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ABSTRACT 
 
Material properties of brain white matter (BWM) show high 

anisotropy due to the complicated internal three-dimensional 
microstructure and variant interaction between heterogeneous 
brain-tissue (axon, myelin, and glia). From our previous study, 
finite element methods were used to merge micro-scale 
Representative Volume Elements (RVE) with orthotropic 
frequency domain viscoelasticity to an integral macro-scale 
BWM. Quantification of the micro-scale RVE with anisotropic 
frequency domain viscoelasticity is the core challenge in this 
study. 

 
The RVE behavior is expressed by a viscoelastic 

constitutive material model, in which the frequency-related 
viscoelastic properties are imparted as storage modulus and loss 
modulus for the composite comprised of axonal fibers and 
extracellular glia. Using finite elements to build RVEs with 
anisotropic frequency domain viscoelastic material properties is 
computationally very consuming and resource-draining. 
Additionally, it is very challenging to build every single RVE 
using finite elements since the architecture of each RVE is 
arbitrary in an infinite data set. The architecture information 
encoded in the voxelized location is employed as input data and 
is consequently incorporated into a deep 3D convolution neural 
network (CNN) model that cross-references the RVEs’ material 
properties (output data). The output data (RVEs’ material 
properties) is calculated in parallel using an in-house developed 
finite element method, which models RVE samples of axon-
myelin-glia composites. This novel combination of the CNN-
RVE method achieved a dramatic reduction in the computation 
time compared with directly using finite element methods 
currently present in the literature. 
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1. INTRODUCTION 

 
The brain white matter (BWM) is comprised of networks of 

nerve fibers called axons, which are covered by myelin, a lipid-
rich substance, and are embedded in glia, the extracellular 
matrix. Due to the heterogeneity of the BMW tissue, its 
mechanical properties vary considerably with the local 
microstructural architecture, i.e., geometry, location, and 
orientation of BWM, and need to be analyzed at the micro-scale 
level [1-4]. According to those considerations, this paper focuses 
on the quantification of the mechanical properties of micro-scale 
Representative Volume Elements (RVE) of the BWM with 
anisotropic frequency domain viscoelasticity [5, 6]. The primary 
purpose of these RVEs is to produce the numerical linkages 
between the heterogeneity of the microstructure of BWM and the 
anisotropic mechanical material properties [7-11].  

 
Finite elements (FE) offer great freedom in discretizing a 

composite structure at the microstructural scale and analyze its 
stress-strain response [8-12]. However, the computational 
resources required for the FE discretization and analysis are 
usually very demanding. Especially for BWM microstructural 
composites, the complex geometric architecture necessitates 
mesh refinement increasing the computational cost. 
Additionally, considering that the complex interactions of the 
composite tissues will also call for further mesh refinement of 
the FE model to increase the accuracy of the results, the increase 
of the computational cost can be dramatic [1-5].  
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Apart from the high computational requirements of the FE 
method, a more significant disadvantage is the mesh 
complexities that arise for the intricate geometric 3D model. 
Mesh intricacies are owed to the arbitrary and random nature of 
axons groupings in the BWM, which create the 3D geometric 
models of the RVEs. It’s noteworthy that different regions of the 
BMW offer different microstructural architectures ranging from 
uniform isotropic parallel configurations of axons to completely 
random ones. These axons will unavoidably include some 
irregular extremely sharp angles, which will cause mesh failure 
or even simulation failure.  

 
The Convolution Neural Network (CNN) has been proved 

as a high-performance, practical approach for computer vision 
and image analysis applications [13-15]. Here, the CNN is 
employed as a deep learning method, which is ideally suited to 
resolve the computational cost and mesh failure issues. In 
essence, the FE method is used to create the RVEs and collect 
training data from the stress-strain analysis, while the CNN is 
utilized to establish structure-property linkages for RVEs. It is 
expected that the CNN model will provide a much faster answer 
compared to the FE model with only a modest loss accuracy. 
 
 
2. MATERIALS AND METHODS 
 
2.1. Representative volume element model 

 
In our study, the RVE scale has to be large enough to capture 

the microstructural tissue interactions within the BWM, but also 
small enough to account for the detailed geometric information 
within a reasonable-sized model at an affordable computational 
cost [13-15].  

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Six (6) axons covered by myelin bionic with random walk 

direction and location. The radii of axon and myelin are randomly changed based 
on a certain value range (15 ~ 20 μm). The ratio of the internal/external radius is 
0.7 ~ 0.8.  

 
Since the BWM is a complex anisotropic structure, the location 
and direction of axons can be randomly assigned in space. The 
RVEs used in this study were generated by starting with a 3D 
axon bionic random walk algorithm in python (Figure 1). Based 
on this algorithm, the model randomly generates geometric 
structures mimicking 3D axons. The axons and myelin are 

assigned random radii congruent to the geometric constraints 
asserted by real BWM microtome data [1-2]. This algorithm 
automatically avoids intersecting axons while it maintains a 
minimum interaxonal distance to maximize the axonal volume 
fraction.   

