Eluding ML-based Adblockers With

Actionable Adversarial Examples

Shitong Zhu', Zhongjie WangT, Xun Chen®, Shasha Li", Keyu Man’,
Umar Igbal®, Zhiyun Qian', Kevin S. Chan*, Srikanth V. Krishnamurthy",
Zubair Shaﬁq$, Yu Hao', Guoren Li', Zheng ZhangT, Xiaochen Zou'

TUniversity of California, Riverside, *Samsung Research America, *University of Iowa,
*US Army Research Laboratory, *University of California, Davis

ABSTRACT

Online advertisers have been quite successful in circumventing tra-
ditional adblockers that rely on manually curated rules to detect ads.
As a result, adblockers have started to use machine learning (ML)
classifiers for more robust detection and blocking of ads. Among
these, AdGraph which leverages rich contextual information to
classify ads, is arguably, the state of the art ML-based adblocker. In
this paper, we present A%, a tool that intelligently crafts adversar-
ial ads to evade AdGraph. Unlike traditional adversarial examples
in the computer vision domain that can perturb any pixels (i.e.,
unconstrained), adversarial ads generated by a* are actionable in
the sense that they preserve the application semantics of the web
page. Through a series of experiments we show that A% can bypass
AdGraph about 81% of the time, which surpasses the state-of-the-
art attack by a significant margin of 145.5%, with an overhead of
<20% and perturbations that are visually imperceptible in the ren-
dered webpage. We envision that a%*’s framework can be used to
potentially launch adversarial attacks against other ML-based web
applications.

KEYWORDS

adversarial examples, machine learning, adblockers

ACM Reference Format:

Shitong Zhut, Zhongjie Wang"', Xun Chen?, Shasha LiT, Keyu Man®,, Umar
Iqbal$, Zhiyun QianT, Kevin S. Chan*, Srikanth V. KrishnamurthyT,, Zubair
Shaﬁqs, Yu Hao', Guoren Lif, Zheng Zhang*, Xiaochen Zou'. 2021. Eluding
ML-based Adblockers With Actionable Adversarial Examples. In Annual
Computer Security Applications Conference (ACSAC 21), December 6-10, 2021,
Virtual Event, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.
1145/3485832.3488008

1 INTRODUCTION

As adblockers have gained popularity in recent years [18], online
advertisers have started fighting back. Specifically, many techniques
have emerged to circumvent the current generation of adblockers.
Notably, prior work [33] has shown that from among Alexa’s top

This work is licensed under a Creative Commons Attribution-NonCommercial
International 4.0 License.

ACSAC 21, December 6-10, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8579-4/21/12.
https://doi.org/10.1145/3485832.3488008

541

10K websites, more than 30% have JavaScript code that serve as
countermeasures against adblocker use.

Conventionally, adblockers rely on manually curated filter lists,
with rules/signatures that are matched against resource request
URLs sent from the browser and the elements rendered in a web
page. Unfortunately, manual maintenance of such filter lists does
not scale and is error-prone. Moreover, they are fairly easy to sub-
vert (just as antivirus signatures) [10, 17].

Given these limitations, several ML-based adblockers have re-
cently emerged with the goal of improving the effectiveness and ac-
curacy over signature-based adblockers [1, 11, 27] . Such adblockers
can be categorized into “perceptual” and “non-perceptual” classes.
Perceptual adblockers [1, 27] block ads by recognizing visual cues
(e.g. "sponsored” or other marketing keywords) in the web page.
It is claimed that these are more robust because some regulators
(e.g. FTC) require publishers to disclose the ads and sponsored con-
tent. However, recent research has shown that these vision-based
adblockers can be easily fooled by adversarial examples; this is a re-
sult of recent advances in adversarial machine learning (AML) [28]
where ML classifiers can be fooled with human-imperceptible per-
turbation to the ad images.

In contrast, non-perceptual adblockers detect ads based on non-
visual features such as the URL contents and page structure. The
state-of-the-art in non-perceptual ML-based adblockers, arguably,
is AdGraph ! [11]. Improving on existing works that simply analyze
information in request URLs or HTML/JavaScript code, AdGraph
builds a graph representation of a web page load combining all
this contextual information, and extracts features from this graph
structure to detect ad requests. AdGraph’s use of this contextual
information supposedly makes it robust because an advertiser needs
to make non-trivial changes to a web page, to in turn suitably
perturb its graph structure, for circumvention. Furthermore, the
use of non-visual features inhibit the applicability of traditional
adversarial attack techniques from the unconstrained domain [28].

The main contribution of our work is that we show that it is in
fact still possible to craft adversarial ads to circumvent AdGraph.
The feasibility of crafting adversarial inputs in domains with strin-
gent constraints (e.g., web pages) remains largely unexplored. The
main challenge is to preserve application semantics, which in this
case is the visual rendering of the web page. Since web pages are
processed by the web browser prior to user exposition (unlike im-
ages), rather than the magnitude of the perturbation being the most
important criterion, what matters is whether the rendered web page

! [26] extends AdGraph by combining visual and non-visual features. We believe that
one can draw similar conclusions as in this work, on attacking its non-visual features.

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3485832.3488008
https://doi.org/10.1145/3485832.3488008
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1145/3485832.3488008

ACSAC °21, December 6-10, 2021, Virtual Event, USA

after applying the perturbation presents the same look-and-feel and
functionality. Thus, to make so-called actionable perturbations, we
need to principally rethink the constraints that must be enforced
while crafting adversarial samples.

Extending this insight to ML-based adblockers, given the goal of
perturbing an ad resource request to bypass the ML classifier: (i) the
adversarial example should be actionable in that it must be “mapped
back” to the appropriate valid webpage and (ii) the modified request
must preserve its original functionality of directing the requester to
the remote ad server i.e., this requires the “functional” parts of the
page to be equivalent before and after modification. Our goal is to
operationalize this insight by crafting such actionable perturbations
that can circumvent AdGraph. To this end, our challenge is to realize
the following properties.

Feature-space actionability: First, any perturbation in the
feature-space (including features selected by the ML-based ad-
blocker) must be bounded by domain-specific constraints (e.g., num-
ber of child nodes of a DOM node cannot be negative).

Application-space actionability: Second, upon mapping the
feature-space perturbations back to the application space (web
page), the computed modifications may not be perfectly translated,
thererby requiring extra constraints to be satisfied.

As our primary contribution, we present a*: Actionable Ad
Adversarial Attack to craft perturbations that are actionable in
both the feature- and the application-space. a* needs minimal do-
main knowledge for providing a set of seed features that can be
mapped from the feature space back to the input or application
space. Specifically, it has the following desirable characteristics.

¢ Efficiency: Inspired by the widely used gradient-based attack,
Projected Gradient Descent (PGD) [14], a* iteratively searches
for an adversarial example while accounting for the unique
constraints of the web domain. Our evaluations show that a*
achieves a success rate of about 81% (evading AdGraph’s ad de-
tection). In comparison, a naive baseline cannot generate any
viable example while two stronger baselines can achieve success
rates of only 33% or lower.

e Actionability: All perturbed web resources are guaranteed to
comply with both the feature and application-space constraints.
This compliance makes these examples practical, i.e., they still
retain their ad/tracker functionalities.

e Stealthiness: A* generates perturbations with low detectability
(by adblockers) since the perturbations are bounded and con-
cealed with respect to the corresponding web page; further, they
are imperceptible to users (except for displaying the ads).

2 BACKGROUND

In this section, we provide a brief background on adblockers and
AML, and discuss relevant related work.

Non-perceptual ML-based Adblocking. Because rule-based ad-
blockers are plagued by scale/errors and demonstrable attacks,
ML-based adblockers are emerging. Previous works leverage URL
strings and JavaScript code as features to represent web resources
in ML models [3]. However, these attempts have low accuracy be-
cause the representations used are incomplete in capturing the
distinguishing characteristics of ad and non-ad resources. This led

542

Zhu et al.

to AdGraph [11], a recent work on identifying ad resources us-
ing a more comprehensive set of features and is considered the
state-of-the-art in this field, and also our target in this paper.

