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Resilient Transmission Hardening Planning
in a High Renewable Penetration Era

Ali Bagheri
and Jianhui Wang

Abstract—Hardening components in transmission systems is a
practice to improve system resilience against possible disturbances
caused by natural disasters. In a power system with a very high
penetration of renewable energy, the system hardening will be fur-
ther complicated by the uncertainty and variability of renewable
energy. In this paper, we study the transmission line hardening
planing problem in the context of probabilistic power flows injected
by the high penetration of renewable energy. We assume that the
probabilistic information of renewable energy is incomplete and
ambiguous and propose a data-driven approach to approximate
the renewable uncertainty sets. We then extend the NV — 1 secu-
rity criteria to multiple simultaneous contingencies and seek to
prepare a hardening plan for the worst-case scenarios. A two-stage
data-driven stochastic model is formulated by considering the joint
worst-case wind output distribution and transmission line contin-
gencies. Then, we apply the Column-and-Constraints generation
method to solve the proposed model. To test the effectiveness of
the proposed approach, we conduct experiments on 24-bus and
118-bus test systems. We numerically show that the data-driven
approach can effectively address the uncertainty ambiguity and
the proposed approach can produce effective hardening plans that
improve the system resilience.

Index Terms—Transmission system resilience, data-driven
stochastic programming, wasserstein metric, column-and-
constraint generation.

NOMENCLATURE

A. Sets

B Index set of all buses.

B;  Index set of all buses directly connected to bus i.
& Index set of transmission lines.

£4  Index set of attacked transmission lines.
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Ex  Index set of hardened transmission lines.
T Index set of load blocks.
N Index set of wind output scenarios.

B. Parameters

L;;  Load shedding cost at bus ¢ for load block ¢.

H;; Investment cost to harden transmission line (4, j).

U The maximum number of lines affected by natural disas-
ters simultaneously.

F;;  Flow capacity of transmission line (¢, j).

C;  Generation unit capacity at bus 7.

X;; Reactance of transmission line (7, j).

O™ Phase angle lower limit at bus 4.

0™ Phase angle upper limit at bus 1.

d;;  Demand at bus ¢ for load block ¢.
w;;  Renewable energy output at bus 7, load block ¢.

C. Decision Variables

z;j  Binary decision variable to indicate whether transmission
line (¢, j) is hardened (z;; = 1) or not (z;; = 0).

u;;  Binary decision variable to indicate whether transmission
line (¢, j) is attacked (u;; = 0) by natural disaster or not
(uij = 1).

pi+  Power generation at bus ¢ for load block t.

fij.i  Power flow from bus i to bus j on transmission line (¢, 5)
for load block .

0;;  Phase angle at bus ¢ for load block t.

si¢  Load shedding at bus ¢ for load block ¢.

1. INTRODUCTION

ATURAL disasters, such as hurricane, wildfire, flooding,
N etc., have become more frequent in the recent years [1].
Natural disasters often disrupt power system operations and
cause service interruptions, ranging from short-term service
losses to large-area extended outages. For example, according
to a report by the President’s Council of Economic Advisers
and the U.S. Department of Energy [2], power outages caused
by severe weather conditions constitute 58% of all outages and
87% of outages affecting 50000 or more electricity customers,
during the period from 2003 to 2012. It is estimated that weather
incurred outages have cost the United States 60 billion USD an-
nually [2]. These facts indicate the urgency of improving power
system resilience against extreme weather events. To mitigate
the natural disaster related risks and improve power grid re-
silience, many research works along with optimization tools
focus on three main thrusts in the process of the power grid
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in reacting to the nature disasters: 1) pre-disaster system hard-
ening and investment (e.g., [3]-[13]), 2) emergency responses
and corrective actions during or right after disasters (e.g., [14]-
[17]), and 3) self-healing, rapid system restoration and damage
assessment after disasters (e.g., [18]-[21]). Hardening, as one
of the most effective activities to increase the power system re-
silience, is defined as any physical change (such as underground-
ing power lines, vegetation management, pole reinforcing, etc.)
to the power system infrastructure to make it less vulnerable to
damage from severe weather conditions [22], [23].

One of the most commonly used security criteria for daily op-
erations is the N — 1 contingency (e.g., [24], [25]), where the
system can continue operations without load shedding under any
single component failure. A more stringent but less used crite-
rion is the N — k contingency, in which the system is required
to sustain simultaneous failures of k electrically connected com-
ponents [26]. While these security criteria effectively represent
system operators’ concerns for daily operations, they do not cap-
ture the possible contingencies in extreme weather conditions or
natural disaster occurances, in which multiple components that
are not electrically connected could fail simultaneously [27].
In this work, we generalize the N — k contingencies to any
k simultaneous component failures and aim to prepare for the
worst k failures. Finding a defensive strategy against the worst
case among a set of adversary scenarios is often modeled as a
bi-level interdiction framework, which is known as the attacker-
defender (AD) model (e.g., [3], [5], [6]). In this context, the
attackers are extreme weather events (natural disasters) trying
to cause the most severe damage to system operations; the de-
fenders are the re-dispatch actions that minimize the damages
by redistributing power flows. However, the AD model helps
to find near-optimal but not the optimal protection plan against
disruptive events, because it only seeks for the most critical set
of assets, and hardening these critical assets is not necessarily
the optimal protection plan [7]. To obtain the optimal hardening
decisions, the tri-level attacker-defender-attacker (DAD) model
was initially proposed by Brown et al. [8]. The DAD model,
which is an extension of the AD model, includes two inter-
acting agents (attacker and defender) in three levels (see, e.g.,
[9]-[12]). In the first level, the defender makes hardening de-
cisions with a limited protection budget before disruptions. In
the second level, the attacker disrupts the system to make the
defender suffer from the highest cost or largest load shedding.
In the third level, the defender aims to minimize the system
cost against disruptions by taking corrective actions through
re-dispaching the power output.

