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SOLUTION APPROACHES TO LINEAR FRACTIONAL PROGRAMMING
AND ITS STOCHASTIC GENERALIZATIONS
USING SECOND ORDER CONE APPROXIMATIONS *

CHEOLMIN KIM T AND SANJAY MEHROTRA f

Abstract. We consider linear fractional programming problems in a form of which the linear fractional program
and its stochastic and distributionally robust counterparts with finite support are special cases. We introduce a
novel reformulation that involves differences of square terms in the constraint, subsequently using a piecewise linear
approximation for the concave part. Using the resulting second order cone programs (SOCPs), we develop a solution
algorithm in the branch and bound framework. Our method iteratively refines the piecewise linear approximations
by dividing hyper-rectangles and solves SOCPs to obtain lower bounds for the sub-hyper-rectangles. We derive a
bound on the optimality gap as a function of the approximation errors at the iterate and prove that the number of
iterations to attain an e-optimal solution is in the order of O(y/€). Numerical experiments show that the proposed
algorithm scales better than state-of-the-art linear-programming-based algorithms and commercial solvers to solve
linear fractional programs. Specifically, the proposed algorithm achieves two or more digits of accuracy in significantly
less time than the time required by the known algorithms on medium to larger size problem instances. Experimental
results with Wasserstein ambiguity sets reveal that our reformulation-based approach solves small size distributionally
robust linear fractional programs, with the cardinality of support up to 25.

Key words. Distributionally robust optimization, linear fractional programming, second order cone approxi-
mations, branch and bound algorithm, convergence analysis
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1. Introduction. We study the linear fractional programming problem in the form

9* min 0
T
(1.1) subject to % <, ke[K]:={1,---,K},
: k

ffm <0, H'r>~, Py<61,,
reX, R, veRE 7 eRL,

where

(Al) X :={z|Az < b,z > 0} is a non-empty polytope in R".

(A2) clz+ By >0 forall z € X and k € [K].

(A3) diz+ By >0forallz € X and k € [K].

(A4) P is a non-negative matrix in R7>*%.

(A5) P:={p|Hp = f,p > 0} is a non-empty polytope in RE.
The assumptions (A1)-(A3) are commonly made in the literature of linear fractional programming
(195 23; 20; 2; 35; 24; 26). Assumptions (A4)-(A5) are introduced to develop solution approaches
for stochastic and distributionally robust linear fractional programs. In this context, the set P
represents a polyhedral ambiguity set (see Section 6.1). However, in the following discussion we
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2 C. KIM AND S. MEHROTRA

take it as a general set unless otherwise specified. By (A1)-(A5), the optimization problem (1.1)
has a finite optimum value ¥*.
Model (1.1) covers the following linear fractional problems in its framework:
e (Stochastic) Linear Fractional Program: The linear fractional program can be written as

9" := min 0
(1.2) subject to GO k€ [K]
N ) )
J ot By = Tk

ply <0, e X, R, veRE,

which has |.J| = 1 and does not include 7 variables and their constraints f77 <60, H 7 >
n (1.1). If the vector p € RE satisfies Zszl pr = 1, the formulation (1.2) reduces to the
stochastic linear fractional program with finite support or a sample average approximation
(SAA) to the stochastic linear fractional program of the form:

~T ~
(13) min Ep [M] .
TEX de +6

In the above, P is a probability distribution governing the random vector & = (¢, d,a, B)
The (stochastic) linear fractional problem (1.2) arises in various decision problems such as
multi-stage shipping (1), cluster analysis (38), and multi-objective bond portfolio optimiza-
tion (22), to name a few. For additional applications, see (39; 45).

e Distributionally Robust Linear Fractional Program (Section 6): While stochastic optimiza-
tion minimizes the expected value of an objective function with respect to a known proba-
bility distribution P, distributionally robust optimization (DRO) seeks a solution that min-
imizes the worst-case expected value over an ambiguity set U of probability distributions P
as

14 min sup Ep
(4 TE€EX pey

dTz + B
For polyhedral and convex ambiguity sets, we can write a reformulation or subproblem of
(1.4) in the form of (1.1) as follows:

— For a polyhedral ambiguity set P, using the linear programming duality, the distribu-
tionally robust linear fractional program with finite support can be reformulated to
(1.1) without the constraint Py < 61 ; as seen in (6.2). The constraints Hp = f and
p >0 in P are dualized as fTm < 0 and H'7 > ~.

— For a convex ambiguity set C, the distributionally robust linear fractional program with
finite support can be solved by a cutting surface algorithm that iteratively solves a
subproblem (6.12) of the form (1.1) without 7 variables and their constraints f7m < 6
and HT'7 > . In (6.12), each row of P belongs to the ambiguity set C.

{e%m]'

1.1. Contributions. We introduce the linear fractional model (1.1) and develop an algorithm
for its solution. Our model includes the linear fractional program and its stochastic and distribu-
tionally robust counterparts with finite support in a common framework. In order to solve this
model, we introduce a non-convex quadratic reformulation using difference of squares. Existing
non-convex quadratic reformulations in the literature use bilinear terms and their McCormick re-
laxations. In our approach applying a piecewise linear approximation to concave quadratic terms
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LINEAR FRACTIONAL PROGRAMMING USING SECOND ORDER CONE APPROXIMATIONS 3

yields a mixed binary second order cone program (MB-SOCP). Instead of solving a sequence of
computationally expensive MB-SOCP problems, we develop a branch and bound algorithm that
adaptively refines the piecewise linear approximations and iteratively solves SOCP problems instead
of MB-SOCP problems.

Our spatial branch and bound algorithm works in the space of the variables that appear in the
nonconvex quadratic terms. It successively bisects a hyper-rectangle and solves an SOCP approx-
imation problem for each sub-hyper-rectangle to obtain a lower bound. The algorithm iteratively
updates the incumbent solution and the lower bound until the relative optimality gap becomes
smaller than a given tolerance level €. In the convergence analysis, we prove a bound on the opti-
mality gap as a function of approximation errors at the iterate. Using this bound, we show that
our branch and bound algorithm attains an e-optimal solution in a finite number of iterations.
Particularly, we give an upper bound for the number of iterations, which has been not done in
previous works in the literature where convergence analyses are based on limiting arguments. Due
to the second order cone approximations, the worst-case bound is in the order of O(y/€), which
demonstrates the efficiency of the proposed algorithm in finding an accurate solution.

We report numerical experiments comparing the performance of our algorithm with GloMIQO
(33) and Gurobi commercial solvers. These solvers were used to solve a non-convex quadratic
formulation of the problem. Comparisons are also made with several state-of-the-art algorithms
(19; 26; 35) which employ linear programming (LP) approximations within the branch and bound
framework. Our results show that the proposed algorithm scales better than both the LP-based
algorithms and the off-the-shelf solvers with the size of the problems. The proposed algorithm
achieves two or more digits of accuracy faster than the benchmark algorithms on medium and large
size problems. Even for small size problems, our algorithm attains five digits of accuracy fastest in
most cases, which can be attributed to its square root dependency on e. This improvement grows
with problem dimensionality and the number of terms in the linear fractional program. For example,
the proposed method managed to achieve five-digit of accuracy for problem with (n, K') = (100, 10)
in about 40 minutes on average; where the best known algorithm achieved 2-digit accuracy in nearly
6 hours on average.

We introduce solution approaches for distributionally robust linear fractional programs (1.4)
with finite support. For a polyhedral ambiguity set, we derive an equivalent formulation of the form
(1.1) using the LP duality. We provide three examples of such reformulations for popular polyhedral
ambiguity sets based on monomial moments, total variation distance, and the Wasserstein metric.
For a general convex ambiguity set, we introduce a cutting surface algorithm where we iteratively
solve a subproblem of the form (1.1) together with an LP separation problem which results in a
probability cut. The experiments using Wasserstein ambiguity sets indicate that the reformulation
approach solves small size instances with the cardinality of support up to 25.

1.2. Organization of this Paper. This paper is organized as follows. We provide a literature
review on linear fractional programming and distributionally robust optimization in Section 2. We
introduce second order cone approximations in Section 3 and develop an adaptive branch and
bound algorithm in Section 4. We give a convergence analysis in Section 5. Distributionally robust
counterparts are discussed in Section 6 and the experimental results are discussed in Section 7.

2. Literature Review. In this section, we provide the current literature on linear fractional
programming and a brief review on distributionally robust optimization.

2.1. Linear Fractional Programming. The literature review on linear fractional program-
ming consists of two parts. The first part considers some special cases of (1.2) where K is small
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4 C. KIM AND S. MEHROTRA

or the objective function f has a special structure in x. In the second part, we review algorithms
based on the outer approximation or the branch and bound approach.

2.1.1. Special Cases.

A Single Linear Fractional Function Case. A single linear fractional function is pseudo-
linear. Therefore, an optimal solution is an extreme point of X and all local optima are globally
optimal (25). Exploiting these properties, various solution approaches such as simplex algorithm
(47), parametric method (11), geometric approach (44), change of variable (9) and gradient-based
method (15) have been developed (45). Among them, the Charnes-Cooper transformation (9) gives
a reformulation of the problem to an LP, making it easily solvable using an off-the-shelf solver.

