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Abstract— In this paper, we are interested in path opti-
mization for robotic communication operations in obstacle
environments. Consider a robot that needs to perform a given
communication task (e.g., data uploading, broadcasting, or
relaying) while navigating from a start position to a designated
final position, avoiding obstacles, and minimizing its total
motion and communication costs. Our goal is to develop a
general path planning algorithm applicable to various robotic
communication scenarios in which a robot operates in realistic
channel fading environments and in the presence of obstacles.
We show how we can adapt the traditional Rapidly-Exploring
Random Tree Search Star (RRT*) path planning algorithm to
jointly consider both communication and motion objectives in
realistic channel environments that contain obstacles. We fur-
ther show that our proposed approach can provide theoretical
optimality guarantees while being computationally efficient. We
extensively evaluate our proposed approach in realistic wireless
channel environments for various transmission settings and
communication tasks. The results demonstrate the efficacy of
our proposed approach.

I. INTRODUCTION

Recent years have seen great progress in mobile robotics,
creating new opportunities for wireless communications.
Unmanned vehicles, for instance, can use their mobility to
enable connectivity in areas that would otherwise be poorly
connected [1]. On the other hand, robust communication is
also crucial for any networked robotic operation to ensure
proper information flow and task completion. Enabling this
vision of robust networked robotics requires a joint con-
sideration of both communication and motion aspects of a
robotic operation, a field referred to as communication-aware
robotics [2], [3].

Earlier work in this area from the robotics community used
over-simplified communication models, e.g., the disk/path-
loss model, which can lead to poor performance in real-world
wireless channel environments. In recent years, researchers
have started to incorporate realistic wireless fading models
when optimizing the robot’s motion [4]–[9], properly co-
optimizing the motion and communication parts of the op-
eration. See [3] for a recent review of the state-of-the-art in
mobility-enabled connectivity.

However, due to the complex spatial dynamics of wireless
channels, the need for predicting channel quality at unvisited
locations, and the high dimensionality of path planning, it
is challenging to optimally plan motion and communication
jointly. To make the problem more tractable, existing work
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Fig. 1: The robot performs a given communication task, such as
uploading, broadcasting, and relaying, while navigating from the
start position (green disk) to the given destination (red square).

frequently resorts to heuristics which may not have optimal-
ity guarantees [4]–[7]. In particular, while obstacle avoidance
is at the heart of any robotic operation and is extensively
addressed in the robotics literature, it is not considered in
most communication-aware robotics papers that attempt to
address operations in realistic fading environments.

This is the main motivation for this paper, to consider
networked robotic operations in real channel environments
that contain obstacles. More specifically, we show how
we can adapt the Rapidly-Exploring Random Tree Search
Star (RRT*) path planning framework [10] to co-optimize
motion and communication objectives in realistic channel
environments that contain obstacles. RRT* is an efficient
path planning framework that can handle arbitrarily-located
obstacles and provide asymptotic performance guarantees,
but it is traditionally used for motion objectives without
considering communication.

In this paper, we are interested in a variety of robotic com-
munication operations. Specifically, consider the case where
the robot navigates from a start position to a destination while
given a communication task, as shown in Fig. 1. First, we
consider a data uploading operation where the robot needs to
upload its onboard data (e.g., in a surveillance mission) to a
remote station as it traverses the field. In the second case, the
robot needs to broadcast data to a number of remote nodes in
the field. Lastly, in the third scenario, the robot is tasked with
relaying data between two remote nodes that are otherwise
disconnected, while traveling from its start position to the
final position.

While these different scenarios entail different cost func-
tions, we show how to pose a unifying path-communication
optimization framework. We then show how we can adapt
RRT* to solve the co-optimization problem, while pro-
viding obstacle avoidance and considering realistic fading
environments. As we shall see, our cost functions satisfy
an additivity requirement, which allows our adapted RRT*
approach to generate paths with asymptotic optimality.
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II. SYSTEM MODELING

In this section, we summarize the communication and
motion models used in this paper.

A. Communication and Channel Prediction Model

Consider the case where the robot needs to transmit data to
a remote station. The received Signal-to-Noise Ratio (SNR)
at the station is given by SNRrec = ΓT ·ϒ, where ΓT is the
robot’s transmission power and ϒ is the received Channel-
to-Noise Ratio (CNR). The CNR varies spatially due to
path loss, shadowing, and multipath fading. A Quality of
Service (QoS) requirement, such as a target Bit Error Rate
(BER), will result in a minimum required received SNR of
a transmission, SNRth. If SNRrec ≥ SNRth, then the robot
can communicate with the remote station while satisfying
the QoS requirement, and we say the robot is connected.
Otherwise, we say it is disconnected.