AdGraph. By instrumenting the browser core, AdGraph collects
a comprehensive set of browser-internal events to stitch together
a graph that represents the interactions among the HTML page
elements, network requests, and JavaScript executions (e.g., web
element A is dynamically created by script B). This representation
is then used to train a classifier for identifying advertising and
tracking resources. With support from this rich loading context,
AdGraph extracts 65 features from a resource load, and classifies
the request based on these features. These features can be catego-
rized into two types: structural and content-based. Content-based
features include (but not limited to) certain susceptible ad-related
keywords in the URL and the requested resource type (e.g. image,
iframe). AdGraph’s classifier uses Random Forest as the underlying
model, which is non-differentiable. As discussed later in §3, this
choice hinders traditional AML based attacks as they require the
use of gradient to guide the adversarial example generation. More-
over, from the 65 features AdGraph uses, 5 of them are categorical,
i.e., will be converted into more than 250 sparse one-hot-encoded
features. Such sparsity not only poses new challenges for existing
adversarial attacks that expect dense data, but also requires addi-
tional constraints to ensure the validity of the one-hot vectors (we
discuss how a* overcomes these in §3).

3 A*: ACTIONABLE AD ADVERSARIAL
ATTACK

Adversarial attacks on ML models. Formally, suppose a classi-
fier defined by its prediction function Py, ,4.; and an input x with
its malicious label [,,,,;; an attacker needs to find an adversarial
transformation T, 4,, such that Pp,oq.1(Taqo (Xinput)) # lmar- The
AML community defines different levels of model transparency to
describe the knowledge that an attacker possesses with regards to
the target classifier:

o With White-box attacks, an attacker is assumed to know all
the information about the model, including but not limited to
the model internals (e.g., the classifier model type, parameters),
the training dataset and feature definitions.

e With Grey-box attacks, the attackers do not know the internals
of the model, but know the training dataset and feature defini-
tions. Further, the attacker can query the target classifier about
the label for a specific input.

Gradient-based attacks. One popular attack is based on the Fast
Gradient Sign Method (FGSM) [4], which leverages the gradients
derived from the target classifier to compute the perturbation that
maximizes its loss function with respect to the particular malicious
input. Given the loss function of the target model L,,,,4.7, FGSM
computes its perturbation 1 as 5 = € - sign(Vx Ly 0de1), Where € is
the norm constraint specified by the attacker. There are also other
variants [7] that follow the "loss-maximizing" philosophy used in
FGSM. They are generally referred to as gradient-based attacks.
Since these attacks all use the gradient information from the target
model, they should be considered as white-box attacks.

Eluding ML-based Adblockers With Actionable Adversarial Examples

Gradient-based attacks generate perturbations that are bounded
based on different L,, (¢ above) norms (e.g. Lo, Lz or Lj,f). These
traditional norms, bounds, or thresholds (referred to as norms in
the paper) measure the magnitude of the perturbation, and are
thus primarily suitable for visual domain applications (lower norms
generally mean less visually-detectable changes) wherein human
imperceptibility is the auxiliary characteristic desired in a pertur-
bation. In the web space however, the perturbed page has complex
structures and is processed by the browser which parses and ren-
ders the page. Thus, the norms can no longer capture what is a
“desirable perturbation”. In other words, new metrics are needed to
effectively capture the properties of functionality preservation and
stealthiness of the perturbed web page.

Projected Gradient Descent. Being a single-step attack, FGSM
suffers from low success rates, especially when gradients cannot
provide sufficiently accurate guidance (usually the case for non-
white-box attacks). One can improve the success rate by applying
FGSM iteratively; this is known as the Basic Iterative Method, or
Projected Gradient Descent [14]. Essentially, PGD performs FGSM
multiple times with a smaller step-size, or . Formally, the search
procedure can be expressed as:

X0 = Xinput (1)
Xn+1 = Clipe(xn + a - sign(VxLyodel))
where, for a given a given input vector A,
€min, ifA; < emin
Clip(Aivemimemax) = €max, ifA;i>emax (2)
Aj, otherwise.
A% is inspired by the iterative philosophy used in PGD, and extends

its simple clipping mechanism to an extensive feedback loop (§3),
which seeks to produce actionable perturbations targeting ML-
based adblockers.

In this section, we describe how a* crafts actionable and stealthy
adversarial examples. Being actionable in the both feature and appli-
cation spaces refers to the following (i) in the feature space, explicit
numerical constraints defined based on domain knowledge (to main-
tain the validity, functionality and stealthiness of the ad request)
must be complied with, by its perturbed adversarial feature vector;
and (ii) in the application space, the perturbed feature vector must
be successfully mappable back to the original web page. Note that
actionable perturbations in the feature-space are not naturally ac-
tionable in the application-space; implicit/unpredictable side-effects
that occur when the feature-space perturbations are mapped back to
application-space (e.g., a feature space perturbation of adding nodes
to a page changes other features such as the average connection
degree) must be considered when crafting perturbations.

3.1 Threat Model

Before diving into the details of a%’s algorithm, we first define
our threat model. As mentioned in §2, AdGraph is a full-fledged
web browser with custom modifications for blocking ad/tracker
resources. Generally, there are three participants when a user visits
a website using AdGraph: a user, an ad publisher (1st party) website
and an advertiser (3rd party); their relationships are depicted in
Figure 1. As shown, the objective of A% is to help the website recover

543

ACSAC 21, December 6-10, 2021, Virtual Event, USA

R
Perturbation

Added by A*

N https:/www. 4‘,0
&V "0,
« N o,
Publisher
(1st Party)

\ 4
User w/ Ad Contents Advertiser
AdGraph Recovered (3rd Party)

Figure 1: Different participants in a*’s threat model

its ad revenue lost due to ads getting blocked by AdGraph. a*
achieves this by adding perturbations to contents generated by
the publisher, so that the classifier used by AdGraph is fooled into
mis-classifying the ad resource as a non-ad. We assume a grey-box
attack setup as elaborated in §2, because even though AdGraph has
been open-sourced, it is easy for other ML-based adblockers to hide
their model internals.

Recall that A is a gradient-based attack which requires the
knowledge of model internals, which we do not assume to have.
Thus, we make A* a transfer-based attack where the attacker is only
aware of the training dataset and feature definitions (see §2) such
that we can reconstruct a surrogate model. Based on the above, our
perturbations should meet the following requirements from the
practicality/usability perspective:

o Easily deployable by advertisers: As a third-party who pays
the publisher website for displaying its ad contents, an advertiser
is generally reluctant to drastically change the way they operate
their services.

o Easily deployable at the ad publisher: From the perspective
of the publisher, the process of injecting perturbations into the
target page should be mostly automatic and convenient. We en-
vision an additional procedure in website deployment via which
the web pages will go through to make changes to the page.

3.2 Overview

Optimization problem formulation. Formally, consider the op-
timization problem:

minimize Dist(X,q, — Xinput)
Xadv
SubjeCt to Pmodel(xadv) # Pmadel(xinput)’ (3)

Xadov € }{feature—space’
Xado € 7—[(/zpplication—space’

where, Dist() measures the cost of adding the generated perturba-
tion, 7‘(feature—space and 7’[application—space denote the hyper-
space that actionable examples can exist in the feature space and
application space, respectively. Note that as discussed in §2, it is
hard for conventional L, norms to capture the real cost of adding
a perturbation. For this, we also modify the L;,¢ norm to take
the domain uniqueness into account, as discussed in the next sub-
section. We also point out that it is impractical to directly apply
standard combinatorial optimization techniques (e.g., mixed-integer
programming) to exactly solve Equation 3 due to computational in-
efficiency [4], especially in presence of complex target models (e.g.,
neural networks). Therefore, as discussed in §2, gradient-based so-
lutions are necessary and we build A* on top of the state-of-the-art
among them (i.e., PDG).

ACSAC °21, December 6-10, 2021, Virtual Event, USA

@ 1 @ 1
Frods W o Py

feature-space application-space

constraints offsets -
°

-
Perturbation compliant

with feature-space
constraints

-
Perturbation
incorporating
application-space
side-effects

Uncorrstrained
perturbation not
satisfying the
constraints (-area)

Figure 2: Perturbation trajectory in hyperspace for a search
iteration; ® refers to positions in non-adversarial hyper-
space; @ refers to positions in adversarial hyperspace that
do not satisfy constraints; ® refers to positions in adversar-
ial hyperspace that satisfy constraints.

