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Incentive-Based Coordination Mechanism for
Renewable and Conventional Energy Suppliers

Sadra Babaei, Student Member, IEEE, Chaoyue Zhao

Abstract—This paper proposes an incentive-based coordination
mechanism between a wind energy supplier (WES) and a conven-
tional energy supplier (CES) to achieve a Pareto improvement. To
comply with its day-ahead schedules and hedge against the inter-
mittent wind energy generation, the WES is allowed to outsource a
back up power capacity from the CES via making a bilateral con-
tract. However, unanimous agreement cannot always be achieved
since each party plays on its own interest. We employ the concept of
swing option contracts to further encourage the suppliers to reach
an agreement of the contract. On the one hand, the WES can lever-
age the uncertainty of wind output by covering possible energy
shortage from the CES. On the other hand, the CES can optimally
allocate its energy capacity by participating into the electricity mar-
ket and offering capacity to backup the shortage of energy from
the WES. The bidding problem for each supplier is formulated as
a multi-stage stochastic programming model, with the objective
of maximizing the expected profit while maintaining a low level
of risk. Unlike the traditional two-stage approach, the proposed
multi-stage model can effectively capture the impact of rebidding
process in the real-time market. We incorporate conditional-value-
at-risk as a risk measure to characterize the effect of risk perception
of suppliers on their bidding decisions. Meanwhile, a game theory
based approach is developed to obtain the contract items between
the suppliers. Implementation results on real cases are provided to
illustrate the effectiveness of our proposed framework.

Index Terms—Bilateral contracts, conditional-value-at-risk,
game theory, multistage stochastic programming, self-scheduling,
wind energy.

NOMENCLATURE
A. Sets
g Set of generators.
A Set of day-ahead price realizations.
K Set of whole scenarios including market prices and
wind outputs.
N7(n) Setof child nodes of node n.
N; Set of nodes in the scenario tree at time period ¢.
T Set of time periods.
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B. Parameters

F.() Cost with respect to the generation level.
L, Minimum power output of generator g.

RD, Ramp-down rate for generator g.

RU, Ramp-up rate for generator g.

SD, Shut-down cost for generator g.

SU, Start-up cost for generator g.

U, Maximum power output of generator g.

WMaz TInstalled capacity of the wind farm.

o Confidence level.

v Risk preference parameter.

L Probability of occurrence of the whole scenario (in-
cluding market prices and wind outputs) k.

i Probability of nth realization of real-time parameters
(wind output and real-time market price) in scenario
tree at time period ¢ corresponding to the day-ahead
price realization q.

Di Probability of scenario 7 occurrence for the day-ahead

price.

C. Decision Variables

Ct&P4  Cost of CES from DA market.

CtS®T  Cost of CES from RT market.

CctV-P4  Cost of WES from DA market.

CtV-ET Cost of WES from RT market.

RvEP4  Revenue of CES from DA market.

RvE 2T Revenue of CES from RT market.

RvV:P4  Revenue of WES from DA market.

RvW-ET  Revenue of WES from RT market.

Otg Binary variable to indicate if generator g is on at time
period ¢.

Sy Backup capacity level at time period ¢.

Stg Backup capacity provided by the generator g at time
period ¢.

Ugg Binary variable to indicate if generator g is started up
at time period ¢.

Vg Binary variable to indicate if generator g is shut down
at time period .

wy Unit execution price at time period ¢.

) gn Real-time generation amount at time period ¢ by gen-

erator g in node n of the scenario tree corresponding
to the day-ahead price realization 7.

yf;A Power offered by the conventional generator g in day-
ahead market at time period t.
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ygi’i Power offered by the conventional generator g in
real-time market at time period ¢ in node n of the
scenario tree corresponding to the day-ahead price
realization 1.
Cli

Zin, : Wind power output curtailed by the wind supplier in
real-time market at time period ¢ in node n of the
scenario tree corresponding to the day-ahead price
realization 7.

zH A Power offered by the wind supplier in day-ahead mar-
_ ket for time period ¢ and scenario .
thT’Z Power offered by the wind supplier in real-time mar-
ket at time period ¢ in node n of scenario tree corre-
5 sponding to the day-ahead price realization i.
?

2 ,;'7 Power purchased by the wind supplier from real-time
market at time period ¢ in node n of the scenario tree
corresponding to the day-ahead price realization %.

ztUnZ Power utilized by the wind supplier from bilateral
contract at time period ¢ in node n of scenario tree
corresponding to the day-ahead price realization 1.

Or Auxiliary variable in scenario k for linearizing of
conditional-value-at-risk.

0, Unit reservation price at time period ¢.

