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Abstract—In this paper, a new distributionally robust defender-
attacker-defender (DAD) model is proposed for the planning of
line hardening and allocating distributed generators (DG), to
hedge against the risk of disruptions brought by natural disasters
or extreme weather conditions. In our approach, we consider the
case that the true probability distribution of extreme weather
is ambiguous, and minimize the load shedding with the worst-
case scenario of weather distribution. Unlike conventional robust
models, our approach takes advantage of moment information of
the weather distribution that is learned from historical data. We
reformulate the proposed model as a tractable two-stage robust
optimization and employ a column-and-constraint generation
algorithm to solve it. Case study on the IEEE 32-node distribution
test system illustrates the effectiveness of the proposed method.
Index Terms—Distribution network, distributionally robust

optimization, natural disaster, power system resilience.

I. INTRODUCTION

DEspite expanded and continued efforts on improving the

survivability of power grids under natural disasters, U.S.

energy infrastructure is still increasingly vulnerable to severe

natural disasters such as earthquake [1], flood [2], hurricane

[4], heat-wave [3] and other extreme weather conditions,

which impact on economy and society significantly. According

to a study by Congressional Research Service [15], U.S. incurs

20–55 billion dollars annually because of weather-related

power outages. Only during years of 2003-2012, about 679

weather-related power outages occurred in the U.S. and each

affected more than 50,000 customers [16]. Projections indicate

that with changes in climate such as increasing temperatures

and sea-level rise, the intensity and frequency of extreme

weather events are more inevitable, which pose a serious

threat to power infrastructure assets [14]. This calls for an

accelerating need for improving power grids reliability and

resiliency against disasters. Recent U.S. government initiatives

and programs like Grid modernization Multi-Year Program

Plan also reveal the importance of power system resilience

under severe weather conditions [13].

Currently, the North American Electricity Reliability Cor-

poration enforces N − 1 security criteria in power systems
[20], which requests that the power system needs to continue

meeting the electricity loads under any single contingency. The
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logic behind this policy is that the probability of occurring

single contingency is much more than a set of simultaneous

multiple contingencies. However, since contingencies are usu-

ally dependent events, it appears that the likelihood of multiple

contingencies is not negligible. Hence, various mathematical

models have been proposed in the literature to provide optimal

protection strategy under more general reliability criteria like

N − k security criteria.
From contingency analysis perspective, resilient power net-

work planning models in the literature can be divided in two

categories: deterministic worst-case (robust) models and un-

certain interdiction models. In robust models, the interdiction

planner launches a disruption that imposes the most significant

loss to the defender. The trilevel defender-attacker-defender

(DAD) games have been recently gained more popularity in

this area [5], [6]. This sequential game involves three stages.

In the first stage, the system operator, as a defender, prepares

the grid by hardening the system components before power

interruptions occur. In the second stage, the natural disaster,

as an attacker, determines to attack a set of components

to inflict maximum possible damage. Finally, the system

operator responds to the disruptions by adjusting power flow

accordingly to mitigate the adverse consequences. Reference

[8] studies a two-stage robust optimization model for the

planning of a resilient distribution network. It extends the

traditional N − k security criteria to capturing the spatial and
temporal dynamics of the hurricane. Reference [7] adopts a

DAD model for allocating defensive resources on power grids.

It customizes Column-and-Constraint Generation algorithm

to efficiently solve the problem. Even though robust mod-

els provide reliable decisions by considering the worst-case

contingency scenario, this approach overestimates the chance

of severe disruption scenario and therefore too conservative.

In uncertain interdiction models, a predefined probability is

assigned to each contingency scenario to handle stochastic

dynamics of catastrophic events. Reference [10] develops two

models for optimizing design and service restoration in power

transmission networks under stochastic line disruptions. It

resorts to a finite set of scenarios with equal probability of

realization to capture uncertainty in the problem. Reference

[11] models a mixed integer programming for the stochastic

network interdiction problem, where transmission line dis-

ruption follows Bernoulli distribution. The sample average

approximation method is used to reformulate the problem and
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a decomposition-based approach is proposed to solve the prob-

lem. While the stochastic nature of contingency occurrences

is captured by a finite set of representative scenarios or a

pre-assumed distribution in uncertain interdiction models, any

inaccurate estimation of underlying probability distribution

would trigger to a suboptimal and biased protection planning.