If the robot cannot change its transmission power, the
SNR requirement translates to a minimum required CNR,
ϒth. In this case, the spatially-varying CNR directly dictates
the robot’s connectivity. Alternatively, consider the case
where the robot can adapt its transmission power. Suppose
the robot adopts the commonly-used MQAM modulation
for transmission. The required transmission power is well
approximated by ΓT = (2r−1)ln(5pBER)/(−1.5ϒ), where r
is the spectral efficiency and pBER is the required BER. Given
the QoS requirements (e.g., BER and spectral efficiency), it
can be seen that the robot’s transmission power also depends
on the spatially-varying CNR.

For the purpose of path planning, the robot needs to assess
its connectivity (or required transmission power) at unvisited
locations, which requires a prediction of the CNR over the
space. Reference [11] shows how the robot can make such
a prediction based on a spatial stochastic process model
of the CNR, which accounts for the real-world propagation
effects of path loss, shadowing, and multipath fading. More
specifically, given a small number of prior channel samples
in the same environment, the CNR (in dB) at an unvisited
location x, ϒdB(x), can be best modeled by a Gaussian
random variable, with its expectation and variance given as
follows:

E[ϒdB(x)] = Hxθ̂ +Ψ
T (x)Φ−1(Ym−Hmθ̂),

Σ(x) = α̂
2 + σ̂

2−Ψ
T (x)Φ−1

Ψ(x),
(1)

where Ym = [y1, ..., ym]
T are the m priorly-collected CNR

measurements (in dB), Xm = [x1, ..., xm] are the measurement
locations, θ̂ , α̂ , β̂ , and σ̂ are the estimated channel parame-
ters, Hx = [1 −10log10(‖x−xb‖)] with xb denoting the loca-
tion of the remote base station, Hm = [HT

x1
, ..., HT

xm ]
T , Ψ(x) =

[α̂2exp(−‖x− x1‖/β̂ ), ..., α̂2exp(−‖x− xm‖/β̂ )]T , and Φ =
Ω + σ̂2Im with [Ω]i, j = α̂2exp(−‖xi − x j‖/β̂ ), ∀i, j ∈
{1, ..., m} and Im denoting the m×m identity matrix.

This model allows the robot to predict the CNR at any un-
visited location, based on a few prior channel measurements
which can be provided by static sensors in the field, gathered
in previous operations or at the beginning of the operation,

and/or obtained via crowdsourcing.1

For the case of fixed transmission power, this model allows
us to find the probability that the robot is connected at a
point x: Prob(ϒ(x)≥ϒth)=Q((ϒth, dB−E[ϒdB(x)])/

√
Σ(x)),

where Q(·) represents the complementary cumulative distri-
bution function of the standard normal distribution.

For the case of adaptive power, the expected required
transmission power at location x is given by E[ΓT (x)] =
(2r−1)E [1/ϒ(x)]/Z, where E [1/ϒ(x)] can be evaluated
based on the log-normal distribution of ϒ(x), using the
prediction parameters of (1), and Z =−1.5/ln(5pBER).

B. Motion Model
Based on experimental studies, a mobile robot’s motion

power can be modeled by a linear function of its speed
for a large class of robots (e.g., a Pioneer robot) [12]:
Γm(v) = κ1v+κ2 with 0< v≤ vmax, and Γm(v) = 0 for v= 0,
where v and vmax are the robot’s speed and maximum speed,
respectively, and κ1 and κ2 are positive constants determined
by the robot’s mechanical system and the external load.
When the robot travels at a constant speed ṽ, the motion
energy consumption for traversing a path P is given by
Em = (κ1 +κ2/ṽ)D(P), where D(P) is the path length.