13 Auxiliary variable for calculating conditional-value-
at-risk.

D. Random Parameters

wi Wind power production at time period ¢ in node n

of the scenario tree corresponding to the day-ahead
price realization 7.

Bi Proportion of backup capacity that is actually utilized
by wind supplier at time period ¢ corresponding to
the day-ahead price realization 7.

Kb Real-time market price at time period ¢ in node n
of the scenario tree corresponding to the day-ahead
price realization 4.

At Day-ahead market price at time period ¢ and scenario
i.

I. INTRODUCTION

ENEWABLE energy, especially wind energy, has been in-
R creasing penetration into power systems. Projections re-
vealed by National Renewable Energy Laboratory reflect that
nearly 80% of the electricity will be served by renewable re-
sources to satisfy hourly-based demands in every region of U.S.
by 2050 [1]. To promote the growth of renewable energy genera-
tion, many European countries and U.S. have established incen-
tive policies like renewable portfolio standard in their electricity
markets. As a consequence of these regulations, several U.S.
Independent System Operators (ISOs), such as MISO and ER-
COT, allow for the participation of renewable power suppliers,
particularly Wind Energy Suppliers (WESs), in their electricity
markets [2]. A WES confronts with two kinds of uncertainties
when it submits energy bids to the market: price and wind power
output uncertainties. If the WES is not able to deliver what it
commits to the electricity market due to the wind output inter-
mittency, it will face considerable penalty costs for its energy
shortage. There are a few options for the WES to mitigate the
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intermittency or to cover the shortage, but they all have their
own limitations.

The first option for the WES is to utilize energy storage re-
sources such as pumped-storage units [3], batteries [4], and air
compressed [5] to mitigate its energy shortage risk. However,
the energy storage capacities are usually very expensive, and the
high costs hinder large-volume installations. The second remedy
approach is to purchase energy from the energy market in the
form of ancillary services. The main drawback of this strategy
is that the system operator does not guarantee the provision of
enough power to cover the WES’s shortage, due to uncertain-
ties from both the supply and the demand sides. Moreover, more
deployments of ancillary services will increase the market clear-
ing price of these services and lead to higher total costs [6]. The
hybrid wind-conventional system like wind-thermal ([7], [8]) is
examined as another approach. [8] proposes a wind-thermal co-
ordinated trading mechanism for the day-ahead energy market.
The problem is formulated as a two-stage stochastic optimiza-
tion model to maximize the total profit when wind plants are
included in the generation portfolio of strategic producers. [9]
investigates the expansion planning strategy of quick start gener-
ators, like gas-fired generators with flexible minimum up/down
and large ramping capabilities, to accommodate the fluctuations
of wind generation. However, these generators are often asso-
ciated with significant operating costs. Another solution for the
WES to mitigate wind power output uncertainty is to outsource
a backup capacity from a Conventional Energy Supplier (CES)
([10], [11]). For instance, Wartsila Corporation delivered 203
MW gas power plant near San Antonio, Texas to South Texas
Electric Cooperative to provide backup power for their cus-
tomers in 65 counties, where an increasing penetration of wind
power brought challenges to the grid stability [12]. In [11], a
trading strategy between WES and CES based on a two-stage
stochastic programming model is introduced. However, the de-
signed contractual terms are not flexible enough in the sense
that the power delivery from CES to WES is unconditional.
More particularly, because of wind uncertainty and aversion to
charging imbalance penalties, WES is willing to arrange flexible
orders from CES. That is, WES would prefer purchasing backup
power from the market directly to executing the contract with
CES if the contract price is higher than the market price. But the
contract proposed in [11] obligates WES to trade the capacity
level predetermined in the contract.

Existing literatures on optimal bidding strategies for the WES
mostly formulate the problem as a two-stage stochastic pro-
gramming model (see e.g., [13], [14], [15], [16], among others).
According to the two-stage stochastic programming model, in
the first stage, the WES submits its bidding in the day-ahead
(DA) market before the wind power output and the prices of DA
and real-time (RT) markets become known. While in the second
stage, the WES decides on its transactions in the RT market once
the wind output and DA prices are available and only RT prices
are unknown. The RT bidding for all hours of the operating day
are made simultaneously at the beginning of the day. Hence, this
two-stage approach does not allow any flexibility in real-time
decisions after revealing the realization of uncertain parame-
ters during each time period. Moreover, this approach fails to
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appropriately represent current practices of dependencies
among successive periods of wind power outputs since it as-
sumes that the wind output scenarios for the entire operating day
are available at the beginning of the day. Recently, a two-step
procedure approach is proposed in [17] for bidding strategy of a
WES and the Conditional-Value-at-Risk is employed to manage
the risk of its profit. In the first step, the bidding strategy for the
DA market is decided. Then in the second step, once the ac-
tual scheduling in the DA market is identified, the WES derives
the bidding strategy in the RT market for each hour of the day
separately. Meanwhile, the WES can update the scenarios as
new information is observed. However, this paper neglects the
impacts of hourly-based RT decisions on the DA biddings.

