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Abstract—In this paper, a new distributionally robust defender-
attacker-defender (DAD) model is proposed for the planning of
line hardening and allocating distributed generators (DG), to
hedge against the risk of disruptions brought by natural disasters
or extreme weather conditions. In our approach, we consider the
case that the true probability distribution of extreme weather
is ambiguous, and minimize the load shedding with the worst-
case scenario of weather distribution. Unlike conventional robust
models, our approach takes advantage of moment information of
the weather distribution that is learned from historical data. We
reformulate the proposed model as a tractable two-stage robust
optimization and employ a column-and-constraint generation
algorithm to solve it. Case study on the IEEE 32-node distribution
test system illustrates the effectiveness of the proposed method.

Index Terms—Distribution network, distributionally robust
optimization, natural disaster, power system resilience.

I. INTRODUCTION

Espite expanded and continued efforts on improving the

survivability of power grids under natural disasters, U.S.
energy infrastructure is still increasingly vulnerable to severe
natural disasters such as earthquake [1], flood [2], hurricane
[4], heat-wave [3] and other extreme weather conditions,
which impact on economy and society significantly. According
to a study by Congressional Research Service [15], U.S. incurs
20-55 billion dollars annually because of weather-related
power outages. Only during years of 2003-2012, about 679
weather-related power outages occurred in the U.S. and each
affected more than 50,000 customers [16]. Projections indicate
that with changes in climate such as increasing temperatures
and sea-level rise, the intensity and frequency of extreme
weather events are more inevitable, which pose a serious
threat to power infrastructure assets [14]. This calls for an
accelerating need for improving power grids reliability and
resiliency against disasters. Recent U.S. government initiatives
and programs like Grid modernization Multi-Year Program
Plan also reveal the importance of power system resilience
under severe weather conditions [13].

Currently, the North American Electricity Reliability Cor-
poration enforces N — 1 security criteria in power systems
[20], which requests that the power system needs to continue
meeting the electricity loads under any single contingency. The
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logic behind this policy is that the probability of occurring
single contingency is much more than a set of simultaneous
multiple contingencies. However, since contingencies are usu-
ally dependent events, it appears that the likelihood of multiple
contingencies is not negligible. Hence, various mathematical
models have been proposed in the literature to provide optimal
protection strategy under more general reliability criteria like
N — k security criteria.

From contingency analysis perspective, resilient power net-
work planning models in the literature can be divided in two
categories: deterministic worst-case (robust) models and un-
certain interdiction models. In robust models, the interdiction
planner launches a disruption that imposes the most significant
loss to the defender. The trilevel defender-attacker-defender
(DAD) games have been recently gained more popularity in
this area [5], [6]. This sequential game involves three stages.
In the first stage, the system operator, as a defender, prepares
the grid by hardening the system components before power
interruptions occur. In the second stage, the natural disaster,
as an attacker, determines to attack a set of components
to inflict maximum possible damage. Finally, the system
operator responds to the disruptions by adjusting power flow
accordingly to mitigate the adverse consequences. Reference
[8] studies a two-stage robust optimization model for the
planning of a resilient distribution network. It extends the
traditional N — k security criteria to capturing the spatial and
temporal dynamics of the hurricane. Reference [7] adopts a
DAD model for allocating defensive resources on power grids.
It customizes Column-and-Constraint Generation algorithm
to efficiently solve the problem. Even though robust mod-
els provide reliable decisions by considering the worst-case
contingency scenario, this approach overestimates the chance
of severe disruption scenario and therefore too conservative.
In uncertain interdiction models, a predefined probability is
assigned to each contingency scenario to handle stochastic
dynamics of catastrophic events. Reference [10] develops two
models for optimizing design and service restoration in power
transmission networks under stochastic line disruptions. It
resorts to a finite set of scenarios with equal probability of
realization to capture uncertainty in the problem. Reference
[11] models a mixed integer programming for the stochastic
network interdiction problem, where transmission line dis-
ruption follows Bernoulli distribution. The sample average
approximation method is used to reformulate the problem and
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a decomposition-based approach is proposed to solve the prob-
lem. While the stochastic nature of contingency occurrences
is captured by a finite set of representative scenarios or a
pre-assumed distribution in uncertain interdiction models, any
inaccurate estimation of underlying probability distribution
would trigger to a suboptimal and biased protection planning.
Therefore, both of the robust and stochastic approaches have
disadvantages.