Besides the vulnerability of power system to nature disasters,
the increasing renewable energy integration to the power system
brings another significant challenge for independent system op-
erators (ISOs) to build a sustainable power system infrastructure.
As renewable penetration continues to grow (e.g., it is predicted
that 20% of nation’s electricity is generated by wind energy by
2030 [28]), to mitigate the risks of disruptions caused by the in-
termittent nature of renewable energy, the ISOs are responsible
for preparing the grid to enhance the system resilience with the
uncertain renewable energy output. To capture the renewable en-
ergy uncertainty into optimization models, stochastic program-
ming (SO) (see, e.g., [29]-[32]) and robust optimization (RO)
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(see, e.g., [33]-[35]) approaches have been studied extensively.
However, SO and RO approaches have shown disadvantages in
practice. SO approaches can be unreliable due to the blind as-
sumption of probability distribution of the random parameter. In
addition, SO becomes computationally challenging for a large
number of random parameter scenarios. Also, RO approaches
can be too conservative due to the consideration of the worst-
case scenario of the uncertain parameter, which happens rarely.

Another challenge for these methodologies to be practical is
that, an accurate/complete knowledge on the probability distri-
bution can hardly be obtained. Recently, distributionally robust
and data-driven optimization (DRO) (see, e.g., [36]-[38]) has
been applied to power system operations. The advantages of
DRO is that it can handle uncertainties with partial information
about the probability distribution. DRO approaches have been
successfully developed and implemented to solve power system
optimization problems under uncertainty (see, e.g., [39]-[42]).
In this approach, by learning from a set of historical data or mo-
ment information for the random parameter, an ambiguity set for
the unknown probability distribution of the random parameter is
constructed. Then, the objective is to minimize the total cost un-
der the worst-case distribution scenario within the constructed
ambiguity set. Due to the considerations of the worst-case dis-
tribution, DRO leads to risk-averse and conservative solutions,
as compared to traditional stochastic approaches. However, the
DRO in general is less conservative than the traditional robust
approaches [37]. That is because, DRO takes advantage of data
information to build an ambiguity set of distribution and con-
siders the worst-case distribution in the ambiguity set to keep
robustness, while RO ignores the probability of random param-
eter scenarios, which usually leads to an unnecessarily high
average cost. We will also numerically show this fact in our
case study.

In this study, we develop a defender-attacker-defender-based
transmission system hardening planning (TSHP) model under
both random disruptions (natural disasters) and uncertain wind
power generation. Due to the availability of a considerable
amount of historical data for wind power output to the Indepen-
dent System Operators (ISOs), we deploy the DRO approach to
formulate the wind output uncertainty. That is, we allow the am-
biguity of the probability distribution for the wind output, and
construct the ambiguity set for the unknown distribution. More
specifically, to build the ambiguity set, we use the Wasserstein
metric as a probability measure [43], [44], which also has many
applications in transportation theory [45]. The built transmis-
sion system hardening planning model is a two-stage model
that deals with the hardening decisions in the first stage and the
re-dispatching decision in consideration with the worst-case
disruption scenario and the worst-case wind output probability
distribution in the second stage. This two-stage model can be
reformulated as a tractable formulation that can be solved effi-
ciently by using decomposition approaches. The contributions
of this research are summarized as follows: A planning tool for
power systems with high renewable generation capacity is de-
veloped. This tool, which considers both renewable generation
uncertainty and multiple random disruptions, helps power
system operators to efficiently allocate protective resources
in order to reduce the vulnerability of the power transmission
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system against multiple transmission line contingencies caused
by natural disasters or terrorist attacks, as well as maintain
power system reliability with a large penetration of renewable
energy. In addition, the proposed framework can efficiently
utilize data information to reduce the conservativeness,
and moreover, it can be solved efficiently with a tractable
reformulation.

The remaining parts of this paper are organized as follows:
In Section II, we describe how to use the historical data and
construct the confidence set. In Section III, we develop a two-
stage data-driven defender-attacker-defender model under both
natural disaster and wind power uncertainties. In Section IV, the
proposed decomposition framework and the solution algorithm
are presented. In Section V, numerical results are discussed.
Finally, the research is concluded in Section VI.

II. DATA-DRIVEN MODELING AND CONFIDENCE
SET CONSTRUCTION

In this research, we allow the probability distribution of wind
output to be ambiguous because a particular distribution as-
sumption for wind power output can be biased from the actual
one. We construct an ambiguity set for the true probability dis-
tribution for wind output, which is centered at the reference
distribution that is learned from a given historical data set.