Sum of Two Linear Fractional Functions Case. If K > 1, due to the coupling of linear
fractional functions with respect to x, the Charnes-Cooper transformation technique does not yield
an LP or a convex optimization problem. Also, neither pseudo-concavity nor pseudo-convexity is
preserved under summation of linear fractional functions. Therefore, an optimal solution is not
necessarily at a vertex and multiple local optimal solutions can exist, making it challenging to
solve (1.2). Nonetheless, if K = 2, an optimal solution belongs to an edge of X (8). Based on
this property, simplex-type algorithms using exhaustive search (8; 23) have been developed to find
an exact global optimum of (1.2). Applying the Charnes-Cooper transformation (9) to one linear
fractional function, these works consider an equivalent formulation minimizing the sum of a linear
and a linear fractional function under a polytope. Fixing the value of the denominator of the
remaining linear fractional function, they obtain a parametric linear program. Parametric simplex
algorithms (8; 23) generate a sequence of bases associated with an optimal basic solution of the
parametric linear program with varying the value of the parameter until they find the one that
results in a global minimum. No generalization of this approach is known for the case K > 2.
However, a heuristic algorithm (20) combining a grid search for one linear fractional function and
the exact algorithm (23) for the other two linear fractional functions has been developed for K = 3.

Special Cases of Sum of More than Two Linear Fractional Functions. Assuming that
di > 0, i.e., it is non-negative componentwise, and 8 = 1 for k € [K], an equivalent formulation
minimizing ZkK:1(Ck — frdi)Tx subject to v € X, fr. > (cx — fedi)Tx +ay, k € [K] is considered in
(2). This work extends the parametric approach for a general single fractional program introduced
n (11). If the objective function is separable in z, meaning that the fractional terms are defined
for disjoint subsets of x, a vector f* satisfying local optimality conditions is unique and every local
optimal solution is globally optimal. To find such a vector f*, a gradient-based algorithm updating
f at each iteration is presented in (2) with convergence guarantees for K < 3 under the separability
assumption.

2.1.2. The General Case.

Outer Approximation Approaches. Introducing two auxiliary variables u; and vy for each
linear fractional term, (24; 4) consider equivalent optimization problems that minimize a concave
function subject to a convex set in the space of u and v. Using the fact that a concave minimization
problem under a polyhedron has an optimal solution at an extreme point of the polyhedron, (24)
develops an outer approximation algorithm that solves a sequence of concave minimization problems
under a polyhedron. Iteratively refining the polyhedron by adding cutting planes, this algorithm
attains an e-optimal solution in a finite number of steps. On the other hand, outer approximation
algorithms in (13; 35) consider the image space S = {y € RE |y, = (cf'z + ap)/(dFz + Bi), k €
[K], z € X}. To minimize 22:1 vk subject to v € S, (13) proposes an algorithm that iteratively
shrinks the simplex containing an optimal solution «v*. The extreme points of the simplex are up-
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LINEAR FRACTIONAL PROGRAMMING USING SECOND ORDER CONE APPROXIMATIONS 5

dated one at a time by solving a series of LP problems. However, this approach has no convergence
analysis. Another outer approximation approach using a union of boxes which contains S is intro-
duced in (35). The union of boxes is called a polyblock. Based on the observation that an optimal
solution 4 to an approximation problem occurs at an extreme point of the polyblock, this algorithm
maintains all extreme points of the polyblock and returns the one having the best objective value.
If 4 € S, 4 is optimal. Otherwise, 4 is projected to S to produce a new set of extreme points which
replace 4 in the polyblock. Unfortunately, the projection step is as hard as the original problem.
Therefore, an approximate projection step, which involves a sequence of LP problems, is used in a
practical development.

Branch and Bound Approaches. Using K auxiliary variables vy, (21) considers an equiv-
alent non-convex quadratically constrained optimization program that minimizes Zfil vk subject
toz € X and ¢l + oy, — i(dfx + Bi) < 0 where k € [K]. To handle these bilinear terms in
the constraint, (21) uses McCormick envelopes (31) and, as a result, it obtains an LP relaxation
problem. By iteratively branching a hyper-rectangle in the space of (x,7) and solving LP relax-
ation problems for each sub-hyper-rectangle, this algorithm attains an e-optimal solution in a finite
number of steps. On the other hand, (26; 19) consider equivalent formulations with non-convex
objective functions. Using additional variables s, and ¢ for each fractional function, (19) con-
siders an equivalent formulation that minimizes Zszl stk subject to x € X, c{x + ay <t and
sp(dFz + By) > 1 where k € [K]. Using McCormick envelopes (31) for the bilinear terms in the
objective function and replacing s; in the constraint with its upper bound, it derives an LP ap-
proximation problem. Branching on s, this LP approximation problem is iteratively solved in the
branch and bound algorithm. Introducing extra variables £ and 7 for each fractional term, (26)
studies an equivalent formulation that maximizes Zle Nk /&k subject to x € X, cfx + ay, = ni and
df'x 4+ By = & where k € [K]. Given lower and upper bounds of ny, + & and 7/, an overesti-
mator of 7 /& that has a similar form to McCormick envelopes (31) is developed to produce an
LP approximation problem. Using this LP approximation problem, it derives a branch and bound
algorithm that performs branching on 7 /€. While existing reformulations discussed above have
bivariate non-convex terms such as a product or ratio of two different variables, the non-convex
parts in our formulation are univariate, negative square terms. Therefore, using the same number
of branching variables, more efficient branch and bound algorithm can be developed through our
formulation.

2.2. Distributionally Robust Optimization (DRO). Many real-world decision problems
have parameter uncertainty. To deal with parameter uncertainty, stochastic optimization models
it through a probability distribution and minimizes the expected cost under the assumed distri-
bution. On the other hand, robust optimization approach models the uncertainty by specifying a
support of parameters and minimizes the worst-case cost over the set of possible values. Taking an
intermediate framework between stochastic optimization and robust optimization, distributionally
robust optimization models the ambiguity in parameter distribution through a set of probability
distributions and minimizes the worst-case average cost over the ambiguity set of probability distri-
butions. To develop a tractable DRO model with good performance, various ambiguity sets based
on moments (5; 10; 6; 42; 41), total variation distance (40; 18; 36), ¢-divergence (3; 18; 27; 48; 7),
and the Wasserstein metric (14; 12; 30) have been introduced. To solve DRO models, most works
(49; 5; 10) use the dualization of inner problems. However, if regularity conditions are not satisfied,
strong duality might not hold. On the contrary, cutting surface algorithms (32; 30; 17) do not
require such conditions and thus are applicable in a general setting. For a recent comprehensive
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6 C. KIM AND S. MEHROTRA

review on distributionally robust optimization, see (37).

3. Second Order Cone Approximations. In this section, we first present a reformulation
of linear fractional functions to non-convex quadratic constraints. Then, we introduce the idea of
using piecewise linear approximations of concave parts to obtain second order cone approximation
problems.

3.1. Reformulations. The formulation (1.1) has the non-convex constraints

c. T+ ap

3.1 k ., ke[K
(3.1) A < kel
Using (A3), we equivalently write (3.1) as
(3.2) chx+ap < (dfz+ B)w, ke [K]
Let

T _ (T
(3.3) w o= BT B w2t BY)

2 S 2 ’
Since (dfx + Br)vk = w,% — vi, we represent (3.2) as the following system of constraints:
(3.4) cFe+ap +vi<wi, e — (dEz+ Br) =2vk, Y&+ (dFx+ By) = 2wy, ke [K].
Let

i — (dfx + Br) = 2uk, e+ (diz + Br) = 2wy, k € [K],
(35)  S=4q(z,0,y,mwv) | ffom<0, H'mw>~, Py<61,,
r€eX,0eR, veRE 7R weRE, veRK,

Then, we can write (1.1) as

9% ;= min 0
(3.6) subject to cFe4 o +0v2 <w?, kelK],
(z,0,v,m,w,v) €S.

PROPOSITION 3.1. Two optimization problems (1.1) and (3.6) are equivalent:
o If (x*, 0%, 7, ~*, w*, v*) is an optimal solution to (3.6), then the solution (z*, 0%, 7*,~*) is
an optimal solution to (1.1).
o If (a*,0%,7*,v*) is an optimal solution to (1.1), then the solution (z*,0*,7*,7,w,v) such
that

5 :c{m*—i—ak @ :’?k+d£x*+ﬁk 5 :’Vk—(dgx*—F/Bk)
k dfx*—l—ﬁf k 2 B k 2 5

k€ [K]

is an optimal solution to (3.6).

Proof. See Appendix A.1. ]
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LINEAR FRACTIONAL PROGRAMMING USING SECOND ORDER CONE APPROXIMATIONS 7

Note that the optimization problem (3.6) has all linear expressions except for the K non-convex
quadratic constraints of the form

(3.7 cFr+op+vE<wi, kelK].

Formulation (3.6) is a difference-of-convex (DC) program (16). As compared to the existing refor-
mulations in the literature that involve bilinear or bivariate terms, non-convex parts of (3.6) are
difference of two square terms (3.7). To address the concave parts, one can use the convex-concave
procedure (50) in DC programming, which iteratively solves convex approximation problems ob-
tained by linearizing concave parts of the objective function and constraints. Using the solutions
from the approximation problems, CCP performs a line search to update the iterates. However,
since this approach repeatedly considers local approximations near the current iterates, there is no
guarantee that CCP will yield a solution with the desired tolerance. Indeed, the convergence of
this method is shown to a critical point (43) only. On the contrary, our approach seeks a global
optimal solution based on a piecewise linear approximation of w? as explained below.