As the preliminary study of this research, a coordination
mechanism between the CES and WES is designed in [18],
where the optimal bidding strategy problem is modeled using
the traditional two-stage stochastic approach. To the best of our
knowledge, this is the first paper that formulates the optimal
bidding and contract strategy for a wind energy supplier as a
multi-stage stochastic programming model. In our model, the
real-time decisions are made in each period on a period basis
according to the revealed real-time price and available wind out-
put in that period. In this way, the suppliers have the opportunity
to update their real-time decisions as time progresses and more
information about the uncertain parameters becomes available.
Furthermore, the proposed approach uses an incentive-based
mechanism to compensate the WES’s energy shortage. Partic-
ularly, a two-part structured bilateral contract is developed to
allow Pareto improvements to both sides in response to the un-
certain market changes. Our designed bilateral contract between
the CES and WES is characterized by three main parameters:
backup capacity level, reservation price, and execution price.
Backup capacity level is the amount of energy that CES com-
mitted to deliver to WES upon its request. Reservation price is
an allowance paid by WES to CES for reserving one unit of ca-
pacity. The execution price is paid by WES to CES for actually
using a unit of capacity. This trading mechanism is similar to
the swing option contracts ([19]-[22]). In order to obtain the
contract parameters between these two suppliers, we employ
a game theory framework, which can guarantee the maximum
achievable profits. The main contributions of this paper can be
listed as follows.

1) We develop a multi-stage stochastic programming to assist
both suppliers to optimally submit their bids in the day-
ahead and real-time markets. By capturing dependencies
between electricity prices as well as wind outputs in con-
secutive time periods and allowing the suppliers to rebid
in the real-time market, our model gives more efficient
solutions than the two-stage model.

2) Using swing option contracts, our proposed framework
provides flexible contracts to motivate the suppliers to
reach an agreement. Meanwhile, it achieves maximum
achievable profits for two parties considering operational
limitations imposed on the suppliers.

3) We incorporate Conditional-Value-at-Risk (CVaR) into
the proposed multi-stage model to provide a useful tool
for the suppliers with various risk attitudes, from risk-
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neutral to risk-averse. In other words, our model gener-
ates optimal bidding strategies based on the suppliers’
conservativeness levels.

The remainder of the paper is organized as follows. In
Section II, we describe the market clearing process in the two-
settlement electricity market. In Section III, we derive multi-
stage stochastic programming models to describe the optimal
bidding strategies for both CES and WES. Furthermore, we
investigate the solution methodology and procedure for explor-
ing Nash equilibrium in Section IV. In Section V, we provide
case studies and conduct computational experiments. Finally,
we conclude this study in Section VI.

II. PROBLEM DESCRIPTION
A. Market Framework

In U.S. electricity markets such as MISO and CAISO, mar-
ket participants can submit energy bids in both day-ahead and
real-time markets [2]. The day-ahead market is a one-time bid-
ding process, while the real-time market consists of sequentially
bidding processes for each hour. Hence, knowing the price of
previous hours, market participants have the opportunity to up-
date the bid prior to the deadline of each operating hour. Market
participants can submit their bids to the ISO in different modes.
We investigate a paradigm in which the suppliers submit of-
fers in the form of self-scheduling. In the self-scheduling mode
[23], the supplier is responsible for its commitment and gen-
eration level for each time period and it only submits energy
quantities to the ISO, instead of quantity-price bid pairs. In this
paper, we assume that CES and WES can establish a bilateral
contract. This agreement can provide a hedging mechanism for
both suppliers. That is, the CES is allowed to allocate its en-
ergy capacity by submitting bids to the day-ahead market and
real-time market, and backing up the WES’s energy shortage,
based on the market price and the contract price. Similarly, the
WES can also participate in the markets by buying or selling
its energy and covering its energy shortage with the backup
capacity provided by the CES. On one hand, this mechanism
creates an incentive for the WES to accommodate wind output
uncertainty and to avoid energy shortage penalties. On the other
hand, pre-committing capacity to WES via a bilateral contract
yields to a wise utilization of capacity and a recovery of un-
derlying costs for the CES in the presence of unknown market
price.