Iterative search. Since the optimization problem defined in Equa-
tion 3 does not have an analytic solution [4], we instead approxi-
mate one iteratively through a search procedure as captured in the
pseudo-code in Algorithm 1. The search process not only enforces

Algorithm 1: A*: Actionable Ad Adversarial Attack

Input :target model M, ad request x;ypy ¢, maximum iterations
max_iter, maximum perturbation magnitude €
Output:actionable adversarial example x4,

1 success «— False

2 curr_iter «— 20

3 Xcurr < Xinput

4 while curr_iter < max_iter and success # True do

5 curr_iter «— curr_iter +1

6 Pertcurriiter —
GenerateFeatureSpacePerturbation(M, xcyurr, €)

7 Xcurr < Xinput +pertcurr iter

8 Xcurr ¢<— EnforceFeatureSpaceConstraints(xcyrr)

4 pageperturbed <— MapBackToWebPage (xXcurr — Xinput)

10 Xcurr «— ExtractFeatureValues(pageperturbed)

11 success «— VerifyIfAdversarialOnTargetModel (xcyrr)

12 end

13 return xcy

the feature-space constraints, but also incorporates corrections to
address application-space side-effects that occur when mapping
feature-space perturbations back to the web application domain.
The key guiding principle is to take small steps (in each iteration)
and corrective actions so that we are always on the right path. (de-
tails in the next subsection). To better illustrate the framework, we
show for each iteration, how the generated original perturbation
is moved in hyperspace to ensure its actionability in Figure 2. The
intuition is that errors may accumulate across multiple iterations
and can mislead us if we do not correct them at every step (and
we take smaller steps for the same reason). Inspired by the iter-
ative philosophy that underpins PGD, a* also divides the overall
optimization problem into multiple iterations. We would also like
to point out that a* is not a simple "trial-and-error" framework,
because at each iteration of the algorithm, gradients from the target
model provide feedback that guides Algorithm 1 what direction it
should explore next.

544

Zhu et al.

Local
surrogate NN
model

— > \IXIXl/

Perturbation

#1
Compute
gradlents Remote target

’/m, RF model
3 @ s
1010 raft Queryfor Y
1100 Input pe"”'ba""” remote label - ¥
Original \\e‘\

examples

Perturba!lon

@ Feedback

Figure 3: Transfer-based attack paradigm; steps 3), @, and
®) are executed in a loop.

Transfer-based attack. To craft a successful grey-box attack, we
need to use the dataset for training AdGraph to train a local surro-
gate model that is differentiable, and then use this model to estimate
the gradients and craft adversarial examples accordingly. These
type of attacks are considered “transfer-based” because the success-
ful adversarial examples crafted locally need to be adversarial on a
remote target model that is different and possibly unknown. We de-
pict A%’s transfer-based attack generation in Figure 3. Prior research
[19] has shown that this so-called inter-model transferability exists
in almost all modern ML models (including non-differentiable ones
such as Random Forest).

Perturbable feature selection. Before delving into the constraints,
we need to first manually identify what features to perturb. These
features must be perturbable, i.e., the attacker must know how
to map the perturbations from the feature space back to concrete
changes in the application space, i.e., the web page. As mentioned in
§2, AdGraph has two categories of features: structural and content-
based (URL-related). After systematically analyzing all the 65 fea-
tures used in AdGraph, we identify 19 seed features from both (8
URL and 11 structural) categories that the publisher of the ad re-
quest can control and perturb in practice. Table 10 in the appendix
shows their semantics, data types (i.e., integer, binary or float) and
categories (i.e., structural and URL).

3.3 Feature-Space Constraint Enforcement

In this subsection, we describe how a* imbibes explicit numerical
constraints in the feature space. Since the constraints defined in this
space could be for three different purposes — validity, functionality
and stealthiness, we need to enforce them differently. This step cor-
responds to EnforceFeatureSpaceConstraints() in Algorithm
1.

Validity constraints. These constraints keep the perturbed fea-
tures numerically valid i.e., they guarantee that they fall within
meaningful domains of definitions. For instance, features #1 and
#2 are counts of nodes and characters, and cannot be negative or
non-integers; binary features #4 to #5 should always take values
of a 0 or a 1. These constraints are enforced by projecting any per-
turbed value falling outside the meaningful domain of definition
back to the domain. Concretely, we define three projection oper-
ations for binary and numerical types of perturbable features in

Eluding ML-based Adblockers With Actionable Adversarial Examples

EnforceFeatureSpaceConstraints() in Algorithm 1:

max(min(1, Xpert), 0), if Xpert € Spumerical
0, if ||xpert 0|l < ”xpert -1

and Xpert € Spinary 4)
L if lxpere = Ol > llxpere — 1l

Xproj =

and xpert € Spinary

Through these operations, the perturbed features of our choice are
guaranteed to be valid in the feature space.

Functionality constraints. Besides validity, A* also needs to en-
sure that the generated feature-space perturbations won’t break
any functionality of the original ad request. Hence, we also en-
force functionality constraints onto the perturbed features. To do
so, we follow two principles which we refer to as non-decreasing
and semantic equivalence. For counter-like features like #1 and #2
(Type "I'/"F" in Table 10), we limit their perturbed values to be
greater than or equal to the original values; otherwise, we project
the modified value back to its original value. We refer to this as the
“non-decreasing principle” This projection reflects our assumption
that adding information to the web page should not break any ex-
isting functionality, but removing existing items might harm the
semantics in an unpredictable fashion. In Figure 8 (in the appendix),
we show one example DOM snippet before and after introducing
the structural perturbations. Note that the inserted DOM nodes can
be disguised as pertaining to regular content with random proper-
ties/text, to avoid being detected by simple rule-based scans. We
describe possible obfuscation strategies to disguise inserted DOM
nodes in more details in §A.1 (in the appendix).

For URL features (Category "U" in Table 10), we need to ensure
that after perturbation, the original functionalities/semantics of the
request are preserved. Specifically, features that detect predefined
keywords/characters from the URL string (e.g., feature #5 and #6),
can be simply replaced with unmarked sub-strings. Since AdGraph
hardcodes these keywords/characters, our URL manipulations can
effectively bypass its detection over all URL-related features. For
feature #3, we choose to append random characters to increase its
value, and place the appended string as an unused query, which
best avoids disrupting other functional parts of the URL.

We are aware that the above URL manipulations introduce changes
to the request received by 3rd-party advertisers, and therefore re-
quire cooperation from them. As discussed in §3.1, a* is expected
to enable easy deployment for both 1st-party publisher websites
and 3rd-party advertisers. Towards this, we believe the simplest
solution is a reverse proxy employed at advertiser servers, which
translates perturbed URLs to their unmodified version based on
pre-negotiated protocols between publishers and advertisers. In
order to do so, we preserve the basic components (i.e., scheme and
host name) in the URL and only perturb the remaining parts (i.e.,
path and query string) as guided by a*. This way, the advertiser
server is guaranteed to receive the requests, and can then easily
translate these perturbed URLs internally. We point out that similar
setups have been already practiced by publishers/advertisers and
adblocking circumvention services to successfully evade rule-based
adblockers [6, 15]. We are also aware that despite available deploy-
ment strategies, some publishers/advertisers might still be reluctant

545

ACSAC 21, December 6-10, 2021, Virtual Event, USA

to altering their system configurations; we anticipate though, given
the gigantic revenue loss to publishers due to adblocking ($16 billion
to $78 billion in the year of 2020, as projected in [12]), a consider-
able number of publishers/advertisers would be willing to do so in
exchange of ad revenue recovery.

Stealthiness constraints. Besides validity and functionality, the
generated perturbations should also achieve a high level of stealthi-
ness. Specifically, the perturbations that a* applies on features will
have to be limited by a threshold. Conventionally, the perturbation
size is measured via the use of Lp norms. However, these norms are
unsuitable for AdGraph’s feature set. First, with many binary/cate-
gorical features, use of L, norms blindly treats all features as having
the same scale, which is not the case in reality. For example, chang-
ing a binary feature from 0 to 1 means that the status it represents
has flipped. This is fundamentally different from an integer feature
changing by the same amount; for the latter, it could indicate that
its real value has changed from a minimum to a maximum value
(due to data normalization happened in dataset pre-processing).
Thus, if we set a threshold L;,, ¢ to 0.3, binary features can never be
flipped (as the flipping threshold is 0.5), whereas integer values can
still change even if a normalization is applied. To account for such
differences, we propose a customized L;,,y norm which is defined as
follows, we propose a customized L;, ¢ norm which focuses on nu-
merical features as defined in Equation 5. The examples generated
by a* are bounded by this norm.

Lcustomiinf(pert) =
max(|pert;| :i=1,2,...,nif pert; € Spumerical) (5)

Besides customizing the norm, we also slightly modify the op-
eration for clipping a perturbation within the norm. Specifically,
conventional clipping functions (e.g., the one used by PGD) regard
the global range of a particular feature across the whole dataset as
the base of the clipping threshold, for conventional features. For
web pages, such clippings can easily lead to overly large perturba-
tions as the ranges of many numerical features can vary drastically
from website to website. Therefore, we change the clipping from
relying on a global range to a local per-webpage range, as formally
defined in Equation 6.