3.2. Piecewise Linear Approximations. By (A1) and (A3), d} x+ 8¢ and (cf z+ay)/(d} z+
Bi) are bounded for all k € [K]. Also, since (1.2) has a finite optimum 9* by (A1)-(A5), from
Proposition 3.1, there exists an optimal solution (x*,8*, 7*, v*, w*, v*) to (3.6) which satisfies

T
cp ¥+ ag

3.8 ro ke TR ke K]
(33) = g helK]

Therefore, without loss of generality, we can set lower and upper bounds for 7k, and thus for wy
due to (3.3). Let wi* and wi be lower and upper bounds of wy, and Wy, := {w}, - ,Wiv’“} be a set
of points such that wi* = w}, < --- < Wka =wi.

For notational convenience, we temporaily drop the subscript k. To develop an approximation

of w? in [w™, wM], we define a piecewise linear function u as
(3.9 u(w; W) = max (w/ +w/Thw — wiwitl,
1<<N-1

Fig. 1: Piecewise Linear Approximation and Refinement by Bisection

y = w? y = w?
[ N A CEALY) oy Lo =)y =uw)
(WN—l)Q o ___g / i [ 3 B
| | i GOV W) e ‘ : |
i SRR ‘ | | ap | | |
(w)? b R o ]
w! w? w1 Wl w 3w +wh) w
(a) Piecewise Linear Approximation (b) Refinement by Bisection
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8 C. KIM AND S. MEHROTRA

As illustrated in Figure 1a, the piecewise linear function u satisfies w? < u(w; W) for every w €
[w™, wM]. The approximation error at w defined as u(w; W) — w? depends on the two neighboring
points w¢ = maXwew, w<w W and wb = Minyew, w<w W. If w = w? or w?, the approximation error at
w is zero. Otherwise, it depends on the magnitude of w® —w® and the location of w in [w®, w’]. The
approximation error at w € [w?®, w’] remains the same if we add a point outside of [w®, w®] to W but
decreases if a point in [w®, w”] is added to W. The following proposition states that the worst-case
approximation error has a quadratic relation with w” — w® and adding the midpoint (w® + w")/2
to W decreases the approximation error at least by half for all w € [w®, w®] (see Figure 1b).

PROPOSITION 3.2. Let u(w) = (w* + w®)(w — w®) + (w*)? and

N
w
=

I~}
+
é@‘
g
|
=
=
g
S]
_|_
é@"
g
m
=
. IS
sﬁ
vt
gﬁ‘

Then, we have
L. maxX,e e wb) w(w) — w? < 3 (wh— Wa)z.
2. a(w) —w? < 3 (u(w) — w?) for all w € [w?, w'].

Proof. See Appendix A.2. O

By replacing the square terms w? in (3.6) with the piecewise linear functions u(wy; Wy), we obtain
an approximation problem

YWy, , W) := min 0
(3.10) subject to  ¢f & + ay + vF < u(wy; Wi), ke [K],
(z,0,v,m,w,v) €S.

PROPOSITION 3.3. Suppose that (3.6) has a finite optimum 9*. Then, J(Wy,--- ,W}) < 9*.
Proof. See Appendix A.3. ]

Next, we describe a mixed binary formulation to solve (3.10).

3.3. Mixed Binary Second Order Cone Program. A popular way to model a piecewise
linear function is to use binary variables with SOS-2 constraints. To represent the piecewise linear
function u(wy,; Wy), we introduce binary variables p, € {0, 1}V+ and weight variables \j, € [0, 1]Vx.
Using px and Ag, we can write the piecewise linear function u(wy; Wy) as

Ni
(3.11) w(wg; Wi) =Y Mg (wh,)?

with a set of constraints

N, j N, N,
w = Ej:k1 Akjwiv Ej:k1 >\kj =1, Zj:k1 Prj < 2,
(312) ('Z,U, Akhuk) € Hk = (w’)‘k?:uk) 0 S Ak] S /’ija ] = 1a e 7Nka 1225 S {07 1}Nka ’
Hki+“kj§17 ZajzlakaaZ_.]Z2
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LINEAR FRACTIONAL PROGRAMMING USING SECOND ORDER CONE APPROXIMATIONS 9

where pp; and Ag; represent the 4§t elements of yj, and A, respectively. Using (3.11) and (3.12),
we derive a mixed binary second order cone program (MB-SOCP) as

d(Wr,--- , W) := min 0
Ny )
(3.13) subject to ¢ x4+ oy + i < Z)\kj(wfc)27 k € [K],
. o

(’LU, )‘kmu'k) € Hka ke [K]v
(x’ 07 V? 7T7 w’ /lj) e S'

By exploiting the SOS-2 constraints (3.12), we are able to solve (3.13) in a branch and bound or
a branch and cut framework. For example, we can develop a cutting plane algorithm that constructs
disjunctive cuts using the variable transformation technique in (46). For detailed description of this
cutting plane approach, see Appendix B. However, since the number of binary variables increases
as our piecewise linear approximations get more accurate, it is computationally undesirable to solve
(3.13) with a large number of evenly-spaced points in Wj. Alternatively, we can take an iterative
approach which starts with a coarse piecewise linear approximation and then iteratively refines it
using the optimal solution to (3.13). However, our computational experience reveals that solving a
sequence of these mixed binary programs using an off-the-shelf solver such as Gurobi with limited
control over the branching process can be computationally costly since for some branch and bound
nodes the same computations are repeated across iterations.

4. Adaptive Branch and Bound Algorithm. In this section, we introduce a spatial branch
and bound algorithm for solving (3.6). Rather than solving a sequence of mixed binary programs,
our branch and bound algorithm adaptively divides the space of (wq, - ,wy) into smaller hyper-
rectangles as it refines piecewise linear approximations. Specifically, starting with an initial hyper-
rectangle By := [wi*, wi] x [wh, wdl] x -+ x [wi, w], the algorithm iteratively bisects a hyper-
rectangle into two sub-hyper-rectangles and solves a second order cone program for each sub-hyper-
rectangle. Using the optimal solution to the second order cone program, we update the lower bound
and solve an evaluation problem to improve the incumbent solution. This branch and bound process
is repeated until we obtain an e-optimal solution, or meet some other termination criteria.

4.1. Initial Hyper-Rectangle. We first describe how we construct an initial hyper-rectangle
By. Using (3.3), we compute lower and upper bounds of wy using bounds on 7 and 2y := d{x—l—ﬁk.
To compute bounds on 7, we consider the Charnes-Cooper transformation (9). Using this variable
transformation technique, we can compute a lower bound ~;* and an upper bound 'y,i\/[ by solving
the following LP problems:

T
. .+ ag . T . T

4.1 M —min £ % —min c¢ly+ agt subject to Ay <bt, dly+pt=1, t>0,
(4.1) Tk sy d{x+ﬁ e kY k J Y= Wyt B =

T

+ ok .

4.2 M _ oy BT oy T aigt subject to Ay < bt, di t=1,t>0.
(42) 7 = max ATy p U kYt J y <bt, diyy+p >

On the other hand, we solve the following LP problems to obtain bounds on zj:
4.3 7 =min di M= di :

(4.3) 2, = min e+ By, 2 max & T+ B

Using the bounds on v and 2, we compute bounds on wjy, as

(4.4) wit =+ 2w =+
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10 C. KIM AND S. MEHROTRA

4.2. Second Order Cone Program. Let B := [w{,w}] x [w$, wh] x -+ x [w%,wl] be a
sub-hyper-rectangle of By such that B C By. For each k € [K], we consider a linear approximation
of w? in [w¢,wh] as
(4.5) w? < (w4 wh)wp — wiwh,
which results in the following second order cone constraint
(4.6) cFo+ o+ vE < (w4 whwy, — wiwb.

Having (4.6) in place of (3.7) and adding the box constraint w € B to (3.10), we obtain an SOCP
approximation problem for the hyper-rectangle B as

J(B) := min 0
(47 subject to ¢} x4+ ap +vi < (W +whwy, — wiwh, k€ [K],
' wi < wp < wh, ke [K],

(x7977777aw7v) €S.

PROPOSITION 4.1. Let 9*(B) be the optimum of (3.6) with the additional box constraint w € B.
Then, we have ¥(B) < 9*(B).

Proof. This follows from (4.5). |

Since J(B) serves as a lower bound of ¥*(B), we can construct a lower bound of ¥* by taking
the minimum of J(B) for all B in a partition of By. This lower bound gets close to ¥*(B) as we
refine the partition of By.

4.3. Evaluation Problem. Let (#(B),0(B),~(B),#(B),w(B),v(B)) be an optimal solution
to (4.7) for a hyper-rectangle B. To evaluate the quality of Z(B), we solve the following optimization
problem:

Y(Z(B)) ;== min 0
, cF2(B) + ay,
(48) SubJeCt to m < Yk ke [K],

ffn<6, H'n >~, Py<#ly,
0 cR,veRE 7meRE

Note that the evaluation of ¥ (Z(B)) is equivalent to solving (1.1) with z fixed to Z(B). Therefore,
we have ¥* = mingey ¥ (z) and thus for any x € X, ¥(z) serves as an upper bound of ¥*.

4.4. Main Loop. Starting with an initial hyper-rectangle By, we solve (4.7) to obtain an
optimal solution Z(By) and its optimal objective value J(By). Then, we initialize t, 225, 935, Ty
as t « 0, 205 < Z(By), 9dg + ¥(Z(By)), To < {Bo, T(By), ¥(By)} where zty and 945 denote
the incumbent solution at iteration ¢ and its corresponding objective value, respectively.

