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ABSTRACT

Material properties of brain white matter (BWM) show high
anisotropy due to the complicated internal three-dimensional
microstructure and variant interaction between heterogeneous
brain-tissue (axon, myelin, and glia). From our previous study,
finite element methods were used to merge micro-scale
Representative Volume Elements (RVE) with orthotropic
frequency domain viscoelasticity to an integral macro-scale
BWM. Quantification of the micro-scale RVE with anisotropic
frequency domain viscoelasticity is the core challenge in this
study.

The RVE behavior is expressed by a viscoelastic
constitutive material model, in which the frequency-related
viscoelastic properties are imparted as storage modulus and loss
modulus for the composite comprised of axonal fibers and
extracellular glia. Using finite elements to build RVEs with
anisotropic frequency domain viscoelastic material properties is
computationally very consuming and resource-draining.
Additionally, it is very challenging to build every single RVE
using finite elements since the architecture of each RVE is
arbitrary in an infinite data set. The architecture information
encoded in the voxelized location is employed as input data and
is consequently incorporated into a deep 3D convolution neural
network (CNN) model that cross-references the RVEs’ material
properties (output data). The output data (RVEs’ material
properties) is calculated in parallel using an in-house developed
finite element method, which models RVE samples of axon-
myelin-glia composites. This novel combination of the CNN-
RVE method achieved a dramatic reduction in the computation
time compared with directly using finite element methods
currently present in the literature.
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1. INTRODUCTION

The brain white matter (BWM) is comprised of networks of
nerve fibers called axons, which are covered by myelin, a lipid-
rich substance, and are embedded in glia, the extracellular
matrix. Due to the heterogeneity of the BMW tissue, its
mechanical properties vary considerably with the local
microstructural architecture, i.e., geometry, location, and
orientation of BWM, and need to be analyzed at the micro-scale
level [1-4]. According to those considerations, this paper focuses
on the quantification of the mechanical properties of micro-scale
Representative Volume Elements (RVE) of the BWM with
anisotropic frequency domain viscoelasticity [5, 6]. The primary
purpose of these RVEs is to produce the numerical linkages
between the heterogeneity of the microstructure of BWM and the
anisotropic mechanical material properties [7-11].

Finite elements (FE) offer great freedom in discretizing a
composite structure at the microstructural scale and analyze its
stress-strain response [8-12]. However, the computational
resources required for the FE discretization and analysis are
usually very demanding. Especially for BWM microstructural
composites, the complex geometric architecture necessitates
mesh refinement increasing the computational cost.
Additionally, considering that the complex interactions of the
composite tissues will also call for further mesh refinement of
the FE model to increase the accuracy of the results, the increase
of the computational cost can be dramatic [1-5].
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Apart from the high computational requirements of the FE
method, a more significant disadvantage is the mesh
complexities that arise for the intricate geometric 3D model.
Mesh intricacies are owed to the arbitrary and random nature of
axons groupings in the BWM, which create the 3D geometric
models of the RVEs. It’s noteworthy that different regions of the
BMW offer different microstructural architectures ranging from
uniform isotropic parallel configurations of axons to completely
random ones. These axons will unavoidably include some
irregular extremely sharp angles, which will cause mesh failure
or even simulation failure.

The Convolution Neural Network (CNN) has been proved
as a high-performance, practical approach for computer vision
and image analysis applications [13-15]. Here, the CNN is
employed as a deep learning method, which is ideally suited to
resolve the computational cost and mesh failure issues. In
essence, the FE method is used to create the RVEs and collect
training data from the stress-strain analysis, while the CNN is
utilized to establish structure-property linkages for RVEs. It is
expected that the CNN model will provide a much faster answer
compared to the FE model with only a modest loss accuracy.

2. MATERIALS AND METHODS
2.1. Representative volume element model

In our study, the RVE scale has to be large enough to capture
the microstructural tissue interactions within the BWM, but also
small enough to account for the detailed geometric information
within a reasonable-sized model at an affordable computational
cost [13-15].

myelin

axon

Figure 1. Six (6) axons covered by myelin bionic with random walk
direction and location. The radii of axon and myelin are randomly changed based
on a certain value range (15 ~ 20 um). The ratio of the internal/external radius is
0.7 ~0.8.

