ, ξ,μ,γ, γ̄,
as explained in Section II-B. After solving the corresponding
TDR and RO models, we fix the optimal first-stage decision y,
and run the second-stage problemQ(y, ξ) for all 5,000 samples
in Ω. We report the average operating cost in Table III. The
results verify that TDR model provides less conservative solu-
tions compared to the RO approach. In particular, TDR model
can save up to $532. Moreover, as the value of ε increases, i.e.,
the size of support set is expanded, the difference between TDR
and RO models reduces, since the TDR model becomes more
conservative.

D. Comparing With Multi-Stage Model

In this subsection, we benchmark the multi-stage DR model
(MDR) with the two-stage DR model (TDR), and report the
profit values (i.e., the opposite value of the objective) and CPU
time in Table IV. We can observe that the MDR model provides
a lower profit, which is because that the MDR model enforces
nonanticipativity constraints. That is, as compared with MDR
model, the TDR model assumes the virtual net load consumption
information throughout the entire time periods is known at the
beginning of the operating day, which offers more flexibility in
the dispatch decisions.

TABLE IV
MULTI-STAGE DR VS. TWO-STAGE DR

TABLE V
TWO-STAGE DR VS. TWO-STAGE RO FOR A

6-CONVENTIONAL-GENERATOR CASE

TABLE VI
MULTI-STAGE DR VS. TWO-STAGE DR FOR A

6-CONVENTIONAL-GENERATOR CASE

E. Computational Results for a Complicated System

In this subsection, we evaluate the performance of our frame-
work for the case that the random samples do not necessarily
follow a standard distribution such as the multivariate normal
distribution. For this purpose, the stochastic process describing
the virtual net load behavior is captured through parsimonious
time series models. Following the Box-Jenkins’ procedure of
the model identification [40] and using Bayesian information
criterion, we choose three competing seasonal ARIMA models
and simulate samples accordingly. In the case studies, we also
assume that the VPP includes six conventional generators to
represent a more complicated system. We follow the procedure
in the Section IV-C to compare the TDR with RO using samples
generated from time series models. As shown in Table V, TDR
model leads to less conservative results than those of RO in
the out-of-sample simulation. This demonstrates efficiency of
our approach even when the underlying uncertainty distribution
is not normal. Furthermore, Table VI compares profit values
obtained in TDR and MDR approaches for the complicated sys-
tem. We can also see that TDR model yields to more profits at
the expense of having a full knowledge of realized virtual net

Authorized licensed use limited to: University of Washington Libraries. Downloaded on December 30,2021 at 20:12:38 UTC from IEEE Xplore.  Restrictions apply. 



5134 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 34, NO. 6, NOVEMBER 2019

load throughout the entire scheduling horizon. This confirms
our observation from the previous Section IV-D.

APPENDIX A

Consider the following second-order conic program:

min fT x

s.t. ||Aix+ bi || ≤ cTi + di, i = 1, . . . , N,

where x ∈ Rn is the optimization variable, and the problem
parameters are f ∈ Rn , Ai ∈ R(ni−1)n , bi ∈ Rni−1 , ci ∈ Rn ,
di ∈ R, and the norm we use in the constraints is the Eu-
clidean norm, i.e., ||y|| =

√
yT y. The dual of this problem is as

follows [41]:

max−
N∑

i=1

(bTi zi + diwi)

s.t.
N∑

i=1

(AT
i zi + ciwi) = f,

||zi || ≤ wi, i = 1, . . . , N,

where zi ∈ Rni−1 andw ∈ RN are dual optimization variables.
By applying this primal-dual relationship, we can get the dual
formulation of (12). In order to apply it, it suffices that we refor-
mulate constraints (7) as a set of second-order conic constraints.
Consider the following constraint:

(ξ − μ)2 ≤ u

We can rewrite it as follow:
√

(ξ − μ)2 +
(u − 1

2

)2
≤ u + 1

2

or equivalently:

∣∣∣
∣∣∣
(
ξ − μ
u−1

2

)∣∣∣
∣∣∣ ≤ u + 1

2
,

which is a second-order conic constraint. We can apply the same
technique for the other quadratic constraints in (7) and get the
dual formulation of (12).

APPENDIX B

Proposition 1: Algorithm 1 converges to the optimal solu-
tion of problem (14) in a finite number of iterations.

Proof: We rewrite the inner minimization problem in (13)
as: min{bTψ : ψ ∈ Ψ}, where Ψ = {ψ : Eψ �κ fα+ gβ +
pλ + qπ∗}. Accordingly, F can be written as:

F (y,λ,β,α) = max
πi ,∀i

min
ψ∈Ψ

π∗
i
T (h − By) + bTψ, (19)

where {π∗
i }Ii=1 represents the set of extreme points of Π. Since

Π is a polyhedron, {π∗
i }Ii=1 is a finite set, i.e., its cardinality is

equal to I . In the kth iteration of Algorithm 1, we have that:

η = max
πi ,i≤k

min
ψ∈Ψ

π∗
i
T (h − By) + bTψ. (20)

Comparing (19) and (20), it is obvious that F (y,λ,β,α) ≥
η. Therefore, the stopping criterion for the algorithm is
F (y,λ,β,α) ≤ η. We will report (y,λ,β,α) as the optimal
first-stage decisions when this criterion is achieved. In the worst-
case condition, the Algorithm explores all the extreme points of
Π, i.e., it reaches at iteration I . Therefore, the stopping crite-
rion will be achieved for at most I iterations, which means that
Algorithm 1 converges to the optimal solution in a finite number
of iterations. �
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