III. PROBLEM FORMULATION

Consider the case where a robot needs to navigate from
a starting position xs to a given final position x f in a 2D
environment, X ⊂R2, while avoiding obstacles. The obstacle
region is denoted by Xobs ⊂ X , which can be an arbitrary
set of locations. Let P = [x0, ..., xK ] represent the robot’s
path waypoints, where xi ∈ X is a waypoint ∀i ∈ {0, ..., K},
and the path is linearly interpolated between two consecutive
waypoints. While moving from xs to x f , the robot needs to
maintain communication with one or more remote stations,
with Q denoting the set of these stations. To plan a path
that satisfies the motion and communication requirements,
we propose the following general optimization problem:

min
P

C(P) =Cc(P)+δCm(P)

s.t. (1) x0 = xs, xK = x f , (2) P(P)∩Xobs = /0,
(2)

where Cc(P) and Cm(P) are the respective communication
and motion costs of the path P, and δ > 0 weighs the
importance of the two costs. The first constraint requires that
the robot travels from the given start position to the given
destination. The second constraint ensures that the robot does
not run into obstacles, where P(P) is the path P with linear
interpolation between two consecutive waypoints.

This general formulation encompasses a broad class of
robotic communication tasks that are of interest to this
paper, e.g., data uploading, broadcasting, and data relaying,
as shown in Fig. 1. It is also applicable to both fixed and
adaptive transmit power settings. Next, we discuss in detail
the corresponding optimization problems for the different
transmit power settings and communication tasks.

1The prior channel measurements that the robot can obtain are based on
the downlink channel. When it needs to predict the uplink channel, the prior
measurements can be collected by the remote station which can then send
the needed information back to the robot for uplink channel prediction.
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A. Fixed Transmission Power

First, consider the case where the robot cannot change its
transmission power. As discussed in Sec. II-A, the robot’s
connectivity to the remote station depends on whether the
CNR is above a prescribed threshold, ϒth. Based on the
channel prediction, we can calculate the probability that the
CNR at location x is above the threshold: Prob(ϒ(x)≥ ϒth),
to which we refer as the connection probability. To plan a
path with good connectivity, we minimize the robot’s travel
in regions where the connection probability is below a given
threshold, as shown in the following optimization:

min
P

Dnc(P)+δD(P)

s.t. (1) x0 = xs, xK = x f , (2) P(P)∩Xobs = /0,
(3)

where Dnc(P) is the length of the disconnected portion of the
path and δ > 0. The optimization effectively minimizes the
disconnected portion of the path, while D(p) prevents the
robot from wandering excessively in a good-channel region
without moving to the destination by including the total
path length into the objective. In this way, the optimization
formulation strikes a balance between communication and
motion, with δ representing the corresponding weight.

Given a path P = [x0, ..., xK ], the disconnected length of
the path is given as follows:

Dnc(p)=
k

∑
i=1

(
Inc(xi−1)·

‖xi− xi−1‖
2

+Inc(xi)·
‖xi− xi−1‖

2

)
, (4)

where ‖xi− x j‖ denotes the Euclidean distance between xi
and x j. Inc(x) is a binary function indicating the robot’s
connectivity status at location x, with Inc(x) = 1 indicating a
disconnection and Inc(x) = 0 denoting otherwise. Note that
since the channel is predicted at discretized points (xi’s), we
divide each segment of the path (i.e., the part between xi−1
and xi) into two parts and use the connectivity prediction of
the closer waypoint for each part, resulting in the two terms
of (4). This is a good approximation of the disconnected
length since the waypoints are typically densely selected.

The connectivity status indicator function, Inc(x), depends
on the communication task, as we characterize next.
Uploading: Data uploading is possible as long as the robot
is connected to one of the remote stations. Let ϒq(x) denote
the CNR associated with remote station q from location x.
Then Inc(x) takes the following form:

Inc(x) =
{

0, ∃q ∈ Q, Prob(ϒq(x)≥ ϒth)≥ pth,

1, otherwise,
(5)

where pth is a connection probability threshold. Thus,
Inc(x) = 1 when the robot does not have a good chance of
connecting to any of the stations and Inc(x) = 0 otherwise.
The robot uses its probabilistic channel prediction over the
workspace, as described in Sec. II-A, to find the distribution
of ϒq(x) over the workspace and characterize Inc(x).
Broadcasting: For broadcasting, the robot needs to transmit
data to all remote stations, resulting in the following Inc(x):

Inc(x) =
{

0, ∀q ∈ Q, Prob(ϒq(x)≥ ϒth)≥ pth,

1, otherwise.
(6)

Relaying: In this case, the robot needs to maintain connec-

tion with both remote stations involved in the relay operation.
As such, Inc(x) in this case takes the same form as in the
broadcasting case, with the set Q representing the two remote
stations. While there are 4 links involved in the relaying
scenario, we are only concerned with the 2 uplinks from the
robot to the stations, which are the energy-constrained ones.