" _
Cllpglabal_local_mixin(pert’ €g> el) -

Clip(pert, 0, €g - ri)s
Clip(pert, 0, €; - pert),

ifeg-ri <e-pert ©)
otherwise

where ¢ is the global threshold, ¢; is the local threshold, 7; is the
global range of x; with respect to this particular feature in the
training dataset, given by x*4* — xi’"in, and Clip(xi, €min, €max) I8
the standard clipping operation defined in Equation 2. As shown in
§5, our customized norm along with the localized clipping operation,
helps limit the effective size of generated perturbations, and thus
improves the stealthiness significantly compared to the traditional
setup of L, norms and global clipping.

3.4 Application-Space Side-Effect
Incorporation

Now that we have generated feature-space adversarial perturba-
tions that comply with manually-defined domain constraints, we

ACSAC °21, December 6-10, 2021, Virtual Event, USA

101 5 Perturbed
1 o 1 Feature
100 l @ Vector |
- 0001 Generate 1
?,*“a‘e"’ 1100 unconstrained
\o°‘°® Unperturbed PUrE8ED
Feature
Vector,

Perturbed
Feature
Vector

@Concretize

e application-space

Unperturbed

=== Successful

Perturbation
Rendered
Rosiine P90
30

O, features perturbation

4,76, Failed
.)
Yoy Perturbation | o3
»

4

Mapping-Back
Strategy
Candidates

Figure 4: Proposed feedback loop in A*’s each search itera-

tion

. Original

web page
(DOM tree)

V‘ZZ

Perturbation
nodes to be
added

&
strategy

Figure 5: Different mapping-back strategies on adding per-
turbation nodes

need to map them back to concrete changes in the web page repre-
sentations. As discussed previously, ideally these perturbed feature
values should all be reflected accurately in the page. This can be
overt if we can re-extract the feature vector from the perturbed web
page and verify that it matches the expected one. This step corre-
sponds to the combination of MapBackToWebPage (), ExtractFeatu
reValues() and VerifyIfAdversarialOnTargetModel in Algo-
rithm 1.

However, introducing changes (e.g., total number of nodes) to the
web page can cause unpredictable offsets to values of other features
not included in the feature-space perturbations. Specifically, there
are several inter-dependent features considered by AdGraph such
as feature #19. As we add perturbations nodes to the page to perturb
the feature counting the total number of nodes in the graph, feature
#19 might also nondeterministically change as the maximum per-
node connection degree is raised, which might end up turning
an adversarial perturbation into non-adversarial. More critically,
such feature value offsets/drifts are impossible to be predicted, and
therefore cannot be pre-computed in closed-loop formulas, which
motivates our design of executing the feedback loop.

Feedback loop. To incorporate such unpredictable side-effects,
we passively observe how changes in one feature causes changes
in others. Specifically, we first map the controllable feature-space
perturbations back to the web pages by rendering the page and
then re-extract all the features to capture the side-effects. We verify
if the final perturbation (with side-effects) can still evade detection.
If so, we are done; else, we continue the iterative search procedure

546

Zhu et al.

to find another candidate perturbation (we enlarge the current step
size by a step size to generate a new gradient). Effectively, we have
created an automated feedback loop as illustrated in Figure 4.

Diversified mapping-back strategies. For some features, there
are multiple ways to concretize the feature-space perturbations as
changes to web pages (step 4 in Figure 4). For instance, there are
multiple ways to increase the total number of nodes in a page (fea-
ture #1). We can choose to place these nodes either as the children
of a single existing node (centralized strategy), or as the children of
multiple existing nodes (distributed strategy), as shown in Figure 5.
These different mapping-back strategies introduce different side-
effects to the feature values, and can hence affect the effectiveness
of the final adversarial example (as depicted by the red and green
points in Figure 2). One example is, again, that for the feature #19
(average degree of connectivity), the centralized strategy is likely
to lower the feature value significantly after the map-back as the
added nodes cause crowding and thus, raise the current maximum
number of connections per node in the graph; this is the denomina-
tor in the formula that computes the average degree of connectivity
for the page. In contrast, the distributed strategy tends to have neg-
ligible side-effects with respect to this feature. In order to maximize
the chance of finding a successful adversarial example, we apply
all feasible mapping-back strategies in the feedback loop, and then
verify their results. These two diversified strategies help a* discover
as many green point cases as possible (Figure 2).

4 IMPLEMENTATION

We use the library Foolbox [23, 24] to compute the adversarial per-
turbations numerically. Per our design in §3, we implement a* as
described in Algorithm 1, by augmenting the standard PGD attack
in Foolbox. We iteratively enforce the constraints in both feature
and application spaces with the feedback loop, as demonstrated
in Figure 4. For step @), (3 and () in Figure 4, we implement an
HTML manipulator for reflecting the computed numerical adver-
sarial examples in the webpage representation (HTML), based on
the commonly used Python library BeautifulSoup [25]. As will
be discussed in §5, the current implementation of A% handles static
ad requests only, and therefore acts as a proxy that can be deployed
at publisher websites hosting ads. Specifically, A* parses the HTML
containing ads, computes and inserts corresponding adversarial

perturbations into it, and delivers the perturbed HTML to users 2.

4.1 Model Training

We need to reproduce the classifier used in [11] following its re-
vealed hyper-parameters, on the newly collected dataset, since [11]
did not release their trained models. We use the popular open-source
machine learning library scikit-1learn to train a Random Forest
(RF) model based on the crawled training dataset. This is then used
as the target model that A* queries, with each perturbed example,
to verify the attack result. We show the model’s hyper-parameters
and classification accuracy metrics over the partitioned testing set
in Table 6 in the appendix. As shown, the accuracy metrics with
our reproduced RF model are close enough to the ones reported in
[11], which validates our replication effort.

2We open source the implementation of a* and its dataset at https://github.com/seclab-
ucr/A4, for reproducibility and future research extensions.

https://github.com/seclab-ucr/A4
https://github.com/seclab-ucr/A4

Eluding ML-based Adblockers With Actionable Adversarial Examples

We then need a local surrogate model that is differentiable (recall
§3), to drive our gradient-based attack. To this end, we use the
Python-based deep learning library Keras [5] to train a 3-layer
Neural Network (NN) as the surrogate. NN is considered to have
the best model capacity [19] for imitating the decision boundaries
of other models. The hyper-parameters and accuracy metrics of
this NN are in Table 7 in the appendix. Note that in order to best
mimic the remote decision boundary, we use the dataset that trains
the target RF classifier and labels given by the target model, instead
of ground-truth labels, to train the local NN. Hence, the accuracy
in Table 7 represents the agreement rate between two models.

4.2 Active Learning

Given that A* trains a local surrogate model to imitate the decision
boundary of the target classifier in [11] and provide necessary
gradients. Even though in §5 we show the surrogate agrees with
the classification outcome with the target model on testing set
sufficiently well (90% of the time), there can still be cases where two
models disagree with each other, which indicate local divergences of
their decision boundaries. To further align the decision boundaries
and boost the effectiveness of a*, we apply active learning [20].
Specifically, upon encountering any ad request that is classified
differently by the target model and the surrogate, we train the local
surrogate with the request and the label from the target model. If
one iteration of training (i.e., one pass of back-propagation) does
not address the divergence, we repeat 10 times at maximum.

4.3 Hyper-parameters

Table 1 shows the hyper-parameters used in our implementation.
Note that the parameter enforcement interval here refers to the
number of steps we take in the gradient-based search before we
enforce the constraints and consider these steps together as one
iteration of the feedback loop. We operate at units of intervals
instead of steps, because multiple steps are often required for bi-
nary features to be pushed across the flipping threshold of 0.5, as
discussed in §3.

Note that to avoid confusion, we use the term “iteration” to refer
to an enforcement interval. These parameters are empirically cho-
sen, and we have varied and tuned them to pick the best parameter
set that are shown to yield best performances. We also would like to
point out that out of the different combinations of parameters, the
improvement achieved by a* (as will be shown in §5) over baseline
attacks are generally consistent.