Therefore, both of the robust and stochastic approaches have

disadvantages.

Another track of works in the literature has been devoted to

assess security of the power systems. The main objective of

models in this area relies on the proper determination of both

probability and undesirable consequence of contingency oc-

currences. However, most of these models do not provide any

mechanism for identifying and defending those contingencies.

Several statistical techniques have been studied to compute the

probability of contingencies such as Markov chains, Poisson

regression, and Bayesian models [12]. Reference [19] identi-

ties high riskN−k contingencies based on probability analysis
to protect system failures. It utilizes event tree technique to

describe contingencies and rare event approximation method

to evaluate associated probabilities. Reference [18] develops

a Monte-Carlo nonsequential simulation framework to assess

impacts of extreme weather events on failure rates of distri-

bution lines. It formulates the probability of each contingency

by a Poisson distribution function. Because of the complexity

involved in forecasting weather-related outages, these kinds

of models, however, have limited application in practice. For

instance, simulation-based frameworks require a significant

amount of computation resources and their convergency is not

guaranteed in general.

In this paper, we propose a novel distributionally robust

optimization approach to enhance the resilience of power grid

planning. Our proposed model overcomes the disadvantages

of both stochastic programming, in which the distribution of

contingencies is predetermined and has no robustness respect

to errors, and robust models which completely ignore the

distribution of contingencies. Specifically, we consider the

probability of contingency occurring, but instead of fixing

the probability of contingency to any particular distribution,

we construct an ambiguity set of contingency probability

distributions. Then, we minimize the worst-case expected

load shedding with respect to all probability distributions

in the ambiguity set. More particularly, we concentrate on

distribution power networks, which are totally sensitive to

local weather conditions and can directly affect customer load

points since they provide the connection between customers

and the bulk system. Then, we will develop an efficient

algorithm to detect the worst-case probability distribution of

contingencies. Also, our algorithm can effectively provide

valuable information to system operator to make an accurate

judgment about security level of the system. The rest of

this paper is organized as follows. In section II we describe

mathematical formulation. Solution methodology is provided

in section III. Computational experiments are conducted in

section IV. Finally, we conclude the paper in section V.

II. MATHEMATICAL FORMULATION

Using robust optimization models is quite prevalent in the

literature to obtain the worst-case load shedding in the power

grid. There are two essential criticisms against robust models.

First, they treat all the components in the system with the same

importance. However, when facing natural disasters, not all

components are equally exposed to failure. For example, prin-

cipal components may be of great attention by system opera-

tors and they likely arrange regular maintenance to ensure that

these components are operating correctly. Thus, these assets

are less susceptible to extreme weather conditions. But some

other components like overhead lines are highly affected by

environmental factors. Second criticism is that robust models

are often over conservative, since they overlook the probability

information of component failures. To overcome limitations of

robust models, we propose a distributionally robust framework

on resilient smart distribution system with the consideration

of the probabilistic characteristics of natural disasters. Our

model involves three levels. In the upper level, the defender

intends to improve the resilience of the distribution power

system by allocating defensive resources to power lines and

locating distributed generators (DG) in proper buses. In the

middle level, a natural disaster, as an attacker, randomly

disrupts the system with its ambiguous distribution P aiming

at damaging the system to the largest extent, i.e., maximum

load shedding. Finally, in the lower level, the system operator

seeks to minimize the load shedding by adjusting power flow

throughout the grid. The mathematical formulation of the

model is as follows.

min
g∈G

max
P∈D(g)

EP[Q(g, z)] (1)

s.t.