At iteration t, we find an element (By,Z(B;),J(B;)) € T; such that J(B;) is the smallest. Let

By = [wit wi] x [wy, wo ' o Wi Wi, 2t e 2(By), 0 - O(By).

This manuscript is for review purposes only.
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If 945 — 9" < ¢, we terminate and return the incumbent solution x4y and its objective value 9%y,
Otherwise, we find k; = arg max, (w2 — w{")2/(4z") and divides B; into

b, R b, b, s b,
(4.9) By = [wih wi] xcox [(with 4+ wih) /2, wit] < ox [wi wi,
(4.10) By = [wit wi] <o [wih, (winh +wit) /2] s x [wi widl.

For Bj and By, we solve the associated SOCP relaxation problems (4.7) and obtain (J(B;), Z(B;))
and (J(BY'), £(B})). We update 255 and 955 by comparing the current best objective value 94
with ¢(z(Bj)) and ¥ (Z(B}')). We also update the branch and bound tree as

Tir < T\ {(Br. 2(B1),9(By) } U ({(B1, 2(BY), 9(B;))} U{(BY, 2(By'), )(B{)) })-

The above process is repeated until ¥ — ¥ < € is satisfied or the iteration counter ¢ reaches the
iteration limit ¢,,.x. For a detail description, see Algorithm 4.1.

Algorithm 4.1 SOC-B

1: parameter: optimality tolerance € > 0, iteration limit ¢,

2: compute bounds on z; and wy

3: construct an initial hyper-rectangle By

4: solve (4.7) with By to obtain Z(By) and 9(By)

5: let t + 0, 28y « Z(Bo), 935 + ¥(T(Byo)), To < {(Bo, Z(Bo), 9(Bo))}

6: while ¢t < t,,, do

7. find an element (B, #(B;),9(B;)) in T such that J(B;) is the smallest
8 let Z « &(By), V' « D(By), By := [wi', wh'] x [wit, wh'] x - x [wh, wh]
9: if ¥4y — ' < ¢ then

10: return zlg, 9bp

11:  else

12: let 2l « atp, 9EL « dhg

13: find k; = arg max; (g (WZ’t — w2/ (42)

14: construct Bf, By as (4.9), (4.10)

15: for B, € {B;, B/} do

16: solve (4.7) with B; to obtain z(B;), J(B;)

17: if ¥(2(By)) < Y5 then

18: ziy < T(By), 95« v(2(By))

19: end if
20: end for
2 Ton e T\ {(Bo (B, 9(B))} U {(BLa(BY), 9(BI)} U {(BY, (B, d(BY))}
22:  end if

23:  t«+t+1
24: end while

5. Convergence Analysis. In this section, we provide a convergence analysis for SOC-B
(Algorithm 4.1). Let M be the max of ||P|l« := max; ), [P;;| and max {||p[|1 |[p € P}. In order
to show the finite convergence of SOC-B, we start with a theorem, which provides a bound on the
gap between ¥ and Y&p as a function of the approximation errors at the optimal solution of (4.7)
with B = B;.

118 manuscript s for review purposes only.
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THEOREM b5.1. Let (zt,0%, 7%, 7, w?,v*) and 9* be an optimal solution and the objective value

to (4.7) with B = B;. Then, we have

_ AL
t * t t

where

(5.2) Ay = (Wi whhal — witwht — (w)?

represents an approximation error at wy, for k € [K].

Proof. From the feasibility of (z*, 0,5, ¢, w!, o*) to (4.7), we obtain

cha +ap+ (0)° < (Wi +wphwp — witwyt, ke (K],

Using (5.2), we further have
(5.3) cFEt 4+ ap + (00)* < (@h)? + Ay, ke [K].
Since 4 — (dFzt + Bx) = 20} and 7% + (dF 7t + By) = 2w}, for k € [K], we have
(5.4) vy, = wp, — (7" + Br), k€ [K].
Plugging (5.4) into (5.3), we have
(5.5) ekt 4+ ap + (dE 3t + Br)? < 2wk (di Tt + Br) + Ax, k€ [K].
Consider a solution (%%, ¢, ¢') such that

B gty Ak ot + A
dfzt+ 8, F 7 2(dfxt 4+ B)" T 2(dTE + Br)

(5:6)  (iksokop) = (3% +

From 7} — (diz' + B) = 20} and 7} + (d} 7' + B),) = 2w}, we have §§ — (dLz* + By) = 20} and

¥4 + (df 7' + By) = 2w}. This implies ¢}, = @} — (d} #' + B)), which results in
(w0})? = (ch 2" + o + (0)%) = 20}, (df 7" + Br) — (ch ' + au + (dL 2" + Br)?) -
Using (5.6) and (5.5), we have

20}, (dy & + Br) — (k@' + o + (di 7" + Br)*?) > 0.

From %; — (df z' 4 i) = 20L, 3L + (dL &' + Bi) = 2w}, (w})* — (¢} &' + oy + (0})?) > 0, we have

Ay

Azt + oy N
izt + Br

< qt _ At
d%ft +,Bk > Vg V&
Let (it, 0", 4%, &, @', 9') be a solution such that

L MA
(58)  #'=z" 6'=6"+ max k

e m, #t € argmin fZ 7 subject to H ' m > 41,

This manuscript is for review purposes only.
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and

(5.9) (4L, 0t) = <C£ft +ar A4 dEE 4 By) AL — (dFT + Br)

, , , kelK]|.
ALzt + B 2 2 ) K]

Also, let p* = argmax (&t)Tp subject to p € P. Since P is assumed to be a polytope, the optimiza-
tion problem, max (4%)7p subject to p € P, has a finite optimum, and thus p’ is well-defined. By
(5.9), (&0t 41, &t wt, o') satisfies (3.4) and 4™ < 4t < M. Using (5.7) and (5.9), we have

Ay
ALt + B

Ap <AL+

From the definition of M and the feasibility of (z*, 0,7, 7*, w!, o*) to (4.7), we obtain

MAy
Pit< P Py —F  _1,<61 ——=F _1,=01
K 7+mw2k“’|mﬁd%uﬁkJ TR Tt 6 J
By the definition of #t, we have H”#t > 4*. Moreover, we obtain
T At AN st T At Tt Pk k Ot MA At
= 0 . < 9 .
rr=e +Zd7”+ﬁ = +ZdTA+/3k R a6

The first equality holds from the strong duality and the first inequality follows due to weak duality
since HT7! > 5! due to the feasibility of (z*,0",5', 7!, @', v') to (4.7). So, (&',0!, 4, &, 0", 0t) is
feasible to (3.6) with the objective value of Ht

Since (A%, 41, #t) is feasible to (4.8) with respect to Z*, we have ¥* < ¥ (&!) < . Since w* € By
and no element of By is excluded during the branching process in Algorithm 4.1, there exists some
By such that w* € Bjf. Since (a*, 0*,v*, 7*, w*,v*) is feasible to (4.7) with B = By, it follows that
5(3*) < ¥*. Also, by the selection rule of B; and the way xzty and 9%y are updated, we have
J(By) < I(B;) and ¥4 < 1(3). As a result, we have

_ ]V[ZXk Ak
5.10 Ohg — 0" <Vhg —0' < @' — @t < —— <M — O
(10 " 0 S0 0 G M
Based on Theorem 5.1, we prove the finite convergence of SOC-B.

THEOREM 5.2. For any € > 0, let

K

M(wM — wm)2

n:an, nk:’}ogg (erzmwk)-‘, k € [K].
k=1 k

Algorithm 4.1 (SOC-B) terminates within 2™ iterations.
Proof. By Theorem 5.1 and Proposition 3.2, we have
ZX bt __a,t\2
19t<Mmax—<Mmaxw
kE[K] 2} kE[K] 4z

Therefore, if wZ’t —wit < \/dez /M holds for all k € [K], the algorithm must terminate at iteration
t by the termination criterion.

This manuscript is for review purposes only.
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14 C. KIM AND S. MEHROTRA

Let B be the set of 2" hyper-rectangles obtained by dividing each [WZ‘,W}XI ] into 2™ pieces
of equal length of (w} — wi*)/2™* for every k € [K]. Note that the hyper-rectangles in B are
disjoint and their edges are not greater than /4ez;" /M. On the other hand, if the algorithm does
not terminate through iteration ¢, by the termination criterion, we should have some k' € [K]
such that Wk, — Wk, > y/4ezy /M. Also, the hyper-rectangle B; should not satisfy WZ —wy <
(wM — wim) /2" or Wzt —wit < (wM —wip)/2mt <\ Jez" /M for any k € [K]. If there exists
some k satisfying Wk —wy Ty /€27 /M, we have a contradiction to the branching rule since this
implies

WZ/t _ WZ/t Ae bt at
>3/ —>2-

4 M~ var oo

Therefore, each hyper-rectangle B; in Algorithm 4.1 should either be an element of B or a union of
hyper-rectangles in B if the algorithm does not terminate through iteration ¢.

Suppose that the algorithm does not terminate before iteration 2". Since a hyper-rectangle
is branched into two sub-hyper-rectangles at each iteration, at the start of iteration 2", we have
2" + 1 hyper-rectangles in To». However, since the hyper-rectangles in 75~ are disjoint and they
are either an element of B or a union of hyper-rectangles in B, we have a contradiction to the fact
that the number of hyper-rectangles in B is 2. Therefore, the algorithm should terminate within
2™ iterations. O

Note that the number of iterations is in the order of O(y/€). This square root dependency provides
an explanation for the improved performance of our SOCP-based approach over the LP-based
benchmark algorithms.