Iterations (max_iteration in Algorithm 1) [20
Step-size 0.07
Maximum global perturbation
threshold (e, in Equation 2) 0.3
Maximum local perturbation
threshold (¢; in Equation 2) 0.5
Enforcement interval 15

Table 1: Hyper-parameters used for attacks

5 EVALUATION
5.1 Setup

Dataset. Since A primarily targets the current version of Ad-
Graph [11], we first reproduce its pipeline using its open source

547

ACSAC 21, December 6-10, 2021, Virtual Event, USA

implementation. Given that the web crawl conducted in [11] was
in early 2018, and is hence outdated, we carried out a new crawl on
December 3, 2020 to collect the graph representation of the landing
pages of Alexa’s top 10k websites. Then, we processed these graphs
and extracted 65 features to form the dataset ready for ML tasks.
Table 8 lists some basic statistics from the crawled dataset.

From the 503,526 request records, we randomly pick 50,000 as the
test set (i.e., the remaining 453,526 records are used as a training set).
These are used to test the accuracy of trained classifiers compared
to the original AdGraph model. Other than these 50,000 samples, we
additionally randomly pick 2,000 unique ad requests as the target
ad resources to be perturbed for evaluating the effectiveness of a*
in flipping classifications for ad requests.

Attack variants. As discussed in §3, A* picks 19 features to perturb
in total. To understand what roles these features play in achieving
evasion, we conduct an ablational analysis by grouping features
into three subsets: (1) "All" includes all 19 features; (2) "Only URL"
includes 8 features in category "U" in Table 10; (3) "Only Structural"
includes 11 features in category "S" in Table 10. We refer to these
three variants as A11, Only URL and Only Structural hereon.

Baseline attacks. For comparison, we consider two baseline at-
tacks we describe below (the descriptions also illustrate the neces-
sity of our proposed solution).

e Baseline 1: In this attack, we apply the standard PGD without
enforcing any feature-space constraints, other than the basic
perturbation size limit (e in Equations 1 and 2) and a basic domain
of definition (i.e., 0.0 < x; < 1.0).

o Baseline 2: In this attack, we generate uniformly random per-
turbations (i.e., using pert; € U(—¢€y, €4) instead of) in Figure
4) without relying on any guidance such as gradients from the
surrogate model. We enforce constraints and execute the remain-
ing feedback loop once on the random perturbation. The purpose
of this setup is to assess the effectiveness of one-step correction
without the guidance of gradients. We anticipate subpar success
rates as it is highly challenging to relocate random perturbations
to constrained adversarial space without iterative corrections.

e Baseline 3: In this attack, we apply a* for one complete itera-
tion (i.e., enforce constraints and execute the full feedback loop
once), instead of performing iterative repetitions. The purpose
of this setup is to comprehensively validate the benefits/advan-
tages of the proposed iterative search framework, in presence of
estimated gradients. Again, without multi-iteration corrections,
we anticipate difficulty in achieving high success rates, mainly
because even with some guidance of initial gradients, the single-
step approach can lead to application-space offsets that disrupt
the adversarial nature of the example and cannot be corrected in
one iteration.

5.2 Experimental Results

Ad coverage. Currently A* handles only static requests that are
embedded into the HTML file of each webpage, which correspond
to about 60% of all ad requests detected by AdGraph (it operates at
top of iframes and thus cannot detect/handle ad resources inside
these iframes). This is because of the implementation of current
prototype. Due to its prohibitively high overhead in computing

ACSAC °21, December 6-10, 2021, Virtual Event, USA

sﬁfﬁ::;:g::é ‘ All ‘ Only URL ‘ Only Structural
Baseline 1 | 0.00% | 0.00% | 0.00%
Baseline 2 ‘ 32.67% ‘ 18.98% ‘ 32.65%
Baseline 3 | 33.02% | 2476% | 32.42%
At | 81.18% | 65.74% | 58.62%
Partial Dataset | 73.06% | 5591% | 53.78%

Table 2: Breakdown of attack results; bold numbers indicate
the best success rate in that feature set

adversarial examples (882 seconds on average for generating one
example, as will be shown in overhead evaluations), it is challenging
to envision a runtime solution (e.g., via injected JavaScript) that
dynamically intercepts ad requests and computes perturbations for
them on the fly. Instead, perturbations need to be computed offline
by publisher websites and then statically inserted into webpages
at the moment. We will discuss possible future improvements for
covering more ad requests in §6. Note that all success rates in the
following subsections are calculated with respect to the covered ad
requests (i.e., ~60% of all ad requests).

Success rate. We summarize the success rates achieved by the
three attacks in terms of finding actionable adversarial examples
from the 2,000 ad requests in the testing set, in Table 2. We see that
A% achieves the highest success rate in generating mis-classified ex-
amples while guaranteeing their actionability in all attack variants.
In A1l and Only URL attack variants, it is over twice as success-
ful (145.5% improvement) compared to Baseline 2 3 and 3. Even
using only parts of available features (i.e., Only URL and Only
Structural), a* can achieve over or close to 60% success rates.
From an ablation perspective, these results also suggest that a
relies more on URL perturbations than structural ones in evading
AdGraph. Supporting this observation, we provide the information
gain (i.e., feature importance [22]) ranking of top-5 perturbed fea-
tures used in AdGraph’s random forest classifier in Table 9 in the
appendix, 4 of which are URL-related.

The large margin of improvement shows the power of the it-
erative search adopted by a. In comparison, Baseline 1 fails to
produce any valid perturbation because if none of the constraints
is enforced, features of data types like binary or categorical, can be
changed into meaningless values (e.g. in a one-hot-encoded vec-
tor, more than one feature becomes 1). This makes it impossible
for these perturbed examples to be rendered in the browser at all.
Therefore, we do not consider Baseline 1 in the further evaluations,
and refer to Baseline 3 as the only baseline hereon.

Partial training dataset. As explained in §2, we assume a Grey-
box threat model where the attacker knows the entire training
dataset. Even though we believe this is practical as the training
dataset [11] uses is from crawling open webpages (i.e., can be easily
replicated by crawling the top websites again), one might wonder
what if attackers perform their crawls at different time points and
thus only have limited access to the original dataset for building
their surrogate NN models. We therefore evaluate a* with its NN

3Note that it is not a surprising finding that random perturbations can evade ML
classifiers in cases. Prior research [8, 9] shows that widely used and state-of-the-
art image classification models (e.g., ResNet and InceptionV3) are vulnerable to
perturbations of additive random noises, and observe accuracy degradation of over
30% if they are naturally trained with clean samples only.

548

Zhu et al.

Feature Set/Strategy | Centralized | Distributed | Both
All | 13.94% | 19.28% | 66.78%
Only Structural | 20.45% | 32.24% | 47.30%

Table 3: Mapping-back strategy significance analysis

trained on only one-third (i.e., 151,175 vs 453,526) of the dataset
that is used for training the target RF model. We report the success
rates for this experiment in all three attack variants in Table 2, and
find that they only degrade insignificantly (<10 percentage points),
which suggests that even with partial knowledge of the training
dataset, A* remains sufficiently effective in crafting adversarial
samples in practice.

Mapping-back strategy significance. Table 3 reports the sig-
nificance of different mapping-back strategies that a? tried in its
feedback loop. Note we only evaluate strategies for A11 and Only
Structural variants, as Only URL does not involve structural ma-
nipulations. As can be seen, in close to 50% and 70% of the success-
ful perturbations, both centralized and distributed mapping-back
strategies are attempted (to a similar degree) to craft actionable
adversarial examples. However, for a significant portion of the test
cases in both variants, only one strategy succeeds. These cases
show the advantage of applying multiple strategies to cope with
the unpredictable application-space side-effects into the iterative
search procedure used in A*. Essentially, more valid green points (as
depicted in Figure 2) can be discovered with additional strategies.

Attack convergence. In Figure 6, we show a histogram of the
number of iterations needed to reach convergence with all the
successful adversarial perturbations generated by A%, We see that
most (>80%) of cases converge within 5 iterations; this shows that
the iterative feedback loop in a* is extremely efficient in generating
the adversarial examples.

38.24%

40.00%

29.08%
30.00%
20.00%
7.52% 8:17%

10.00%
/51 ¢ 1 .
1:85% 1.96% 0.87% 1.42% 0.87% 0,115 0.65% 0.22% 0.11% 0.11% 0.65% 0,22% 0.33% 1:20%
0.00% | - - .. e — —

% successful perturbations

7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 6: Attack convergence analysis

Node additions. Table 4 lists the average size for successful per-
turbations in terms of their number of added DOM nodes. Recall
that the perturbations a* generates, for manipulating structural
features, primarily rely on adding/inserting DOM nodes into web-
pages. We statistically analyze the node additions, and find that (1)
they obey the local perturbation threshold (i.e., 0.5) as defined in
Table 1, confirming its effectiveness; and (2) over 70% of the time
A% only needs to inject <50% additional DOM nodes (as depicted in
Figure 7c) to successfully evade the adblocker, indicating its econ-
omy/efliciency in leveraging DOM node addition as the primary
underlying manipulation mechanism. Note that the perturbation
size here does not translate to performance overhead A incurs, as
perturbed webpages need to be loaded and rendered.