Q(g, z) = min
u∈H(g,z)

∑

t∈T

∑

n∈N
snt (2)

G =

{ ∑

(m,n)∈E
ymn ≤ B1,

∑

n∈N
wn ≤ B2,

ymn, wn ∈ {0, 1}, ∀(m,n) ∈ E , ∀n ∈ N
}

(3)

D(g) =

{∫
dP = 1, 0 ≤

∫
(1− zmn)dP ≤ μmax

mn ,

∑

(m,n)∈E
(1− zmn) ≤ B3, zmn ∈ {0, 1},

∀(m,n) ∈ E
}

(4)

H(g, z) =

{

0 ≤ pmn,t ≤ Kmn(zmn + ymn),

∀(m,n) ∈ E , ∀t ∈ T , (5)

0 ≤ qmn,t ≤ Rmn(zmn + ymn),

∀(m,n) ∈ E , ∀t ∈ T , (6)

0 ≤ xp
nt ≤ wnC

p
n, ∀n ∈ N , ∀t ∈ T , (7)

0 ≤ xq
nt ≤ Dq

nt, ∀n ∈ N , ∀t ∈ T , (8)
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0 ≤ snt ≤ Dp
nt, ∀n ∈ N , ∀t ∈ T , (9)

νmin ≤ νnt ≤ νmax, ∀n ∈ N , ∀t ∈ T , (10)∑

k|(n,k)∈E
pnk,t = pmn,t −Dp

nt + xp
nt + snt,

∀n ∈ N, ∀(m,n) ∈ E , ∀t ∈ T , (11)∑

k|(n,k)∈E
qnk,t = qmn,t −Dq

nt + xq
nt,

∀n ∈ N, ∀(m,n) ∈ E , ∀t ∈ T , (12)

νnt = νmt − (τmnpmn,t + ηmnqmn,t)/V0,

∀m,n ∈ N|(m,n) ∈ E , ∀t ∈ T ,
}

(13)

where, T , N , and E represent sets of time periods, nodes,
and power lines, respectively. B1 and B2 denote available

budget for hardening power lines and DG units and B3 is the

budget for line attackings. τmn and ηmn indicate resistance

and reactance of the power line (m,n), Kmn and Rmn are

upper limits of active and reactive power flow in line (m,n),
Dp

nt and Dq
nt are active and reactive power demand at node n

in time t, Cp
n is the capacity of DG unit at node n, ν

max and

νmin are upper and lower bounds of voltage respectively, and

μmax
mn represents upper bound of failure rate in line (m,n).
Decision variables are binary variable for line hardening (ymn

equals 1 if line (m,n) is hardened), binary variable for DG
placement (wn equals to 1 if DG is located at node n),
interdiction binary variable (zmn equals to 0 if line (m,n)
is attacked), active power flow across line (m,n) in period
t (pmn,t), reactive power flow across line (m,n) in period
t (qmn,t), active power generation of DG unit at node n in

period t (xp
nt), reactive power generation at node n in period

t (xq
nt), voltage magnitude at node n in period t (νnt), and

load shedding at node n in period t (snt). To simplify the

notations, we use vector g to represent the first-stage decision
variables including ymn and wn and vector u to represent the
second-stage decision variables including pmn,t, qmn,t, x

p
nt,

xq
nt, νnt, and snt.

In the above formulation, set (3) indicates budget constraints

for possible hardening lines and DG units. Set (4) characterizes

the uncertainty set of the probability distribution P of contin-

gency occurrence. More particularly, it determines an upper

bound for the failure rate of each line and also restricts the

number of attacks to be at most B3. Constraints (5) and (6)

enforce an upper bound for active and reactive power flow

over a line, respectively. Whenever a line is attacked and

not protected, a contingency occurs, i.e., the probability for

non-contingency for that line is zero. Constraints (7) and (8)

restrain active and reactive power generation at each node,

respectively. Constraints (9) restrict the amount of load shed-

ding to be less than the real demand. Constraints (10) confine

the voltage level at each node to be within [νmin, νmax].
Constraints (11)-(13) represent linearized DistFlow equations

that have been employed in the literature [21]. In the following,

we obtain a tractable reformulation for the problem (1)-(13).

Proposition 1. For any fixed first stage decision g, the worst-

case distribution problem maxP∈D(g)
EP[Q(g, z)] is equiva-

lent to:

max
P∈D(g)

EP[Q(g, z)] = min
β≥0

max
z

Q(g, z)

+
∑

(m,n)∈E
(μmax

mn + zmn − 1)βmn (14)

Proof.

max
P∈D(g)

EP[Q(g, z)] = max
P

∫
Q(g, z)dP (15)

s.t.

