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Abstract. We consider linear fractional programming problems in a form of which the linear fractional program5
and its stochastic and distributionally robust counterparts with finite support are special cases. We introduce a6
novel reformulation that involves differences of square terms in the constraint, subsequently using a piecewise linear7
approximation for the concave part. Using the resulting second order cone programs (SOCPs), we develop a solution8
algorithm in the branch and bound framework. Our method iteratively refines the piecewise linear approximations9
by dividing hyper-rectangles and solves SOCPs to obtain lower bounds for the sub-hyper-rectangles. We derive a10
bound on the optimality gap as a function of the approximation errors at the iterate and prove that the number of11
iterations to attain an ε-optimal solution is in the order of O(

√
ε). Numerical experiments show that the proposed12

algorithm scales better than state-of-the-art linear-programming-based algorithms and commercial solvers to solve13
linear fractional programs. Specifically, the proposed algorithm achieves two or more digits of accuracy in significantly14
less time than the time required by the known algorithms on medium to larger size problem instances. Experimental15
results with Wasserstein ambiguity sets reveal that our reformulation-based approach solves small size distributionally16
robust linear fractional programs, with the cardinality of support up to 25.17
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1. Introduction. We study the linear fractional programming problem in the form21

(1.1)

ϑ∗ := min θ

subject to
cTk x+ αk
dTk x+ βk

≤ γk, k ∈ [K] := {1, · · · ,K},

fTπ ≤ θ, HTπ ≥ γ, Pγ ≤ θ1J ,
x ∈ X , θ ∈ R, γ ∈ RK , π ∈ RL,

22

where23
(A1) X := {x |Ax ≤ b, x ≥ 0} is a non-empty polytope in Rn.24
(A2) cTk x+ βk ≥ 0 for all x ∈ X and k ∈ [K].25
(A3) dTk x+ βk > 0 for all x ∈ X and k ∈ [K].26
(A4) P is a non-negative matrix in RJ×K .27
(A5) P := {p |Hp = f, p ≥ 0} is a non-empty polytope in RK .28

The assumptions (A1)-(A3) are commonly made in the literature of linear fractional programming29
(19; 23; 20; 2; 35; 24; 26). Assumptions (A4)-(A5) are introduced to develop solution approaches30
for stochastic and distributionally robust linear fractional programs. In this context, the set P31
represents a polyhedral ambiguity set (see Section 6.1). However, in the following discussion we32
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2 C. KIM AND S. MEHROTRA

take it as a general set unless otherwise specified. By (A1)-(A5), the optimization problem (1.1)33
has a finite optimum value ϑ∗.34

Model (1.1) covers the following linear fractional problems in its framework:35
• (Stochastic) Linear Fractional Program: The linear fractional program can be written as36

(1.2)

ϑ∗ := min θ

subject to
cTk x+ αk
dTk x+ βk

≤ γk, k ∈ [K],

pT γ ≤ θ, x ∈ X , θ ∈ R, γ ∈ RK ,

37

which has |J | = 1 and does not include π variables and their constraints fTπ ≤ θ, HTπ ≥ γ38

in (1.1). If the vector p ∈ RK+ satisfies
∑K
k=1 pk = 1, the formulation (1.2) reduces to the39

stochastic linear fractional program with finite support or a sample average approximation40
(SAA) to the stochastic linear fractional program of the form:41

(1.3) min
x∈X

EP

[
c̃Tx+ α̃

d̃Tx+ β̃

]
.42

In the above, P is a probability distribution governing the random vector ξ̃ = (c̃, d̃, α̃, β̃).43
The (stochastic) linear fractional problem (1.2) arises in various decision problems such as44
multi-stage shipping (1), cluster analysis (38), and multi-objective bond portfolio optimiza-45
tion (22), to name a few. For additional applications, see (39; 45).46

• Distributionally Robust Linear Fractional Program (Section 6): While stochastic optimiza-47
tion minimizes the expected value of an objective function with respect to a known proba-48
bility distribution P, distributionally robust optimization (DRO) seeks a solution that min-49
imizes the worst-case expected value over an ambiguity set U of probability distributions P50
as51

(1.4) min
x∈X

sup
P∈U

EP

[
c̃Tx+ α̃

d̃Tx+ β̃

]
.52

For polyhedral and convex ambiguity sets, we can write a reformulation or subproblem of53
(1.4) in the form of (1.1) as follows:54
– For a polyhedral ambiguity set P, using the linear programming duality, the distribu-55

tionally robust linear fractional program with finite support can be reformulated to56
(1.1) without the constraint Pγ ≤ θ1J as seen in (6.2). The constraints Hp = f and57
p ≥ 0 in P are dualized as fTπ ≤ θ and HTπ ≥ γ.58

– For a convex ambiguity set C, the distributionally robust linear fractional program with59
finite support can be solved by a cutting surface algorithm that iteratively solves a60
subproblem (6.12) of the form (1.1) without π variables and their constraints fTπ ≤ θ61
and HTπ ≥ γ. In (6.12), each row of P belongs to the ambiguity set C.62

1.1. Contributions. We introduce the linear fractional model (1.1) and develop an algorithm63
for its solution. Our model includes the linear fractional program and its stochastic and distribu-64
tionally robust counterparts with finite support in a common framework. In order to solve this65
model, we introduce a non-convex quadratic reformulation using difference of squares. Existing66
non-convex quadratic reformulations in the literature use bilinear terms and their McCormick re-67
laxations. In our approach applying a piecewise linear approximation to concave quadratic terms68
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LINEAR FRACTIONAL PROGRAMMING USING SECOND ORDER CONE APPROXIMATIONS 3

yields a mixed binary second order cone program (MB-SOCP). Instead of solving a sequence of69
computationally expensive MB-SOCP problems, we develop a branch and bound algorithm that70
adaptively refines the piecewise linear approximations and iteratively solves SOCP problems instead71
of MB-SOCP problems.72

Our spatial branch and bound algorithm works in the space of the variables that appear in the73
nonconvex quadratic terms. It successively bisects a hyper-rectangle and solves an SOCP approx-74
imation problem for each sub-hyper-rectangle to obtain a lower bound. The algorithm iteratively75
updates the incumbent solution and the lower bound until the relative optimality gap becomes76
smaller than a given tolerance level ε. In the convergence analysis, we prove a bound on the opti-77
mality gap as a function of approximation errors at the iterate. Using this bound, we show that78
our branch and bound algorithm attains an ε-optimal solution in a finite number of iterations.79
Particularly, we give an upper bound for the number of iterations, which has been not done in80
previous works in the literature where convergence analyses are based on limiting arguments. Due81
to the second order cone approximations, the worst-case bound is in the order of O(

√
ε), which82

demonstrates the efficiency of the proposed algorithm in finding an accurate solution.83
We report numerical experiments comparing the performance of our algorithm with GloMIQO84

(33) and Gurobi commercial solvers. These solvers were used to solve a non-convex quadratic85
formulation of the problem. Comparisons are also made with several state-of-the-art algorithms86
(19; 26; 35) which employ linear programming (LP) approximations within the branch and bound87
framework. Our results show that the proposed algorithm scales better than both the LP-based88
algorithms and the off-the-shelf solvers with the size of the problems. The proposed algorithm89
achieves two or more digits of accuracy faster than the benchmark algorithms on medium and large90
size problems. Even for small size problems, our algorithm attains five digits of accuracy fastest in91
most cases, which can be attributed to its square root dependency on ε. This improvement grows92
with problem dimensionality and the number of terms in the linear fractional program. For example,93
the proposed method managed to achieve five-digit of accuracy for problem with (n,K) = (100, 10)94
in about 40 minutes on average; where the best known algorithm achieved 2-digit accuracy in nearly95
6 hours on average.96

We introduce solution approaches for distributionally robust linear fractional programs (1.4)97
with finite support. For a polyhedral ambiguity set, we derive an equivalent formulation of the form98
(1.1) using the LP duality. We provide three examples of such reformulations for popular polyhedral99
ambiguity sets based on monomial moments, total variation distance, and the Wasserstein metric.100
For a general convex ambiguity set, we introduce a cutting surface algorithm where we iteratively101
solve a subproblem of the form (1.1) together with an LP separation problem which results in a102
probability cut. The experiments using Wasserstein ambiguity sets indicate that the reformulation103
approach solves small size instances with the cardinality of support up to 25.104

1.2. Organization of this Paper. This paper is organized as follows. We provide a literature105
review on linear fractional programming and distributionally robust optimization in Section 2. We106
introduce second order cone approximations in Section 3 and develop an adaptive branch and107
bound algorithm in Section 4. We give a convergence analysis in Section 5. Distributionally robust108
counterparts are discussed in Section 6 and the experimental results are discussed in Section 7.109

2. Literature Review. In this section, we provide the current literature on linear fractional110
programming and a brief review on distributionally robust optimization.111

2.1. Linear Fractional Programming. The literature review on linear fractional program-112
ming consists of two parts. The first part considers some special cases of (1.2) where K is small113
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4 C. KIM AND S. MEHROTRA

or the objective function f has a special structure in x. In the second part, we review algorithms114
based on the outer approximation or the branch and bound approach.115

2.1.1. Special Cases.116
A Single Linear Fractional Function Case. A single linear fractional function is pseudo-117

linear. Therefore, an optimal solution is an extreme point of X and all local optima are globally118
optimal (25). Exploiting these properties, various solution approaches such as simplex algorithm119
(47), parametric method (11), geometric approach (44), change of variable (9) and gradient-based120
method (15) have been developed (45). Among them, the Charnes-Cooper transformation (9) gives121
a reformulation of the problem to an LP, making it easily solvable using an off-the-shelf solver.122

Sum of Two Linear Fractional Functions Case. If K > 1, due to the coupling of linear123
fractional functions with respect to x, the Charnes-Cooper transformation technique does not yield124
an LP or a convex optimization problem. Also, neither pseudo-concavity nor pseudo-convexity is125
preserved under summation of linear fractional functions. Therefore, an optimal solution is not126
necessarily at a vertex and multiple local optimal solutions can exist, making it challenging to127
solve (1.2). Nonetheless, if K = 2, an optimal solution belongs to an edge of X (8). Based on128
this property, simplex-type algorithms using exhaustive search (8; 23) have been developed to find129
an exact global optimum of (1.2). Applying the Charnes-Cooper transformation (9) to one linear130
fractional function, these works consider an equivalent formulation minimizing the sum of a linear131
and a linear fractional function under a polytope. Fixing the value of the denominator of the132
remaining linear fractional function, they obtain a parametric linear program. Parametric simplex133
algorithms (8; 23) generate a sequence of bases associated with an optimal basic solution of the134
parametric linear program with varying the value of the parameter until they find the one that135
results in a global minimum. No generalization of this approach is known for the case K > 2.136
However, a heuristic algorithm (20) combining a grid search for one linear fractional function and137
the exact algorithm (23) for the other two linear fractional functions has been developed for K = 3.138