Another track of works in the literature has been devoted to
assess security of the power systems. The main objective of
models in this area relies on the proper determination of both
probability and undesirable consequence of contingency oc-
currences. However, most of these models do not provide any
mechanism for identifying and defending those contingencies.
Several statistical techniques have been studied to compute the
probability of contingencies such as Markov chains, Poisson
regression, and Bayesian models [12]. Reference [19] identi-
ties high risk N —k contingencies based on probability analysis
to protect system failures. It utilizes event tree technique to
describe contingencies and rare event approximation method
to evaluate associated probabilities. Reference [18] develops
a Monte-Carlo nonsequential simulation framework to assess
impacts of extreme weather events on failure rates of distri-
bution lines. It formulates the probability of each contingency
by a Poisson distribution function. Because of the complexity
involved in forecasting weather-related outages, these kinds
of models, however, have limited application in practice. For
instance, simulation-based frameworks require a significant
amount of computation resources and their convergency is not
guaranteed in general.

In this paper, we propose a novel distributionally robust
optimization approach to enhance the resilience of power grid
planning. Our proposed model overcomes the disadvantages
of both stochastic programming, in which the distribution of
contingencies is predetermined and has no robustness respect
to errors, and robust models which completely ignore the
distribution of contingencies. Specifically, we consider the
probability of contingency occurring, but instead of fixing
the probability of contingency to any particular distribution,
we construct an ambiguity set of contingency probability
distributions. Then, we minimize the worst-case expected
load shedding with respect to all probability distributions
in the ambiguity set. More particularly, we concentrate on
distribution power networks, which are totally sensitive to
local weather conditions and can directly affect customer load
points since they provide the connection between customers
and the bulk system. Then, we will develop an efficient
algorithm to detect the worst-case probability distribution of
contingencies. Also, our algorithm can effectively provide
valuable information to system operator to make an accurate
judgment about security level of the system. The rest of
this paper is organized as follows. In section II we describe
mathematical formulation. Solution methodology is provided
in section III. Computational experiments are conducted in
section IV. Finally, we conclude the paper in section V.
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II. MATHEMATICAL FORMULATION

Using robust optimization models is quite prevalent in the
literature to obtain the worst-case load shedding in the power
grid. There are two essential criticisms against robust models.
First, they treat all the components in the system with the same
importance. However, when facing natural disasters, not all
components are equally exposed to failure. For example, prin-
cipal components may be of great attention by system opera-
tors and they likely arrange regular maintenance to ensure that
these components are operating correctly. Thus, these assets
are less susceptible to extreme weather conditions. But some
other components like overhead lines are highly affected by
environmental factors. Second criticism is that robust models
are often over conservative, since they overlook the probability
information of component failures. To overcome limitations of
robust models, we propose a distributionally robust framework
on resilient smart distribution system with the consideration
of the probabilistic characteristics of natural disasters. Our
model involves three levels. In the upper level, the defender
intends to improve the resilience of the distribution power
system by allocating defensive resources to power lines and
locating distributed generators (DG) in proper buses. In the
middle level, a natural disaster, as an attacker, randomly
disrupts the system with its ambiguous distribution P aiming
at damaging the system to the largest extent, i.e., maximum
load shedding. Finally, in the lower level, the system operator
seeks to minimize the load shedding by adjusting power flow
throughout the grid. The mathematical formulation of the
model is as follows.
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where, 7, N, and £ represent sets of time periods, nodes,
and power lines, respectively. By and By denote available
budget for hardening power lines and DG units and Bj is the
budget for line attackings. 7,,, and 7,,, indicate resistance
and reactance of the power line (m,n), K,,, and R,,, are
upper limits of active and reactive power flow in line (m,n),

P, and D}, are active and reactive power demand at node n

in time ¢, C? is the capacity of DG unit at node n, v™** and

v™i" are upper and lower bounds of voltage respectively, and
umeT represents upper bound of failure rate in line (m,n).
Decision variables are binary variable for line hardening (v,
equals 1 if line (m,n) is hardened), binary variable for DG
placement (w,, equals to 1 if DG is located at node n),
interdiction binary variable (z,,, equals to O if line (m,n)
is attacked), active power flow across line (m,n) in period
t (Dmn.t), reactive power flow across line (m,n) in period
t (Gmmn,t), active power generation of DG unit at node 7 in
period ¢ (xf,), reactive power generation at node n in period
t (xit), voltage magnitude at node n in period ¢t (v,¢), and
load shedding at node n in period t (Sy,¢). To simplify the
notations, we use vector g to represent the first-stage decision
variables including y,,, and w,, and vector u to represent the
second-stage decision variables including ppyn.ts Grmn,t xﬁt,
xd,, vpt, and spy.