Since the BWM is a complex anisotropic structure, the location
and direction of axons can be randomly assigned in space. The
RVE:s used in this study were generated by starting with a 3D
axon bionic random walk algorithm in python (Figure 1). Based
on this algorithm, the model randomly generates geometric
structures mimicking 3D axons. The axons and myelin are

assigned random radii congruent to the geometric constraints
asserted by real BWM microtome data [1-2]. This algorithm
automatically avoids intersecting axons while it maintains a
minimum interaxonal distance to maximize the axonal volume
fraction.

After the geometric reconstruction of the axon, myelin, and
glia composite by the aforementioned reconstruction model, a
3D RVE cutting algorithm based on Abaqus Python API was
built (Figure 2). Based on this algorithm, the RVEs are created
for building the FE model (Figure 3).

Figure 2. Anisotropic RVEs cutting algorithm. The length of the RVEs’ edge is
25 um. Twenty-two (22) RVEs containing six (6) axons are depicted. The
axons were generated using a bionic random walk algorithm.

Figure 3. Anisotropic RVEs created from the cutting method. The green, red,
and grey parts are the axons, myelin, and glia, respectively.

2.2. Finite element analysis

In order to represent the accurate constitutive relation of the
RVEs, the full anisotropic stress-strain relation is considered in
the FE analysis. Six directional harmonic excitation loads at
50Hz frequency of 0.1 kPa are independently applied to the
RVEs (Figure 4).

Since the full anisotropic material properties have 32
independent constants, the total number of independent
constants of the RVEs’ material properties should be 72 in the
viscoelastic frequency domain. That data will be used in the
training of the CNN as the output section.
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Figure 4. The six (6) loading directions for anisotropic RVEs. From the upper
left to lower right corners, the six directions are three tensile in x-axis, y-axis, z-
axis, and three shear directions in the x-y, y-z, and x-z planes. (The deformation
is scaled to illustrate the loading directions).

2.3. 3-D CNN for homogenization of RVE

The purpose of CNN is to utilize finite samples of RVEs to
reach an answer quickly to offset the high computational cost and
possible mesh failure (Figure 5). The final trained CNN can
generate anisotropic material properties based on the input of
geometric information of RVEs.
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Figure 5. Methodology combining FEs and deep learning. The tissue samples
provide information for the reconstruction of RVEs. The RVEs would be used
for building the FE model and extracting geometric information. The FE model
outputs the anisotropic RVE material properties, which is the stiffness tensor of
RVEs (output part of the training set for CNN). The voxelization process
generates the voxelized 3D NumPy array to represent the geometric information
(input part of the training set for CNN).

The geometric information and input data of each
anisotropic RVE includes volume fraction (VF), axonal
orientation, and the three distinct material properties (axon,
myelin, and glia) with their location information in the RVE
cube. It is noteworthy that, using the VF, axon/myelin ratio,
axonal orientation, and material properties is not enough to
represent the uniqueness of each RVE. Therefore, a more
accurate and distinctive method should be employed to
implement the geometric information as training inputs. Based
on these considerations, the voxelization method is selected to
extract the geometric information and the 3D location of the
RVEs in space (Figure 6).

voxelization

\ Combine as
3D NumPy
( arrays

voxelization

Figure 6. The voxelization method for RVE. The green and red parts are the
axons and myelin geometric constructs. The voxelization method creates the 3D
NumPy arrays based on the occupation of axons and myelin in 3D space.

The voxelization method scans the full 3D cubic space of
the RVE:s to get the occupation (points of material occupied by)
of axons and myelin. 3D NumPy arrays (nxnxn dimension,
where n is the number representing the “occupation” value in
each edge of the RVE cubes) are generated based on the spatial
locale information. If the point of the current scan in 3D space is
an axon, the occupation value on this point is set to 1. If the point
of the current scan in 3D space is myelin, the occupation value
in this point is set to 0.5. The occupation value of the remaining
points that are neither axons part nor myelin is set to 0. The
combined 3D NumPy arrays (occupation of RVEs) would
embody the input of training data for CNN (Figure 5). The
output is the anisotropic material properties of RVEs (stiffness
tensor of 72 constants).