Special Cases of Sum of More than Two Linear Fractional Functions. Assuming that139
dk ≥ 0, i.e., it is non-negative componentwise, and βk = 1 for k ∈ [K], an equivalent formulation140

minimizing
∑K
k=1(ck− fkdk)Tx subject to x ∈ X , fk ≥ (ck− fkdk)Tx+ ak, k ∈ [K] is considered in141

(2). This work extends the parametric approach for a general single fractional program introduced142
in (11). If the objective function is separable in x, meaning that the fractional terms are defined143
for disjoint subsets of x, a vector f∗ satisfying local optimality conditions is unique and every local144
optimal solution is globally optimal. To find such a vector f∗, a gradient-based algorithm updating145
f at each iteration is presented in (2) with convergence guarantees for K ≤ 3 under the separability146
assumption.147

2.1.2. The General Case.148
Outer Approximation Approaches. Introducing two auxiliary variables uk and vk for each149

linear fractional term, (24; 4) consider equivalent optimization problems that minimize a concave150
function subject to a convex set in the space of u and v. Using the fact that a concave minimization151
problem under a polyhedron has an optimal solution at an extreme point of the polyhedron, (24)152
develops an outer approximation algorithm that solves a sequence of concave minimization problems153
under a polyhedron. Iteratively refining the polyhedron by adding cutting planes, this algorithm154
attains an ε-optimal solution in a finite number of steps. On the other hand, outer approximation155
algorithms in (13; 35) consider the image space S = {γ ∈ RK | γk = (cTk x + αk)/(dTk x + βk), k ∈156

[K], x ∈ X}. To minimize
∑k
k=1 γk subject to γ ∈ S, (13) proposes an algorithm that iteratively157

shrinks the simplex containing an optimal solution γ∗. The extreme points of the simplex are up-158
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LINEAR FRACTIONAL PROGRAMMING USING SECOND ORDER CONE APPROXIMATIONS 5

dated one at a time by solving a series of LP problems. However, this approach has no convergence159
analysis. Another outer approximation approach using a union of boxes which contains S is intro-160
duced in (35). The union of boxes is called a polyblock. Based on the observation that an optimal161
solution γ̂ to an approximation problem occurs at an extreme point of the polyblock, this algorithm162
maintains all extreme points of the polyblock and returns the one having the best objective value.163
If γ̂ ∈ S, γ̂ is optimal. Otherwise, γ̂ is projected to S to produce a new set of extreme points which164
replace γ̂ in the polyblock. Unfortunately, the projection step is as hard as the original problem.165
Therefore, an approximate projection step, which involves a sequence of LP problems, is used in a166
practical development.167

Branch and Bound Approaches. Using K auxiliary variables γk, (21) considers an equiv-168

alent non-convex quadratically constrained optimization program that minimizes
∑K
i=1 γk subject169

to x ∈ X and cTk x + αk − γk(dTk x + βk) ≤ 0 where k ∈ [K]. To handle these bilinear terms in170
the constraint, (21) uses McCormick envelopes (31) and, as a result, it obtains an LP relaxation171
problem. By iteratively branching a hyper-rectangle in the space of (x, γ) and solving LP relax-172
ation problems for each sub-hyper-rectangle, this algorithm attains an ε-optimal solution in a finite173
number of steps. On the other hand, (26; 19) consider equivalent formulations with non-convex174
objective functions. Using additional variables sk and tk for each fractional function, (19) con-175

siders an equivalent formulation that minimizes
∑K
k=1 sktk subject to x ∈ X , cTk x + αk ≤ tk and176

sk(dTk x + βk) ≥ 1 where k ∈ [K]. Using McCormick envelopes (31) for the bilinear terms in the177
objective function and replacing sk in the constraint with its upper bound, it derives an LP ap-178
proximation problem. Branching on sk, this LP approximation problem is iteratively solved in the179
branch and bound algorithm. Introducing extra variables ξk and ηk for each fractional term, (26)180

studies an equivalent formulation that maximizes
∑K
k=1 ηk/ξk subject to x ∈ X , cTk x+αk = ηk and181

dTk x + βk = ξk where k ∈ [K]. Given lower and upper bounds of ηk + ξk and ηk/ξk, an overesti-182
mator of ηk/ξk that has a similar form to McCormick envelopes (31) is developed to produce an183
LP approximation problem. Using this LP approximation problem, it derives a branch and bound184
algorithm that performs branching on ηk/ξk. While existing reformulations discussed above have185
bivariate non-convex terms such as a product or ratio of two different variables, the non-convex186
parts in our formulation are univariate, negative square terms. Therefore, using the same number187
of branching variables, more efficient branch and bound algorithm can be developed through our188
formulation.189

2.2. Distributionally Robust Optimization (DRO). Many real-world decision problems190
have parameter uncertainty. To deal with parameter uncertainty, stochastic optimization models191
it through a probability distribution and minimizes the expected cost under the assumed distri-192
bution. On the other hand, robust optimization approach models the uncertainty by specifying a193
support of parameters and minimizes the worst-case cost over the set of possible values. Taking an194
intermediate framework between stochastic optimization and robust optimization, distributionally195
robust optimization models the ambiguity in parameter distribution through a set of probability196
distributions and minimizes the worst-case average cost over the ambiguity set of probability distri-197
butions. To develop a tractable DRO model with good performance, various ambiguity sets based198
on moments (5; 10; 6; 42; 41), total variation distance (40; 18; 36), φ-divergence (3; 18; 27; 48; 7),199
and the Wasserstein metric (14; 12; 30) have been introduced. To solve DRO models, most works200
(49; 5; 10) use the dualization of inner problems. However, if regularity conditions are not satisfied,201
strong duality might not hold. On the contrary, cutting surface algorithms (32; 30; 17) do not202
require such conditions and thus are applicable in a general setting. For a recent comprehensive203
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6 C. KIM AND S. MEHROTRA

review on distributionally robust optimization, see (37).204

3. Second Order Cone Approximations. In this section, we first present a reformulation205
of linear fractional functions to non-convex quadratic constraints. Then, we introduce the idea of206
using piecewise linear approximations of concave parts to obtain second order cone approximation207
problems.208

3.1. Reformulations. The formulation (1.1) has the non-convex constraints209

(3.1)
cTk x+ αk
dTk x+ βk

≤ γk, k ∈ [K].210

Using (A3), we equivalently write (3.1) as211

(3.2) cTk x+ αk ≤ (dTk x+ βk)γk, k ∈ [K].212

Let213

(3.3) wk :=
γk + (dTk x+ βk)

2
, vk :=

γk − (dTk x+ βk)

2
, k ∈ [K].214

Since (dTk x+ βk)γk = w2
k − v2k, we represent (3.2) as the following system of constraints:215

cTk x+ αk + v2k ≤ w2
k, γk − (dTk x+ βk) = 2vk, γk + (dTk x+ βk) = 2wk, k ∈ [K].(3.4)216217

Let218

S =

(x, θ, γ, π, w, v)

∣∣∣∣∣∣
γk − (dTk x+ βk) = 2vk, γk + (dTk x+ βk) = 2wk, k ∈ [K],
fTπ ≤ θ, HTπ ≥ γ, Pγ ≤ θ1J ,
x ∈ X , θ ∈ R, γ ∈ RK , π ∈ RL, w ∈ RK , v ∈ RK .

 .(3.5)219

220

Then, we can write (1.1) as221

(3.6)

ϑ∗ := min θ

subject to cTk x+ αk + v2k ≤ w2
k, k ∈ [K],

(x, θ, γ, π, w, v) ∈ S.
222

Proposition 3.1. Two optimization problems (1.1) and (3.6) are equivalent:223
• If (x∗, θ∗, π∗, γ∗, w∗, v∗) is an optimal solution to (3.6), then the solution (x∗, θ∗, π∗, γ∗) is224
an optimal solution to (1.1).225
• If (x∗, θ∗, π∗, γ∗) is an optimal solution to (1.1), then the solution (x∗, θ∗, π∗, γ̄, w̄, v̄) such226
that227

γ̄k =
cTk x

∗ + αk
dTk x

∗ + βk
, w̄k =

γ̄k + dTk x
∗ + βk

2
, v̄k =

γ̄k − (dTk x
∗ + βk)

2
, k ∈ [K]228

is an optimal solution to (3.6).229

Proof. See Appendix A.1.230
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Note that the optimization problem (3.6) has all linear expressions except for the K non-convex231
quadratic constraints of the form232

(3.7) cTk x+ αk + v2k ≤ w2
k, k ∈ [K].233

Formulation (3.6) is a difference-of-convex (DC) program (16). As compared to the existing refor-234
mulations in the literature that involve bilinear or bivariate terms, non-convex parts of (3.6) are235
difference of two square terms (3.7). To address the concave parts, one can use the convex-concave236
procedure (50) in DC programming, which iteratively solves convex approximation problems ob-237
tained by linearizing concave parts of the objective function and constraints. Using the solutions238
from the approximation problems, CCP performs a line search to update the iterates. However,239
since this approach repeatedly considers local approximations near the current iterates, there is no240
guarantee that CCP will yield a solution with the desired tolerance. Indeed, the convergence of241
this method is shown to a critical point (43) only. On the contrary, our approach seeks a global242
optimal solution based on a piecewise linear approximation of w2

k as explained below.243

3.2. Piecewise Linear Approximations. By (A1) and (A3), dTk x+βk and (cTk x+αk)/(dTk x+244
βk) are bounded for all k ∈ [K]. Also, since (1.2) has a finite optimum ϑ∗ by (A1)-(A5), from245
Proposition 3.1, there exists an optimal solution (x∗, θ∗, π∗, γ∗, w∗, v∗) to (3.6) which satisfies246

(3.8) γ∗k =
cTk x

∗ + αk
dTk x

∗ + βk
, k ∈ [K].247

Therefore, without loss of generality, we can set lower and upper bounds for γk, and thus for wk248
due to (3.3). Let wmk and wMk be lower and upper bounds of wk and Wk := {w1

k, · · · ,wNk

k } be a set249

of points such that wmk = w1
k ≤ · · · ≤ wNk

k = wMk .250
For notational convenience, we temporaily drop the subscript k. To develop an approximation251

of w2 in [wm,wM ], we define a piecewise linear function u as252

(3.9) u(w;W ) = max
1≤j≤N−1

(wj + wj+1)w − wjwj+1.253

Fig. 1: Piecewise Linear Approximation and Refinement by Bisection

w1 w2 · · · wN−1 wN

(w1)2
(w2)2

...