First, we discuss the way to use the historical data and to
obtain the reference distribution to estimate the true distribution.
Given a set of historical data points, we let the histogram of data
be the reference distribution of wind power output. Without
loss of generality, we assume the random wind power output
w(&) to be bounded above and below, within a supporting space
W. We partition WV into N bins By,..., By, so that W =
ngl B,,. Given a set of historical data with size S, we obtain
the reference distribution P = (p', p2,...,p"), where p" =
S, /S,¥n=1,2,...,N,and S, denotes the frequency of data
samples in bin n. Notice here the size of bins, i.e., N affects
both time complexity and solution accuracy. Actually in our
data-driven modeling approach, IV is the only parameter that
affects the computational complexity. That is, as IV increases,
the computational complexity increases. However, the increase
of IV also leads to the increase of solution accuracy. Therefore,
there is a trade-off between increasing accuracy and improving
computational efficiency on the choice of N.

Second, we use the reference distribution to construct a con-
fidence set (or ambiguity set) for the true distribution of wind
output with confidence level 5. Note that the reference distri-
bution P is inherently different from the true distribution P. To
measure the difference between P and 15, ie., D(P, f’), we use
the Wasserstein metric as the probability measure [43], [44].
Accordingly, ® (P, P) is defined as shown below:

9, (P,P) := inf {E@ [d(w, )] : P = p(w),P = W@)},
(D
where w and w are random wind power output associated with
the true distribution and the reference distribution, respectively.

d(w,w) is the distance between random variables w and .
Q denotes all joint distributions of w and @ with marginal

distributions P and P. o(.) denotes that P and P are distribution
functions.

Then, we can construct a distribution-based ambiguity set
using the Wasserstein metric, as shown below:

D= {P €p, 0, (P,P) < a}
- {P cP, :i%f{EQ[d(w,w)] :

P = p(w),P = o)} ga}7 @

where 3, represents the set of all probability distributions and
« denotes the tolerance level of the distance, which depends
on the confidence level 3 and the size of the historical data S.
Under the Wasserstein metric, the relationship between « and
S can be described by the following proposition (please see the
Appendix for the proof):

Proposition 1: Given a set of historical data of size .S, IV bins
and a supporting space YV with diameter D, the convergence rate
between P and P under the Wasserstein metric is as follows:

Pr(®y(P,P) <a)>1—2Nexp(—4aS/ND). (3)

Accordingly, if the confidence level, i.e., the right-hand side
of inequality (3), is set to be 3, then we have

ND 2N

Based on (4), as the size of historical data S increases, the
value of o decreases, i.e., the distance between the reference
distribution and the true distribution (P, f’) becomes smaller,
and P converges to P.

We denote the central point of binn asw”,n=1,2,... N,
which represent the discretized scenarios of the uncertain pa-
rameter. Based on the definition of the Wasserstein metric and
the construction of (P, f’) in (2), we can reformulate the am-
biguity set D in (2) by the following constraints:

N N
Z Z qnm‘wm _wn‘ <a, 5)

n=1m=1

N
Z qnm _ pm Vm (6)
n=1

N

> a=p"vn ™
m=1

N
dopt=1, 8)

where p” and p” represent the true probability and refer-
ence probability of scenario n respectively, and q"", n =
1,...N,m =1,... N denotes the joint probability distribu-
tion (i.e., Q in (2)). Constraint (5) is a reformulation of
(2). Constraints (6) and (7) represent that p™ ,m =1,..., N
and p",n =1,..., N are marginal distributions of q"™, n =
1,...NNm=1,...N.
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III. PROBLEM FORMULATION

In this section, we develop a data-driven stochastic defender-
attacker-defender model for the transmission system hardening
planning problem considering uncertain wind power generation
and unknown disruptive events, such as natural disasters.

As a matter of fact, although natural disasters (or terrorist
attacks) happen infrequently and the related historical records
are quite limited, they can bring catastrophic impacts when they
happen. However, using historical records, we can claim that
the number of transmission lines disrupted simultaneously is
no more than U. Therefore, we formulate the uncertainty set of
random disruptions as follows:

U:{ > (=) < Uy E{O,l}}. 9)
(i,j)e€

In addition, natural disasters are intrinsically correlated in
location. In order to consider this fact in our proposed model, we
can restrict the random disruptions to the area that is vulnerable
to natural disasters by adjusting the uncertainty set U. In this
case, we replace £ in (9) with £, , which denotes the transmission
lines in the vulnerable area (see [12]).

To hedge against the risk brought by natural disasters and
wind energy intermittency to the power system, we consider
the joint worst case of disruption scenario in U and probability
distribution of wind output in D). Accordingly, we develop a
data-driven two-stage stochastic model that considers the hard-
ening decision variables in the first stage, and deals with power
generation level, power flow, phase angle and load shedding
variables by considering the worst-case transmission line dis-
ruption in U and the worst-case probability distribution of wind
output in D in the second stage. We formulate a data-driven two-
stage stochastic transmission system hardening planning model
as follows:

mln (7;‘5 Hijzij + rgleaxrglgﬁpr[Q(z,u,w(g))] (10)
stz € {0,1},Y(i,j) € &, (11)
where,
Az, u, w(&) fpnfnengzZL,fs” (12)
st (25 + uij — ziui) (03 (§) — 0:(£))
—Xijfij () =0Vt € T ,V(i,j) € &, (13)
—Fj(zij +uij — zijuig) < fij(8)
< Fij(zij +wij — zijuig), ¥Vt € T,¥(i,j) € &, (14)
P+ D Fir© = D fiial&) +sul€)
JEB; (i) JEBi (i)
= diy —wiy (€)Yt € T, Vi € B, (15)
pi (&) < Cy,Vt € T Vi € B, (16)
oI < 0;,(€) < O™Vt € T, Vi € B, 7
pit(€), st (§) > 0,Vt € T,Vi € B, (18)
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where ¢ represents randomness of wind output in the model.
The objective function (10) is to minimize the system cost, i.e.,
hardening cost plus expected load shed cost under the worst-
case disruption scenario and the worst-case distribution of wind
output. Note here that in literature, hardening decisions or costs
are often considered as budget constraints. In our paper, we in-
clude hardening costs in the objective function instead so that
we can show different numbers of hardened lines led by dif-
ferent approaches. Constraints (13) represent the power flow
in terms of phase angles. Constraints (14) are the transmission
line flow capacity limits. In practice, hardening does not elimi-
nate the chance of vulnerability to natural disasters. To address
this, we can add a chance constraint to reflect the chance of
vulnerability for hardened lines into the model. However, since
hardening can reduce the chance of vulnerability significantly
to a very small level, in this paper, we neglect the small chance
of vulnerability of hardened lines and assume that the hard-
ened lines are invulnerable to disruptions. Accordingly, the term
Zij + ui; — zijui; ensures that power flow constraints hold for
any status of hardening and disruption. If line (¢, j) is hardened
(25 = 1), then z;; + u;; — z;ju;; = 1. So, this line is invulner-
able and the power flow constraint holds. If line (¢, 7) is not
hardened (z;;,; = 0), then z;; + u;; — 2;;u;; = u;;. Hence, the
power flow depends on the attack scenario. If line (i, j) is at-
tacked, i.e., u;; = 0, then there is no flow on line (7, j) and (13)
and (14) hold. If line (i,7) is not attacked, i.e., u;; = 1, the
power flow constraint also holds. Constraints (15) observe the
power balance at each bus. Constraints (16) are the thermal gen-
eration capacity limits. Constraints (17) enforce the phase angle
limit at each bus.

Note here that power flow constraints (13) and (14) are nonlin-
ear. To linearize them, we fix the first-stage hardening decisions
z;; and consider them as input parameters in the second-stage
problem. We consider two cases based on the hardening deci-
sions derived from the first stage. In case one, we define set
En ={(1,7) € €|zi; = 1} as the subset of hardened lines. The
transmission lines in £y are not affected by disruptions, and
then for V¢ € 7,V(i,7) € Epy, constraints (13) and (14) can be
reformulated as:

(05t (&) — 0;:(&)) — Xij fij 1 (§) =0,
—Fj; < fi;1(&) < Fyy.

19)
(20)

In case two, for the transmission lines that are not in set £y, i.e.,
the lines are not protected, the power flows in these lines de-
pend on the disruption status. In this case, for Vt € 7,V(i, j) €
E\En, we adopt the big-M method to linearize power flow
constraints (13) and (14) as follows:

(0:(§) = 0;¢(8)) — Xij fij.(§) + M(1 —ui5) >0, (21)
(03 (&) —0;:(8)) — Xijfij (&) = M(1 —u;) <0, (22)
—Fijui; < fij.0(§) < Fijuj. (23)
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Now, our data-driven model can be presented as the following
program:

min E HUZ”
z

(i,5)€€
+ max E 7. min E EL;ts-f "
uGU,PGD Pit p,fﬁ,s.o - " ! 1(5
1

s.t.  Constraints (11), (15)—(23). 24)
In the second-stage objective function, due to the independence
of scenarios, we can interchange the second-stage minimization
and summation (corresponding to the expectation term) opera-
tions. Then, we are able to reformulate our data-driven two-stage
stochastic transmission system hardening planning problem as
follows:

mln g i 2ij

(i,5)€€

N
+ max min E E E pit Lirsit (§™)
P,q,u p,f,0,s,0
’ m=1 i t

s.t.  Constraints (5)—(9),

Constraints (11), (15)-(23). 25)

Notice here, in our two-stage model, hardening decisions are
made in the first stage (defender’s hardening plan). Second-stage
is a max-min problem, in which the outer maximization prob-
lem considers the worst-case probability distribution of random
wind output and the worst-case random disruption (attacker’s
plan) and inner the minimization problem minimizes the system
cost by re-dispatching the power output (defender’s corrective
actions). To solve this model, we transform our two-stage data-
driven formulation into a tractable reformulation and employ a
decomposition algorithm. In the following section, we describe
the approach to reformulate the model and solution algorithm
in details.