B. Adaptive Transmission Power
We next consider the case where the robot can adapt its

transmission power throughout its route. This allows the
robot to ensure that the received SNR is always sufficient
to satisfy the QoS requirements. Thus, if the robot has to
transmit data at a location where the channel quality is
poor, it will need to increase its transmission power. On
the other hand, if the robot only focuses on minimizing its
communication cost, it may spend too much motion energy
finding regions with good channel quality. Therefore, our
goal here is to design a path that minimizes the robot’s total
energy consumption in the operation area, as shown in the
following optimization problem:

min
P

Ec(P)+δEm(P)

s.t. (1) x0 = xs, xK = x f , (2) P(P)∩Xobs = /0,
(7)

where Ec(P) and Em(P) are the respective communication
and motion energy costs of path P. Assume that the robot
moves at a constant velocity ṽ. Thus, as discussed in Sec. II-
B, its motion energy becomes a linear function of the traveled
distance. On the other hand, the communication energy of
path P is given as follows:

Ec(P)=
k

∑
i=1

(
Γc(xi)·

‖xi− xi−1‖
2ṽ

+Γc(xi−1)·
‖xi− xi−1‖

2ṽ

)
, (8)

where Γc(x) is the total power that is consumed for trans-
mission at location x. At locations between two consecutive
waypoints, the transmission power is taken to be the same
as that of the closer waypoint.

Let ΓT,q(x) denote the required transmission power for
the robot to transmit from location x to remote station q.
The robot has a prediction of the CNR over the workspace
(see Sec. II-A), based on which it can compute its ex-
pected required transmission power for location x as follows:
E[ΓT,q(x)] = (2r−1)E [1/ϒq(x)]/Z. The specific form of
Γc(x) depends on the communication task, as discussed next.
Uploading: For the uploading task, the robot uses the mini-
mum required transmission power that allows for connection
to a remote station: Γc(x) = minq∈Q E[ΓT,q(x)].
Broadcasting: For broadcasting, the robot’s transmission
needs to reach all the remote stations. Γc(x) is thus de-
termined by the remote station that requires the highest
transmission power: Γc(x) = maxq∈Q E[ΓT,q(x)].
Relaying: For relaying, the robot needs to simultaneously
maintain communication with both remote stations (with in-
dices 1 and 2) and relay the data between them, which results
in: Γc(x) = E[ΓT,1(x)] +E[ΓT,2(x)], where the summation
indicates that there are two separate transmissions.

Overall, our proposed formulation encompasses various
robotic communication operation scenarios, with different
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transmit power settings and communication tasks. Such path
optimization problems are challenging to solve due to their
high dimensionality, the presence of arbitrarily-shaped obsta-
cles, and the spatially-varying wireless channel that cannot
be captured analytically. The next section shows how to
adapt RRT* to solve our path optimization with theoretical
optimality guarantees and in the presence of obstacles.

IV. PATH PLANNING FOR ROBOTIC COMMUNICATION

In this section, we show how to optimize the robot’s path
for communication operations by utilizing RRT* [10]. To
properly apply RRT*, the cost function used in path planning
(i.e., the objective function in (2)) must be additive, which
provides the basis for the optimality of the path. We provide
the formal definition of additivity as follows:

Definition 1 (Additivity): Given any two paths, P1 and P2,
with the last point of P1 being the first point of P2 and their
concatenation P1|P2, if C(P1|P2) = C(P1)+C(P2), then the
cost function C is additive.

Lemma 1: The objective functions in problems (3) and
(7) are additive, for all the three communication tasks.

Proof: This can be easily confirmed given the defini-
tions of the communication cost functions of (4) and (8),
and the fact that the motion cost is a linear function of the
traveled distance in both problems (3) and (7).

This ensures that we can use and adapt RRT* to find
optimum paths for the robotic communication operations
discussed in Sec. III. Furthermore, it should be noted that our
proposed methodology is not limited to the cases of Sec. III.
As long as the communication cost function can be put in
an additive form, our proposed RRT*-based approach can be
used. Next, we show how we adapt the RRT* to optimize
the robot’s path for communication operations.