∫
dP = 1 (16)

∫
(1− zmn)dP ≤ μmax

mn (17)

Problem (15)-(17) is always feasible. Moreover, because all

the variables in H(g, z) are bounded, Q(g, z) is bounded and
consequently problem (15)-(17) is always bounded. Therefore,

we can apply strong duality. The dual problem can be written

as follows:

min
β≥0,γ

γ +
∑

(m,n)∈E
μmax

mn βmn (18)

s.t.

γ +
∑

(m,n)∈E
(1− zmn)βmn ≥ Q(g, z), ∀z, (19)

where γ and β are dual variables corresponding to constraints
(16) and (17), respectively. In the above formulation, we can

observe that the optimal solution γ should satisfy:

γ = max
z
{Q(g, z)−

∑

(m,n)∈E
(1− zmn)βmn}. (20)

Substituting γ from (20) to objective function (18) will com-

plete the proof.

By Proposition 1 and combining two minimization opera-

tions, problem (1)-(13) is equivalent to the following program:

min
β≥0,g∈G

max
z

Q(g, z)

+
∑

(m,n)∈E
(μmax

mn + zmn − 1)βmn (21)

III. SOLUTION METHODOLOGY

In order to solve Problem (21), we employ a Column-and-

Constraint Generation (CCG) framework that is introduced in

[22]. It is illustrated in reference [22] that CCG optimality

cuts are more powerful than commonly used Benders de-

composition cuts and thus converge more quickly. To use

CCG framework, we need to reformulate the original problem

to master problem and subproblem. The master problem is

defined as below:

min
β≥0,g∈G

λ+
∑

(m,n)∈E
(μmax

mn − 1)βmn (22)

s.t.

λ ≥
∑

t∈T

∑

n∈N
sj
nt +

∑

(m,n)∈E
βmnzmn, ∀j = 1, ..., r (23)

uj ∈ H(g, zj), ∀j = 1, ..., r. (24)
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Since the master problem is a relaxation of the original

problem, it generates a lower bound for problem (1)-(13).

The next step is to obtain the worst-case scenario and add

the corresponding cuts to the master problem. With a given

g and β from the master problem, to detect the worst-case

scenario, we can solve the following subproblem:

max
z

min
u∈H(g,z)

∑

t∈T

∑

n∈N
snt +

∑

(m,n)∈E
βmnzmn. (25)

Since for the given g and β the subproblem produces a

feasible solution for the trilevel model, it yields to an upper

bound for the original problem. Furthermore, the lower level

program in the subproblem is always feasible and bounded.

Hence, there is no duality gap and we can dualize the inner

minimization problem to transform the subproblem into the

following maximization problem:

max
π,z

∑

(m,n)∈E
βmnzmn +

∑

t∈T

∑

(m,n)∈E
Kmnπ

1
mn,t(zmn

+ymn) +
∑

t∈T

∑

(m,n)∈E
Rmnπ

2
mn,t(zmn + ymn)

−
∑

t∈T

∑

n∈N
Dp

ntπ
3
nt −

∑

t∈T

∑

n∈N
Dq

ntπ
4
nt +

∑

t∈T

∑

n∈N
wnC

p
nπ

5
nt +

∑

t∈T

∑

n∈N
Dq

ntπ
6 +

∑

t∈T

∑

n∈N
Dp

ntπ
7
nt

+
∑

t∈T

∑

n∈N
vmaxπ8

nt −
∑

t∈T

∑

n∈N
vminπ9

nt (26)

s.t.

π1
mn,t + π3

mt − π3
nt +

τmn

V0
π10

nt ≤ 0,

∀m,n ∈ N|(m,n) ∈ E , ∀t ∈ T , (27)

π2
mn,t + π4

mt − π4
nt +

ηmn

V0
π10

nt ≤ 0,

∀m,n ∈ N|(m,n) ∈ E , ∀t ∈ T , (28)

−π3
nt + π5

nt ≤ 0, ∀n ∈ N , ∀t ∈ T , (29)

−π4
nt + π6

nt ≤ 0, ∀n ∈ N , ∀t ∈ T , (30)

π8
nt − π9

nt − π10
nt ≤ 0, ∀n ∈ N , ∀t ∈ T , (31)

−π3
nt + π7

nt ≤ 1, ∀n ∈ N , ∀t ∈ T , (32)

π3
nt, π

4
nt, π

10
nt are free and other variables are nonpositive.