IV. SOLUTION METHODOLOGY

In this section, first, we explain how to reformulate (25) into
a tractable reformulation. Second, we employ a decomposition
algorithm to solve this reformulation. In order to reformulate the
second-stage problem into a tractable formulation, we dualize
the inner minimization problem and combine it to the outer
maximization problem. Since the inner minimization is a linear
program, which will lead to no dualization gap. The dual form
of the inner minimization problem can be presented as follows:

m m m m
E < E E )“zz‘ - Cir}/it
AV o0 TSU

max

Qmmn” _ emaxnn)
- D 2 (B, + 7
(i,7)€E\Ew t

+M(1 - ;) (075, +675,))

Z Z (Fy (g, + mfﬁ)) (26)

(i.j)eén t
S.t.
A=Al <0, Vit Vi, Ym 27
My = A+ T =T = Xiolh, + Xi6ih, =0,
V(i,§) € E\Exr, Vt, ¥m (28)
M =My — gy — Xaguh, =0,
Y(i,j) € En,Vt,¥Ym (29)

>

(i,5)€E\ER (i,.)

m
+ D Vijt

(i,5)€€u (i,.)

G RS

(i,§)€E\ER (i)

m
E Uijt

(i,)€€nm (.,7)

(6750 = 0ij.0)

+ny — 0y =0, Vt,Vi,Vm (30)
Ay — Lyply <0, Vt,Vi,Vm 31
it it > Tt » Tit > Bij.e0 o0 01 00 Oje 2 0,
it pi = 0,47 vl are free, Vi, Vi, Vm (32)

where A7} and ;7 are dual variables of constraints (15) and (16),
respectively; 777} and 7} are dual variables of constraint (17);

v;j , are dual variables of constraint (19); i} , and /177 , are dual
variables of constraint (20); 5} ] , and &} 71t are dual variables of
constraints (21) and (22); 7. ]t and 7‘ i are dual variables of

constraint (23);

A. Linearizing the Objective Function

Notice there are bilinear terms in the objective
function (26) of the derived reformulation, we use
the well-known Big-M method to linearize bilinear

terms. We let > Z(M)eg\&{ > wii Tl =
and >, D iee\ey 2ot WigTie =

have
>

m,.(i,j)Gg\gjj St

2(1’,]’)65\&{ Vij
Z(i‘j)eg\&l ;;. Then, we

D

(1,5)€E\En

Fijuii (777 +715,) = Fi(Dij + 1)

(33)

st vy > ZZ%}’Q — i), V(i,5) € E\En,
(34)
ij > —Mui;,¥(i,§) € E\En, (35)
v > ZZ —u;;),Y(i,5) € E\Eu,  (36)
ij > —Mu;,¥(i,j) € E\En. 37)

In addition, we let > > ceve, D Wij0lj, =
and

Doij)ee\ey i Do 2o(i,)eE\en

Loam
t WijOij ¢ =
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Z(iweg\&{ €;;. Then, we have

D

m,(i.§)€E\En 1t

Muj(o ut"‘“z";t) =

>

(i,j)€E\En

M(EL‘]‘ + gjj)

(38)
& < ZZ G+ M(1—u;;),V(i,j) € E\Exr, (39)
€j < Muij,v(i,j) € E\En,

;<> > e+ M1
m t

€ij < Mu;j,V(i,j) € E\Ex.

S.t.

(40)
—uij),V(1,5) € ENEn, (41)

(42)

B. Decomposition Framework

In this paper, we employ the column-and-constraint genera-
tion approach [46] in a decomposition framework to solve the
developed data-driven TSHP model. This approach is an itera-
tive approach. In each iteration, the master problem (MP) is a
relaxation of the original problem, which aims to find a lower
bound of the problem and a current best hardening decision (may
not be feasible). The sub-problem (SUB) is a reformulation of
the second-stage problem, with the objective of obtaining an up-
per bound of the original problem and the worst-case scenarios.
This iterative procedure continues until the difference between
the upper bound and the lower bound is no more than a prede-
fined level. As aresult, the optimal hardening planning decision
will be output and the worst-case wind output distribution and
disruption scenario will be identified.

In our model, since the first-stage decisions are hardening
decisions, they do not affect the feasibility of the second-stage
problem. Moreover, since we allow load shedding in the model,
the second-stage problem is always feasible for any hardening
decision z derived from the first stage. Hence, there is no need
for the first-stage decision feasibility check. Then, we have the
following MP.

Z Hijzij + 0
(i.j)€€

min
z

s.t. Constraints (11),
Constraints (15)—(18), for each £™
Optimality cuts,

where 6 is set to be the second-stage objective value. Based
on the reformulation of (33) to (42), we can reformulate the
sub-problem as below:

N

U(z) = max Z
AV, 1,M,0,T,€,0,V,D,q,U

m=1

(ZZ d?fl — m )‘;"tl _C’Z,,y” _’_ammnm
- > > (M@, +aly)

(i.j)ee\en ¢

emax 7717? )
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Fix 2*. Solve
SUB and get u™,
p* and (="

Initialization:
Setk = 1
and 6 = —oo

Solve MP and get

z*,0 and £

Setk = k + 1. no
Add optimality cuts k—————
(44)-(46) to MP

yes

Stop and output z*

Flowchart of the column-and-constraint generation algorithm.

Z ZFL/ ,uz/f—"_/’(‘ut))

(i.j)e€n
+ >
(i,)€E\Exn
Constraints (5)—(9), (27)—-(32),
Constraints (34)—(37), (39)—(42).

Fig. 1.