B. Uncertainty Characterization

We consider three uncertainty parameters in our model: day-
ahead (DA) market price, real-time (RT) market price, and wind
energy production. A multi-stage scenario tree is developed
to describe the possible realizations of uncertain parameters.
The multi-stage scenario tree can effectively capture the cor-
relation of wind outputs as well as RT market prices among
different time periods. For example, Fig. 1 illustrates a sce-
nario tree for the WES. Each node, except the root node, cor-
responds to a real-time decision and each branch corresponds
to a realization of random parameters. The root node can be
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Fig. 1. Multi-stage scenario tree for a realized day-ahead market.

interpreted as a realized DA price. For the ¢th observation of
the DA price, the wind energy for the first hour with its cor-
responding probability is realized at branches (W}, i) and
(Wiy,mi,). Then, the WES decides on the amount of energy
transactions with CES or market operator at nodes A%, and A,
to offset its possible energy deficit. Branches (W3, ki, 75, ),
(Wiy, Ko, ™), (W2137 Kis, 7_733)9 _ (W3, K14, 3y) represent
four samples (W3, W3,, Wi, , W3,) of the wind outputs in
the second hour and four samples (k},, Ky, K5, K%,) of the
RT prices in the first hour with their associated probabilities
(51,59, Th3, Thy ). Correspondingly, decisions for the second
hour are made at nodes A%, Ab,, Abs, Aj,. This procedure
will continue until the last operating hour. Note here that the
RT decisions corresponding to each node n are made after ob-
serving the realizations of wind outputs and RT prices along the
path from the root node to the node n. Thus, the uncertainties
at each period in node n are wind outputs for the next periods
as well as RT prices for the current and oncoming periods.

C. Assumptions

We make the following assumptions about the model:

e Both suppliers’ strategies and payoff functions are public
information. In other words, each supplier has complete
knowledge about the strategies and payoffs of the other
supplier, but not the decisions.

® The operation cost for the WES is negligible.

e Both WES and CES are considered to be price-takers in the
day-ahead and real-time markets. This means both suppli-
ers have no market-power in the energy markets and there-
fore, their offers have no impact on the market clearing
price. This is a reasonable assumption since we assume
both WES and CES hold small shares of generation com-
pared to the total generation in the market.
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Fig. 2. The market timeline and decision making process.

e All bids will be accepted in the market. In other words, the
suppliers can bid a low price along with their generation
quantities to ensure that their bids will be accepted.

D. Decision Sequence

The market timeline and decision making process in our

framework can be summarized as follows:

1) The WES and CES sign a bilateral contract.

2) One day prior to the operating day, the WES and CES
submit their bids into the DA market for all hours simul-
taneously.

3) The ISO clears the DA market and releases the DA price
to the suppliers.

4) Closing to its actual energy delivery for time period ¢ in
the operating day, the WES identifies its wind output for
period t.

5) The suppliers submit their biddings and offerings in the
RT market for period ¢. Additionally, the WES determines
how much energy to be utilized from its reserved capacity
in the contract for period ¢.

6) The ISO clears the RT market for period ¢ and announces
the price for this hour.

Steps 4—6 are repeated until the last time period in the oper-

ating day. Fig. 2 illustrates the above decision sequence.

III. MATHEMATICAL FORMULATION

In this section, we formulate the optimal bidding problems
for both conventional and wind energy suppliers, which can par-
ticipate in the wholesale electricity markets and make a bilateral
contract with each other. We adopt a multi-stage stochastic pro-
gramming approach to model the self-scheduling process for
both CES and WES in the day-ahead and real-time markets.
Since stochastic programming is inherently a risk-neutral ap-
proach, we incorporate Conditional-Value-at-Risk (CVaR) as
a risk measure in our model to manage the financial risk of
the suppliers. By definition, with respect to a specified confi-
dence level «, CVaR,, is the conditional expectation of prof-
its below the (1 — «)-percentile of the profit distribution. The
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(1 — «)-percentile of the profit distribution is known as Value-
at-Risk (VaR), which is the largest value that guarantees the
profit falls below that value only with a small probability
(1 — a). Mathematically speaking, CVaR is evaluated by the
following equation:

CVaR, = E [proﬁt’proﬁt < VaRa} (1)

For a scenario-based stochastic optimization model, CVaR
can be calculated by the following linear optimization problem
[24]:

CVaR, = mag{

=R

161

st &6 >&—X(>i), Vi, )

where optimal ¢ represents VaR, X (i) is the ith scenario of
profit with its associated probability 7;, and J; is an auxiliary
variable indicating the difference between VaR and the scenario
profit, which is positive if the scenario profit is less than VaR,
and is zero otherwise. Then, we formulate the problem for both
CES and WES as follows.