 
After the geometric reconstruction of the axon, myelin, and 

glia composite by the aforementioned reconstruction model, a 
3D RVE cutting algorithm based on Abaqus Python API was 
built (Figure 2). Based on this algorithm, the RVEs are created 
for building the FE model (Figure 3). 

 

 
 

Figure 2. Anisotropic RVEs cutting algorithm. The length of the RVEs’ edge is 
25 μm. Twenty-two (22) RVEs containing six (6) axons are depicted.  The 
axons were generated using a bionic random walk algorithm. 
 

 
 

Figure 3. Anisotropic RVEs created from the cutting method. The green, red, 
and grey parts are the axons, myelin, and glia, respectively. 
 
2.2. Finite element analysis  
 

In order to represent the accurate constitutive relation of the 
RVEs, the full anisotropic stress-strain relation is considered in 
the FE analysis. Six directional harmonic excitation loads at 
50Hz frequency of 0.1 kPa are independently applied to the 
RVEs (Figure 4).  

 
Since the full anisotropic material properties have 32 

independent constants, the total number of independent 
constants of the RVEs’ material properties should be 72 in the 
viscoelastic frequency domain. That data will be used in the 
training of the CNN as the output section. 
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Figure 4. The six (6) loading directions for anisotropic RVEs. From the upper 
left to lower right corners, the six directions are three tensile in x-axis, y-axis, z-
axis, and three shear directions in the x-y, y-z, and x-z planes. (The deformation 
is scaled to illustrate the loading directions). 
 
2.3. 3-D CNN for homogenization of RVE 
 

The purpose of CNN is to utilize finite samples of RVEs to 
reach an answer quickly to offset the high computational cost and 
possible mesh failure (Figure 5). The final trained CNN can 
generate anisotropic material properties based on the input of 
geometric information of RVEs. 
 

 

 
 

Figure 5. Methodology combining FEs and deep learning. The tissue samples 
provide information for the reconstruction of RVEs. The RVEs would be used 
for building the FE model and extracting geometric information. The FE model 
outputs the anisotropic RVE material properties, which is the stiffness tensor of 
RVEs (output part of the training set for CNN). The voxelization process 
generates the voxelized 3D NumPy array to represent the geometric information 
(input part of the training set for CNN).  

 
The geometric information and input data of each 

anisotropic RVE includes volume fraction (VF), axonal 
orientation, and the three distinct material properties (axon, 
myelin, and glia) with their location information in the RVE 
cube. It is noteworthy that, using the VF, axon/myelin ratio, 
axonal orientation, and material properties is not enough to 
represent the uniqueness of each RVE. Therefore, a more 
accurate and distinctive method should be employed to 
implement the geometric information as training inputs. Based 
on these considerations, the voxelization method is selected to 
extract the geometric information and the 3D location of the 
RVEs in space (Figure 6). 

 

 
 

Figure 6. The voxelization method for RVE. The green and red parts are the 
axons and myelin geometric constructs. The voxelization method creates the 3D 
NumPy arrays based on the occupation of axons and myelin in 3D space. 

 
The voxelization method scans the full 3D cubic space of 

the RVEs to get the occupation (points of material occupied by) 
of axons and myelin. 3D NumPy arrays (n×n×n dimension, 
where n is the number representing the “occupation” value in 
each edge of the RVE cubes) are generated based on the spatial 
locale information. If the point of the current scan in 3D space is 
an axon, the occupation value on this point is set to 1. If the point 
of the current scan in 3D space is myelin, the occupation value 
in this point is set to 0.5. The occupation value of the remaining 
points that are neither axons part nor myelin is set to 0. The 
combined 3D NumPy arrays (occupation of RVEs) would 
embody the input of training data for CNN (Figure 5). The 
output is the anisotropic material properties of RVEs (stiffness 
tensor of 72 constants). 
 
 
3. RESULTS AND DISCUSSION 
 

In the first step, 927 FE RVE models are created. During the 
FE analysis, each RVE model is subject to six loading tests (one 
in each direction as described in Figs 4 and 7) to determine the 
stiffness tensors of 72 constants (Figure 7) for the output data of 
CNN. 
 

 
 
Figure 7. Example of an RVE sample subjected to six(6) different loading 
conditions (left) and the resulting RVE stiffness tensor (right) . 
 
High density voxelization can better capture the intrinsic 
geometric details of the composite architecture of the RVEs. 
When the density of voxelization increases, the number of 
occupation values (n×n×n) increases in a particular RVE. The 
larger number of occupation values in an RVE, the more 
information is contained in the 3D NumPy arrays. The latter 
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leads to increased accuracy and completeness of the RVE 
geometrical description. However, using a large number of 
occupation values will sharply increase the input dimensions of 
the CNN, resulting in higher computational cost. Here, a balance 
between the geometric expressiveness and the computational 
cost was achieved by selecting a 30×30×30 dimensional 
occupation for voxelization. That is, the voxelization method 
will generate a 30×30×30 dimension 3D NumPy arrays as the 
input data of CNN. The architecture of 3D CNN is illustrated in 
Figure 8. 
 