(M (&; + &;) — Fij (i + 7))

(43)

C. Column-and-Constraint Generation Algorithm

The column-and-constraint generation algorithm is summa-
rized in the following steps and in the flowchart presented in
Fig. 1.:

1. Initialization. Set k = 1,0 = —oo.

2. Solve MP and get the first-stage optimal solution (the

optimal hardening plan) z*, 6 and & .

3. Solve SUB for the current hardening plan z* to obtain the
worst-case disruption scenario u*, the worst-case wind
output distribution p* and 1 (z*).

4. If ¢(z*) < 0, stop. Current z* is the optimal hardening
plan. Output the result. Otherwise, set k = k + 1. For the
disruption plan u*, let subset £4 = {(4,7) € |u;; = 0}
be the set of attacked transmission lines. Then, add the
following constraints to MP and go to step 2.

N
0> 3 33 b Lusu(€™),
m=1 1 t

(44)

(03(€™) = 0;:(€™)) — Xij fija(€") + M(1 = z5) = 0,
(0t (™) = 0;¢(€™)) — Xij fij e (€") — M(1 — 2;5) <0
— Fijzij < fij(€™) < Fijzig,
Vt,Ym,V(i,j) € Ea, 45)
(05 (€™) = 0 (§™)) — Xij fij (§") =0,
Fij < fij+(§") < Fy,
Vt,Vm, V(i 5) € E\Ea. (46)

V. NUMERICAL RESULTS

In this section, we conduct numerical experiments to test the

performance of the proposed approach. We apply our approach
to a 24-node system [47], which is based on the IEEE one-area
RTS-96 test system [48], and a modified IEEE 118-bus test
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Fig.2. Modified 24-node system and the DDTSHP hardening plan for U = 4.

system (available at http://motor.ece.iit.edu/data). According to
[49], wind energy constitutes 5.6% of the total electricity gener-
ation across the united states in 2016. Accordingly, we modify
both test systems by adding several wind power generation ca-
pacities, which account for 10% of the total generation capac-
ity. We compare the system performance between the proposed
data-driven transmission system hardening planning (DDTSHP)
and Robust transmission system hardening planning (ROTSHP).
We also discuss how the historical data and the ambiguity set
can affect the conservativeness of the proposed data-driven ap-
proach. To implement the proposed algorithm, we use C++ and
CPLEX 12.6 and run it on a computer with Intel(R) Xeon(R)
3.2 GHz and 8 GB memory.

A. Data Generation

In order to generate the set of historical data, we use a Monte
Carlo simulation. For simulation convenience, we assume that
wind outputs are independent for different load blocks. Also,
for each load block, we assume that the unknown wind output
follows a normal distribution with the forecasted wind output as
the mean and 0.3 of the mean value as the standard deviation. To
generate wind output scenarios, we generate samples for each
wind farm and each load block and set the number of bins to be 5.

B. 24-Node System

This system, depicted in Fig. 2, consists of 24 buses, 12
generators, 34 transmission lines and 17 loads. We consider all
generators to be thermal plants and add three wind farms at
buses 10, 15 and 20. The first column of Table I shows the index
of transmission lines and the second and third columns show
origins and ends of lines respectively.

First, we compare the proposed DDTSHP with ROTSHP.
We numerically show the DDTSHP obtains less conservative

TABLE I
TRANSMISSION LINES OF 24-NODE SYSTEM
No. | From To | No. | From To | No. | From To
1 1 2 13 8 10 25 15 21
2 1 3 14 9 11 26 15 24
3 1 5 15 9 12 27 16 17
4 2 4 16 10 11 28 16 19
5 2 6 17 10 12 29 17 18
6 3 9 18 11 13 30 17 22
7 3 24 19 11 14 31 18 21
8 4 9 20 12 13 32 19 20
9 5 10 21 12 23 33 20 23
10 6 10 22 13 23 34 21 22
11 7 8 23 14 16
12 8 9 24 15 16
TABLE II
HARDENING PLANS OF DDTSHP VERSUS ROTSHP FOR 24-NODE SYSTEM
Attack Hardening Plan
Budget DDTSHP ROTSHP
2 (5, 23, 28) (5, 23, 32, 33)
3 (6, 32, 33) (11, 19, 32, 33)
4 (23, 32, 33) (11, 18, 22, 32, 33)
5 (6, 11, 14, 18, 32, 33) (11, 14, 18, 22, 32, 33)
6 (6, 11, 14, 18, 32, 33) (6, 11, 14, 16, 18, 32, 33)
7 (6, 11, 14, 18, 32, 33) (6, 11, 14, 16, 18, 32, 33)
8 (6, 11, 14, 18, 32, 33) | (6, 10, 11, 14, 17, 18, 21, 32, 33)
9 (6, 11, 14, 18, 32, 33) | (6, 10, 11, 14, 17, 18, 21, 32, 33)
10 (6, 11, 14, 18, 32, 33) | (6, 10, 11, 14, 17, 18, 21, 32, 33)
TABLE III
PERFORMANCE OF DDTSHP VERSUS ROTSHP FOR 24-NODE SYSTEM
Attack DDTSHP ROTSHP
Budget | NHL  Obj ($m) CPU(s) | NHL Obj ($m) CPU(s)
1 0 0 0.8 0 0 0.8
2 3 2.6209 8.5 4 2.8865 5.5
3 3 2.6465 18.8 4 3.4887 10.9
4 3 3.1073 33.1 5 4.4717 154
5 6 5.0757 30.6 6 5.3680 13.8
6 6 5.4582 27.6 7 6.0558 15.3
7 6 5.5317 28.1 7 6.4745 10.8
8 6 59142 21.0 9 6.6830 10.3
9 6 6.0783 24.2 9 6.6925 12.1
10 6 6.1923 23.0 9 6.7198 11.6