The corresponding CCG Algorithm is described as follows:

Step 0: Initialization. Set LB = −∞, UB = ∞, the set
of attacks F = Ø, an optimality gap ε, and iteration index
r = 1.
Step 1: Solve the master problem (22)-(24), obtain optimal

value objMP and optimal hardening decision ĝr and β̂
r
,

and update LB = objMP .
Step 2: Solve the subproblem (26)-(32), obtain optimal

value objSP and optimal attack scenario ẑr, and update

UB = min{UB, objSP +
∑

(m,n)∈E(μ
max
mn − 1)βmn}. Then,

add ẑr to F , create dispatch variables ur and corresponding

constraints ur ∈ H(g, ẑr) and add them to the master

problem.

Step 3: If Gap = (UB−LB)/LB ≤ ε, terminate; otherwise,

r = r + 1 and go to step 1.

In order to obtain the worst-case distribution, we first run

the CCG algorithm to get the optimal attack set F . Then, we
solve the problem (18)-(19). The optimal dual solutions will

provide the probability of each attack scenario.

IV. CASE STUDY

We evaluate the effectiveness of our proposed model by

performing experiments on the IEEE 33-node distribution

system. Fig. 1 illustrates the impact of hardening budget

Fig. 1. Load shedding for different hardening budget

on load shedding. As it can be seen the magnitude of load

shedding decreases when the hardening budget increases. For

instance, by expanding hardening budget from 1 to 10, load

shedding decreases more than 57% and 55% in our model

and robust model, respectively. Nevertheless, as the budget

rises, the influence of line hardening becomes smaller since

we only observe nearly 2% and 3% reduction in our model

and robust model when the budget is enlarged from 8 to 10.

This indicates that it is not necessary to do line hardening

as much as possible as it may just cause more costs without

improving the reliability of the system significantly. We also

compare the performance of our model against robust model

in Fig. 1. For the same hardening budget, the load shedding

in our model is significantly less than the robust model in all

cases. This obviously shows that our model outperforms the

robust model. Furthermore, in order to investigate the impact

of locating DG units in the grid, we randomly assign DG units

to nodes and then solve optimization models. Results in Fig.

1 clearly verify the key role of the optimal DG placement

in load shedding reduction. Comparing four different curves

in Fig. 1 reveals that considering both line hardening and

optimal DG assignment is essential to enhance distribution

system resilience.

Another important parameter that can affect the results is

the upper bound of failure rate for each line. To examine

the impact of this parameter we run three different random

cases. In each case, we first pick a line arbitrary and set its
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μ

Fig. 2. Impact of increasing number of components with potential failure
probability on load shedding

TABLE I
WORST-CASE DISTRIBUTION CONFIGURATION

attacked lines probability
15-16-17 0.09
2-18-31 0.1
3-20-23 0.07
4-18-24 0.05
7-26-30 0.6
6-23-25 0.09

upper bound of failure rate equals to μmax
mn = 0.1 and other

upper bounds to be zero. We iteratively add one more random

line (m,n) with μmax
mn = 0.1 at each step until all lines are

selected. Fig. 2 shows the amount of load shedding at each step

of this procedure. As the number of selected lines increases,

the results converge to the robust model. This finding is aligned

with our intuition that the robust model treat with all lines in

the same manner.

Finally, we drive the worst-case distribution of attack sce-

nario in Table I. It can be noticed that there are some sce-

narios with low probability of occurrence. Our approach can

successfully recognize these scenarios with their associated

probabilities and thus it can serve as a useful tool for the

system operator to improve the security and reliability of the

distribution power system under natural disasters.

V. CONCLUSION

This paper proposes a novel model to enhance the distribu-

tion power system resilience under natural disasters. Results

reveal that optimal planning of hardening lines and DG unit

placements can effectively reduce the load shedding in the

grid. Comparing with commonly used robust models, our

approach is promising as it yields to less load shedding.

As the number of components with potential high failure

probability increases, our results converge to the robust model.

Furthermore, our model provides a useful tool for system

operators to identify the probability of each disaster scenario

in the worst-case distribution and plan to protect the grid

accordingly in a cost-effective manner while ensuring security

and reliability of the system. Therefore, our proposed approach

is a practical approach.
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