In the above formulation, set (3) indicates budget constraints
for possible hardening lines and DG units. Set (4) characterizes
the uncertainty set of the probability distribution P of contin-
gency occurrence. More particularly, it determines an upper
bound for the failure rate of each line and also restricts the
number of attacks to be at most Bs. Constraints (5) and (6)
enforce an upper bound for active and reactive power flow
over a line, respectively. Whenever a line is attacked and
not protected, a contingency occurs, i.e., the probability for
non-contingency for that line is zero. Constraints (7) and (8)
restrain active and reactive power generation at each node,
respectively. Constraints (9) restrict the amount of load shed-
ding to be less than the real demand. Constraints (10) confine
the voltage level at each node to be within [p™" pmae],
Constraints (11)-(13) represent linearized DistFlow equations
that have been employed in the literature [21]. In the following,
we obtain a tractable reformulation for the problem (1)-(13).

Proposition 1. For any fixed first stage decision g, the worst-
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case distribution problem maxpes ,, Fp[Q(g,2)] is equiva-
lent to:

max Ep[Q(g, z)] = minmax Q(g, z)

PeD () B>0 =z

+ Z M%Zm + Zmn — 1)an (14)
(m,n)€E
Proof.

E = d 15
S p[Q(g, 2)] mﬂgX/Q(g,Z) p (15
ot / dP =1 (16)
/ (1= 2 )P < g2 (17)

Problem (15)-(17) is always feasible. Moreover, because all
the variables in (g, z) are bounded, (g, z) is bounded and
consequently problem (15)-(17) is always bounded. Therefore,
we can apply strong duality. The dual problem can be written
as follows:

anlg}ﬂ + Dt B (18)
(m,n)e€
v+ Z — Zmn ﬁmn > Q(g7 )7 Vz, (19)

(m,n)e&
where v and 3 are dual variables corresponding to constraints
(16) and (17), respectively. In the above formulation, we can
observe that the optimal solution v should satisfy:

Z (1 - Zmn)ﬁmn}'

(m,n)eE

N = mZaX{Q(g, z) — (20)

Substituting v from (20) to objective function (18) will com-
plete the proof. O

By Proposition 1 and combining two minimization opera-
tions, problem (1)-(13) is equivalent to the following program:

a b
Jminnax Qg 2)

+ Z N%Zz + Zmn — l)ﬂmn
(m,n)eE
III. SOLUTION METHODOLOGY

21

In order to solve Problem (21), we employ a Column-and-
Constraint Generation (CCG) framework that is introduced in
[22]. Tt is illustrated in reference [22] that CCG optimality
cuts are more powerful than commonly used Benders de-
composition cuts and thus converge more quickly. To use
CCG framework, we need to reformulate the original problem
to master problem and subproblem. The master problem is
defined as below:

: maz _ o)
ﬁz%lgle At 2 W = DBmn (22)
(m,n)e€
A>ZZs i D Bunzmn Vi =1,.,7(23)
teT neN (m,n)eE
u/ € H(ga ),\V/j =1..,r (24)
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Since the master problem is a relaxation of the original
problem, it generates a lower bound for problem (1)-(13).
The next step is to obtain the worst-case scenario and add
the corresponding cuts to the master problem. With a given
g and B from the master problem, to detect the worst-case
scenario, we can solve the following subproblem:

ucH(e) | o7 en (m.n)e€

Since for the given g and (3 the subproblem produces a
feasible solution for the trilevel model, it yields to an upper
bound for the original problem. Furthermore, the lower level
program in the subproblem is always feasible and bounded.
Hence, there is no duality gap and we can dualize the inner
minimization problem to transform the subproblem into the
following maximization problem:

max E ﬂmnzmn+2 E Kmnﬂmm Zmn

(m,n)eE teT (m,n)eE
+ymn + Z Z Rmnﬁmmt(zmn + ymn)
teT (m,n)eE
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teT neN teT neN
D2 wnChm Y > D+ Y D Dim
teT neN teT neN teT neN
+ Z Z vmaxﬂ_it _ Z Z ,Uminﬂ_gt (26)
teT neN teT neN
s.t.
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7T72nn ¢t Wgzt - Wﬁt + il 79110 <0
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73, o, 0 are free and other variables are nonpositive.
The corresponding CCG Algorithm is described as follows:
Step 0: Initialization. Set LB = —oo, UB = o0, the set
of attacks F' = (), an optimality gap ¢, and iteration index
r=1.