(wN−1)2

(wN )2

...

y = u(w;W )
y = w2

(a) Piecewise Linear Approximation

wa 1
2 (w

a +wb) wb

(wa)2

1
4 (w

a +wb)2

(wb)2
y = û(w) y = u(w)

y = w2

(b) Refinement by Bisection
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8 C. KIM AND S. MEHROTRA

As illustrated in Figure 1a, the piecewise linear function u satisfies w2 ≤ u(w;W ) for every w ∈254
[wm,wM ]. The approximation error at w defined as u(w;W )−w2 depends on the two neighboring255
points wa = maxw∈W,w≤w w and wb = minw∈W,w≤w w. If w = wa or wb, the approximation error at256
w is zero. Otherwise, it depends on the magnitude of wb−wa and the location of w in [wa,wb]. The257
approximation error at w ∈ [wa,wb] remains the same if we add a point outside of [wa,wb] toW but258
decreases if a point in [wa,wb] is added to W . The following proposition states that the worst-case259
approximation error has a quadratic relation with wb − wa and adding the midpoint (wa + wb)/2260
to W decreases the approximation error at least by half for all w ∈ [wa,wb] (see Figure 1b).261

Proposition 3.2. Let u(w) = (wa + wb)(w − wa) + (wa)2 and262

û(w) =


1
2

(
(3wa + wb)w − wa(wa + wb)

)
, w ∈

[
wa, wa+wb

2

]
1
2

(
(wa + 3wb)w − (wa + wb)wb

)
, w ∈

[
wa+wb

2 ,wb
] .263

264

Then, we have265

1. maxw∈[wa,wb] u(w)− w2 ≤ 1
4

(
wb − wa

)2.266

2. û(w)− w2 ≤ 1
2

(
u(w)− w2

)
for all w ∈ [wa,wb].267

Proof. See Appendix A.2.268

By replacing the square terms w2
k in (3.6) with the piecewise linear functions u(wk;Wk), we obtain269

an approximation problem270

(3.10)

ϑ̄(W1, · · · ,Wk) := min θ

subject to cTk x+ αk + v2k ≤ u(wk;Wk), k ∈ [K],

(x, θ, γ, π, w, v) ∈ S.
271

Proposition 3.3. Suppose that (3.6) has a finite optimum ϑ∗. Then, ϑ̄(W1, · · · ,Wk) ≤ ϑ∗.272

Proof. See Appendix A.3.273

Next, we describe a mixed binary formulation to solve (3.10).274

3.3. Mixed Binary Second Order Cone Program. A popular way to model a piecewise275
linear function is to use binary variables with SOS-2 constraints. To represent the piecewise linear276
function u(wk;Wk), we introduce binary variables µk ∈ {0, 1}Nk and weight variables λk ∈ [0, 1]Nk .277
Using µk and λk, we can write the piecewise linear function u(wk;Wk) as278

(3.11) u(wk;Wk) =

Nk∑
j=1

λkj(w
j
k)2279

with a set of constraints280

(w, λk, µk) ∈ Hk :=

(w, λk, µk)

∣∣∣∣∣∣
w =

∑Nk

j=1 λkjw
j
k,
∑Nk

j=1 λkj = 1,
∑Nk

j=1 µkj ≤ 2,

0 ≤ λkj ≤ µkj , j = 1, · · · , Nk, µk ∈ {0, 1}Nk ,
µki + µkj ≤ 1, i, j = 1, · · · , Nk, i− j ≥ 2

 ,(3.12)281

282
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LINEAR FRACTIONAL PROGRAMMING USING SECOND ORDER CONE APPROXIMATIONS 9

where µkj and λkj represent the jth elements of µk and λk, respectively. Using (3.11) and (3.12),283
we derive a mixed binary second order cone program (MB-SOCP) as284

(3.13)

ϑ̄(W1, · · · ,Wk) := min θ

subject to cTk x+ αk + v2k ≤
Nk∑
j=1

λkj(w
j
k)2, k ∈ [K],

(w, λk, µk) ∈ Hk, k ∈ [K],

(x, θ, γ, π, w, v) ∈ S.

285

By exploiting the SOS-2 constraints (3.12), we are able to solve (3.13) in a branch and bound or286
a branch and cut framework. For example, we can develop a cutting plane algorithm that constructs287
disjunctive cuts using the variable transformation technique in (46). For detailed description of this288
cutting plane approach, see Appendix B. However, since the number of binary variables increases289
as our piecewise linear approximations get more accurate, it is computationally undesirable to solve290
(3.13) with a large number of evenly-spaced points in Wk. Alternatively, we can take an iterative291
approach which starts with a coarse piecewise linear approximation and then iteratively refines it292
using the optimal solution to (3.13). However, our computational experience reveals that solving a293
sequence of these mixed binary programs using an off-the-shelf solver such as Gurobi with limited294
control over the branching process can be computationally costly since for some branch and bound295
nodes the same computations are repeated across iterations.296

4. Adaptive Branch and Bound Algorithm. In this section, we introduce a spatial branch297
and bound algorithm for solving (3.6). Rather than solving a sequence of mixed binary programs,298
our branch and bound algorithm adaptively divides the space of (w1, · · · , wk) into smaller hyper-299
rectangles as it refines piecewise linear approximations. Specifically, starting with an initial hyper-300
rectangle B0 := [wm1 ,wM1 ] × [wm2 ,wM2 ] × · · · × [wmK ,w

M
K ], the algorithm iteratively bisects a hyper-301

rectangle into two sub-hyper-rectangles and solves a second order cone program for each sub-hyper-302
rectangle. Using the optimal solution to the second order cone program, we update the lower bound303
and solve an evaluation problem to improve the incumbent solution. This branch and bound process304
is repeated until we obtain an ε-optimal solution, or meet some other termination criteria.305

4.1. Initial Hyper-Rectangle. We first describe how we construct an initial hyper-rectangle306
B0. Using (3.3), we compute lower and upper bounds of wk using bounds on γk and zk := dTk x+βk.307
To compute bounds on γk, we consider the Charnes-Cooper transformation (9). Using this variable308
transformation technique, we can compute a lower bound γmk and an upper bound γMk by solving309
the following LP problems:310

γmk = min
x∈X

cTk x+ αk
dTk x+ β

= min
y,t

cTk y + αkt subject to Ay ≤ bt, dTk y + βt = 1, t ≥ 0,(4.1)311

γMk = max
x∈X

cTk x+ αk
dTk x+ β

= max
y,t

cTk y + αkt subject to Ay ≤ bt, dTk y + βt = 1, t ≥ 0.(4.2)312
313

On the other hand, we solve the following LP problems to obtain bounds on zk:314

(4.3) zmk = min
x∈X

dTk x+ βk, zMk = max
x∈X

dTk x+ βk.315

Using the bounds on γk and zk, we compute bounds on wk as316

wmk = γmk + zmk , wMk = γMk + zMk .(4.4)317318
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4.2. Second Order Cone Program. Let B := [wa1 ,wb1] × [wa2 ,wb2] × · · · × [waK ,w
b
K ] be a319

sub-hyper-rectangle of B0 such that B ⊂ B0. For each k ∈ [K], we consider a linear approximation320
of w2

k in [wak,w
b
k] as321

(4.5) w2
k ≤ (wak + wbk)wk − wakw

b
k,322

which results in the following second order cone constraint323

(4.6) cTk x+ αk + v2k ≤ (wak + wbk)wk − wakw
b
k.324

Having (4.6) in place of (3.7) and adding the box constraint w ∈ B to (3.10), we obtain an SOCP325
approximation problem for the hyper-rectangle B as326

(4.7)

ϑ̄(B) := min θ

subject to cTk x+ αk + v2k ≤ (wak + wbk)wk − wakw
b
k, k ∈ [K],

wak ≤ wk ≤ wbk, k ∈ [K],

(x, θ, γ, π, w, v) ∈ S.

327

Proposition 4.1. Let ϑ∗(B) be the optimum of (3.6) with the additional box constraint w ∈ B.328
Then, we have ϑ̄(B) ≤ ϑ∗(B).329

Proof. This follows from (4.5).330

Since ϑ̄(B) serves as a lower bound of ϑ∗(B), we can construct a lower bound of ϑ∗ by taking331
the minimum of ϑ̄(B) for all B in a partition of B0. This lower bound gets close to ϑ∗(B) as we332
refine the partition of B0.333

4.3. Evaluation Problem. Let (x̄(B), θ̄(B), γ̄(B), π̄(B), w̄(B), v̄(B)) be an optimal solution334
to (4.7) for a hyper-rectangle B. To evaluate the quality of x̄(B), we solve the following optimization335
problem:336

(4.8)

ψ(x̄(B)) := min θ

subject to
cTk x̄(B) + αk
dTk x̄(B) + βk

≤ γk, k ∈ [K],

fTπ ≤ θ, HTπ ≥ γ, Pγ ≤ θ1J ,
θ ∈ R, γ ∈ RK , π ∈ RL.

337

Note that the evaluation of ψ(x̄(B)) is equivalent to solving (1.1) with x fixed to x̄(B). Therefore,338
we have ϑ∗ = minx∈X ψ(x) and thus for any x ∈ X , ψ(x) serves as an upper bound of ϑ∗.339

4.4. Main Loop. Starting with an initial hyper-rectangle B0, we solve (4.7) to obtain an340
optimal solution x̄(B0) and its optimal objective value ϑ̄(B0). Then, we initialize t, x0CB, ϑ

0
CB, T0341

as t ← 0, x0CB ← x̄(B0), ϑ0CB ← ψ(x̄(B0)), T0 ← {B0, x̄(B0), ϑ̄(B0)} where xtCB and ϑtCB denote342
the incumbent solution at iteration t and its corresponding objective value, respectively.343

At iteration t, we find an element (Bt, x̄(Bt), ϑ̄(Bt)) ∈ Tt such that ϑ̄(Bt) is the smallest. Let344

Bt := [wa,t1 ,wb,t1 ]× [wa,t2 ,wb,t2 ]× · · · × [wa,tK ,wb,tK ], x̄t ← x̄(Bt), ϑ̄t ← ϑ̄(Bt).345
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If ϑtCB − ϑ̄t < ε, we terminate and return the incumbent solution xtCB and its objective value ϑtCB.346

Otherwise, we find kt = arg maxk (wb,tk − wa,tk )2/(4zmk ) and divides Bt into347

B′t := [wa,t1 ,wb,t1 ]× · · · × [(wa,tkt + wb,tkt )/2,wb,tkt ]× · · · × [wa,tK ,wb,tK ],(4.9)348

B′′t := [wa,t1 ,wb,t1 ]× · · · × [wa,tkt , (w
a,t
kt

+ wb,tkt )/2]× · · · × [wa,tK ,wb,tK ].(4.10)349350

For B′t and B′′t , we solve the associated SOCP relaxation problems (4.7) and obtain (ϑ̄(B′t), x̄(B′t))351
and (ϑ̄(B′′t ), x̄(B′′t )). We update xt+1

CB and ϑt+1
CB by comparing the current best objective value ϑtCB352

with ψ(x̄(B′t)) and ψ(x̄(B′′t )). We also update the branch and bound tree as353

Tt+1 ← Tt \ {(Bt, x̄(Bt), ϑ̄(Bt))} ∪
(
{(B′t, x̄(B′t), ϑ̄(B′t))} ∪ {(B′′t , x̄(B′′t ), ϑ̄(B′′t ))}

)
.354

The above process is repeated until ϑtCB − ϑ̄t < ε is satisfied or the iteration counter t reaches the355
iteration limit tmax. For a detail description, see Algorithm 4.1.