3. RESULTS AND DISCUSSION

In the first step, 927 FE RVE models are created. During the
FE analysis, each RVE model is subject to six loading tests (one
in each direction as described in Figs 4 and 7) to determine the
stiffness tensors of 72 constants (Figure 7) for the output data of
CNN.

Real part stiffness tensor of RVE
517603 | 469732 | 474577 | 130016 | 1.6737 0.1676

193719 48.591 473477 1.2747 1.55519 | 0.426518

493799 | 46.8518 | 491081 | 124919 | 1.58754 | 0.446288

0051059 | 0028111 | 0.002908 | 0.936006 | 0.015672 | 0.00965

0.058731 | 0023063 | 0.06006 | 0016339 | 0962514 | 0.026492

-001814 | -0.00292 | 0.006712 | 0.003229 | 0.01163 | 0893384

Imaginary part stifiness tensor of RVE

0.588205 | 0.29058 01526 | 0.050418 | 0.128437 | 0.06339

008247 | 0302568 [ 019093 | 0.037226 | 0.099464 | 0.045218

-008032 | -0.3107 | 0431111 | 0.030198 | 0.112135 | 0.054449

0.019878 | 0.007888 | 0.001927 | 0.334907 | 0.006874 | 0.004648

0.071951 | 0.004839 | 0.076721 | 0.007516 | 0.348879 | 0.013926

-0.0089 | 0.000954 | 0.00523 | 0.001634 | 0.00545 | 0.316166

Figure 7. Example of an RVE sample subjected to six(6) different loading
conditions (left) and the resulting RVE stiffness tensor (right) .

High density voxelization can better capture the intrinsic
geometric details of the composite architecture of the RVEs.
When the density of voxelization increases, the number of
occupation values (nxnxn) increases in a particular RVE. The
larger number of occupation values in an RVE, the more
information is contained in the 3D NumPy arrays. The latter
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leads to increased accuracy and completeness of the RVE
geometrical description. However, using a large number of
occupation values will sharply increase the input dimensions of
the CNN, resulting in higher computational cost. Here, a balance
between the geometric expressiveness and the computational
cost was achieved by selecting a 30x30x30 dimensional
occupation for voxelization. That is, the voxelization method
will generate a 30x30%30 dimension 3D NumPy arrays as the
input data of CNN. The architecture of 3D CNN is illustrated in
Figure 8.

The full dataset (927 samples) was separated as the training
dataset (881 samples) and the testing dataset (46 samples).
During the training process, the occupation data of 3D NumPy
arrays generated from 3D RVEs are the input training data of
CNN. The output training data of the CNN, i.e., an RVE’s
stiffness tensor, is generated from the FE model. The training
data will go through the architecture of the CNN and obtain the
output in the final stage in Figure 8. Then this output will be
used to calculate Mean Square Errors (MSE) based on the output
of the FE model. After that, the optimization process will be used
to update the CNN model. Those processes are called forward
propagation and backward propagation in neural network
training. The validation set was split as 10% of the training set.

In Figure 8, each convolution layer has convolution filters
and an activation function. A convolution filter passes over all
the voxels of the 3D NumPy array to produce voxels to assess
the convolved output in the current layer. The activation function
employed in this paper is the Rectified Linear Unit (ReLU),
which is used to introduce the nonlinear relationship between
inputs and outputs. ReLU activation function can be defined as
vy = max(0, x), where x is the input value, and y is the output

value. The max-pooling layer partitions the input 3D NumPy
array into non-overlapping sub-regions, and for each such sub-
region outputs the maximum value. After the final convolution
layer, 3D NumPy array is flattened into a 1D NumPy array (fully
connected layers). The fully connected layers are gradually
reduced dimension to 72 by the dense layer.

The trained CNN can generate the stiffness tensor based on
the input of 3D voxelization of the geometrical structure of the
RVEs. As is described in Figure 5, based on new tissue samples,
the new 3D geometrical reconstruction process can offer new 3D
models. The new 3D models will act as the input of the
voxelization process and record the occupation data of the 3D
NumPy arrays. In turn, the 3D NumPy arrays will be integrated
into the trained CNN, and the CNN will output the stiffness
tensors. During this scheme, the FE analysis can be omitted, and
the on-time result of RVEs’ anisotropic material properties will
be derived directly from the CNN.