Step 1: Solve the master problem (22)-(24), obtain optlmal
value objM P and optimal hardening decision g" and ,6'
and update LB = obj M P.

Step 2: Solve the subproblem (26)-(32), obtain optimal
value objSP and optimal attack scenario z”, and update
UB = min{UB, 0bjSP + Z(mmeg(umm —1)Bmn}- Then,
add z" to F, create dispatch variables u” and corresponding
constraints u” € #(g,z") and add them to the master
problem.

Step 3: If Gap = (UB — LB)/LB < ¢, terminate; otherwise,
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r=r7r+1 and go to step 1.

In order to obtain the worst-case distribution, we first run
the CCG algorithm to get the optimal attack set F'. Then, we
solve the problem (18)-(19). The optimal dual solutions will
provide the probability of each attack scenario.

IV. CASE STUDY

We evaluate the effectiveness of our proposed model by
performing experiments on the IEEE 33-node distribution
system. Fig. 1 illustrates the impact of hardening budget
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Fig. 1. Load shedding for different hardening budget

on load shedding. As it can be seen the magnitude of load
shedding decreases when the hardening budget increases. For
instance, by expanding hardening budget from 1 to 10, load
shedding decreases more than 57% and 55% in our model
and robust model, respectively. Nevertheless, as the budget
rises, the influence of line hardening becomes smaller since
we only observe nearly 2% and 3% reduction in our model
and robust model when the budget is enlarged from 8 to 10.
This indicates that it is not necessary to do line hardening
as much as possible as it may just cause more costs without
improving the reliability of the system significantly. We also
compare the performance of our model against robust model
in Fig. 1. For the same hardening budget, the load shedding
in our model is significantly less than the robust model in all
cases. This obviously shows that our model outperforms the
robust model. Furthermore, in order to investigate the impact
of locating DG units in the grid, we randomly assign DG units
to nodes and then solve optimization models. Results in Fig.
1 clearly verify the key role of the optimal DG placement
in load shedding reduction. Comparing four different curves
in Fig. 1 reveals that considering both line hardening and
optimal DG assignment is essential to enhance distribution
system resilience.

Another important parameter that can affect the results is
the upper bound of failure rate for each line. To examine
the impact of this parameter we run three different random
cases. In each case, we first pick a line arbitrary and set its
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Fig. 2. Impact of increasing number of components with potential failure
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TABLE I
WORST-CASE DISTRIBUTION CONFIGURATION
attacked lines  probability
15-16-17 0.09
2-18-31 0.1
3-20-23 0.07
4-18-24 0.05
7-26-30 0.6
6-23-25 0.09

upper bound of failure rate equals to p/»%* = 0.1 and other
upper bounds to be zero. We iteratively add one more random
line (m,n) with p%* = 0.1 at each step until all lines are
selected. Fig. 2 shows the amount of load shedding at each step
of this procedure. As the number of selected lines increases,
the results converge to the robust model. This finding is aligned
with our intuition that the robust model treat with all lines in
the same manner.

Finally, we drive the worst-case distribution of attack sce-
nario in Table I. It can be noticed that there are some sce-
narios with low probability of occurrence. Our approach can
successfully recognize these scenarios with their associated
probabilities and thus it can serve as a useful tool for the
system operator to improve the security and reliability of the
distribution power system under natural disasters.

V. CONCLUSION

This paper proposes a novel model to enhance the distribu-
tion power system resilience under natural disasters. Results
reveal that optimal planning of hardening lines and DG unit
placements can effectively reduce the load shedding in the
grid. Comparing with commonly used robust models, our
approach is promising as it yields to less load shedding.
As the number of components with potential high failure
probability increases, our results converge to the robust model.
Furthermore, our model provides a useful tool for system
operators to identify the probability of each disaster scenario
in the worst-case distribution and plan to protect the grid
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accordingly in a cost-effective manner while ensuring security
and reliability of the system. Therefore, our proposed approach
is a practical approach.
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