A. Communication-Aware RRT*
RRT* is an efficient sampling-based path planning algo-

rithm that iteratively builds a tree from a given source to a
destination. As originally designed, the tree expansion and
rewiring serve to reduce path length while avoiding obstacles.
In this part, we show how to adapt RRT* to take into account
costs of both motion and communication. Our approach is
summarized in Alg. 1 and described in detail below.2

The algorithm incrementally builds a tree G = (V, E) in
the 2D space from xs towards x f , where V and E are the sets
of nodes and edges, respectively. Each node represents a 2D
location and an edge represents the path between two nodes.
If x f ∈ V , then there exists a feasible path in the tree from
the root node xs to x f . We refer to the unique path from xs
to a node x ∈V\{xs} as a candidate partial path.
Sampling: In each iteration, the algorithm samples a random
location, xrand, and finds the nearest tree node to it, xnearest, in
terms of Euclidean distance. The algorithm then finds xnew,
which is the closest point to xrand within a prescribed radius,
η , of xnearest. If there are no obstacles blocking the direct
path between xnew and xnearest, then xnew will be added to V .

2See [10] for an in-depth description of the original RRT*.

Otherwise, the current xnew is discarded and the algorithm
repeats this step until it obtains a feasible xnew.
Tree Expansion: Next, we need to find a proper parent
for xnew such that the motion and communication costs are
minimized. More specifically, consider a set of nodes, Xnear,
that have an obstacle-free direct path to xnew and are within
a specified radius. The algorithm selects as the parent xmin,
via which the robot will incur the minimum total cost when
moving from xs to xnew, i.e., xmin = argminxnear∈Xnear

C̃(xnear)+
Cm([xnear, xnew]) +Cc([xnear, xnew]), where, for x ∈ V , C̃(x)
represents the full cost of the unique path in the tree from
xs to x, and [xnear, xnew] is the direct path between the two
corresponding nodes. This process ensures that the candidate
partial path from xs to xnew has the minimum total cost.
Rewiring: Given the updated tree with xnew added, some
of the nodes can be rewired to reduce the costs of their
corresponding candidate partial paths. For each node xnear ∈
Xnear\{xmin}, if the total cost of moving from xs to xnear via
the parent of xnear (i.e., C̃(xnear)) is larger than that of going
from xs to xnear via xnew, i.e., C̃(xnew)+Cm([xnew, xnear]) +
Cc([xnew, xnear]), then xnear is detached from its original
parent node and added as a child to xnew. This rewiring results
in continual path improvement and gives the algorithm the
optimality property that we shall discuss in Sec. IV-B.
Final Path: The algorithm returns the minimum-cost path
from xs to x f in the tree after running a prescribed number
of iterations dictated by the computation budget. Note that a
solution can be obtained from the algorithm any time after
the first feasible path is found, which in our simulations
generally takes around 1s, depending on the obstacle config-
uration and the size of the space. After finding a first path,
the algorithm continues to refine the quality of the solution
as it runs more iterations. The final path from the tree is
then converted to a sequence of densely and equally spaced
waypoints that can be adapted for the size of the space.

As shown in the original RRT* paper [10], the algorithm
drastically reduces the cost within the first few thousand iter-
ations. Since RRT*’s computational complexity for executing
n iterations is given by O(nlog(n)) [13], these reductions
happen quickly. Similarly, as we shall show in Sec. V, our
communication-aware RRT* performs the majority of cost
reduction within an initial short period of time.

B. Theoretical Analysis

In this part, we study the optimality and the theoretical
properties of our communication-aware RRT*. First, we
show the asymptotic optimality of our proposed approach.

Theorem 1: For the robotic communication scenarios in
Sec. III, the cost of the path given by Alg. 1 converges
to the optimum almost surely, i.e., Prob(limn→∞C(Pn,min) =
C(P?)) = 1, where n is the number of iterations, Pn,min is the
minimum-cost path in the tree from xs to x f after n iterations,
and P? is the optimum path. The path given by Alg. 1 also
satisfies the optimization constraints and avoids obstacles.