COROLLARY 5.3. For the following linear fractional programs:

e q stochastic linear fractional program with finite support or a sample average approximation
to a stochastic linear fractional program (1.2) where Zszl P =1,

e a distributionally robust linear fractional program (6.2) with finite support and a polyhedral
ambiguity set P where each element in P is a probability vector,

e a subproblem (6.12) of a distributionally robust linear fractional program with finite support
where each row of P is a probability vector,

we have M = 1. Therefore, Algorithm J.1 (SOC-B) terminates within N iterations where

— w2
N = Z ’710g2 4ez k “ .
k

6. Distributionally Robust Linear Fractional Programming. In this section, we con-
sider a distributionally robust linear fractional program with finite support &* = (¢, d., ax, Br):

K T
. Ci. T + Oy
(6.1) min sup E pp
TEX pey Py dfx + 61@

where p € R¥ is a probability vector such that 2521 pr = 1,p > 0, and U is an ambiguity set of
probability distributions. Assuming that (A1)-(A3) hold in (6.1), we introduce solution approaches
for polyhedral and convex ambiguity sets below.

This manuscript is for review purposes only.
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6.1. Polyhedral Ambiguity Set. Let P be a polyhedral ambiguity set (for the definition of
P, see (A5)). Using the LP duality, we derive the following reformulation.

PROPOSITION 6.1. If the ambiguity set U is P, the optimization problem (6.1) is equivalent to

min 0
subject to ckr+on < k e [K]
(6.2) ! e+ pp " ’

fT7T <4, H 7w > v,
reX, 0eR, yeRE reRL
Proof. This follows directly from the linear programming duality.
THEOREM 6.2. Algorithm 4.1 (SOC-B) finds an e-optimal solution to (6.2) within N iterations.

Proof. The optimization problem (6.2) is a special case of the linear fractional program (1.1).
Since P is a polyhedral ambiguity set for probability vectors, every element p in P is a probability
vector. By Corollary 5.3, we obtain the desired result. 0

Next, we present three formulations for ambiguity sets based on monomial moments, total
variation distance, and Wasserstein metric. In what follows, let p* denote the empirical distribution.

6.1.1. Moment-based Ambiguity Sets. Let u(&) = (ut(€), u2(€),- -+, u™(€)) be a vector
of moment functions on ¢ € R*"+1) where the i moment function yx° is defined by some non-
negative integers di, ds, - - - ’dé(nJrl) such that p(€) := (&)% - (&)% - - - (52(n+1))d;("+1>. Given lower
and upper bounds on p and p, we can define a moment-based ambiguity set P, as

K
(6.3) Prn = {p | <> pen(€®) < 7§p§ﬁ}.
k=1
To ensure that p is a probability vector, we let ' =n' =1 and d} =dj =--- = d%(nﬂ) =0.

PROPOSITION 6.3. The optimization problem (6.1) with the moment-based ambiguity set Py,
(6.3) is equivalent to

min —yTﬁ—f—UTﬁ—@TB—l—w D
T
. _ _ C. T+ Qy
6.4 subject to —v+ )T () —w, +w* > B
(6.4) ] (—v+70)" (&) —wy Z i B
reX, veRT, veRT, weRE, weRE.

ke [K],

Proof. See (29, Theorem 1). O

6.1.2. Total Variation Ambiguity Sets. Let p and ¢ be probability measures over a finite
set Q= {€1€2... (K} We define the total variation distance between p and ¢ as dry (p,q) :=

%Ef;l Ipr — qi| where py := p(¢F) and g = q(¢¥) for k € [K]. Given a radius A > 0 and an
empirical distribution p* € RE, we define a total variation ambiguity set Pry as

K K

1 ]

§lek—pk| <A pe=1p 20, ke [K]}-
k=1

(65) PTV = {p
k=1
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PROPOSITION 6.4. The optimization problem (6.1) with the total variation ambiguity set Pry
(6.5) is equivalent to

K
min Z(sk —tr)pp + Av 40
k=1
(6.6) cFr+a, 1
bject t o>k s —tp >0, ke [K],
subject to s — tg Z o B 5V~ Skt 2 (K]

reX, seRE teRE, 6eR, v>0.
Proof. This follows directly from the linear programming duality.
6.1.3. Wasserstein Ambiguity Sets. Let d(£,&7) be a distance between ¢¢ and ¢7. Given a

radius A > 0 and an empirical distribution p* € Rf , the Wasserstein ambiguity set Py, is defined
as

K . K -
Z]I‘(=1 gij = Di, 1 € (K], Zi=1 4 =Dpj,J € (K],

(6.7) Pw :={p | Iqe REE z,}c{:lpk;l,pk >0, k€ [K], q; >0,i,5€[K],
>im1 Zj:l i d(&i, &) < A

PROPOSITION 6.5. The optimization problem (6.1) with the Wasserstein ambiguity set Py (6.7)
is equivalent to

K
min —ZpZtk—AV—I—(S
k=1
(6.8) bject t +6>C£x+ak ke [K]
. subject to — s —T - ,
) b b _dfw—kb’k

reX,seRFE teRE reRE §eR, v <0, ge REXE,
Proof. See (29, Theorem 3). |

6.2. Convex Ambiguity Set. Since strong duality does not generally hold in convex opti-
mization, for convex ambiguity set C, we consider the following semi-infinite program

min 0
rzeX
(6.9) biect t SR k€ [K]
. subject to Kz = , ,
) dfe+ B, ~ Tk

vI'p<6, Vpec.
Here are some examples of convex ambiguity sets.

6.2.1. Mean-Covariance Ambiguity Sets (10). Let u € R2"+1) and ¥ € R2(»+1)x2(n+1)
be a reference mean vector and an invertible covariance matrix. Using the reference mean vector p
and covariance matrix ¥, we define an ambiguity set as

(S 0TS (S ) e
(610) CDY =P Ei(:]- Die (é-k _ ,U) (gk _ ,LL)T < ﬁ27
Zszlpk =1,p, >0,k € [K]
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6.2.2. Divergence-based Ambiguity Sets. Let ¢ : Ry — R, be a convex divergence
function. Popular choices of the function ¢ are ¢(x) = = In(z) — z + 1 (Kullback-Leibler), ¢(x) =
|z — 1| (total variation), ¢(z) = (z — 1) (Modified y2-distance) and ¢ = (y/z — 1)? (Hellinger
distance). For more ¢-divergence functions, see (37, Table 1). Given the divergence function ¢, a
radius A > 0, and an empirical distribution p* € Rf , we define an ambiguity set Cy as

K K
k=1 Py k=1

Next, we discuss an approach to solve the semi-infinite program (6.9). To find an e-optimal
solution of (6.1), we present a cutting surface algorithm (32; 30), which iteratively solves

(6.11) Cpi= {p

min 0
zeX
(6.12) biect t ot ok k€ [K]
. subject to - ,
J d{l‘ +6k = Vk )
P7 S eﬂta
where each row of P is an element of a finite set C* := {p*,p°,--- ,p'~!} C C. Each time we obtain

an e-optimal solution (z*,~?,0%) to (6.12), we solve the separation problem maxpec p? ' to either
terminate or generate a probability cut p’. For details, see Algorithm 6.1.

Algorithm 6.1 A cutting surface algorithm for (6.1)

Input: optimality tolerance e > 0, empirical distribution p*.

Step 1: C° + {p*}, t + 0.

Step 2: Determine an optimal solution (z*,~*, 6%) of (6.12) with C*.

Step 3: Determine an €/2-optimal solution p’ of the problem max,cc p?+".

Step 4: If (p*)T4! — 0" < €/2, stop and return ' and 0%; otherwise C!*1 < C* U {p'}, t + t + 1,
and go to Step 2.

Let 6M .= maxe[K] ’y,ﬁ” and T' := {(z,v,0) |z € X, (c{x+ak)/(d£x+5k) < < 'y,i”, ke
[K], 0 <0 <6} (for the definition of v}, see (4.2)).

PROPOSITION 6.6. Let (zt,~%,0%) be an optimal solution obtained by solving (6.12) with Ct as
in Algorithm 6.1. For any t > 0, (z%,~%,0") belongs to the compact set T'.

Proof. Since matrix P constructed from C! is non-negative, Assumption (A4) is satisfied. There-
fore, using Proposition 3.1, let (zf,~%,0") satisfy 7! = (clzt + a)/(dFat + B;) for all k € [K].
By the definition of 4 in (4.2), we have v} < M for k € [K]. Also, by (A2)-(A3), we have
(cFz + ag)/(dFz + Bi) > 0 for all z € X, leading to v} > 0 for k € [K]. Therefore, 0 < 6* since
P >0.

Next, suppose that 6% > M. If pT4t < M for all p € C?, we have a contradiction since we
can improve the objective value by decreasing 8% to 6. Therefore, there should exist some p € C?*
such that p+* > 6. Since p is a probability measure, it implies that 6% = maxep) 7 >

maxye(x) 75 = P y" > 0™, which leads to a contradiction, Therefore, we have * < 0™ resulting
in (xt,7%,0%) € T'. The set I' is compact since it is closed and bounded. 0

THEOREM 6.7. Let C be a compact set. Algorithm 6.1 returns an e-optimal solution in a finite
number of iterations.