Performance overhead. We evaluate the runtime performance
overhead that a* imposes on web browsing, in terms of page size

Eluding ML-based Adblockers With Actionable Adversarial Examples

Only
All ‘ Only URL ‘ Structural
+49.00% B +55.21%
+5.41% +13.54%

Table 4: Perturbation size in terms of # of additional/inserted
DOM nodes (first row in each cell is the mean over all tested
webpages; second row is the median); "-" means not applica-
ble as Only URL does not involve node additions.

increases (due to perturbations) and user-perceived Page Load Time
(PLT) (following the standard method as used in [11]). Table 5 shows
the breakdown of the overhead results across different attack setups.
Both metrics suggest that A only incurs acceptable/insignificant
performance overheads (i.e., <30% in all attack variants) in web
browsing. Figure 7c further shows the cumulative distribution func-
tion of PLT measurements for different attack variants. It suggests
that, for close to or more than 90% of successful perturbations, a4
incurs <50% overhead in PLT.

We also evaluate the offline overhead for generating/computing
the perturbations. For A1l attack variant that achieves the highest
success rate among all variants, A% spends 882 seconds on average
for computing a successful adversarial perturbation (on a single
core Xeon 6248 server). Note this computation is only needed once
for a given ad request, and is therefore considered acceptable for
recovering its associated ad revenue.

Breakage analysis. As discussed in §3, A* minimizes the risks
of disrupting legitimate webpage functionalities by selecting per-
turbation primitives that preserve functionality. To validate this
is indeed the case, we conduct manual inspection for breakages
caused by the perturbations. Specifically, we randomly sample 100
successfully perturbed (i.e., the classification of target ad request
has been flipped to a non-ad due to the perturbations) webpages
from the 2,000 tested ad requests in All attack variant. We then
have four student evaluators browse the original and perturbed
versions of the same webpages, and record their judgements of how
A% impacts the site’s functionality.

The following are the classification criteria to define different
levels of breakages and their respective results, in accordance to
the breakage analysis methodology in [11]. 4

e No breakage (92%): There is no perceptual difference between
the perturbed and original versions of the webpage;

e Minor breakage (8.0%): The browsing experience is impacted,
but the main objective of the visit can still be accomplished;

e Major breakage (0.0%): The main objective of the visit is se-
verely impacted and cannot be completed;

e Crash (0.0%): The webpage cannot be opened/rendered.

Above shows that A* achieves considerably low breakage. Note
that a* does not cause any major breakage or crash in the evaluation.
Upon a closer analysis, we find these minor breakages are mostly
cosmetic. To better demonstrate the breakages that a* possibly
introduces, Figure 9 in the appendix shows an example with minor

“4Note in this evaluation, we only account for differential breakages, which are breakages
that exhibit on the perturbed webpage only. There are common breakages on both
versions in some cases due to the time lag between web crawling and manual inspection,
which are irrelevant to a*.

549

ACSAC 21, December 6-10, 2021, Virtual Event, USA

breakages after adding the perturbations, from the 100 successfully
perturbed webpages used in the breakage analysis.

6 DISCUSSIONS AND LIMITATIONS

Deployability. As discussed in §5, A*’s current implementation
can only cloak ad requests that are statically embedded into the
main HTML DOM; requests that are dynamically generated by
JavaScript are unprotected. Even though a* already covers more
than 60% of all ad requests detected by AdGraph, we plan to extend
the coverage further to dynamic ad requests in the future, following
three routes. First, publishers can render webpages at server-end
so that A% can access dynamically-generated ad requests and com-
pute perturbations for them. Note that in this case we believe the
amount of page dynamics (i.e., page differences caused by distinct
JavaScript execution outcomes across page loads) is insignificant
and should not reverse the adversarial-ness of pre-computed per-
turbations. This is because as discussed in §5, AdGraph does not
rely on contents inside iframes for making adblocking decisions
and a significant portion of 3rd-party web contents causing page
dynamics are loaded inside iframes [29]. Second, one can imple-
ment and mount runtime solutions (e.g., via injected JavaScript)
to perturb URL features only. This would result in significantly
less time in computing perturbations as compared to including
expensive structural features for realizing on-the-fly perturbations,
and still successfully evade AdGraph ~65% of times (as shown in
§5). Third, if advertisers would fully collude with publishers, they
can act as adversaries and compute perturbations for themselves.
Again, we acknowledge such collusion requires additional efforts
to implement and might hence appear unattractive to some pub-
lishers/advertisers, but still anticipate voluntary adoptions by those
who prefer ad revenue over deployment cost (as discussed in §3.3).

Another challenge a* faces is its current per-request perturbation
generation. One webpage can contain multiple ad requests whose
features are co-dependent, mandating dependencies across their
adversarial perturbations. This will require a joint optimization in
generating per-page perturbations over multiple requests and is
thus is left as a future research direction.

Generalizability. Although a* primarily targets an ML-based
adblocker at this point, we argue that its iterative search procedure
and feedback loop are general enough to be applied to other AML
scenarios in the web domain, or even other domains. At a high level,
any ML task that requires (1) the generated examples be actionable
in both the feature and application spaces, (2) is constrained in the
feature-space due to the functionality requirements as discussed
in §3, and (3) has associated side-effect offsets upon mapping from
the feature-space to application-space (as shown in Figure 2), can
be viewed as compatible with A%’s methodology. Examples include
classifiers that operate in non-traditional representations such as
programs, network traffic [34] etc.

As noted in §3, currently A% is designed to perturb at most 19 fea-
tures from the possible 65. Although this conservative limit makes
our attack stealthier in practice, we plan to explore perturbations
on more features in the future and analyze their effectiveness. Fur-
ther, our current A% implementation only has two mapping-back
strategies (centralized and distributed) as discussed in §3. While
even with these two strategies, we can already showcase the power

ACSAC °21, December 6-10, 2021, Virtual Event, USA

Zhu et al.

Feature All All (a%) Only URL Only URL Strg?tll);ral Strgzl:zral
. . : 4
Set/Overhead Metric (Baseline) (Baseline) (a%) (Baseline) (ah)
File Size +22.11% +27.64% +12.19% +17.97% +12.51% +14.32%
+13.61% +18.59% +10.09% +12.78% +7.65% +8.85%
Pace Load Time -16.61% +19.20% -5.37% +10.85% +18.16% +3.16%
g -5.26% +1.83% -4.09% -1.71% -6.12% -6.01%

Table 5: Breakdown of overhead analysis results (first row in each cell is the mean over all tested webpages; second row is the
median); bold numbers indicate the lowest overhead in that metric.

1.0

0.9 o~ 0.9
0.8 . 0.8

3 All
0.7 ® 0.7

0.6 fe° Only 0.6

05 - Structural o5
. ««Only URL

0.4 ; 0.4

0.3 03

0.2 < 0.2

0.1 3 0.1 <l

0.0 et 0.0
30% 0% 30% 60% 90% -50% 0%

(a) CDF for file size overhead

1.0
................... e
0.8
All 0.7
0.6 All

-Only 05
Structural

0.4 Only
Structural

+ «Only URL
0.3

0.2
0.1
0.0
50% 100% 0% 50% 100%

150%

(b) CDF for page load time overhead (c) CDF for # of additional nodes

Figure 7: Cumulative Distribution Function (CDF) for different measurements

of our proposed feedback loop, we will explore additional strate-
gies in the future to expand our search space. Also as mentioned
in §3, a* leverages HTML DOM node addition as its underlying
manipulation mechanism. We believe this is a general solution to
other web-based ML classifiers and even graph models.

Arms race between adblockers and advertisers/publishers.
Our ability to subvert AdGraph suggests that ML-based adblockers
should be more careful in designing their feature sets. During our
analysis of AdGraph’s features, for example, we find that there
are several global features (e.g. #1/#2 in Table 10) that encode the
overall size of the constructed graph. Since these features do not
describe anything local with respect to the request node being clas-
sified, they are of less importance, but leave perturbation space for
adversarial attacks. There is also rising trend of research on improv-
ing adversarial robustness of models through blending adversarial
samples into training datasets (i.e., adversarial training) [8], and
detecting them [16] from ML perspectives to consider.