Proof: As shown in Lemma 1, the cost func-
tion C is additive for all the transmission power settings
and communication tasks discussed in Sec. III. Therefore,
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Algorithm 1: Communication-Aware RRT*
1 V = {xs}, E = /0
2 while within computation budget do
3 G = (V,E)
4 xrand = Sample(X , Xobs)
5 xnearest = Nearest(G, xrand)
6 xnew = argmin‖x−xnearest‖≤η‖x− xrand‖
7 if ObstacleFree(xnew, xnearest) then

// Tree Expansion
8 V =V ∪ xnew
9 Xnear = Near(G, xnew, X , Xobs)

10 xmin = argmin
xnear∈Xnear

C̃(xnear)+Cm([xnear, xnew])+Cc([xnear, xnew])

11 E = E ∪{(xmin, xnew)}
// Rewiring

12 for xnear ∈ Xnear \{xmin} do
13 xparent = Parent(xnear)

14 if C̃(xnear)>C̃(xnew)+Cm([xnew, xnear])+Cc([xnew, xnear]) then
15 E = E \{(xparent, xnear)}
16 E = E ∪{(xnew, xnear)}
17 end
18 end
19 end
20 end
21 Return minimum-cost path from xs to x f in G

the communication-aware RRT* is asymptotically optimal,
based on Theorem 21 of [10].

Next, we study the properties of the optimum path, P?,
in the adaptive transmit power setting and compare it with
the shortest obstacle-free path, Ps. We are interested in
characterizing ∆D = D(P?)−D(Ps), the additional incurred
path distance due to considering communication costs. Let
Γm(ṽ) denote the motion power for a constant speed of ṽ,
as defined in Sec. II-B. Furthermore, Γ̄s

c =
1
K ∑x∈Ps Γc(x) is

the average transmit power over the waypoints of Ps and
Γ̄?

c = 1
K ∑x∈P? Γc(x) is the average transmit power over the

waypoints of P?. We assume that the robot adapts its power at
equally-spaced points along the path (e.g., at the waypoints).
The following result characterizes the relationship between
∆D and the motion and communication costs.

Proposition 1: The following inequality holds:

∆D≤ D(Ps)(Γ̄
s
c− Γ̄

?
c)/(δΓm(v̄)+ Γ̄

?
c). (9)

Proof: Since P? should incur less total cost than Ps,
we have D(Ps)

ṽ (δΓm(v̄) + Γ̄s
c) ≥

D(Ps)+∆D
ṽ (δΓm(v̄) + Γ̄?

c). By
rearranging the terms, the inequality can be obtained.

It can be seen that the extent of deviation from the shortest
path depends on the amount of communication savings in the
optimum path, as well as the robot’s motion power. If the
average transmission power along Ps goes up, then greater
communication energy is saved by taking P?, which can
make up for the additional energy spent for traveling a longer
path. On the other hand, if the robot’s motion power goes
up, then savings in communication energy may not justify a
larger additional distance, so ∆D will become smaller.

V. SIMULATION EXPERIMENTS

In this section, we solve the path optimization problems
using our proposed approach in realistic simulated 2D wire-
less channel environments and in the presence of obstacles.

Fig. 2: (Left) Paths from solving (3) with our proposed approach
for the case of two remote stations. The orange solid (dashed) curve
shows the path found for the upload (broadcast/relay) task. The
green (blue) regions are where the robot predicts it can only connect
to remote station A (B). The white (grey) color indicates that the
robot predicts it can connect to both (neither) of the stations. (Right)
Reduction of cost (i.e., objective of (3)) as a function of Alg. 1’s
run time in the case of broadcast/relay. See the color pdf to better
view this figure.

We consider a 50m×50m discretized 2D workspace con-
sisting of 0.2m×0.2m regular grids, with randomly-sized,
randomly-placed circular obstacles and two remote stations.
The wireless channel for each remote station is simulated
by using [14], with the following channel parameters: θ̂ =
[−41.34, 3.86]T , α̂ = 10.24, β̂ = 3.09m, and σ̂ = 3.2, which
are obtained from real channel measurements [11]. The
receiver noise power is −100dBm. The robot predicts the
channel based on 0.8% prior channel samples randomly
located in the space, using the prediction framework of
Sec. II-A. The communication-aware RRT* of Alg. 1 is run
for 3 minutes to obtain the path. We further compare with
the benchmark of using the original RRT*.

A. Case of Fixed Transmission Power
We first consider the fixed power setting. The SNR

threshold is 20dB and the transmit power is 120mW. The
connection probability threshold is pth = 0.7. We choose
δ = 0.01 to find highly connected path.