This manuscript is for review purposes only.
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18 C. KIM AND S. MEHROTRA

Proof. Since I' and C are compact, so is I' x C. Since g(x,~,0,p) := vTp — 6 is continuous on
I' x C, by Proposition 6.6 and the argument in (28, Theorem 4.2), we obtain the desired result. 0O

7. Numerical Experiments. In this section, we report numerical experiments of the pro-
posed algorithms for the linear fractional program (1.2) and the distributionally robust linear frac-
tional program with finite support (6.1).

7.1. Linear Fractional Program. We compare the proposed algorithm (SOC-B) with bench-
mark algorithms on diverse examples to test the scalability with respect to the number of variables
n, the number of fractional terms K, and the optimality tolerance e. For the benchmark algorithms,
we select two branch and bound algorithms (26; 19) and a polyblock-based outer approximation
algorithm (35). For all branch and bound algorithms, we adopt the rule that branches a node
having the best bound. By examining how relative optimality gaps change over time, we compare
the performance of the algorithms.

Two types of test examples are considered in the experiments. First, we considered small
examples that have been introduced in the literature (13; 26; 35; 34; 19). Second, we generated
synthetic examples by varying the values of n and K to test the scalability of the algorithms. For
the experiments, we used a 64-core server with Xeon 2.20 GHz CPUs and 128 GB RAM where each
core is used to run an algorithm on a test example. All the codes are written in Python and use
Gurobi to solve base problems (LP, SOCP).

7.1.1. Small Examples from the Literature. We consider six examples from the literature.

These examples are from Falk (13), Pei III (34), Phuong (35), and Kuno LII (26) with the size
(n,K) of (2,2), (3,3), (3,4), (12,5), (3,3), and (3,4), respectively.
Experience with Commercial Solvers. We attempted to solve (3.6) using two commercially
available solvers Gurobi and GloMIQO (33), which are developed to solve bilinear optimization
models. GloMIQO was used from the GAMS interface. Gurobi failed to find a meaningful solution
for all cases. On the other hand, GloMIQO (33) found an optimal solution for all cases using its
local solver. However, the reported gap was more than 100% even after running the solver for 24
hours. This computational experience suggests the need for specialized algorithms to solve linear
fractional programs.

Table 1: Experimental results of Gurobi and GloMIQO (33) on six small examples in the literature.
After running the algorithms for 24 hours, we report computation times (in seconds), best feasible
objective values, and best bounds.

Problem Gurobi GloMIQO
Run Time | Best Feasible | Best Bound | Run Time | Best Feasible | Best Bound
Falk 86436.13 - - 86401.11 -5.0000 -1.90e+06
Pei 1 86404.65 1.0247e+10 - 86401.08 -3.0000 -3.83e+06
Pei 11 86663.79 - - 86401.08 -4.0907 -5.75e-+06
Phuong 86410.24 - - 86417.00 -16.0576 -9.99e+06
Kuno I 86409.19 1.3318e+10 - 86400.93 -3.0029 -3.82e+06
Kuno IT | 86527.22 - - 86401.32 3.7984 -5.74e+06

Experimental Results with Specialized Algorithms. We now report computational experi-
ments with our implementation of the proposed algorithm and other special algorithms developed in
the literature. We implemented Kuno’s algorithm (26), Jiao and Liu’s algorithm (19) and Phuong
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and Tuy’s algorithm (35). For each problem, we run the algorithms until they reach a (rela-
tive) optimality gap of 1075 and report computation times taken to attain an e-optimality gap for
€ € {1072,1072,107%,107°}. Table 2 gives the experimental results. The results in Table 2 show
that SOC-B and Kuno’s algorithm (26) are the fastest algorithms for these examples. Both of them
take less than three seconds to reach an optimality gap of 107> for all examples. While Kuno’s
algorithm is faster than SOC-B when n < 3, the performance gap decreases as n increases and €
gets small as seen in the Phuong instance. The Phuong and Tuy’s algorithm (35) is competitive to
Kuno’s algorithm and SOC-B for the Falk, Pei I, Pei II, and Kuno II instances. However, it is slower
than Kuno’s algorithm and SOC-B for the Kuno I instance. For the Phuong instance, the Phuong
and Tuy’s algorithm’s solution time is significantly greater, and it performs even worse than the
Jiao and Liu’s algorithm (19). Except for the Phuong instance, the Jiao and Liu’s algorithm is the
slowest algorithm.

Table 2: Experimental results for the four specialized algorithms on six small examples in the
literature. Computation times (in seconds) are for attaining a relative optimality gap tolerance in
the range 1072 to 107°.

Algorithm Tolerance | Falk | Peil | Pei Il | Phuong | Kuno I | Kuno II
1072 0.31 0.62 0.26 1.37 0.51 0.32
. 1073 047 | 0.92 | 0.33 1.64 1.39 0.58
SOC-B (Algorithm 4.1) \—jg5=r— 58 | 1.01 | 050 | 180 2.27 0.84
1075 0.62 | 1.08 | 0.63 2.02 2.65 0.97
1072 0.03 | 0.01 | 0.03 0.33 0.02 0.03
Kuno (26) 1073 0.05 | 0.01 | 0.03 0.63 0.10 0.03
1071 0.05 | 0.04 | 0.08 1.40 0.19 0.09
107° 0.05 | 0.08 | 0.08 1.89 0.22 0.09
1072 1.33 | 2.09 | 0.90 8.15 3.10 2.33

1073 4.25 | 11.00 | 3.34 24.66 30.37 11.42
1077 7.96 | 23.64 | 6.41 54.18 94.22 23.22
107° 11.89 | 36.08 | 9.19 90.60 164.82 34.57
1072 0.16 | 0.05 0.04 642.64 0.21 0.02
1073 043 | 0.22 0.08 3520.37 2.38 0.09
1072 0.66 | 0.36 0.15 6208.80 7.53 0.15
107° 0.86 | 0.50 0.22 | 15319.08 | 13.11 0.23

Jiao and Liu (19)

Phuong and Tuy (35)

Although these small examples are widely used for comparing the algorithms in the literature,
they have the following limitations. First, ay and 8y are relatively large in comparison with ¢ and
di. This makes linear fractional functions have little curvature. Second, the problem size (n,K)
is small. Since the number of auxiliary variables is increasing with K in all algorithms, problems
with large K should be experimented to test the scalability of the algorithms. In order to better
evaluate the algorithms, we generate synthetic problem instances as follows.

7.1.2. Synthetic Problem Instances. Let a;; be the entry in the i*" row and j** column of a
matrix A. We generate the problem parameters ci, dy, a; € R™ and ay, B, pk, b; € R where i € [m]
and k € [K] in (1.2) as n, K € {5,10,25,50,100}, m = [n/2], pr = 1/K, a;; ~ Uniform(1,n),
b; = n, ¢x; ~ Uniform(—1,1), ay ~ Uniform(—1,0), a = @y — maxgex i ¢, dgj ~ Uniform(—1,1),
Bk ~ Uniform(0, 1), and S = 1 — mingex df z. From x > 0, a;; ~ Uniform(1,n), and b; = n, we
have 0 < z; < 1. It ensures that & is a polytope. From the definitions of o and i, we have
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c;{x +ar < ap <0and dfx + B > B > 0. Our data generation model allows both signs for Chj
and dy;, contrary to the data generation models in (19; 26) which allows only positive values for
crj and dy;. Allowing both signs for ¢;; and di;, we can generate more difficult linear fractional
functions.

n5m3K50 n_10 m5K50 n25m13 K50 n5m3K100
10° 10 10 10
—— Jiao
—— Kuno
—e— BB_SOCP
1071 1071 1071 1071
a a a a
T © T ©
O 1072 O 1072 O 1072 O 1072
> > > >
£ £ £ £
© © © ©
£ £ £ £
£ £ £ £
‘é‘_ 10 *é’_ 10° ‘s_ 10 ‘a 10
o o o o
104 1074 1074 107%
—— Jiao —— Jiao —— Jiao
—e— Kuno —e— Kuno —e— Kuno
—e— BB_SOCP —e— BB_SOCP —e— BB_SOCP
1075 107° 107% 107°
0.0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.0 0.5 10 15 2.0 2.5 3.0 35 00 05 1.0 15 20 25 30 35 40 1 2 3 4 5 6 7
Time (seconds) Time (seconds) Time (seconds) Time (seconds)

Fig. 2: Objective value convergence plots for a problem instance of the size (n, K) € {(5,5), (10, 5),
(25,5), (5,10)}.

Table 3 gives the results for synthetic instances. For each choice of (n, K), we generate five
instances and run the algorithms until they reach an optimality gap of 107® with the time limit
of 24 hours. If a certain level of optimality gap is reached for all five instances, we report the
average of computation times. The Phuong and Tuy’s algorithm takes a large time as the size
of n and K increases. So, the experimental results of this algorithm are not included in the
table. Results in Table 3 show that SOC-B scales much better as the size of n and K increases.
When n and K are small, SOC-B and Kuno’s algorithm take a similar amount of time to reach
an optimality gap of 1072 as shown in the instances with (n, K) € {(5,5), (10,5), (25,5), (5,10)}.
However, although computation times to reach an optimality gap of 10~2 are similar between
SOC-B and Kuno’s algorithm for (n, K) € {(10,5), (25,5), (5,10)}, the optimality gap of SOC-B
decreases more quickly, as illustrated in Figure 2. This is attributed to the square root dependency
on e of SOC-B, which is not seen in LP-based approximations. For the instances with (n, K) ¢
{(5,5),(10,5),(25,5),(5,10)}, SOC-B clearly outperforms the benchmark algorithms. For these
instances SOC-B takes much smaller computation times to attain an optimality gap of 10~2. The
efficiency of SOC-B over the benchmark algorithms sharply increases as € gets small. To attain an
optimality gap of 1075, SOC-B is at least five times faster than the benchmark algorithms. Contrary
to the other algorithms, SOC-B can solve all five instances of (n, K') = (10, 25) and (100, 10) within
the time limit. For (n, K) = (25,25) and (5,50), SOC-B achieves an optimality gap of 10> for two
out of the five instances, as shown in Table 4.