A. Conventional Energy Supplier

The CES is considered to operate and schedule a number of
thermal units. For CES, DA decisions are unit reservation price,
unit execution price, online or offline status of generators, start
up and shut down decisions, and energy offered to the DA mar-
ket. The RT decisions at different time periods corresponding to
each node in the scenario tree are energy offered to the RT mar-
ket and energy outputs. Given backup capacity level S provided
by WES, the problem of identifying the best bidding and con-
tract strategy for the conventional supplier can be formulated as
follows:

I1°(S) = max E[RVC’DA} +]E[RVC7RT]

— Ct9PA —E[Ct“FT] + 4o CVaR,
3)
st. ERVCPA] =350, 433 N ooy, @
teT teT gegG i€l
SRAE 3 oI Dol R
teT geG i€l neN; jeN+* (n)
+ ZZPiﬁfStwt, (5)
teT i€l
COPA = 3" (SUyuiy + SDyvry), (6)
teT geg
B[] = 3 o[ 3 F<>] )
teT geG i€l neN;
1
CVaR, =€ = ——> 1k, (8)
@ kek
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Lyoy < ythA +stg < Ujorg, Vi, g )
— O(t-1)g T 01g —uty <0, Vi, g (10)
O(t—1)g — Otg — Uty < 07 Vtug (11)
D sy =5, Wt (12)
9€9
D Thgn = DU D Y +BiSk, Vhin (13)
g€g =Y =Y
L!]Ot!] < yfg + yrgg : + Stg < Ugotgv Vtagvn (14)
L.‘JOUJ S xig’n, S Ugotga Vt,g,i,n (15)
‘/E;[tgn - xétfl)gn < RUgo(tfl)g

+Uy(1 = 0(-1)4), Vt,g,n (16)
xétfl)gn - xign < RDgOtg + Ug(1 - Otg)» Vt,g,n (17)

¢ — [RVOPA L RVEAT P4 — ol | < 6y, W

(18)
utg7vl‘gvotg € {07 1}a
et,wtaytg 7y§;1r:t?xign76k Z Oa Vtaganaiak' (19)

The objective for CES is to maximize the expected profit
while maintaining a reasonable level of risk. The risk preference
parameter y¢ allows the CES to make a balance between the
expected profit and CVaR, and as a result, to generate different
bidding strategies. When the value of ¢ is equal to zero, the
CES is totally risk-neutral. That means, the CES maximizes
its expected profit while it ignores the risk of profit. As the
value of ¢ increases, the CES becomes more risk-averse, in
the sense that it maximizes both the expected profit and CVaR.
Maximizing CVaR is intended to increase the average profit of
worst scenarios that encounter with very low probabilities. If
the value of v¢ is large enough, the CES only maximizes CVaR
to ensure that a minimum level of profit is obtained with a
high probability «. The first two terms in the objective function
(3) express the revenues of CES and the following two terms
indicate the costs of CES from DA and RT markets, respectively.
The expected DA revenue is calculated in (4), which includes
DA incomes from reserving capacity for WES in the bilateral
contract and DA bidding. The expected RT profit in (5) results
from RT bidding and providing capacity to WES. We assume
that from the historical data, the RT utilized capacity by WES
can be estimated as a fraction (i.e., 3) of the backup capacity. The
DA cost in (6) is associated with the generators start-up/shut-
down costs. The RT cost in (7) pertains to the generation cost,
which is approximated by a m-piece piecewise linear function.
Constraints (9), (14), and (15) enforce the generation capacity
on each thermal unit. (10) and (11) represent unit start-up and
shut down constraints, respectively. Constraints (12) ensure that
the CES provides the required backup capacity to WES. Power
balance constraints are expressed in (13). Constraints (16) and
(17) impose ramping rate limits for each unit. Finally, constraints
(18) calculate CVaR.

Authorized licensed use limited to: University of Washington Libraries. Downloaded on December 30,2021 at 20:15:48 UTC from IEEE Xplore. Restrictions apply.