The robot navigates from (1, 35) to (40, 49). There are
two remote stations in the field at (2, 7) and (45, 49). Fig. 2
(left) shows the paths computed by our proposed approach
for the upload and the broadcast/relay tasks (broadcast and
relay have the same cost function in this fixed transmission
power setting, resulting in the same path). It can be seen that
for the upload task, the robot mostly travels in regions that
are colored in either blue or green, since it only needs to
connect to one of the two remote stations. This allows it to
take a more direct path towards the destination while staying
connected the entire time. As for broadcast/relay, the robot
needs to maintain connection to both stations, which is a
stricter requirement. As such, the robot takes a much larger
detour to travel as much as possible in the white-colored
regions, where it can connect to both remote stations.

While we run Alg. 1 for 3 minutes, it achieves most of
the cost reduction quickly, as shown in Fig. 2 (right). For
instance, it achieves 87% of all cost reduction within the
first 30s, reducing the cost from 51.13m to 38.04m. This
demonstrates the computational efficiency of our approach.
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Fig. 3: Paths from solving (7) by using our proposed approach for upload (left) and
broadcast (right) cases. In each figure, the orange dashed curve shows the path given
by Alg. 1. The white square (diamond) indicates the start (final) position. The magenta
triangles indicate the locations of the two remote stations A and B. The disks are the
obstacles. A brighter (darker) color in the colormap indicates a higher (lower) predicted
required transmit power. See the color pdf to better view this figure.

Scenarios Upload Broadcast Relay
Fixed Pwr. 67% 25% 25%(Disc. Red.)

Adaptive Pwr. 14% 16% 13%(Energy Red.)

TABLE I: Performance improvement given by
our proposed approach over the benchmark of
using the original RRT*. We use the reduction
of the disconnected portion of the path and the
reduction of the total energy cost as the evaluation
metrics for the fixed and adaptive transmit power
settings, respectively.

Next, we show the performance (i.e., communication cost)
as the robot travels its designed path and measures the true
value of the channel. We further run 20 channel realizations
and report the average performance. We also compare with
the original-RRT* benchmark which only considers motion
costs. For all tasks, Table I shows that our approach signifi-
cantly reduces the percentage of the path that is disconnected
as compared to the benchmark.

B. Case of Adaptive Transmission Power
Next, consider the case of adaptive power. In these exper-

iments, the robot moves from (1, 30) to (49, 25). There are
two remote stations at (2, 2) and (43, 48). The required BER
is 10−6, and the required spectral efficiency is 8bits/s/Hz
for upload and 6bits/s/Hz for broadcast/relay. The motion
parameters are κ1 = 7.4N and κ2 = 0.29W, based on real-
world measurements of a Pioneer robot [12], and ṽ = 1m/s.
Prioritizing communication energy, we set δ = 0.1.

Fig. 3 shows sample paths obtained by using Alg. 1 to
solve (7) for the tasks of upload and broadcast. In Fig. 3
(left), the robot performs data uploading and only needs to
transmit to one of the remote stations at any point during
the trip. As such, it first moves near station A and later near
station B in the path. Fig. 3 (right) shows the resulting path
for broadcast. Since the robot’s transmission must cover both
remote stations, it transmits with the maximum of the two
stations’ required transmit powers. As such, the robot takes
a path that keeps it roughly equidistant to the two stations.
In addition, it exploits the local good-channel areas (e.g., by
hugging the side of the obstacle centered at (26, 24)). As
for the relay case, the path is similar to that of the broadcast
scenario and is thus omitted for brevity.

We next average the true communication and motion
energy cost as the robot travels its designed path over 20
channel realizations. When comparing with the benchmark,
our proposed approach incurs considerably less total energy
cost, reducing it by 14%, 16%, and 13% on average for up-
load, broadcast, and relay, respectively, as shown in Table I.

Overall, these results show that our proposed approach
generates paths with good communication qualities (i.e.,
small disconnected portions or low energy costs) for various
robotic communication operations, while avoiding obstacles.

VI. CONCLUSIONS

In this paper, we considered a robot that needs to perform
a given communication task (e.g., data uploading, broadcast-
ing, or relaying) while navigating from a start position to a
designated final position, avoiding obstacles, and minimizing
its total motion-communication cost. We showed how we can
adapt the traditional RRT* path planning algorithm to jointly
consider both communication and motion in realistic channel
environments that contain obstacles. We further mathemati-
cally showed the optimality of our proposed algorithm and
characterized properties of the optimum path. Finally, by
extensive evaluations in realistic channel environments, we
showed that our approach can produce paths with consider-
ably better connectivity or much lower total energy costs as
compared to the benchmark.
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