In summary, SOC-B attains two or more digit accuracy faster than the benchmark algorithms
in most cases. In particular, it efficiently finds a highly accurate solution due to the square root
dependency on e.

7.2. Distributionally Robust Linear Fractional Program. We present experimental re-
sults for the distributionally robust linear fractional program with finite support (6.1). For each
(n,K) € {(5,10),(10,10), (25, 10), (50, 10), (100, 10), (5, 25), (10,25) }, we randomly choose one in-
stance among the five instances used in Section 7.1.2. We use the Wasserstein ambiguity set (6.7)
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Table 3: Experimental results for three specialized algorithms on synthetic problem instances. For
each (n, K), we run the algorithms on five instances with a 24-hour time limit. We report average
computation times (in seconds) over five instances to reach a range of relative optimality gap
tolerances from 1072 to 107°. A blank cell represents that an algorithm could not attain a target
relative optimality gap tolerance within the time limit in any of the five instances.

Problem SOC-B (Algorithm 4.1) Kuno (26) Jiao and Liu (19)

K| n 1072 1073 1072 10~° 102 1073 1072 107° 1072 1073 10~1 107°

5 5 0.76 1.19 1.47 1.79 0.35 0.65 0.87 1.16 6.40 19.95 | 32.60 48.41
10 1.38 2.30 2.69 3.07 1.62 3.49 5.37 7.01 72.55 221.26 | 406.19 | 594.15
25 3.16 4.30 4.88 5.37 4.87 12.14 23.18 36.64 122.10 423.97 | 961.19 | 1647.64

50 11.58 19.00 22.48 23.88 33.27 178.52 604.00 1216.33 5052.41 - - -
100 53.27 77.28 86.79 91.42 203.93 | 1117.85 | 5669.88 | 20264.29 || 21779.47 - - -
5 7.93 13.80 16.22 17.44 8.79 20.54 28.62 34.66 32152.78 - - -
10 12.92 21.70 24.84 25.76 25.53 68.52 102.36 130.53 - - - -
25 56.91 81.61 88.20 90.43 242.38 690.48 | 1125.68 | 1511.42 - - - -
50 211.90 | 322.90 | 352.59 | 362.73 1208.87 | 3859.17 | 12409.12 - - - - -
100 || 1290.59 | 2087.42 | 2294.36 | 2333.53 | 22261.21 - - -
5 190.61 | 419.30 | 477.57 | 488.98 316.76 | 1122.55 | 1773.37 | 2377.53 - - - -
10 || 4828.92 | 8260.64 | 8748.70 | 8811.11 - - - - - - - -

10

Table 4: Experimental results of three specialized algorithms for synthetic instances with large K.
For each (n, K) = (25, 25), (5,50), we run the algorithms on five instances until a relative optimality
tolerance of 1075 is satisfied with a 24-hour time limit. We report computation times (in seconds)
and relative optimality gaps for all instances.

Problem SOC-B (Algorithm 4.1) Kuno (26) Jiao and Liu (19)
K | n | # | Time (s) | Opt. Gap | Time (s) | Opt. Gap || Time (s) | Opt. Gap

1 86400 0.038 86400 0.064 86400 0.22

2 65735 1.00e-05 86400 0.042 86400 0.21

25125 3 74886 1.00e-05 86400 0.047 86400 0.17

4 86400 0.067 86400 0.070 86400 0.24

5 86400 0.011 86400 0.053 86400 0.19

1 86400 0.029 86400 0.044 86400 0.28

2 40359 1.00e-05 86400 0.020 86400 0.22

501 5 | 3 6334 1.00e-05 86400 0.0015 86400 0.21

4 86400 0.018 86400 0.038 86400 0.25

5 86400 0.030 86400 0.045 86400 0.36

with d(&;,&;) = ||€& — &;ll1. For a radius A > 0, we set A = pA™** where p € {0,0.01,0.05,0.1,0.2}
and A™?* is the minimum distance such that all probability distributions supported on the finite
support are included in PV when A = A™2*_ We consider the two proposed solution approaches
(dual reformulation, cutting surface algorithm) to solve the optimization problem. Table 5 gives
the results for distributionally robust linear fractional programs.

Table 5 suggests that the two approaches solve most instances within the time limit of 24 hours.
The dual reformulation approach is more efficient than the cutting surface algorithm since it solves
only one instance of (1.1). As the radius A increases, computational times tend to increase in
both approaches. The number of cuts also grow with A. In the cutting surface algorithm, while
two or fewer probability cuts are generated for p < 0.05, this number increases to more than 5
when p > 0.1. On the other hand, objective values drop more quickly for large K. For p = 0.01
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Table 5: Experimental results of two solution approaches for distributionally robust linear fractional
programs. For each (n, K), we run the algorithms with varying p from 0 to 0.2 until a relative opti-
mality gap of 107° is obtained with a 24-hour time limit. We report objective values, computation
times, relative optimality gaps and the number of probability cuts (for cutting surface algorithm
only).

Problem Dual Cutting Surface

K| n p Obj. Val | Time (s) | Opt. Gap | Obj. Val | Time (s) | Opt. Gap | Cuts
0 -1.1493 37.56 1.00E-05 -1.1493 46.76 1.00E-05
0.01 | -1.1302 42.22 1.00E-05 -1.1302 60.75 1.00E-05
0.05 | -1.0536 25.05 1.00E-05 -1.0536 37.33 1.00E-05
0.1 -0.9591 59.23 1.00E-05 -0.9591 123.74 1.00E-05
0.2 -0.8479 495.6 1.00E-05 -0.8479 3144.24 1.00E-05
0 -1.3251 44.37 1.00E-05 -1.3251 55.62 1.00E-05
0.01 | -1.3003 31.84 1.00E-05 -1.3003 45.7 1.00E-05
10 | 0.05 | -1.2009 41.59 1.00E-05 -1.2009 60.57 1.00E-05
0.1 -1.0929 129.33 1.00E-05 -1.0929 266.57 1.00E-05
0.2 -0.9556 351.06 1.00E-05 -0.9556 9502.88 1.00E-05
0 -0.9717 290.59 1.00E-05 -0.9717 378.06 1.00E-05
0.01 | -0.9458 921.47 1.00E-05 -0.9458 1763.99 1.00E-05
10 | 25 | 0.05 | -0.8934 1182.96 1.00E-05 -0.8934 4363.21 1.00E-05
0.1 -0.8483 1359.33 1.00E-05 -0.8483 7541.36 1.00E-05
0.2 -0.7906 2190.53 1.00E-05 -0.7906 | 30447.53 | 1.00E-05
0 -1.0661 1076.99 1.00E-05 -1.0661 1742.33 1.00E-05
0.01 | -1.0518 1988.09 1.00E-05 -1.0518 4543.3 1.00E-05
50 | 0.05 | -0.9976 3399.73 1.00E-05 -0.9976 | 10338.17 | 1.00E-05
0.1 -0.9607 3755.13 1.00E-05 -0.9607 | 22570.45 | 1.00E-05
0.2 -0.9302 2264.33 1.00E-05 -0.9302 | 25342.39 | 1.00E-05
0 -1.1906 2421.99 1.00E-05 -1.1906 4423.74 1.00E-05
0.01 -1.179 3337.54 1.00E-05 -1.179 8594.49 1.00E-05
100 | 0.05 -1.138 2909.73 1.00E-05 -1.138 9598.92 1.00E-05
0.1 -1.0908 3679.35 1.00E-05 -1.0908 | 26938.46 | 1.00E-05
0.2 -1.0455 2901.88 1.00E-05 -1.0455 | 58606.53 | 1.00E-05
0 -1.3338 5929.86 1.00E-05 -1.3338 6621.21 1.00E-05
0.01 | -1.2729 | 28455.42 | 1.00E-05 -1.2729 | 30113.09 | 1.00E-05
5 0.05 | -1.0825 | 59026.49 | 1.00E-05 -0.9676 | 66166.13 0.1675 -
0.1 -0.8974 64801.5 3.54E-02 -0.8942 | 65462.24 0.4396 -
0.2 -0.6791 | 64800.95 | 9.03E-02 -0.6405 | 65214.21 0.6933 -
0 -1.2096 2313.82 1.00E-05 -1.2096 2625.93 1.00E-05 0
0.01 | -1.1579 | 12977.19 | 1.00E-05 -1.1579 | 13824.77 | 1.00E-05 1
10 | 0.05 | -0.9648 | 36695.22 | 1.00E-05 -0.9648 | 48759.61 | 1.00E-05 2
0.1 -0.7704 | 64801.91 | 9.53E-02 -0.7606 | 65179.75 | 1.23E-01 -
0.2 -0.637 64802.66 0.4490 -0.4945 | 65106.69 0.7151 -

(S8

— ol h o R | o & ©f x| o] of | o] & o) | | ro| = =| o] 1G] | = = o

and 0.05, the objective values decrease by 3% and 10% when K = 10. However, for K = 25, the
objective values decrease by 5% and 20%, respectively. The dual reformulation approach solves
small instances with K up to 25 within a reasonable amount of time.