Algorithm 4.1 SOC-B
1: parameter: optimality tolerance ε > 0, iteration limit tmax

2: compute bounds on zk and wk
3: construct an initial hyper-rectangle B0

4: solve (4.7) with B0 to obtain x̄(B0) and ϑ̄(B0)
5: let t← 0, x0CB ← x̄(B0), ϑ0CB ← ψ(x̄(B0)), T0 ← {(B0, x̄(B0), ϑ̄(B0))}
6: while t < tmax do
7: find an element (Bt, x̄(Bt), ϑ̄(Bt)) in Tt such that ϑ̄(Bt) is the smallest
8: let x̄t ← x̄(Bt), ϑ̄t ← ϑ̄(Bt), Bt := [wa,t1 ,wb,t1 ]× [wa,t2 ,wb,t2 ]× · · · × [wa,tK ,wb,tK ]
9: if ϑtCB − ϑ̄t < ε then

10: return xtCB, ϑ
t
CB

11: else
12: let xt+1

CB ← xtCB, ϑ
t+1
CB ← ϑtCB

13: find kt = arg maxk∈[K] (wb,tk − wa,tk )2/(4zmk )
14: construct B′t, B′′t as (4.9), (4.10)
15: for B̄t ∈ {B′t, B′′t } do
16: solve (4.7) with B̄t to obtain x̄(B̄t), ϑ̄(B̄t)
17: if ψ(x̄(B̄t)) < ϑt+1

CB then
18: xt+1

CB ← x̄(B̄t), ϑt+1
CB ← ψ(x̄(B̄t))

19: end if
20: end for
21: Tt+1 ← Tt \ {(Bt, x̄(Bt), ϑ̄(Bt))} ∪ {(B′t, x̄(B′t), ϑ̄(B′t))} ∪ {(B′′t , x̄(B′′t ), ϑ̄(B′′t ))}
22: end if
23: t← t+ 1
24: end while

356

5. Convergence Analysis. In this section, we provide a convergence analysis for SOC-B357
(Algorithm 4.1). Let M be the max of ‖P‖∞ := maxi

∑
j |Pij | and max {‖p‖1 | p ∈ P}. In order358

to show the finite convergence of SOC-B, we start with a theorem, which provides a bound on the359
gap between ϑ̄t and ϑtCB as a function of the approximation errors at the optimal solution of (4.7)360
with B = Bt.361
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12 C. KIM AND S. MEHROTRA

Theorem 5.1. Let (x̄t, θ̄t, γ̄t, π̄t, w̄t, v̄t) and ϑ̄t be an optimal solution and the objective value362
to (4.7) with B = Bt. Then, we have363

ϑtCB − ϑ∗ ≤ ϑtCB − ϑ̄t ≤M max
k∈[K]

∆k

zmk
.(5.1)364

365

where366

∆k := (wa,tk + wb,tk )w̄tk − wa,tk wb,tk − (w̄tk)2(5.2)367368

represents an approximation error at w̄k for k ∈ [K].369

Proof. From the feasibility of (x̄t, θ̄t, γ̄t, π̄t, w̄t, v̄t) to (4.7), we obtain370

cTk x̄
t + αk + (v̄tk)2 ≤ (wa,tk + wb,tk )w̄tk − wa,tk wb,tk , k ∈ [K].371372

Using (5.2), we further have373

cTk x̄
t + αk + (v̄tk)2 ≤ (w̄tk)2 + ∆k, k ∈ [K].(5.3)374375

Since γ̄tk − (dTk x̄
t + βk) = 2v̄tk and γ̄tk + (dTk x̄

t + βk) = 2w̄tk for k ∈ [K], we have376

v̄tk = w̄tk − (dTk x̄
t + βk), k ∈ [K].(5.4)377378

Plugging (5.4) into (5.3), we have379

cTk x̄
t + αk + (dTk x̄

t + βk)2 ≤ 2w̄tk(dTk x̄
t + βk) + ∆k, k ∈ [K].(5.5)380381

Consider a solution (γ̌t, w̌t, v̌t) such that382

(γ̌tk, w̌
t
k, v̌

t
k) =

(
γ̄tk +

∆k

dTk x̄
t + βk

, w̄tk +
∆k

2(dTk x̄
t + βk)

, v̄tk +
∆k

2(dTk x̄
t + βk)

)
, k ∈ [K].(5.6)383

384

From γ̄tk − (dTk x̄
t + βk) = 2v̄tk and γ̄tk + (dTk x̄

t + βk) = 2w̄tk, we have γ̌tk − (dTk x̄
t + βk) = 2v̌tk and385

γ̌tk + (dTk x̄
t + βk) = 2w̌tk. This implies v̌tk = w̌tk − (dTk x̄

t + βk), which results in386

(w̌tk)2 −
(
cTk x̄

t + αk + (v̌tk)2
)

= 2w̌tk(dTk x̄
t + βk)−

(
cTk x̄

t + αk + (dTk x̄
t + βk)2

)
.387388

Using (5.6) and (5.5), we have389

2w̌tk(dTk x̄
t + βk)−

(
cTk x̄

t + αk + (dTk x̄
t + βk)2

)
≥ 0.390391

From γ̌tk − (dTk x̄
t + βk) = 2v̌tk, γ̌

t
k + (dTk x̄

t + βk) = 2w̌tk, (w̌tk)2 −
(
cTk x̄

t + αk + (v̌tk)2
)
≥ 0, we have392

cTk x̄
t + αk

dTk x̄
t + βk

≤ γ̌tk = γ̄tk +
∆k

dTk x̄
t + βk

.(5.7)393
394

Let (x̂t, θ̂t, γ̂t, π̂t, ŵt, v̂t) be a solution such that395

x̂t = x̄t, θ̂t = θ̄t + max
k∈[K]

M∆k

dTk x̄
t + βk

, π̂t ∈ arg min fTπ subject to HTπ ≥ γ̂t,(5.8)396
397
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and398

(γ̂tk, ŵ
t
k, v̂

t
k) =

(
cTk x̄

t + αk
dTk x̄

t + βk
,
γ̂tk + (dTk x̄

t + βk)

2
,
γ̂tk − (dTk x̄

t + βk)

2

)
, k ∈ [K].(5.9)399

400

Also, let p̂t = arg max (γ̂t)T p subject to p ∈ P . Since P is assumed to be a polytope, the optimiza-401
tion problem, max (γ̂t)T p subject to p ∈ P , has a finite optimum, and thus p̂t is well-defined. By402

(5.9), (x̂t, θ̂t, γ̂t, π̂t, ŵt, v̂t) satisfies (3.4) and γm ≤ γ̂t ≤ γM . Using (5.7) and (5.9), we have403

γ̂tk ≤ γ̄tk +
∆k

dTk x̂
t + βk

.404

From the definition of M and the feasibility of (x̄t, θ̄t, γ̄t, π̄t, w̄t, v̄t) to (4.7), we obtain405

P γ̂t ≤ P γ̄t + max
j∈[J]

∑K
k=1 |Pjk| · max

k∈[K]

∆k

dTk x̄
t + βk

1J ≤ θ̄t1J + max
k∈[K]

M∆k

dTk x̄
t + βk

1J = θ̂t1J .406

By the definition of π̂t, we have HT π̂t ≥ γ̂t. Moreover, we obtain407

fT π̂t = (γ̂t)T p̂t = (γ̄t)T p̂t +
K∑
k=1

p̂tk∆k

dTk x̂+ βk
≤ fT π̄t +

K∑
k=1

p̂tk∆k

dTk x̂+ βk
≤ θ̄t + max

k∈[K]

M∆k

dTk x̄
t + βk

≤ θ̂t.408

The first equality holds from the strong duality and the first inequality follows due to weak duality409
since HT π̄t ≥ γ̄t due to the feasibility of (x̄t, θ̄t, γ̄t, π̄t, w̄t, v̄t) to (4.7). So, (x̂t, θ̂t, γ̂t, π̂t, ŵt, v̂t) is410

feasible to (3.6) with the objective value of θ̂t.411

Since (θ̂t, γ̂t, π̂t) is feasible to (4.8) with respect to x̂t, we have ϑ∗ ≤ ψ(x̂t) ≤ θ̂t. Since w∗ ∈ B0412
and no element of B0 is excluded during the branching process in Algorithm 4.1, there exists some413
B∗t such that w∗ ∈ B∗t . Since (x∗, θ∗, γ∗, π∗, w∗, v∗) is feasible to (4.7) with B = B∗t , it follows that414
ϑ̄(B∗t ) ≤ ϑ∗. Also, by the selection rule of Bt and the way xtCB and ϑtCB are updated, we have415
ϑ̄(Bt) ≤ ϑ̄(B∗t ) and ϑtCB ≤ ψ(x̂t). As a result, we have416

ϑtCB − ϑ∗ ≤ ϑtCB − ϑ̄t ≤ θ̂t − θ̄t ≤ max
k∈[K]

M∆k

dTk x̄
t + βk

≤M max
k∈[K]

∆k

zmk
.(5.10)417

418

Based on Theorem 5.1, we prove the finite convergence of SOC-B.419

Theorem 5.2. For any ε > 0, let420

n =
K∑
k=1

nk, nk =

⌈
log2

√
M(wMk − wmk )2

4εzmk

⌉
, k ∈ [K].421

Algorithm 4.1 (SOC-B) terminates within 2n iterations.422

Proof. By Theorem 5.1 and Proposition 3.2, we have423

ϑtCB − ϑ̄t ≤M max
k∈[K]

∆k

zmk
≤M max

k∈[K]

(wb,tk − wa,tk )2

4zmk
.424

Therefore, if wb,tk −w
a,t
k ≤

√
4εzmk /M holds for all k ∈ [K], the algorithm must terminate at iteration425

t by the termination criterion.426
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Let B be the set of 2n hyper-rectangles obtained by dividing each [wmk ,w
M
k ] into 2nk pieces427

of equal length of (wMk − wmk )/2nk for every k ∈ [K]. Note that the hyper-rectangles in B are428
disjoint and their edges are not greater than