hardening plans compared to ROTSHP. To this end, we let the
attack budget vary within a range of 1 to 10. We set the size of
historical data set S and the confidence level 3 to be 100 and
0.99%, respectively. With a set of generated data in Section V-A,
we solve the modified 24-node test system for different attack
budgets and get the optimal first-stage hardening plans using
both DDTSHP and ROTSHP. Then, we fix the optimal harden-
ing decisions and solve the second-stage problem with a new
set of randomly simulated wind output and attack scenarios for
different attack budgets. In Table II, we report the optimal hard-
ening plans obtained by DDTSHP and ROTSHP for various
attack budgets. In Table III, we compare the number of hard-
ened transmission lines (denoted by NHL), total cost (denoted
by Obj), and the computational time in seconds (denoted by
CPU). Notice that in Table III, there is no load shed for attack
budget U = 1. However, as the attack budget U increases, the
total cost increases for both DDTSHP and ROTSHP. We can
also observe that DDTSHP results in significant cost reduction
compared to that of ROTSHP, especially when U = 4, DDTSHP
reduces the cost by 30.5% (the optimal hardening plan identified
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TABLE IV
EFFECTS OF THE HISTORICAL DATA ON THE LOAD SHEDDING COST ($M)

Attack # of data

Budget 50 100 500 1000 5000 10000
2 2.6256  2.6209 2.6126 26114 2.6105 2.6104
3 2.6480 2.6464  2.6448 2.6445 2.6443  2.6442
4 3.4665 34595 3.4486 3.4470 3.4458  3.4457
5 577041  5.6919 5.6808 5.6794 5.6782  5.6780
6 59675 59541 59444 59430 59417 59415
7 6.0234  6.0122 6.0031 6.0012 5.9998  5.9996
8 6.2500 6.2482  6.2292 62276  6.2265  6.2350
9 6.5043  6.4928 6.4825 64810 64798  6.4796
10 6.5745  6.5675 6.5533  6.5523  6.5507 6.5505

by DDTSHP (asterisked lines) for U = 4 is presented in Fig. 2).
In addition, we see for most attack budgets that DDTSHP’s hard-
ening plans include a lesser number of hardened lines than those
of ROTSHP. From these results, we can claim that the proposed
DDTSHP approach is less conservative than ROTSHP. That is
because DDTSHP uses the data information and considers the
worst-case distribution of the wind output within the ambiguity
set, while ROTSHP considers the worst-case wind output sce-
nario. Hence, ROTSHP leads to a higher number of transmission
lines to be hardened and therefore, this over-conservativeness
results in higher hardening costs and accordingly higher total
costs. Furthermore, DDTSHP leads to more computational ef-
forts than ROTSHP due to the consideration of the stochastic
nature of wind output, so there is a tradeoff between the cost
reduction and computational efficiency by using DDTSHP.

Second, we numerically illustrate and discuss how the size
of the historical data set can affect the conservativeness of the
proposed DDTSHP. Accordingly, we conduct numerical exper-
iments on the modified 24-node test system for different attack
budgets from 2 to 10 and represent the results in Table IV. Here,
we allow the size of historical data to vary between 50 to 10000
and set the confidence level (3 to be 99%. As shown in Table IV,
as the size of historical data increases, the total cost decreases.
That is because, according to equation (4), there is an inverse
correlation between the value of « and the size of historical data
set S. As the number of historical observations increases, the
value of o decreases; and hence, the confidence set D shrinks.
From the theoretical point of view, with an infinite number of
historical observations, the value of « eventually goes to zero. In
fact, in this case, the reference distribution converges to the true
distribution and the proposed data-driven approach becomes risk
neutral. Moreover, we can see that larger attack budgets lead to
higher total costs.

Third, we assess the effect of the ambiguity set D on the
performance of the proposed data-driven approach. Here, we
set the size of historical data S to be 100 and test our DDTSHP
on the modified 24-node test system. Note here that, according
to (4), as the value of [ increases, the value of « increases.
Thus, a larger value of (§ leads to a bigger ambiguity set D.
Therefore, we can control the size of ambiguity set by adjusting
the confidence level 5. We allow the confidence level 3 to vary
within a range from 0.5 to 0.99 and show the associated system
costs for different values of attack budget in Table V. From
the results shown in Table V we can see that as the value of
[ increases, our proposed data-driven approach becomes more
conservative and the total system cost increases.