The full dataset (927 samples) was separated as the training 
dataset (881 samples) and the testing dataset (46 samples). 
During the training process, the occupation data of 3D NumPy 
arrays generated from 3D RVEs are the input training data of 
CNN. The output training data of the CNN, i.e., an RVE’s 
stiffness tensor, is generated from the FE model. The training 
data will go through the architecture of the CNN and obtain the 
output in the final stage in Figure 8. Then this output will be 
used to calculate Mean Square Errors (MSE) based on the output 
of the FE model. After that, the optimization process will be used 
to update the CNN model. Those processes are called forward 
propagation and backward propagation in neural network 
training. The validation set was split as 10% of the training set.  

 
In Figure 8, each convolution layer has convolution filters 

and an activation function. A convolution filter passes over all 
the voxels of the 3D NumPy array to produce voxels to assess 
the convolved output in the current layer. The activation function 
employed in this paper is the Rectified Linear Unit (ReLU), 
which is used to introduce the nonlinear relationship between 
inputs and outputs. ReLU activation function can be defined as 
𝑦 = max

	
(0, 𝑥), where 𝑥 is the input value, and 𝑦 is the output 

value. The max-pooling layer partitions the input 3D NumPy 
array into non-overlapping sub-regions, and for each such sub-
region outputs the maximum value. After the final convolution 
layer, 3D NumPy array is flattened into a 1D NumPy array (fully 
connected layers). The fully connected layers are gradually 
reduced dimension to 72 by the dense layer. 

 
The trained CNN can generate the stiffness tensor based on 

the input of 3D voxelization of the geometrical structure of the 
RVEs. As is described in Figure 5, based on new tissue samples, 
the new 3D geometrical reconstruction process can offer new 3D 
models. The new 3D models will act as the input of the 
voxelization process and record the occupation data of the 3D 
NumPy arrays. In turn, the 3D NumPy arrays will be integrated 
into the trained CNN, and the CNN will output the stiffness 
tensors. During this scheme, the FE analysis can be omitted, and 
the on-time result of RVEs’ anisotropic material properties will 
be derived directly from the CNN.  

 
 

 
 

Figure 8. The architecture of the 3D CNN used in this study. The left column is 
the name of the layer and the activation function of CNN. The middle column is 
the filter size and input/output data. The right column is the feature tensor size 
output of each layer. ReLu activation function was used for the convolution layer. 
The max-pooling layer was applied between each convolution layer. 

 
The validation set was split as 10% of the training set. The 
training history is shown in Figure 9. The results indicate that 
the MSE (the difference between expectation output and training 
output in each epoch) is decreased based on the training process. 
An epoch is one cycle through the full training dataset. In this 
training history, it is clear that the model is continuously 
decreasing the bias at each epoch. Moreover, the 3D CNN model 
has comparable performance on both training and validation 
datasets. The final validation MSE value is 0.0051, and the final 
training MSE value is 0.0038.  The prediction of the testing 
dataset based on the trained CNN results in a coefficient of 
determination of R2=0.8225. The coefficient of determination 
ranges from 0 (poor fit) to 1 (perfect fit) and it provides a 
measure of how well the test outcomes can be explained by the 
model. The above results illustrate that the training process is 
successful based on the current 3D CNN  architecture. 
Furthermore, with careful design of architecture and tuning of 
the hyperparameters (voxelization size, pool numbers, pooling 
dimensions, filters number/dimensions, as described in Figure 
8), the deep learning approach (3D CNN) has a high potential to 
produce a reliable and robust prediction of the anisotropic 
material properties of RVEs with given geometrical information. 
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Figure 9. The plot of the 3D CNN model loss on training and validation datasets. 
The loss function used in the training procedure is MSE. The blue line is the MSE 
of training datasets. The orange line is the MSE of validation datasets. 
 
 
4. CONCLUSIONS 
 

The use of FE techniques to construct brain white matter 
(BWM) RVEs with anisotropic frequency domain viscoelastic 
material is computationally expensive. Different methodologies 
are sought in order to reduce the computational cost and avoid 
computational mesh failure while maintaining the intricate 
architectural information of the different phases present in the 
BMW. A 3D convolution neural network (CNN) model that 
exploits the voxelized geometric information encoded in distinct 
locations is employed while it cross-references the RVEs’ 
material properties. In effect, we demonstrated the acumen of 
utilizing 3D CNN techniques for solving the prediction problem 
of anisotropic material properties of RVEs. The results showcase 
the high accuracy and learning capability of the CNN-RVE 
method to predict the anisotropic BWM material properties. The 
RVE models in this paper is a triphasic one (includes axons, 
myelin, and glia) and its scaling up is very demanding 
computationally. In addition, the RVEs’ complicated internal 
structures make the FE model failure-prone during the FE 
meshing procedure.  This novel combination of the CNN-RVE 
method achieved a dramatic reduction in the computational time 
compared to FE methods currently presented in the literature. 
Furthermore, the proposed method effectively solves the RVEs 
modeling problem by reducing the computational cost and 
avoiding FE mesh failure. Although the designed 3D CNN 
architecture successfully achieved the goal of this study, there 
are still additional possibilities to further improve the model 
performance by implementing some advanced techniques.  
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