1766

B. Wind Energy Supplier

Regarding WES, the DA decisions are backup capacity level
and energy offered to the DA market, while the RT decisions
associated with each node in the scenario tree are energy offered
to the RT market, energy purchased from real-time market, en-
ergy utilized from the bilateral contract, and wind outputs that
are curtailed. Given unit reservation price 6 and execution price
w provided by CES, the problem of finding the optimal bidding
and contract strategy for the wind supplier can be defined as
follows:

1" (0, w) = max E[RvVV'P4] + E[RVW-/T]
_ CtW,DA - E I:CtWRT} 4 T CVaRu
(20)
st. ERVVWVPAT = 3N " piagizf 4, 2D
teT i€l
SRR Wi Dol o
teT i€l neN; jeN+ (n)
(22)
cV P =3 "6,9, (23)
teT
E[CtW‘RT] = ZZ;L [ Z Z ijﬁszm ]
teT i€l neN; jeN™ (n)
+3 5 [ > wtzg;f], (24)
teT iel neN;
1
CVaRy =€ = 7—— > by, (25)
- kek
0<2PA <M vt (26)

Wtin = Zt + ZfIEzT ' + chq; ' - Z;S;v? an ) Vt n, i
27
0<z0" <S8, Vitn,i (28)

£ — Ry PA LR — e P — g T < 6y, R
(29)
SpozPA 2t 0 A 6, > 0, Vnik. (30)

Similar to CES, the objective for WES is to maximize the
expected profit and CVaR. The first two components in (20)
represent revenues of WES from DA and RT markets, respec-
tively, and the following two components represent costs of
WES from both markets. The DA and RT revenues in (21) and
(22) come from selling energy to the corresponding markets.
The DA cost (23) is caused by the reserved capacity from CES
and the RT cost (24) stems from actually utilizing the reserved
capacity from CES and purchasing energy from the RT market.
Constraints (26) limit the power that WES can trade in the DA
market. Constraints (27) indicate power balance. That is, the to-
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tal realized wind output should be equal to the amount of energy
offered in the DA as well as RT markets, and wind curtailment
minus the amount of energy purchased from CES and RT mar-
ket. Constraints (28) bound the amount of power transaction in
the contract with CES. Finally, constraints (29) evaluate CVaR.

IV. SOLUTION METHODOLOGY

Game theory is a powerful framework for analyzing strategic
decision situations where the payoff of each individual deci-
sion maker relies on the decision of other decision makers.
Recent publications in power market area pay more attention
to game theory as it conceivably supports competition in the
market ([25]-[27]). Market participants are always seeking to
know whether they are better off by cooperation or by non-
cooperation in competitive markets. A necessary condition for
the non-cooperative game is that a binding commitment about
price fixing and quantity fixing has to be made in such a way that
all participants can benefit from it. The suppliers can play either
a pure or mixed strategy game [28]. In the pure game, each sup-
plier can choose only one particular strategy from its strategy
set. Unlike the pure games, the mixed strategy games allow for
choosing multiple strategies based on an assigned probability
distribution. One concern associated with the mixed strategy is
that it is not clear how an energy supplier would actually im-
plement a mixed strategy. Accordingly, this is not a good fit
for our problem setting, since in our paper, the suppliers should
come up with one certain single contract and one plan to opti-
mize their market participation based upon this certain contract.
Considering multiple contracts each associated with a probabil-
ity distribution can cause implementation issues. Therefore, we
will focus on the pure strategy game in this study. Notice that the
considered game is a nonzero-sum game since the sum of the
suppliers objective functions is not zero (even after scaling and
translation). Nash equilibrium is a concept solution used in game
theory to describe an equilibrium where no participants has any
incentive to unilaterally change its own strategy. To demonstrate
the mathematical procedure of finding Nash equilibrium, let us
assume S}, SZ, ..., SM be finite discretization of the set .7 of
capacity strategies and 0}, w}), (02, w?), ..., (0/ ,w]) be finite
discretization of the set & of price contract terms (6, w). Let
us also assume that ¢¢ (0, w | S) indicates the total profit of
CES corresponding to its price contract decisions (6, w), given
backup capacity S, and ¢" (S | 6, w) represents the total profit
of WES corresponding to its backup capacity decision .S, given
price contract strategy (6, w). If (S*, 6*,w*) is a Nash equilib-
rium, then none of the suppliers can profitably stray from the
strategy (S, 0%, w*). The algorithm for finding Nash equilib-
rium is depicted in a flow chart in Fig. 3. Since both sets . and
& include finite discrete elements and we delete dominated
points, the algorithm will terminate in finite number of itera-
tions. Meanwhile, if no Nash equilibrium does exist, then the
suppliers do not adopt a contract.

V. CASE STUDY

In this section, we consider one wind plant and one thermal
plant including two units. The installed capacity of the wind
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te a contract

(0%, w*) = (0, w')
or (0%, w* | §*) =
(0w | S5*)?

Solve the WES prob-
lem for each S € .7.
Call the best optimal
solution S*, and let
S =8

[

Fix S, and solve the
CES problem for each
(0,w) € 2. Call the
best optimal solution

(0%, w*), and set k=1

Delete point
(0',w',S"), and let
0", w') = (0", w*),
and §' = 5*

All points are deleted?