8. Concluding Remarks. In this paper we consider a linear fractional model in a form which
allows us to consider the linear fractional program and its stochastic and distributionally robust
counterparts in the same framework. Based on second order cone approximations, we develop an
adaptive branch and bound algorithms to solve this model. Our branch and bound algorithm has
an attractive property that the number of iterations to attain an e-optimal solution is in the order
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of O(y/€). Due to this property, the algorithm finds an accurate solution faster than the LP-based
benchmark algorithms. The algorithm scales better with problem size and the number of terms in
the fractional program. Specifically, it can solve small size instances with K up to 50 and medium
size instances with K up to 25. This result is important when fractional programs are obtained
from the sample average approximations of a stochastic program. For distributionally robust linear
fractional programs, our reformulation approach can solve small size instances with the cardinality
of support up to 25.

Acknowledgments. We would like to thank the associate editor and two anonymous referees
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comments.
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Appendix A. Proofs.
A.1. Proof of Proposition 3.1.

Proof. To prove the first part, we first show that (z*, 0%, 7*,~v*) is feasible to (1.1). By df z* +
Br > 0 and the constraints in (3.4), we have (¢l z* + ak)/(dfx* + Br) < ~; for all k € [K], which
gives the feasibility of (z*, 6%, 7*,~7*) to (1.1). Suppose that (Z,6,#,4) but not (z*, 0%, 7*,~7*) is an
optimal solution to (1.1) such that § < 6*. Consider a solution (z, é 7,7, W, ) that

cedton o G did 4By T (T4 )
2

G Tk - , ke [K].
it B 2 (K]

Tk =
By construction, the solution (z, 0,7 Y, W ,v) satisfies (3.4) and ¥ < 4. By HT'# > 4 and P4 < 01,
we also have HT7 > 5 and Py < 61, since ¥ < 4 and P > 0, which implies that the solution
(2,0, 7,7, 17) is feasible to (3.6) with the objective value . This yields a contradiction to the fact
that (z*, 0%, 7*,v*, w*,v*) is optimal to (3.6). So, (z*,60*,7*,v*) is optimal to (1.1).

For the second part, we first show the feasibility of (z*,0*, 7*,%,w, ¥) to (3.6). By construction,
it satisfies (3.4). Also, by HT'7* > 4* and Py* < §*1 7, we have H'7* > 5 and Py < 0*1 ; since ¥ <
~* and P > 0. Therefore, (z*,0*,7*,7,w,v) is feasible to (3.6). Suppose that (z*,0* 7* 7, w,v)
is not optimal to (3.6). Then, there exists an optimal solution (Z, 0,#%,4, W, ) to (3.6) such that
< 6*. The argument in the first part indicates that the solution (&,%,,?) is feasible to (1.1)
with the objective value 6. This leads to a contradiction to the fact that (x*, 0%, 7*,~*) is optimal

o (1.1), which proves that (z*,0*, 7*,7,w, v) is optimal to (3.6). d

A.2. Proof of Proposition 3.2.
Proof. The first part follows from

a b\ 2
1
u(w)—w2=—<w—w;rw> +*(wb—w“)2.

For the second part, the inequality trivially holds for w = w® and w®. For w € (w®, (w® + w?) /2],
let g be a function such that g(w) = (u(w) — w?)/(u(w) — w?) = 2w — (W +w?))/(2(w — w?)).
Taking the derivative of g, we have dg(w)/0w = (w* — w?)/(2(w — w®)?) < 0. This results in
g(w) < limy_yyarog(w) =1/2.

On the other hand, for w € [(w® + w?)/2,w®), let h(w) = (2w — (w* + w?))/(2(w — w?)). Since
Oh(w) /0w = (w* —w?)/(2(w — w?)?) < 0, we have h(w) < lim,,_,b_o h(w) = 1/2. This completes
the proof. 0

A.3. Proof of Proposition 3.3.

Proof. By Proposition 3.1, without loss of generality, let (z*, 0%, v*, 7*, w*,v*) be an optimal
solution to (3.6) satisfying (3.8). Since wj € [w} ,Wk M] holds for each k € [K], we have (w})? <
u(wi; W), which leads to cf z* + oy, + (v})? < (wi)? < u(wj; Wy) for every k € [K]. Therefore,
(*, 0%, v*, 7, w*, v*) is feasible to (3.10) with the objective value of #* = ¥¥*, which completes the
proof. 0

Appendix B. Disjunctive cuts. To solve the mixed binary program (3.13) in the branch
and cut framework, we introduce a separation problem which generates a hyperplane that cuts off
a fractional solution from the convex hull of the feasible region. Our derivation follows the variable
transformation technique introduced in (46).
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Let (z,0,%,7,w, v, A\, i) be a fractional solution obtained by solving a relaxation problem of
(3.13). By (A1)-(Ab), (1.1) and thus (3.13) have a finite optimum. Let (z*, 6%, v*, 7*, w*, v*, \*, u*)
be an optimal solution to (3.13). Then, there exists a constant L satisfying

0| < L, max{||z" oo, |7 locs |7 || cos [|w™ || cos [0 ||ec } < L, max A ,
e {1 o 19 s s " s "o} < 2y _ Nyl < I
|Az* = blloo < L, —||z*|loo < L, max Z)\kj (cfz* + ap + (vp)?) < L.

Without loss of generality, we can impose an upper bound L for each element of feasible solutions and
constraints in (3.13). With the bound constraints, the feasible region of (3.13) can be represented
as the union of H,I::l(Nk — 1) sets of the form

0] < L, |2]loc <L, [I7]oc < L,

[Ylloe < L, |w]loo <L, [v]lec <L,

|Az = blloo < L, —[|z|l0c < L,

|/\1w| <L je [Nk] k€ [K],

Civiz=in = { (2,0, 5,7, w,v,\) Z IYSICAE (ckx—i—ozk +v3) <L, k € [K],
ckx+ak+vk<2 Mg (w2, k € (K],

pit =t =1, ke [K]

(w, Mgy i) € Hy, k € [K],

(z,0,v,m,w,v) € S.

where ji, € [Ny — 1] and k € [ ]. Note that C7192Jx represents a set of points satisfying wy, €
[wik, w1 and ¢f x4+ o + 07 < (W)F + WD wy — wiFwir T for k € [K].

To construct the convex hull of €172 JK , we use the variable transformation technique in (46).
Rather than writing a convex combination z = (x,6, v, 7, w,v,\) as

Ni—1Ny—1 Ng—1

y = § E .. E nj1j2“‘jKZj1j2"'jK

J1=1 j2=1 jr=1
where

Ni—1N3—1 Ng—1
Z Z Z nj1j2“‘jK =1, nj1j2"'jK >0, PVENERRNI S c le]é"'jk7 Jk € [Nk _ 1], = [K]v

ji=1 ja=1 jr=1
using (46, Theorem 2), we represent z as

Ni—1Ny—1 Ng—1

2= Z Z Z sivjaix

J1=1 j2=1 Jrk=1
where

Ni—1Nz—1 Ng—1

(éjljZ"'jK7 nj1j2"'jK) c éj1j2“'JK Jr € [Ny, — 1], Z Z Z nhh UK =1

Ji=1 j2=1 Jr=1
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and

C’jlj2“'jK = (2’77)

In the above, n7172""JK represents a coefficient in a convex combination and 27172"J¥ is a coefficient

C. KIM AND S. MEHROTRA

0] <nL,||2]lo < 0L, ||Tlloo <nL,

[Flloe < 0L, [[@]loe < 0L, [[0]lcc < nL,

A% = bnlloc < 0L, —=[|&]loc < 0L, |Aej| <L, j € [Ni], k € [K],

Az <bn, 2>0,fT7 <6, H'%# >4, Py <01y,

Ak — (di & + Brn) = 20, A + (df 2 + Ben) = i, k € [K],

i = Y0 Mg (W2, oF &+ o + 02/ < 00 Ak (wih)?, k€ [K],
0< j\kj < firg, J € [Ni], Z;V:kl 5‘kj =1, ke [K],

fuacji, = fegr = 15 ki, = 0, ik 7 Jis e + 1, K € [K],

’2: j? 7’)/’7(71'2\}’/0’A)7,’720'

—
>

multiplied quantity such that 27172 Jx /pjiizdx g CI172Ix for gtz ix > (),

To cut off a fractional solution z = (z,0,7, 7, w, v, ), we consider the following separation

problem

If an optimal solution z* satisfies f(2*) > 0, then by (46, Theorem 3), the inequality df(z*)T (z —
Z) > 0 constructed by the subgradient 9f(z*) and the fractional solution Z is a valid inequality in

z and cuts off Z . For more information, see (46).

min
z

subject to

f(z) =z ==
Ni—1Nx—1 Ng—1

z = E E E 2j1j2"'jK,
J1=1 j2=1 Jr=1
N;1—1Ny—1 Ng—1

Z Z Z njljZ"'jK =1,

Ji=1 jo=1 jr=1
(2j1j2"'jK’ njl.j2"'jK) c C'j1j2"-j1r<7 jk € [Nk _ 1]’ ke [K]
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