√
4εzmk /M . On the other hand, if the algorithm does429

not terminate through iteration t, by the termination criterion, we should have some k′ ∈ [K]430

such that wb,tk′ − wa,tk′ >
√

4εzmk′/M . Also, the hyper-rectangle Bt should not satisfy wb,tk − wa,tk <431

(wMk − wmk )/2nk or wb,tk − wa,tk ≤ (wMk − wmk )/2nk−1 ≤
√
εzmk /M for any k ∈ [K]. If there exists432

some k satisfying wb,tk − wa,tk ≤
√
εzmk /M , we have a contradiction to the branching rule since this433

implies434

wb,tk′ − wa,tk′√
zmk′

>

√
4ε

M
≥ 2 · w

b,t
k − wa,tk√

zmk
.435

Therefore, each hyper-rectangle Bt in Algorithm 4.1 should either be an element of B or a union of436
hyper-rectangles in B if the algorithm does not terminate through iteration t.437

Suppose that the algorithm does not terminate before iteration 2n. Since a hyper-rectangle438
is branched into two sub-hyper-rectangles at each iteration, at the start of iteration 2n, we have439
2n + 1 hyper-rectangles in T2n . However, since the hyper-rectangles in T2n are disjoint and they440
are either an element of B or a union of hyper-rectangles in B, we have a contradiction to the fact441
that the number of hyper-rectangles in B is 2n. Therefore, the algorithm should terminate within442
2n iterations.443

Note that the number of iterations is in the order of O(
√
ε). This square root dependency provides444

an explanation for the improved performance of our SOCP-based approach over the LP-based445
benchmark algorithms.446

Corollary 5.3. For the following linear fractional programs:447
• a stochastic linear fractional program with finite support or a sample average approximation448
to a stochastic linear fractional program (1.2) where

∑K
k=1 pk = 1,449

• a distributionally robust linear fractional program (6.2) with finite support and a polyhedral450
ambiguity set P where each element in P is a probability vector,451
• a subproblem (6.12) of a distributionally robust linear fractional program with finite support452
where each row of P is a probability vector,453

we have M = 1. Therefore, Algorithm 4.1 ( SOC-B) terminates within N iterations where454

N =
K∑
k=1

⌈
log2

√
(wMk − wmk )2

4εzmk

⌉
.455

6. Distributionally Robust Linear Fractional Programming. In this section, we con-456
sider a distributionally robust linear fractional program with finite support ξk = (ck, dk, αk, βk):457

(6.1) min
x∈X

sup
p∈U

K∑
k=1

pk
cTk x+ αk
dTk x+ βk

458

where p ∈ RK is a probability vector such that
∑K
k=1 pk = 1, p ≥ 0, and U is an ambiguity set of459

probability distributions. Assuming that (A1)-(A3) hold in (6.1), we introduce solution approaches460
for polyhedral and convex ambiguity sets below.461
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6.1. Polyhedral Ambiguity Set. Let P be a polyhedral ambiguity set (for the definition of462
P, see (A5)). Using the LP duality, we derive the following reformulation.463

Proposition 6.1. If the ambiguity set U is P, the optimization problem (6.1) is equivalent to464

(6.2)

min θ

subject to
cTk x+ αk
dTk x+ βk

≤ γk, k ∈ [K],

fTπ ≤ θ, HTπ ≥ γ,
x ∈ X , θ ∈ R, γ ∈ RK , π ∈ RL.

465

Proof. This follows directly from the linear programming duality.466

Theorem 6.2. Algorithm 4.1 ( SOC-B) finds an ε-optimal solution to (6.2) within N iterations.467

Proof. The optimization problem (6.2) is a special case of the linear fractional program (1.1).468
Since P is a polyhedral ambiguity set for probability vectors, every element p in P is a probability469
vector. By Corollary 5.3, we obtain the desired result.470

Next, we present three formulations for ambiguity sets based on monomial moments, total471
variation distance, and Wasserstein metric. In what follows, let p∗ denote the empirical distribution.472

6.1.1. Moment-based Ambiguity Sets. Let µ(ξ) = (µ1(ξ), µ2(ξ), · · · , µm(ξ)) be a vector473
of moment functions on ξ ∈ R2(n+1) where the ith moment function µi is defined by some non-474

negative integers di1, di2, · · · , di2(n+1) such that µi(ξ) := (ξ1)d
i
1 ·(ξ2)d

i
2 · · · (ξ2(n+1))

di2(n+1) . Given lower475
and upper bounds on µ and p, we can define a moment-based ambiguity set Pm as476

(6.3) Pm :=
{
p
∣∣ µ ≤ K∑

k=1

pkµ(ξk) ≤ µ, p ≤ p ≤ p
}
.477

To ensure that p is a probability vector, we let µ1 = µ1 = 1 and d11 = d12 = · · · = d12(n+1) = 0.478

Proposition 6.3. The optimization problem (6.1) with the moment-based ambiguity set Pm479
(6.3) is equivalent to480

(6.4)

min − vTµ+ vTµ− wT p+ wT p

subject to (−v + v)Tµ(ξk)− wk + wk ≥ cTk x+ αk
dTk x+ βk

, k ∈ [K],

x ∈ X , v ∈ Rm+ , v ∈ Rm+ , w ∈ RK+ , w ∈ RK+ .

481

Proof. See (29, Theorem 1).482

6.1.2. Total Variation Ambiguity Sets. Let p and q be probability measures over a finite483
set Ω := {ξ1, ξ2 · · · , ξK}. We define the total variation distance between p and q as dTV (p, q) :=484
1
2

∑K
k=1 |pk − qk| where pk := p(ξk) and qk := q(ξk) for k ∈ [K]. Given a radius ∆ ≥ 0 and an485

empirical distribution p∗ ∈ RK+ , we define a total variation ambiguity set PTV as486

(6.5) PTV :=

{
p

∣∣∣∣∣ 1

2

K∑
k=1

|pk − p∗k| ≤ ∆,
K∑
k=1

pk = 1, pk ≥ 0, k ∈ [K]

}
.487

488
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Proposition 6.4. The optimization problem (6.1) with the total variation ambiguity set PTV489
(6.5) is equivalent to490

(6.6)

min
K∑
k=1

(sk − tk)p∗k + ∆ν + δ

subject to sk − tk + δ ≥ cTk x+ αk
dTk x+ βk

,
1

2
ν − sk − tk ≥ 0, k ∈ [K],

x ∈ X , s ∈ RK+ , t ∈ RK+ , δ ∈ R, ν ≥ 0.

491

Proof. This follows directly from the linear programming duality.492

6.1.3. Wasserstein Ambiguity Sets. Let d(ξi, ξj) be a distance between ξi and ξj . Given a493
radius ∆ ≥ 0 and an empirical distribution p∗ ∈ RK+ , the Wasserstein ambiguity set PW is defined494
as495

(6.7) PW :=

p
∣∣∣∣∣∣∣ ∃ q ∈ RK×K :

∑K
j=1 qij = pi, i ∈ [K],

∑K
i=1 qij = p∗j , j ∈ [K],∑K

k=1 pk = 1, pk ≥ 0, k ∈ [K], qij ≥ 0, i, j ∈ [K],∑K
i=1

∑K
j=1 qijd(ξi, ξj) ≤ ∆

 .496

497

Proposition 6.5. The optimization problem (6.1) with the Wasserstein ambiguity set PW (6.7)498
is equivalent to499

(6.8)

min −
K∑
k=1

p∗ktk −∆ν + δ

subject to − sk − rk + δ ≥ cTk x+ αk
dTk x+ βk

, k ∈ [K],

− si + tj + d(ξi, ξj)ν + qij ≤ 0, i, j ∈ [K],

x ∈ X , s ∈ RK , t ∈ RK , r ∈ RK+ , δ ∈ R, ν ≤ 0, q ∈ RK×K+ .

500

Proof. See (29, Theorem 3).501

6.2. Convex Ambiguity Set. Since strong duality does not generally hold in convex opti-502
mization, for convex ambiguity set C, we consider the following semi-infinite program503

(6.9)

min
x∈X

θ

subject to
cTk x+ αk
dTk x+ βk

≤ γk, k ∈ [K],

γT p ≤ θ, ∀ p ∈ C.

504

Here are some examples of convex ambiguity sets.505

6.2.1. Mean-Covariance Ambiguity Sets (10). Let µ ∈ R2(n+1) and Σ ∈ R2(n+1)×2(n+1)506
be a reference mean vector and an invertible covariance matrix. Using the reference mean vector µ507
and covariance matrix Σ, we define an ambiguity set as508

(6.10) CDY :=

p
∣∣∣∣∣∣∣
(∑K

k=1 pkξ
k − µ

)T
Σ−1

(∑K
k=1 pkξ

k − µ
)
≤ α,∑K

k=1 pk
(
ξk − µ

) (
ξk − µ

)T � βΣ,∑K
k=1 pk = 1, pk ≥ 0, k ∈ [K].

 .509
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6.2.2. Divergence-based Ambiguity Sets. Let φ : R+ → R+ be a convex divergence510
function. Popular choices of the function φ are φ(x) = x ln(x) − x + 1 (Kullback-Leibler), φ(x) =511
|x − 1| (total variation), φ(x) = (x − 1)2 (Modified χ2-distance) and φ = (

√
x − 1)2 (Hellinger512

distance). For more φ-divergence functions, see (37, Table 1). Given the divergence function φ, a513
radius ∆ ≥ 0, and an empirical distribution p∗ ∈ RK+ , we define an ambiguity set Cφ as514

(6.11) Cφ :=

{
p

∣∣∣∣∣
K∑
k=1

φ

(
pk
p∗k

)
p∗k ≤ ∆,

K∑
k=1

pk = 1, pk ≥ 0, k ∈ [K]

}
.515

Next, we discuss an approach to solve the semi-infinite program (6.9). To find an ε-optimal516
solution of (6.1), we present a cutting surface algorithm (32; 30), which iteratively solves517

(6.12)

min
x∈X

θ

subject to
cTk x+ αk
dTk x+ βk

≤ γk, k ∈ [K],

Pγ ≤ θ1t,

518

where each row of P is an element of a finite set Ct := {p∗, p0, · · · , pt−1} ⊂ C. Each time we obtain519
an ε-optimal solution (xt, γt, θt) to (6.12), we solve the separation problem maxp∈C pT γt to either520
terminate or generate a probability cut pt. For details, see Algorithm 6.1.521

Algorithm 6.1 A cutting surface algorithm for (6.1)

1: Input: optimality tolerance ε > 0, empirical distribution p∗.
2: Step 1: C0 ← {p∗}, t← 0.
3: Step 2: Determine an optimal solution (xt, γt, θt) of (6.12) with Ct.
4: Step 3: Determine an ε/2-optimal solution pt of the problem maxp∈C pT γt.
5: Step 4: If (pt)T γt − θt ≤ ε/2, stop and return xt and θt; otherwise Ct+1 ← Ct ∪ {pt}, t← t+ 1,

and go to Step 2.