Fix (6%, w*), and solve

the WES problem for
no

each S € .. Call the k=17
best optimal solution
S*, and set k=0

S* = S or
OV(S* | 0%, w*) =
OV(S' | 0%, w*)?

No Nash equilibrium

no strategy exists

Fig. 3. Flowchart of solution methodology.

plant and thermal plant are 100 MW and 130 MW, respec-
tively. We use the historical market price data during January
1-November 1, 2014 from the MISO-Michigan hub. We ex-
clude weekend data to preclude any weekly seasonality. DA and
RT price samples are generated using the procedure proposed
in [29], and the wind output samples are simulated using the
method applied in [30]. Moreover, for multi-stage scenario tree
construction and real-time scenario reduction, we employ the
method proposed in [31]. We conduct several experiments with
different scenario sizes. Unless state otherwise, the day-ahead
and real-time sample sizes are 50, and the corresponding multi-
stage real-time scenario tree includes 932 nodes. The confidence
level is set at = 0.9 to calculate CVaR. All of the experiments
are implemented in C++ and solved with CPLEX 12.6 on a
computer with Intel Xeon 3.2 GHz and 8 GB memory. We con-
centrate more on the behavior of WES in the case studies. In the
following part, we first verify the effectiveness of the proposed
trading mechanism by giving several numerical examples. Sec-
ond, we compare our multi-stage stochastic programming model
with the two-stage stochastic model.

A. Effects of Signing Contract

To assess the proposed method, out-of-sample simulations
are carried out in daily time steps over a 13-week horizon. The
expected weekly profits of the suppliers are compared in two
different scenarios as shown in Fig. 4. The first scenario (no

1 x10°
_ 4 —a— No contract ’ - . j " A
£ 1.35| = # - Potential contract | / \ » J
g P ! \ T~ A
2 13r / 4
=
2 125F 4
3
g ot2r g
115 . . . . . .

Expected profit ($)

Period (week)

Fig. 4. Expected weekly profits for WES (above) and CES (below).
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Fig. 5. Expected hourly profits (above) and increased hourly profits (below)
from participating in both energy market and bilateral contract for WES.

contract) is that the suppliers participate in the energy market
only. The second (potential contract) is that the suppliers have
the option to transact with each other in addition to participating
in the market. From Fig. 4, we can see that the expected weekly
profits obtained in the second scenario are always superior to
those obtained in the first scenario. This means both CES and
WES benefit from conducting the contract. Yet the differences in
some weeks (e.g., weeks 3 and 12) are smaller since the contract
is not exercised for some days during the corresponding weeks.
To better understand the details of the transaction mechanism,
in the following we concentrate on a specific day of the planning
horizon, in which the contract is signed.

The expected hourly profits of the WES are illustrated in
Fig. 5. It can be observed that having transaction with the CES
brings more benefits to the WES as its total increased profit is
$3085, with increment rate of 3.1%. We notice that the CES
also finds the bilateral contract viable with totally 2.5% incre-
ment rate. Fig. 5 also shows that the WES mostly gets advan-
tage from the contract at time period 4. The reason is that the
volatile RT market price becomes pretty high at this period and
thus the WES inclines to utilize its backup capacity from the
CES instead of buying energy from the RT market with higher
price. On the other hand, we observe that the profit of the first
scenario (not engaging in the contract) is slightly greater than the
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Fig. 6. Expected hourly power traded with RT market for WES.

second one (Nash game case) during some periods. For instance
in time period 23, the execution price wo3 is greater than the RT
market price. Thus, the WES has no tendency to exercise the
contract. However, since it has already paid 023553 for reserving
the backup capacity, adopting the contract yields to a less profit
for the WES at this period. It is worthy to mention that for some
periods the WES has no wish to use the backup, like time period
23. Therefore, our two-part price bilateral contract (swing op-
tion contract) provides a more cost-effective solution compared
to the traditional one-part price contract (forward contract). The
reason is that our contract represents the right, but not the obli-
gation, to purchase power at the prearranged execution price.
Hence, when the market price is less than the execution price,
the WES does not exercise the contract, but purchase the energy
from the market with the market price to recover the shortage,
plus a reservation price (reservation price usually contains a
small portion of the execution price) paid to CES for reserving
the capacity. However, the forward contract obligates the WES
to purchase from the CES, though the contract price is higher
than the market price. Therefore, the forward contract might
be more costly to the WES. In other words, by considering the
reservation price in the contract, the risk is more diversified be-
tween the suppliers and the WES is further motivated to sign
the contract.