From the adversarial perturbation generation perspective, our
investigations suggest that it is crucial to provide the necessary
setups (e.g. proxy/rotating servers) to facilitate perturbations on
URL-related features. As shown in §5, URL features are crucial
in helping a* achieve high success rates. Proxy deployments are
adopted by some websites that counter rule based adblockers [33].

7 RELATED WORK

Constrained adversarial examples. Existing research on AML
has been dominantly focused on domains where the adversary
can exploit the unconstrained nature of the input representation
such as images — each feature (e.g., pixel) is fully under control
of the adversary. However, as ML models are increasingly being
deployed in many constrained domains (e.g., network intrusion and
malware detection), it is important to explore their robustness in
such systems against adversarial attacks. In addition to the attack
that is designed for mainly webpages in this paper, we summarize
some early explorations in other constrained domains as follows.

550

[21] proposes adversarial samples against Android malware de-
tectors. It codifies the space of permissible adversarial examples,
and then transplants code snippets from benign Android software
into given Android malware. Additionally, [21] creates opaque
predicates in perturbed malware so that the transplanted gadgets
won’t be actually executed, to preserve malware semantics. Fol-
lowing similar routes, [32] and [31] aim to craft adversarial ex-
amples for general ML-based code models. They apply different
semantic-preserving code transformations with the guidance of
model gradients, and evade code models for various purposes. Be-
yond source code, [13] presents an attack against binary-based
malware detectors, by injecting unused bytes.

Adblocking and anti-adblocking. As briefly mentioned in §1,
there has been a fierce arms race between adblockers and their
countermeasures. Besides concealing ad signatures to combat rule-
based adblockers, ad publishers have also been widely deploying
anti-adblockers [33] and other aggressive obstacles to avoid being
detected. Recent research [15] shows that a number of publisher-
s/advertisers are actively circumventing adblockers through vari-
ous techniques including ad cloaking (e.g., unmonitored web APIs
[2]), obfuscation (e.g., ad element randomization [30]), and etc. We
envision A* advances the state-of-the-art in this arms race and sub-
stitutes the first attempt for bypassing learning-based adblockers.

8 CONCLUSIONS

In this paper, we present the design and implementation of a*
(Actionable Adversarial Ad Attack), a new adversarial attack target-
ing the state-of-the-art learning-based adblocker AdGraph. Unlike
previous work on generating adversarial samples on unconstrained
domains, a?, explicitly accounts for constraints that arise in the
context of the web domain. We show promising results in this
unique domain which can have substantive implications in online
advertising and other future ML-based web applications.

Eluding ML-based Adblockers With Actionable Adversarial Examples

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers and our shepherd,
Roberto Perdisci, for their insightful comments. This research was
partially sponsored by the U.S. Army Combat Capabilities Develop-
ment Command Army Research Laboratory and was accomplished
under Cooperative Agreement Number W911NF-13-2-0045 (ARL
Cyber Security CRA). The views and conclusions contained in this
document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied, of
the Combat Capabilities Development Command Army Research
Laboratory or the U.S. Government. The U.S. Government is au-
thorized to reproduce and distribute reprints for Government pur-
poses notwithstanding any copyright notation here on. This work
was also partially supported by NSF grants #1652954, #2051592,
#2103439, #2102347 and #1719147.

REFERENCES

[1] Zainul Abi Din, Panagiotis Tigas, Samuel T King, and Benjamin Livshits. 2020.
{PERCIVAL}: Making in-browser perceptual ad blocking practical with deep
learning. In 2020 { USENIX} Annual Technical Conference ({USENIX} {ATC} 20).
387-400.
Muhammad Ahmad Bashir, Sajjad Arshad, Engin Kirda, William Robertson, and
Christo Wilson. 2018. How tracking companies circumvented ad blockers using
websockets. In Proceedings of the Internet Measurement Conference 2018. 471-477.
Sruti Bhagavatula, Christopher Dunn, Chris Kanich, Minaxi Gupta, and Brian
Ziebart. 2014. Leveraging machine learning to improve unwanted resource
filtering. In Proceedings of the 2014 Workshop on Artificial Intelligent and Security
Workshop. ACM, 95-102.
[4] Joan Bruna, Christian Szegedy, Ilya Sutskever, Ian Goodfellow, Wojciech Zaremba,
Rob Fergus, and Dumitru Erhan. 2013. Intriguing properties of neural networks.

[2

—

=

(2013).
[5] Frangois Chollet et al. 2015. Keras. https://keras.io.
[6] Catalin Cimpanu. 2018. Ad Network Uses DGA Algo-

rithm to Bypass Ad Blockers and Deploy In-Browser Miners.
https://www.bleepingcomputer.com/news/security/ad-network-uses-dga-
algorithm-to-bypass-ad-blockers-and-deploy-in-browser-miners/.

[7] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and
Jianguo Li. 2018. Boosting adversarial attacks with momentum. In Proceedings of
the IEEE conference on computer vision and pattern recognition. 9185-9193.

[8] Justin Gilmer, Nicolas Ford, Nicholas Carlini, and Ekin Cubuk. 2019. Adversar-
ial examples are a natural consequence of test error in noise. In International
Conference on Machine Learning. PMLR, 2280-2289.

[9] Dan Hendrycks and Thomas Dietterich. 2019. Benchmarking Neural Network
Robustness to Common Corruptions and Perturbations. Proceedings of the Inter-
national Conference on Learning Representations (2019).

[10] Umar Igbal, Zubair Shafiq, and Zhiyun Qian. 2017. The ad wars: retrospective

measurement and analysis of anti-adblock filter lists. In Proceedings of the 2017

Internet Measurement Conference. ACM, 171-183.

Umar Igbal, Peter Snyder, Shitong Zhu, Benjamin Livshits, Zhiyun Qian, and

Zubair Shafiq. 2020. Adgraph: A graph-based approach to ad and tracker blocking.

In Proc. of IEEE Symposium on Security and Privacy.

[12] Vishveshwar Jatain. 2020. Countering the revenue loss caused by ad block-
ers. https://digitalcontentnext.org/blog/2020/08/12/countering- the-revenue-loss-
caused-by-ad-blockers/.

[13] Bojan Kolosnjaji, Ambra Demontis, Battista Biggio, Davide Maiorca, Giorgio
Giacinto, Claudia Eckert, and Fabio Roli. 2018. Adversarial malware binaries:
Evading deep learning for malware detection in executables. In 2018 26th European
signal processing conference (EUSIPCO). IEEE, 533-537.

[14] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. 2016. Adversarial machine
learning at scale. arXiv preprint arXiv:1611.01236 (2016).

[15] Hieu Le, Athina Markopoulou, and Zubair Shafiq. 2021. CV-Inspector: Towards

Automating Detection of Adblock Circumvention. In The Network and Distributed

System Security Symposium (NDSS). https://doi.org/10.14722/ndss.2021.24055

Shasha Li, Shitong Zhu, Sudipta Paul, Amit Roy-Chowdhury, Chengyu Song,

Srikanth Krishnamurthy, Ananthram Swami, and Kevin S Chan. 2020. Connecting

the Dots: Detecting Adversarial Perturbations Using Context Inconsistency. In

European Conference on Computer Vision. Springer, 396-413.

[17] Muhammad Haris Mughees, Zhiyun Qian, and Zubair Shafiq. 2017. Detecting
anti ad-blockers in the wild. Proceedings on Privacy Enhancing Technologies 2017,
3(2017), 130-146.

(11

[16

551

(18

[19

[20

)
&

[28

[29

[30

(31]

w
S

[33

[34

ACSAC 21, December 6-10, 2021, Virtual Event, USA

PageFair. ~ 2017. 2017 Global Adblock Report. PageFair.
https://pagefair.com/downloads/2017/01/PageFair-2017-Adblock-Report.pdf.
Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow. 2016. Transferability
in machine learning: from phenomena to black-box attacks using adversarial
samples. arXiv preprint arXiv:1605.07277 (2016).

Li Pengcheng, Jinfeng Yi, and Lijun Zhang. 2018. Query-efficient black-box attack
by active learning. In 2018 IEEE International Conference on Data Mining (ICDM).
IEEE, 1200-1205.