‘ Input Layer ‘ 3D Voxelization ‘ 1*30*30*30 ‘
Y

‘ 3D Convolution + ReLu Filters: 64%5*5%5 ‘ 64*30*30*30 ‘
Y

‘ Max Pooling ‘ Pool Size: 2%2*2 ‘ 64*15*15*15 ‘
Y

‘ 3D Convolution + ReLu Filters: 128*3%3*3 ‘ 128*15*15*15 ‘
Y

‘ Max Pooling ‘ Pool Size: 2%2*2 ‘ 128*7*7*7 ‘
Y

‘ 3D Convolution + ReLu Filters: 256*3%3*3 ‘ 256777 ‘
Y

‘ Max Pooling ‘ Pool Size: 2%2%2 ‘ 256+3%3#3 ‘
Y

‘ 3D Convolution + ReLu| Filters: 512+3<3*3 ‘ 5124333 ‘

‘ ey e ey ‘ Flatten ‘ 13824 ‘
Y

‘ Fully Connected Layer Dense ‘ 1024 ‘
Y

‘ Fully Connected Layer Stiffness Tensors ‘ 72 ‘

Figure 8. The architecture of the 3D CNN used in this study. The left column is
the name of the layer and the activation function of CNN. The middle column is
the filter size and input/output data. The right column is the feature tensor size
output of each layer. ReLu activation function was used for the convolution layer.
The max-pooling layer was applied between each convolution layer.

The validation set was split as 10% of the training set. The
training history is shown in Figure 9. The results indicate that
the MSE (the difference between expectation output and training
output in each epoch) is decreased based on the training process.
An epoch is one cycle through the full training dataset. In this
training history, it is clear that the model is continuously
decreasing the bias at each epoch. Moreover, the 3D CNN model
has comparable performance on both training and validation
datasets. The final validation MSE value is 0.0051, and the final
training MSE value is 0.0038. The prediction of the testing
dataset based on the trained CNN results in a coefficient of
determination of R?=0.8225. The coefficient of determination
ranges from 0 (poor fit) to 1 (perfect fit) and it provides a
measure of how well the test outcomes can be explained by the
model. The above results illustrate that the training process is
successful based on the current 3D CNN  architecture.
Furthermore, with careful design of architecture and tuning of
the hyperparameters (voxelization size, pool numbers, pooling
dimensions, filters number/dimensions, as described in Figure
8), the deep learning approach (3D CNN) has a high potential to
produce a reliable and robust prediction of the anisotropic
material properties of RVEs with given geometrical information.
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Figure 9. The plot of the 3D CNN model loss on training and validation datasets.
The loss function used in the training procedure is MSE. The blue line is the MSE
of training datasets. The orange line is the MSE of validation datasets.

4. CONCLUSIONS

The use of FE techniques to construct brain white matter
(BWM) RVEs with anisotropic frequency domain viscoelastic
material is computationally expensive. Different methodologies
are sought in order to reduce the computational cost and avoid
computational mesh failure while maintaining the intricate
architectural information of the different phases present in the
BMW. A 3D convolution neural network (CNN) model that
exploits the voxelized geometric information encoded in distinct
locations is employed while it cross-references the RVEs’
material properties. In effect, we demonstrated the acumen of
utilizing 3D CNN techniques for solving the prediction problem
of anisotropic material properties of RVEs. The results showcase
the high accuracy and learning capability of the CNN-RVE
method to predict the anisotropic BWM material properties. The
RVE models in this paper is a triphasic one (includes axons,
myelin, and glia) and its scaling up is very demanding
computationally. In addition, the RVEs’ complicated internal
structures make the FE model failure-prone during the FE
meshing procedure. This novel combination of the CNN-RVE
method achieved a dramatic reduction in the computational time
compared to FE methods currently presented in the literature.
Furthermore, the proposed method effectively solves the RVEs
modeling problem by reducing the computational cost and
avoiding FE mesh failure. Although the designed 3D CNN
architecture successfully achieved the goal of this study, there
are still additional possibilities to further improve the model
performance by implementing some advanced techniques.
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