Let θM := maxk∈[K] γ
M
k and Γ := {(x, γ, θ) |x ∈ X , (cTk x+ αk)/(dTk x+ βk) ≤ γk ≤ γMk , k ∈522

[K], 0 ≤ θ ≤ θM} (for the definition of γMk , see (4.2)).523

Proposition 6.6. Let (xt, γt, θt) be an optimal solution obtained by solving (6.12) with Ct as524
in Algorithm 6.1. For any t ≥ 0, (xt, γt, θt) belongs to the compact set Γ.525

Proof. Since matrix P constructed from Ct is non-negative, Assumption (A4) is satisfied. There-526
fore, using Proposition 3.1, let (xt, γt, θt) satisfy γtk = (cTk x

t + αk)/(dTk x
t + βk) for all k ∈ [K].527

By the definition of γMk in (4.2), we have γtk ≤ γMk for k ∈ [K]. Also, by (A2)-(A3), we have528
(cTk x + αk)/(dTk x + βk) ≥ 0 for all x ∈ X , leading to γtk ≥ 0 for k ∈ [K]. Therefore, 0 ≤ θt since529
P ≥ 0.530

Next, suppose that θt > θM . If pT γt ≤ θM for all p ∈ Ct, we have a contradiction since we531
can improve the objective value by decreasing θt to θM . Therefore, there should exist some p̂ ∈ Ct532
such that p̂T γt > θM . Since p̂ is a probability measure, it implies that θM = maxk∈[K] γ

M
k ≥533

maxk∈[K] γ
t
k ≥ p̂T γt > θM , which leads to a contradiction, Therefore, we have θt ≤ θM , resulting534

in (xt, γt, θt) ∈ Γ. The set Γ is compact since it is closed and bounded.535

Theorem 6.7. Let C be a compact set. Algorithm 6.1 returns an ε-optimal solution in a finite536
number of iterations.537
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Proof. Since Γ and C are compact, so is Γ × C. Since g(x, γ, θ, p) := γT p − θ is continuous on538
Γ× C, by Proposition 6.6 and the argument in (28, Theorem 4.2), we obtain the desired result.539

7. Numerical Experiments. In this section, we report numerical experiments of the pro-540
posed algorithms for the linear fractional program (1.2) and the distributionally robust linear frac-541
tional program with finite support (6.1).542

7.1. Linear Fractional Program. We compare the proposed algorithm (SOC-B) with bench-543
mark algorithms on diverse examples to test the scalability with respect to the number of variables544
n, the number of fractional terms K, and the optimality tolerance ε. For the benchmark algorithms,545
we select two branch and bound algorithms (26; 19) and a polyblock-based outer approximation546
algorithm (35). For all branch and bound algorithms, we adopt the rule that branches a node547
having the best bound. By examining how relative optimality gaps change over time, we compare548
the performance of the algorithms.549

Two types of test examples are considered in the experiments. First, we considered small550
examples that have been introduced in the literature (13; 26; 35; 34; 19). Second, we generated551
synthetic examples by varying the values of n and K to test the scalability of the algorithms. For552
the experiments, we used a 64-core server with Xeon 2.20 GHz CPUs and 128 GB RAM where each553
core is used to run an algorithm on a test example. All the codes are written in Python and use554
Gurobi to solve base problems (LP, SOCP).555

7.1.1. Small Examples from the Literature. We consider six examples from the literature.556
These examples are from Falk (13), Pei I,II (34), Phuong (35), and Kuno I,II (26) with the size557
(n,K) of (2, 2), (3, 3), (3, 4), (12, 5), (3, 3), and (3, 4), respectively.558
Experience with Commercial Solvers. We attempted to solve (3.6) using two commercially559
available solvers Gurobi and GloMIQO (33), which are developed to solve bilinear optimization560
models. GloMIQO was used from the GAMS interface. Gurobi failed to find a meaningful solution561
for all cases. On the other hand, GloMIQO (33) found an optimal solution for all cases using its562
local solver. However, the reported gap was more than 100% even after running the solver for 24563
hours. This computational experience suggests the need for specialized algorithms to solve linear564
fractional programs.565

Table 1: Experimental results of Gurobi and GloMIQO (33) on six small examples in the literature.
After running the algorithms for 24 hours, we report computation times (in seconds), best feasible
objective values, and best bounds.

Problem Gurobi GloMIQO
Run Time Best Feasible Best Bound Run Time Best Feasible Best Bound

Falk 86436.13 - - 86401.11 -5.0000 -1.90e+06
Pei I 86404.65 1.0247e+10 - 86401.08 -3.0000 -3.83e+06
Pei II 86663.79 - - 86401.08 -4.0907 -5.75e+06
Phuong 86410.24 - - 86417.00 -16.0576 -9.99e+06
Kuno I 86409.19 1.3318e+10 - 86400.93 -3.0029 -3.82e+06
Kuno II 86527.22 - - 86401.32 3.7984 -5.74e+06

Experimental Results with Specialized Algorithms. We now report computational experi-566
ments with our implementation of the proposed algorithm and other special algorithms developed in567
the literature. We implemented Kuno’s algorithm (26), Jiao and Liu’s algorithm (19) and Phuong568
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and Tuy’s algorithm (35). For each problem, we run the algorithms until they reach a (rela-569
tive) optimality gap of 10−5 and report computation times taken to attain an ε-optimality gap for570
ε ∈ {10−2, 10−3, 10−4, 10−5}. Table 2 gives the experimental results. The results in Table 2 show571
that SOC-B and Kuno’s algorithm (26) are the fastest algorithms for these examples. Both of them572
take less than three seconds to reach an optimality gap of 10−5 for all examples. While Kuno’s573
algorithm is faster than SOC-B when n ≤ 3, the performance gap decreases as n increases and ε574
gets small as seen in the Phuong instance. The Phuong and Tuy’s algorithm (35) is competitive to575
Kuno’s algorithm and SOC-B for the Falk, Pei I, Pei II, and Kuno II instances. However, it is slower576
than Kuno’s algorithm and SOC-B for the Kuno I instance. For the Phuong instance, the Phuong577
and Tuy’s algorithm’s solution time is significantly greater, and it performs even worse than the578
Jiao and Liu’s algorithm (19). Except for the Phuong instance, the Jiao and Liu’s algorithm is the579
slowest algorithm.580

Table 2: Experimental results for the four specialized algorithms on six small examples in the
literature. Computation times (in seconds) are for attaining a relative optimality gap tolerance in
the range 10−2 to 10−5.

Algorithm Tolerance Falk Pei I Pei II Phuong Kuno I Kuno II

SOC-B (Algorithm 4.1)

10−2 0.31 0.62 0.26 1.37 0.51 0.32
10−3 0.47 0.92 0.33 1.64 1.39 0.58
10−4 0.58 1.01 0.50 1.89 2.27 0.84
10−5 0.62 1.08 0.63 2.02 2.65 0.97

Kuno (26)

10−2 0.03 0.01 0.03 0.33 0.02 0.03
10−3 0.05 0.01 0.03 0.63 0.10 0.03
10−4 0.05 0.04 0.08 1.40 0.19 0.09
10−5 0.05 0.08 0.08 1.89 0.22 0.09

Jiao and Liu (19)

10−2 1.33 2.09 0.90 8.15 3.10 2.33
10−3 4.25 11.00 3.34 24.66 30.37 11.42
10−4 7.96 23.64 6.41 54.18 94.22 23.22
10−5 11.89 36.08 9.19 90.60 164.82 34.57

Phuong and Tuy (35)

10−2 0.16 0.05 0.04 642.64 0.21 0.02
10−3 0.43 0.22 0.08 3520.37 2.38 0.09
10−4 0.66 0.36 0.15 6208.80 7.53 0.15
10−5 0.86 0.50 0.22 15319.08 13.11 0.23

Although these small examples are widely used for comparing the algorithms in the literature,581
they have the following limitations. First, αk and βk are relatively large in comparison with ck and582
dk. This makes linear fractional functions have little curvature. Second, the problem size (n,K)583
is small. Since the number of auxiliary variables is increasing with K in all algorithms, problems584
with large K should be experimented to test the scalability of the algorithms. In order to better585
evaluate the algorithms, we generate synthetic problem instances as follows.586

7.1.2. Synthetic Problem Instances. Let aij be the entry in the ith row and jth column of a587
matrix A. We generate the problem parameters ck, dk, ai ∈ Rn and αk, βk, pk, bi ∈ R where i ∈ [m]588
and k ∈ [K] in (1.2) as n,K ∈ {5, 10, 25, 50, 100}, m = dn/2e, pk = 1/K, aij ∼ Uniform(1, n),589
bi = n, ckj ∼ Uniform(−1, 1), ᾱk ∼ Uniform(−1, 0), αk = ᾱk−maxx∈X cTk x, dkj ∼ Uniform(−1, 1),590
β̄k ∼ Uniform(0, 1), and βk = 1 −minx∈X dTk x. From x ≥ 0, aij ∼ Uniform(1, n), and bi = n, we591
have 0 ≤ xj ≤ 1. It ensures that X is a polytope. From the definitions of αk and βk, we have592
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cTk x + αk ≤ ᾱk < 0 and dTk x + βk ≥ β̄k > 0. Our data generation model allows both signs for ckj593
and dkj , contrary to the data generation models in (19; 26) which allows only positive values for594
ckj and dkj . Allowing both signs for ckj and dkj , we can generate more difficult linear fractional595
functions.596

Fig. 2: Objective value convergence plots for a problem instance of the size (n,K) ∈ {(5, 5), (10, 5),
(25, 5), (5, 10)}.