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 34, NO. 2, MARCH 2019

TABLE V
EFFECTS OF THE AMBIGUITY SET ON THE LOAD SHEDDING COST ($M)

Attack Confidence level 3

Budget 0.5 0.7 0.8 0.9 0.95 0.99
2 2.6170  2.6173 2.6175 2.6182 2.6188  2.6209
3 2.6453  2.6456  2.6457 2.6458  2.6459  2.6464
4 34506  3.4525 3.4547 3.4553 34552  3.4595
5 5.6841 5.6852 5.6861 5.6871 5.6880  5.6919
6 59474 59476 59481 5.9499 59508  5.9541
7 6.0045  6.0057 6.0070 6.0079 6.0107 6.0122
8 62312  6.2325 6.2328  6.2343  6.2354  6.2482
9 6.4847 6.4867 6.4879 6.4880 6.4889  6.4928
10 6.5557 6.5567 6.5574 6.5593  6.5613  6.5675

TABLE VI
DDTSHP VERSUS ROTSHP FOR 118-BUS SYSTEM

Attack DDTSHP ROTSHP

Budget | NHL Obj (m) CPU(s) | NHL  Obj (Sm) CPU(s)
2 4 1.8855 243 4 1.8855 13.8
3 4 1.9014 79.2 4 2.2706 30.2
4 4 22177 95.3 7 3.0744 42.8
5 6 3.0061 226.2 8 3.7661 78.7
6 6 3.2099 291.5 8 3.8470 78.4
7 6 3.4583 272.0 8 4.0783 1159
8 6 3.6620 442.9 8 4.2694 105.0
9 6 3.9104 489.9 8 4.7832 90.6
10 10 5.1314 529.1 12 5.5279 98.7

C. 118-Bus System

In this section, we illustrate the effectiveness of our proposed
DDTSHP approach on a larger system. The 118-bus test system
consists of 118 buses, 33 generators and 186 transmission lines.
We consider all generators to be thermal plants and add five wind
farms at buses 20, 40, 60, 80 and 100. We consider a range of 2
to 10 for the attack budget. We also let the size of historical data
S be 100 and the confidence level 3 be 99%. Then, we follow the
same simulation procedure as the one in the previous subsection
and compare the performance of DDTSHP with ROTSHP. We
report the results in Table VI, which are consistent with the
ones of 24-node system. That is, as the attack budget increases,
the total system cost increases too. Moreover, as compared to
ROTSHP, we see that DDTSHP leads to a lesser number of
hardened lines and lower total costs, for most attack budgets.
These results further show that DDTSHP is less conservative
than ROTSHP.

VI. CONCLUSION

In this study, we developed an approach to deal with the
stochastic transmission system hardening planning problem in
the presence of wind generation uncertainty and multiple si-
multaneous disruptive events. Motivated by the considerable
amount of historical data available to power system operators,
we proposed a data-driven approach that learns from the wind
output historical data and employs the Wasserstein metric to
construct an ambiguity set for the unknown wind output proba-
bility distribution. Our data-driven two-stage model can obtain
robust hardening decisions by considering the joint worst-case
disruptive scenario and wind output distribution. We used a de-
composition framework based on the Column-and-Constraints
generation method to solve the proposed model. We showed
through numerical experiments that although our approach is
risk-averse, it leads to less conservative hardening decisions
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than the robust optimization approach. In addition, we showed
that the conservativeness of our approach depends on the number
of available historical data and the confidence level we prefer.

APPENDIX
PROOF OF PROPOSITION 1

In order to prove Proposition 1, motivated by the approaches
in nonparametric estimation of densities and distribution func-
tions (see, e.g., [50]), we prove the following two lemmas first.

Lemma 1: Given a set of historical data of size S and N bins,
we have

Pr(lp" —p"| > d) < 2exp(—2S5),Yn=1,...,N.
47)

Proof: Let y” denote whether the observation s falls in the
binn, theny! ~ Bernoulli(p”),vn=1,...,N,Vs=1,...,S.
We also have p" = Zle y? /S and E[p"] = p". Then, accord-
ing to Hoeffding’s Inequality for Bernoulli random variables,
(47) holds. |

In order to get the convergence rate under the Wasserstein
metric, we will first study another metric, i.e., the Total Variance
metric, and by taking advantage of the relationship between
the two metrics, we will obtain the convergence rate of the
Wasserstein metric. According to [51], for space W, the Total
Variation metric is defined as Drv (P, 15) = 25:1 Ip" —p"|.

Lemma 2: Given a set of historical data of size S and NV bins,
under the Total Variation metric we have

Pr(®7y(P,P) > §) < 2N exp(—255/N).  (48)
Proof:
X N
Pr(®py(P,P)>6)=Pr (> [p"—p"[ >0
n=1
< Pr(Ui_y(lp" = p"| = 6/N])
N
<> Pr((lp" —p"| = 6/N])
n=1
< 2N exp(—2SJ/N). (49)
where the inequality (49) holds due to Lemma 1. |

Based on the above two lemmas, we are ready to prove Propo-
sition 1. First, according to [51], we have the following relation-
ship between the Wasserstein metric and the Total Variation
metric:

(50)

where D denoted the diameter of the supporting space VV. More-
over, according to Lemma 2, we have

Pr(®ry(P,P) < 6) > 1—2Nexp(—256/N).  (51)

(P‘rp)

Inequality (50) implies that mT < D1y (P, P). Therefore,

29, (P,P)
Pr — 0

<é| = Pr(®Drv(P,P) <9)

>1— 2N exp(—256/N). (52)

Let « = D¢ /2, then the proof of Proposition 1 is done.
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