Fig. 6 indicates the expected energy traded in the RT market
for each time periods. For periods that the expected DA price is
higher than the RT price, the WES decides to bid into the DA
market as much as possible and then recover its energy shortage
by trading with CES and RT market. In this case, the bilateral
contract provides a precious opportunity for WES to purchase
less expensive power from the RT market. Moreover, for the
periods that the RT price is higher than the DA price, the WES
prefers to assign all of its capacity into the RT market. In this
case, the contract allows the WES to utilize the backup capacity
with low price and sell it to the RT market with higher price.
For other periods like time periods 23 and 24, we can readily
identify that the power traded in the RT market for Nash game
and no contract cases are the same. The reason is that it is not
economically justifiable for the WES to use its backup capacity.
Considering above discussion, it can be clearly observed that our
devised bilateral contract provides a flexible tool for the WES
to secure itself with respect to the uncertainties in the operating
day.
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12 (above) and time period 20 (below).

B. Effects of Risk Perception

Fig. 7 shows the efficient frontier for the WES. Efficient
frontier plays a crucial role for the WES to resolve the trade-
off between the expected profit and risk. For a low risk-averse
behavior of WES (v = 0.1), the value of expected profit is
$102716 with CVaR of $61663. By moving to a high risk-
averse case (v = 1), the value of CVaR grows by 13.5% at
the cost of just 2.4% reduction in the expected profit. This is
a compelling result since by a small decline in expected profit,
the risk of profit volatility is significantly reduced.

Fig. 8 illustrates the impact of various risk attitudes on the
amount of power that WES trades with the DA and RT markets
for time periods 12 and 20. We choose these periods as they
reveal two distinct properties. The wind output is highly volatile
in time period 12 and the expected RT price is greater than
the DA price. However, the wind output has less fluctuations in
time period 20 and the DA price is greater than the RT price.
Considering time period 12, as the WES becomes more risk-
averse (the value of - increases), it offers more power in the
DA market and less in the RT market to hedge against the rise in
RT price. In contrast, the WES has tendency to trade less power
in the DA and more in the RT markets for time period 20. By
this strategy, the WES lowers its profit volatility in the hope that
it can sell its generation in the RT market at a reasonable high
price.
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TABLE I
COMPARING OBJECTIVE VALUES FOR MULTI-STAGE AND TWO-STAGE STOCHASTIC PROGRAMMING

DA 50 100

RT 50 100 50 100

Instance Two Multi Two Multi Two Multi Two Multi

Day 1 profit($) 147587 148018 144620 144694 138872 139283 139429 139450
time(s) 10.29 84.73 10.05 129.11 9.6 211.38 11.94 333.16

Day 2 profit($) 140049 140348 137870 138105 113004 113263 112537 112720
time(s) 12.21 87.55 11.17 108.72 10.59 195.71 11.16 25591

Day 3 profit($) 129962 143016 130792 144321 136225 149022 134446 147613
time(s) 23.04 92.18 19.48 110.39 20.19 205.14 23.11 342.1

Day 4 profit($) 130506 131204 128988 129767 117397 118312 116864 117710
time(s) 11.62 81.27 13.77 162.13 19.45 198.21 20.1 232.93

C. Effects of Multi-Stage Programming

In order for evaluate the performance of our multi-stage
stochastic programming model, we compare the results with
the two-stage stochastic case. We carry out case studies for 4
different days, with DA price samples of two sizes (50,100), and
RT price as well as wind output samples of two sizes (50,100).
According to the Table I, the expected profits attained by the
multi-stage model are always superior respect to those attained
by the two-stage model. This is because the multi-stage solution
comes up with more flexibility in RT decisions with respect to
the uncertain parameter realizations. However, there is a trade-
off between flexibility and computational efficiency, when using
the multi-stage model.

VI. CONCLUSION

We develop a multi-stage stochastic programming model for
the wind and conventional energy suppliers to optimize their bid-
ding strategies in the both day-ahead and real-time markets. Our
proposed model provides an opportunity to the wind supplier
to update its real-time decisions as time progresses when more
information about wind outputs and real-time market prices be-
come available. In addition, using option contract with Nash
equilibrium framework, an incentive-based trading mechanism
is investigated to help the wind energy supplier to recover its
energy deficit and at the same time bring the conventional en-
ergy supplier to obtain more profits. The computational results
verify that our proposed approach is effective in accommodating
wind and price uncertainties. Finally, as the future work of this
paper, our framework can be extended to the case with one con-
ventional supplier and several renewable suppliers, and the case
with several conventional suppliers and one renewable supplier.
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