Table 3 gives the results for synthetic instances. For each choice of (n,K), we generate five597
instances and run the algorithms until they reach an optimality gap of 10−5 with the time limit598
of 24 hours. If a certain level of optimality gap is reached for all five instances, we report the599
average of computation times. The Phuong and Tuy’s algorithm takes a large time as the size600
of n and K increases. So, the experimental results of this algorithm are not included in the601
table. Results in Table 3 show that SOC-B scales much better as the size of n and K increases.602
When n and K are small, SOC-B and Kuno’s algorithm take a similar amount of time to reach603
an optimality gap of 10−2 as shown in the instances with (n,K) ∈ {(5, 5), (10, 5), (25, 5), (5, 10)}.604
However, although computation times to reach an optimality gap of 10−2 are similar between605
SOC-B and Kuno’s algorithm for (n,K) ∈ {(10, 5), (25, 5), (5, 10)}, the optimality gap of SOC-B606
decreases more quickly, as illustrated in Figure 2. This is attributed to the square root dependency607
on ε of SOC-B, which is not seen in LP-based approximations. For the instances with (n,K) /∈608
{(5, 5), (10, 5), (25, 5), (5, 10)}, SOC-B clearly outperforms the benchmark algorithms. For these609
instances SOC-B takes much smaller computation times to attain an optimality gap of 10−2. The610
efficiency of SOC-B over the benchmark algorithms sharply increases as ε gets small. To attain an611
optimality gap of 10−5, SOC-B is at least five times faster than the benchmark algorithms. Contrary612
to the other algorithms, SOC-B can solve all five instances of (n,K) = (10, 25) and (100, 10) within613
the time limit. For (n,K) = (25, 25) and (5, 50), SOC-B achieves an optimality gap of 10−5 for two614
out of the five instances, as shown in Table 4.615

In summary, SOC-B attains two or more digit accuracy faster than the benchmark algorithms616
in most cases. In particular, it efficiently finds a highly accurate solution due to the square root617
dependency on ε.618

7.2. Distributionally Robust Linear Fractional Program. We present experimental re-619
sults for the distributionally robust linear fractional program with finite support (6.1). For each620
(n,K) ∈ {(5, 10), (10, 10), (25, 10), (50, 10), (100, 10), (5, 25), (10, 25)}, we randomly choose one in-621
stance among the five instances used in Section 7.1.2. We use the Wasserstein ambiguity set (6.7)622
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Table 3: Experimental results for three specialized algorithms on synthetic problem instances. For
each (n,K), we run the algorithms on five instances with a 24-hour time limit. We report average
computation times (in seconds) over five instances to reach a range of relative optimality gap
tolerances from 10−2 to 10−5. A blank cell represents that an algorithm could not attain a target
relative optimality gap tolerance within the time limit in any of the five instances.

Problem SOC-B (Algorithm 4.1) Kuno (26) Jiao and Liu (19)
K n 10−2 10−3 10−4 10−5 10−2 10−3 10−4 10−5 10−2 10−3 10−4 10−5

5 5 0.76 1.19 1.47 1.79 0.35 0.65 0.87 1.16 6.40 19.95 32.60 48.41
10 1.38 2.30 2.69 3.07 1.62 3.49 5.37 7.01 72.55 221.26 406.19 594.15
25 3.16 4.30 4.88 5.37 4.87 12.14 23.18 36.64 122.10 423.97 961.19 1647.64
50 11.58 19.00 22.48 23.88 33.27 178.52 604.00 1216.33 5052.41 - - -
100 53.27 77.28 86.79 91.42 203.93 1117.85 5669.88 20264.29 21779.47 - - -

10 5 7.93 13.80 16.22 17.44 8.79 20.54 28.62 34.66 32152.78 - - -
10 12.92 21.70 24.84 25.76 25.53 68.52 102.36 130.53 - - - -
25 56.91 81.61 88.20 90.43 242.38 690.48 1125.68 1511.42 - - - -
50 211.90 322.90 352.59 362.73 1208.87 3859.17 12409.12 - - - - -
100 1290.59 2087.42 2294.36 2333.53 22261.21 - - - - - - -

25 5 190.61 419.30 477.57 488.98 316.76 1122.55 1773.37 2377.53 - - - -
10 4828.92 8260.64 8748.70 8811.11 - - - - - - - -

Table 4: Experimental results of three specialized algorithms for synthetic instances with large K.
For each (n,K) = (25, 25), (5, 50), we run the algorithms on five instances until a relative optimality
tolerance of 10−5 is satisfied with a 24-hour time limit. We report computation times (in seconds)
and relative optimality gaps for all instances.

Problem SOC-B (Algorithm 4.1) Kuno (26) Jiao and Liu (19)
K n # Time (s) Opt. Gap Time (s) Opt. Gap Time (s) Opt. Gap

25 25

1 86400 0.038 86400 0.064 86400 0.22
2 65735 1.00e-05 86400 0.042 86400 0.21
3 74886 1.00e-05 86400 0.047 86400 0.17
4 86400 0.067 86400 0.070 86400 0.24
5 86400 0.011 86400 0.053 86400 0.19

50 5

1 86400 0.029 86400 0.044 86400 0.28
2 40359 1.00e-05 86400 0.020 86400 0.22
3 6334 1.00e-05 86400 0.0015 86400 0.21
4 86400 0.018 86400 0.038 86400 0.25
5 86400 0.030 86400 0.045 86400 0.36

with d(ξi, ξj) = ‖ξi− ξj‖1. For a radius ∆ ≥ 0, we set ∆ = ρ∆max where ρ ∈ {0, 0.01, 0.05, 0.1, 0.2}623
and ∆max is the minimum distance such that all probability distributions supported on the finite624
support are included in PW when ∆ = ∆max. We consider the two proposed solution approaches625
(dual reformulation, cutting surface algorithm) to solve the optimization problem. Table 5 gives626
the results for distributionally robust linear fractional programs.627

Table 5 suggests that the two approaches solve most instances within the time limit of 24 hours.628
The dual reformulation approach is more efficient than the cutting surface algorithm since it solves629
only one instance of (1.1). As the radius ∆ increases, computational times tend to increase in630
both approaches. The number of cuts also grow with ∆. In the cutting surface algorithm, while631
two or fewer probability cuts are generated for ρ ≤ 0.05, this number increases to more than 5632
when ρ ≥ 0.1. On the other hand, objective values drop more quickly for large K. For ρ = 0.01633
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Table 5: Experimental results of two solution approaches for distributionally robust linear fractional
programs. For each (n,K), we run the algorithms with varying ρ from 0 to 0.2 until a relative opti-
mality gap of 10−5 is obtained with a 24-hour time limit. We report objective values, computation
times, relative optimality gaps and the number of probability cuts (for cutting surface algorithm
only).

Problem Dual Cutting Surface
K n ρ Obj. Val Time (s) Opt. Gap Obj. Val Time (s) Opt. Gap Cuts

10

5

0 -1.1493 37.56 1.00E-05 -1.1493 46.76 1.00E-05 0
0.01 -1.1302 42.22 1.00E-05 -1.1302 60.75 1.00E-05 1
0.05 -1.0536 25.05 1.00E-05 -1.0536 37.33 1.00E-05 1
0.1 -0.9591 59.23 1.00E-05 -0.9591 123.74 1.00E-05 4
0.2 -0.8479 495.6 1.00E-05 -0.8479 3144.24 1.00E-05 12

10

0 -1.3251 44.37 1.00E-05 -1.3251 55.62 1.00E-05 0
0.01 -1.3003 31.84 1.00E-05 -1.3003 45.7 1.00E-05 1
0.05 -1.2009 41.59 1.00E-05 -1.2009 60.57 1.00E-05 1
0.1 -1.0929 129.33 1.00E-05 -1.0929 266.57 1.00E-05 2
0.2 -0.9556 351.06 1.00E-05 -0.9556 9502.88 1.00E-05 9

25

0 -0.9717 290.59 1.00E-05 -0.9717 378.06 1.00E-05 0
0.01 -0.9458 921.47 1.00E-05 -0.9458 1763.99 1.00E-05 2
0.05 -0.8934 1182.96 1.00E-05 -0.8934 4363.21 1.00E-05 6
0.1 -0.8483 1359.33 1.00E-05 -0.8483 7541.36 1.00E-05 9
0.2 -0.7906 2190.53 1.00E-05 -0.7906 30447.53 1.00E-05 25

50

0 -1.0661 1076.99 1.00E-05 -1.0661 1742.33 1.00E-05 0
0.01 -1.0518 1988.09 1.00E-05 -1.0518 4543.3 1.00E-05 2
0.05 -0.9976 3399.73 1.00E-05 -0.9976 10338.17 1.00E-05 4
0.1 -0.9607 3755.13 1.00E-05 -0.9607 22570.45 1.00E-05 9
0.2 -0.9302 2264.33 1.00E-05 -0.9302 25342.39 1.00E-05 16

100

0 -1.1906 2421.99 1.00E-05 -1.1906 4423.74 1.00E-05 0
0.01 -1.179 3337.54 1.00E-05 -1.179 8594.49 1.00E-05 1
0.05 -1.138 2909.73 1.00E-05 -1.138 9598.92 1.00E-05 1
0.1 -1.0908 3679.35 1.00E-05 -1.0908 26938.46 1.00E-05 6
0.2 -1.0455 2901.88 1.00E-05 -1.0455 58606.53 1.00E-05 13

25

5

0 -1.3338 5929.86 1.00E-05 -1.3338 6621.21 1.00E-05 0
0.01 -1.2729 28455.42 1.00E-05 -1.2729 30113.09 1.00E-05 1
0.05 -1.0825 59026.49 1.00E-05 -0.9676 66166.13 0.1675 -
0.1 -0.8974 64801.5 3.54E-02 -0.8942 65462.24 0.4396 -
0.2 -0.6791 64800.95 9.03E-02 -0.6405 65214.21 0.6933 -

10

0 -1.2096 2313.82 1.00E-05 -1.2096 2625.93 1.00E-05 0
0.01 -1.1579 12977.19 1.00E-05 -1.1579 13824.77 1.00E-05 1
0.05 -0.9648 36695.22 1.00E-05 -0.9648 48759.61 1.00E-05 2
0.1 -0.7704 64801.91 9.53E-02 -0.7606 65179.75 1.23E-01 -
0.2 -0.637 64802.66 0.4490 -0.4945 65106.69 0.7151 -

and 0.05, the objective values decrease by 3% and 10% when K = 10. However, for K = 25, the634
objective values decrease by 5% and 20%, respectively. The dual reformulation approach solves635
small instances with K up to 25 within a reasonable amount of time.636

8. Concluding Remarks. In this paper we consider a linear fractional model in a form which637
allows us to consider the linear fractional program and its stochastic and distributionally robust638
counterparts in the same framework. Based on second order cone approximations, we develop an639
adaptive branch and bound algorithms to solve this model. Our branch and bound algorithm has640
an attractive property that the number of iterations to attain an ε-optimal solution is in the order641
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of O(
√
ε). Due to this property, the algorithm finds an accurate solution faster than the LP-based642

benchmark algorithms. The algorithm scales better with problem size and the number of terms in643
the fractional program. Specifically, it can solve small size instances with K up to 50 and medium644
size instances with K up to 25. This result is important when fractional programs are obtained645
from the sample average approximations of a stochastic program. For distributionally robust linear646
fractional programs, our reformulation approach can solve small size instances with the cardinality647
of support up to 25.648
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Appendix A. Proofs.767

A.1. Proof of Proposition 3.1.768

Proof. To prove the first part, we first show that (x∗, θ∗, π∗, γ∗) is feasible to (1.1). By dTk x
∗+769