Fabio Pierazzi, Feargus Pendlebury, Jacopo Cortellazzi, and Lorenzo Cavallaro.
2020. Intriguing properties of adversarial ml attacks in the problem space. In
2020 IEEE Symposium on Security and Privacy (SP). IEEE, 1332-1349.

J. Ross Quinlan. 1986. Induction of decision trees. Machine learning 1, 1 (1986),
81-106.

Jonas Rauber, Wieland Brendel, and Matthias Bethge. 2017. Foolbox: A python
toolbox to benchmark the robustness of machine learning models. arXiv preprint
arXiv:1707.04131 (2017).

Jonas Rauber, Roland Zimmermann, Matthias Bethge, and Wieland Brendel.
2020. Foolbox Native: Fast adversarial attacks to benchmark the robustness of
machine learning models in PyTorch, TensorFlow, and JAX. Journal of Open
Source Software 5, 53 (2020), 2607. https://doi.org/10.21105/j0ss.02607

Leonard Richardson. 2007. Beautiful soup documentation. April (2007).
Alexander Sjésten, Peter Snyder, Antonio Pastor, Panagiotis Papadopoulos, and
Benjamin Livshits. 2020. Filter List Generation for Underserved Regions. In
Proceedings of The Web Conference 2020. 1682-1692.

Grant Storey, Dillon Reisman, Jonathan Mayer, and Arvind Narayanan. 2017.
The future of ad blocking: An analytical framework and new techniques. arXiv
preprint arXiv:1705.08568 (2017).

Florian Tramer, Pascal Dupré, Gili Rusak, Giancarlo Pellegrino, and Dan Boneh.
2019. AdVersarial: Perceptual Ad Blocking meets Adversarial Machine Learning.
In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communica-
tions Security. 2005-2021.

Tobias Urban, Martin Degeling, Thorsten Holz, and Norbert Pohlmann. 2020.
Beyond the front page: Measuring third party dynamics in the field. In Proceedings
of The Web Conference 2020. 1275-1286.

Weihang Wang, Yunhui Zheng, Xinyu Xing, Yonghwi Kwon, Xiangyu Zhang, and
Patrick Eugster. 2016. Webranz: web page randomization for better advertisement
delivery and web-bot prevention. In Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering. 205-216.
Noam Yefet, Uri Alon, and Eran Yahav. 2020. Adversarial examples for models
of code. Proceedings of the ACM on Programming Languages 4, OOPSLA (2020),
1-30.

Huangzhao Zhang, Zhuo Li, Ge Li, Lei Ma, Yang Liu, and Zhi Jin. 2020. Generating
adversarial examples for holding robustness of source code processing models. In
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34. 1169-1176.
Shitong Zhu, Xunchao Hu, Zhiyun Qian, Zubair Shafiq, and Heng Yin. 2018.
Measuring and disrupting anti-adblockers using differential execution analysis.
In The Network and Distributed System Security Symposium (NDSS).

Shitong Zhu, Shasha Li, Zhongjie Wang, Xun Chen, Zhiyun Qian, Srikanth V
Krishnamurthy, Kevin S Chan, and Ananthram Swami. 2020. You do (not) be-
long here: detecting DPI evasion attacks with context learning. In Proceedings
of the 16th International Conference on emerging Networking EXperiments and
Technologies. 183-197.

https://keras.io
https://digitalcontentnext.org/blog/2020/08/12/countering-the-revenue-loss-caused-by-ad-blockers/
https://digitalcontentnext.org/blog/2020/08/12/countering-the-revenue-loss-caused-by-ad-blockers/
https://doi.org/10.14722/ndss.2021.24055
https://doi.org/10.21105/joss.02607

ACSAC °21, December 6-10, 2021, Virtual Event, USA

A APPENDICES
A.1 Disguising DOM Perturbations

As discussed in §3, A* can disguise its DOM manipulations to avoid
being detected by simple rule-based checks and perceived by users.
Specifically, we propose the following strategies to obfuscate and
conceal inserted DOM nodes.

e Randomized node types: Inserted nodes can be of any
DOM element type that supports the visibility property
(e.g., <p>, <div>, <table>).

e Randomized node properties: Inserted nodes can have
random property keys and values that do not conflict with
functional ones (e.g., rand_prop_Aft4A: "rand_value_SzJd2").
This also includes random node text because inserted nodes
are set to be invisible.

¢ Randomized local node placement: Besides the two mapping-
back strategies in §3, inserted nodes can be organized arbi-
trarily inside each insertion site (e.g., for centralized strategy,
inserted nodes can be cascaded in randomized topologies as
a sub-tree and then attached to the insertion site).

Note that the first and second DOM perturbation strategies above
can also be written and hidden into existing CSS style sheets (via
class or id selectors) so that simple scans over inserted DOM
nodes themselves would not raise suspicion.

A.2 Additional Tables and Figures

trees 100
Split criterion entropy
Maximum tree depth | unlimited
Precision 0.87
Recall 0.88
Accuracy 0.93

Table 6: Reproduced target RF’s hyper-parameters and accu-
racy metrics

552

Zhu et al.

hidden layers 3
neurons (1024, 512, 128)
epochs 30
Dropout rate 0.1
Accuracy (agreement rate) 0.90

Table 7: Local surrogate NN’s hyper-parameters and agree-
ment rate

successfully crawled records (distinct requests) | 503,526
successfully crawled websites (distinct domains) | 8,121
features before one-hot encoding 65
features after one-hot encoding 312
categorical features 5
binary features 36
numeric features 25
records to perturb (distinct requests) 2,000

Table 8: Dataset statistics

Rank | Feature No.# | Category
(from Table 10)
1 ‘ 19 ‘ Structural
2 | 3 | URL
3| 5 | URL
4| 7 | URL
5 | 4 | URL

Table 9: Information gain ranking of top-5 perturbed fea-

tures

Eluding ML-based Adblockers With Actionable Adversarial Examples ACSAC 21, December 6-10, 2021, Virtual Event, USA

Code 2: Perturbed DOM snippet

Code 1: Ol‘lglnal DOM snippet 1 <script async="" src="https://publisher.com/adscript.js></

ipt>
<script async="" src="https://publisher.com/adscript.js></ script

script> 2 <p hidden="" rand_prop_1="1">RANDOM TEXT 1</p>
P 3 <p hidde rand_prop_2="2">RANDOM TEXT 2</p>
4 <p hidden= rand_prop_3="3">RANDOM TEXT 3</p>
Figure 8: Example DOM snippet with structural perturbations (inserted invisible sibling nodes)
No. # Meaning Type Category | No.# Meaning Type Category
1 Total number of nodes .in th'e graph at the time of I S 10 Presence of ad keyword attributes in ascendant nodes B S
classification
2 Total number of edges m th? graph at the time of I S 11 Presence of screen dimension keywords in query string B U
classification
3 Length of request URL I 18] | 12 Presence of ad dimension keywords in full URL B 18]
4 Presence of ad keywords B U | 13 Number of siblings of current node I S
5 Presence of special characters B U | 14 Number of siblings of parent node 1 S
6 Presence of semicolons B U 15 Presence of siblings of parent node with ad keyword B s
attributes
7 Presence of base domain in query string B 18] | 16 Number of inbound connections of parent node I S
8 Presence of ad dimension keywords in query string B U | 17 Number of outbound connections of parent node I S
9 Number of inbound and outbound connections I S ‘ 18 Number of inbound and oijdoeund connections of parent I S
‘ 19 Average degree of connectivity for all nodes in current F s
page

Table 10: List of perturbed features; Type includes - I: integer, B: binary, F: float; Category includes - S: structural, U: URL

cue oeo # cue p—

@237 7292757 (2100 @12937%0 7292757 (2100

'

Slightly. Altered Image Layout

EEECSER s e

(a) Unperturbed gamepedia.com (b) Perturbed gamepedia.com (w/ minor breakage)

Figure 9: Example webpage with minor breakage

553

	Abstract
	1 Introduction
	2 Background
	3 a4: Actionable Ad Adversarial Attack
	3.1 Threat Model
	3.2 Overview
	3.3 Feature-Space Constraint Enforcement
	3.4 Application-Space Side-Effect Incorporation

	4 Implementation
	4.1 Model Training
	4.2 Active Learning
	4.3 Hyper-parameters

	5 Evaluation
	5.1 Setup
	5.2 Experimental Results

	6 Discussions and Limitations
	7 Related Work
	8 Conclusions
	Acknowledgments
	References
	A Appendices
	A.1 Disguising DOM Perturbations
	A.2 Additional Tables and Figures