βk > 0 and the constraints in (3.4), we have (cTk x
∗ + αk)/(dTk x

∗ + βk) ≤ γ∗k for all k ∈ [K], which770

gives the feasibility of (x∗, θ∗, π∗, γ∗) to (1.1). Suppose that (x̂, θ̂, π̂, γ̂) but not (x∗, θ∗, π∗, γ∗) is an771

optimal solution to (1.1) such that θ̂ < θ∗. Consider a solution (x̂, θ̂, π̂, γ̄, w̄, v̄) that772

γ̄k =
cTk x̂+ αk
dTk x̂+ βk

, w̄k =
γ̄k + dTk x̂+ βk

2
, v̄k =

γ̄k − (dTk x̂+ βk)

2
, k ∈ [K].773

By construction, the solution (x̂, θ̂, π̂, γ̄, w̄, v̄) satisfies (3.4) and γ̄ ≤ γ̂. By HT π̄ ≥ γ̂ and P γ̂ ≤ θ̂1J ,774

we also have HT π̄ ≥ γ̄ and P γ̄ ≤ θ̂1J since γ̄ ≤ γ̂ and P ≥ 0, which implies that the solution775
(x̂, θ̂, π̂, γ̄, w̄, v̄) is feasible to (3.6) with the objective value θ̂. This yields a contradiction to the fact776
that (x∗, θ∗, π∗, γ∗, w∗, v∗) is optimal to (3.6). So, (x∗, θ∗, π∗, γ∗) is optimal to (1.1).777

For the second part, we first show the feasibility of (x∗, θ∗, π∗, γ̄, w̄, v̄) to (3.6). By construction,778
it satisfies (3.4). Also, byHTπ∗ ≥ γ∗ and Pγ∗ ≤ θ∗1J , we haveHTπ∗ ≥ γ̄ and P γ̄ ≤ θ∗1J since γ̄ ≤779
γ∗ and P ≥ 0. Therefore, (x∗, θ∗, π∗, γ̄, w̄, v̄) is feasible to (3.6). Suppose that (x∗, θ∗, π∗, γ̄, w̄, v̄)780

is not optimal to (3.6). Then, there exists an optimal solution (x̂, θ̂, π̂, γ̂, ŵ, v̂) to (3.6) such that781

θ̂ < θ∗. The argument in the first part indicates that the solution (x̂, γ̂, ŵ, v̂) is feasible to (1.1)782

with the objective value θ̂. This leads to a contradiction to the fact that (x∗, θ∗, π∗, γ∗) is optimal783
to (1.1), which proves that (x∗, θ∗, π∗, γ̄, w̄, v̄) is optimal to (3.6).784

A.2. Proof of Proposition 3.2.785

Proof. The first part follows from786

u(w)− w2 = −
(
w − wa + wb

2

)2

+
1

4

(
wb − wa

)2
.787

788

For the second part, the inequality trivially holds for w = wa and wb. For w ∈ (wa, (wa + wb)/2],789
let g be a function such that g(w) = (û(w) − w2)/(u(w) − w2) = (2w − (wa + wb))/(2(w − wb)).790
Taking the derivative of g, we have ∂g(w)/∂w = (wa − wb)/(2(w − wb)2) < 0. This results in791
g(w) ≤ limw→wa+0 g(w) = 1/2.792

On the other hand, for w ∈ [(wa + wb)/2,wb), let h(w) = (2w− (wa +wb))/(2(w−wa)). Since793
∂h(w)/∂w = (wa − wb)/(2(w−wa)2) < 0, we have h(w) ≤ limw→wb−0 h(w) = 1/2. This completes794
the proof.795

A.3. Proof of Proposition 3.3.796

Proof. By Proposition 3.1, without loss of generality, let (x∗, θ∗, γ∗, π∗, w∗, v∗) be an optimal797
solution to (3.6) satisfying (3.8). Since w∗k ∈ [wmk ,w

M
k ] holds for each k ∈ [K], we have (w∗k)2 ≤798

u(w∗k;Wk), which leads to cTk x
∗ + αk + (v∗k)2 ≤ (w∗k)2 ≤ u(w∗k;Wk) for every k ∈ [K]. Therefore,799

(x∗, θ∗, γ∗, π∗, w∗, v∗) is feasible to (3.10) with the objective value of θ∗ = ϑ∗, which completes the800
proof.801

Appendix B. Disjunctive cuts. To solve the mixed binary program (3.13) in the branch802
and cut framework, we introduce a separation problem which generates a hyperplane that cuts off803
a fractional solution from the convex hull of the feasible region. Our derivation follows the variable804
transformation technique introduced in (46).805
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Let (x̄, θ̄, γ̄, π̄, w̄, v̄, λ̄, µ̄) be a fractional solution obtained by solving a relaxation problem of806
(3.13). By (A1)-(A5), (1.1) and thus (3.13) have a finite optimum. Let (x∗, θ∗, γ∗, π∗, w∗, v∗, λ∗, µ∗)807
be an optimal solution to (3.13). Then, there exists a constant L satisfying808

|θ∗| ≤ L, max {‖x∗‖∞, ‖γ∗‖∞, ‖π∗‖∞, ‖w∗‖∞, ‖v∗‖∞} ≤ L, max
j∈[Nk], k∈[K]

|λ∗kj | ≤ L,809

‖Ax∗ − b‖∞ ≤ L, −‖x∗‖∞ ≤ L, max
k∈[K]

Nk∑
j=1

λ∗kj(w
j
k)2 −

(
cTk x

∗ + αk + (v∗k)2
)
≤ L.810

811

Without loss of generality, we can impose an upper bound L for each element of feasible solutions and812
constraints in (3.13). With the bound constraints, the feasible region of (3.13) can be represented813

as the union of
∏K
k=1(Nk − 1) sets of the form814

Cj1j2···jK :=


(x, θ, γ, π, w, v, λ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

|θ| ≤ L, ‖x‖∞ ≤ L, ‖π‖∞ ≤ L,
‖γ‖∞ ≤ L, ‖w‖∞ ≤ L, ‖v‖∞ ≤ L,
‖Ax− b‖∞ ≤ L, −‖x‖∞ ≤ L,
|λkj | ≤ L, j ∈ [Nk], k ∈ [K],∑Nk

j=1 λkj(w
j
k)2 − (cTk x+ αk + v2k) ≤ L, k ∈ [K],

cTk x+ αk + v2k ≤
∑Nk

j=1 λkj(w
j
k)2, k ∈ [K],

µjkk = µjk+1
k = 1, k ∈ [K],

(w, λk, µk) ∈ Hk, k ∈ [K],
(x, θ, γ, π, w, v) ∈ S.


815

816

where jk ∈ [Nk − 1] and k ∈ [K]. Note that Cj1j2···jK represents a set of points satisfying wk ∈817
[wjkk ,w

jk+1
k ] and cTk x+ αk + v2k ≤ (wjkk + wjk+1

k )wk − wjkk wjk+1
k for k ∈ [K].818

To construct the convex hull of Cj1j2···jK , we use the variable transformation technique in (46).
Rather than writing a convex combination z = (x, θ, γ, π, w, v, λ) as

z =

N1−1∑
j1=1

N2−1∑
j2=1

· · ·
NK−1∑
jK=1

ηj1j2···jKzj1j2···jK

where

N1−1∑
j1=1

N2−1∑
j2=1

· · ·
NK−1∑
jK=1

ηj1j2···jK = 1, ηj1j2···jK ≥ 0, zj1j2···jK ∈ Cj1j2···jK , jk ∈ [Nk − 1], k ∈ [K],

using (46, Theorem 2), we represent z as

z =

N1−1∑
j1=1

N2−1∑
j2=1

· · ·
NK−1∑
jK=1

ẑj1j2···jK

where

(ẑj1j2···jK , ηj1j2···jK ) ∈ Ĉj1j2···jK , jk ∈ [Nk − 1], k ∈ [K],

N1−1∑
j1=1

N2−1∑
j2=1

· · ·
NK−1∑
jK=1

ηj1j2···jK = 1
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and819

Ĉj1j2···jK :=


(ẑ, η)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

|θ̂| ≤ ηL, ‖x̂‖∞ ≤ ηL, ‖π̂‖∞ ≤ ηL,
‖γ̂‖∞ ≤ ηL, ‖ŵ‖∞ ≤ ηL, ‖v̂‖∞ ≤ ηL,
‖Ax̂− bη‖∞ ≤ ηL, −‖x̂‖∞ ≤ ηL, |λ̂kj | ≤ ηL, j ∈ [Nk], k ∈ [K],

Ax̂ ≤ bη, x̂ ≥ 0, fT π̂ ≤ θ̂, HT π̂ ≥ γ̂, P γ̂ ≤ θ̂1J ,
γ̂k − (dTk x̂+ βkη) = 2v̂k, γ̂k + (dTk x̂+ βkη) = 2ŵk, k ∈ [K],

ŵk =
∑Nk

j=1 λ̂kj(w
j
k)2, cTk x̂+ αkη + v̂2k/η ≤

∑Nk

j=1 λ̂kj(w
j
k)2, k ∈ [K],

0 ≤ λ̂kj ≤ µ̂kj , j ∈ [Nk],
∑Nk

j=1 λ̂kj = η, k ∈ [K],

µ̂kjk = µ̂kjk+1 = η, µ̂kik = 0, ik 6= jk, jk + 1, k ∈ [K],

ẑ = (x̂, θ̂, γ̂, π̂, ŵ, v̂, λ̂), η ≥ 0.


.820

821

In the above, ηj1j2···jK represents a coefficient in a convex combination and ẑj1j2···jK is a coefficient822
multiplied quantity such that ẑj1j2···jK/ηj1j2···jK ∈ Cj1j2···jK for ηj1j2···jK > 0.823

To cut off a fractional solution z̄ = (x̄, θ̄, γ̄, π̄, w̄, v̄, λ̄), we consider the following separation824
problem825

(B.1)

min
z

f(z) = ‖z − z̄‖

subject to z =

N1−1∑
j1=1

N2−1∑
j2=1

· · ·
NK−1∑
jK=1

ẑj1j2···jK ,

N1−1∑
j1=1

N2−1∑
j2=1

· · ·
NK−1∑
jK=1

ηj1j2···jK = 1,

(ẑj1j2···jK , ηj1j2···jK ) ∈ Cj1j2···jK , jk ∈ [Nk − 1], k ∈ [K].

826

If an optimal solution z∗ satisfies f(z∗) > 0, then by (46, Theorem 3), the inequality ∂f(z∗)T (z −827
z̄) ≥ 0 constructed by the subgradient ∂f(z∗) and the fractional solution z̄ is a valid inequality in828
z and cuts off z̄ . For more information, see (46).829
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