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ABSTRACT

A new finite element approach is proposed to study the
propagation of stress in axons in the central nervous system (CNS)
white matter. The axons are embedded in an extra cellular matrix
(ECM) and are subjected to tensile loads under purely non-affine
kinematic boundary conditions. The axons and the ECM are
described by the Ogden hyperelastic material model. The effect
of tethering of the axons by oligodendrocytes is investigated
using the finite element model. Glial cells are often thought
of as the “glue” that hold the axons together. More specifically,
oligodendrocytes bond multiple axons to each other and create a
myelin sheath that insulates and supports axons in the brainstem.
The glial cells create a scaffold that supports the axons and can
potentially bind 80 axons to a single oligodendrocyte.

In this study, the microstructure of the oligodendrocyte
connections to axons is modeled using a spring-dashpot
approximation. The model allows for the oligodendrocytes
to wrap around the outer diameter of the axons at various
locations, parameterizing the number of connections, distance
between connection points, and the stiffness of the connection
hubs. The parameterization followed the distribution of axon-
oligodendrocyte connections provided by literature data in which
the values were acquired through microtome of CNS white matter.
We develop two models: 1) multiple oligodendrocytes arbitrarily
tethered to the nearest axons, and 2) a single oligodendrocyte
tethered to all the axons at various locations. The results depict
stiffening of the axons, which indicates that the oligodendrocytes
do aid in the redistribution of stress. We also observe the
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appearance of bending stresses at inflections points along the
tortuous path of the axons when subjected to tensile loading.
The bending stresses appear to exhibit a cyclic variation along
the length of the undulated axons. This makes the axons more
susceptible to damage accumulation and fatigue. Finally, the
effect of multiple axon-myelin connections in the central nervous
system and the effect of the distribution of these connections in
the brain tissue is further investigated at present.

Keywords: micromechanics, multi-scale modeling, hyperelastic,
finite element, Abaqus, oligodendrocyte, axonal injury, brain,
CNS white matter.

1 INTRODUCTION

Traumatic Brain Injury (TBI) is one of the most researched
topics of the 21* century. In recent years, the number of TBI
diagnoses have increased rapidly. However, efforts to accurately
measure and predict cerebral injury have been a major challenge.
The corpus callosum has been identified as a critical region for
TBI with axonal injury being the proximal cause [1]. Axonal dam-
age has been identified as the leading cause of TBI, with excessive
tensile strain postulated as the underlying mechanism [1]. The
use of finite element methods to predict and understand axonal
injury have nevertheless yielded significant breakthroughs. An
inverse finite element (FE) method to predict material properties
of the axons by matching experimental data with simulations was
first proposed by Pan et al [2-4]. Yousefsani et al developed an
FE model using the embedded element technique to bind axons

Copyright © 2020 by ASME



of varying diameters to the ECM when subjected to transverse
loading [5]. Karami et al used a fiber reinforced composite model
to represent an axon following a sinusoidal path embedded in
the ECM and subject to bending, tension and shear [6]. All of
the above studies use affine boundary conditions which tie the
axon entirely to the ECM. In reality, the axons do not exhibit
a purely affine behavior. They display a “transitional”” behavior
from non-affine behavior at low stretch to affine behavior at high
stretch values when tortuosity decreases [4].

Oligodendrocytes are specialized glial cells that wrap around
the axons via a sheath of myelin. The mechanical response
of myelinated axons was first investigated by Shreiber et al [7-
8]. The results show that myelination improves the stiffness
of the axons. The effect of tethering by the oligodendrocyte
and the stiffness of the oligodendrocyte “arms” however, is
not well documented. In this study, a proof of concept model
has been developed to probe the effect of the tethering by the
oligodendrocytes. The model also incorporates a purely non-
affine boundary condition between the axons and the ECM. The
methods employed and the results obtained are presented here.

2 MATERIALS AND METHODS
2.1 MICROMECHANICAL FINITE ELEMENT MODEL

The microscale FE models have been developed using
Abaqus 6.14-2 and Python scripting. The representative volume
element of the axons tethered to glia in CNS white matter is
based on the models developed by Pan et al [2]. Axons of
varying undulation and radii are embedded in a 3-D rectangular
ECM of dimensions: x =0.9 um, y=8 um, z=>5.747 um. The
undulation is different from axon to axon and is based on the
work by Bain et al [9]. The average undulation varies from 1.00
to 1.10. The diameter of the axons varies between a minimum of
0.4 pm to a maximum of 0.62 pum with an average axon diameter
of 0.45 um. Using symmetry boundary conditions in x and y, one
half of the model is used for the analysis. The volume fraction
of the axons is 50 percent. A total of 9 axons are lodged within
the ECM. Non-affine boundary conditions between the axons
and ECM are established using a “surface to surface” contact
definition as shown in Figure 1. The surface constitutive model
for contact used in Abaqus defines the contact pressure between
surfaces of axon and ECM, p as a function of the “overclosure,”
h, of the surfaces such that: p=0forh<0Oand p >0forh=0
[10].

Oligodendrocytes have long been known to produce myelin
which wraps around the axon. The myelin electrically insulates
the axon and also mechanically tethers the axon to adjacent ones.
Oligodendrocytes have been recorded to bond up to 80 separate
axons. Myelinated axons demonstrate a much higher stiffness
in response to tensile loads in comparison to demyelinated
axons. This demonstrates that the gial cells provide significant
mechanical support to the axons and dictates the response of the

FIGURE 1. a) FE Model of the ECM and Axon assembly b) FE model
depicting the undulation of the Axons ¢) FE model of ECM d) Contact
surfaces defining surface to surface contact between Axon and ECM.

axons to tensile loads [7-9]. While the impact of myelination on
the stiffness of the axons has been well documented [9-10], the
effect of tethering of the oligodendrocyte and its impact on the
mechanical response of the axons is not well understood.

FIGURE 2. A schematic representation of an oligodendrocyte tether-
ing to axons at different locations via a sheath of myelin.

In this study, a method to probe the effect of tethering of
oligodendrocytes on the mechanical response of axons is explored.
We posit a spring-dashpot approximation to model the arms of the
oligodendrocyte that tether to the axons. The scope of the study
is limited to characterizing the mechanical response of the arms
of the oligodendrocyte and not the nucleus itself. Therefore, the
nucleus is modeled as a distributed coupling constraint in Abaqus.
A distributed coupling constrains the motion of a group of nodes
called the “coupling nodes” to the translation and rotation of
the reference node. The constraint allows for the distribution
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of loads through a weighting factor between the reference and
the coupling nodes based on a user specified influence radius.
Here, the oligodendrocyte is visualized as a sphere of 0.025 um
embedded inside the ECM. The reference node of the distributed
coupling is located at the center of the sphere. The nodes of the
ECM along the surface of the sphere are the coupling nodes. The
influence radius is set to the radius of the sphere with a uniform
weighting method and a weight factor of 1. In order to allow the
oligodendrocyte to wrap around the axon, each axon is sliced into
several sections. The nodes along the surface of each section is
tied to a remote point at the center of the section using a coupling
constraint. A linear spring-dashpot connects the remote point on
the axon to the center of the oligodendrocyte sphere as shown in
Figure 3.

FIGURE 3. FE Model of oligodendrocyte tethering to axons embedded
in ECM.

2.2 HYPERELASTIC MATERIAL MODEL

Nonlinear hyperelastic models are often used for the simula-
tion of soft biological tissues. Meaney [11] developed a mathe-
matical relationship between microstructurally based models of
the central nervous system (CNS) white matter and equivalent
hyperelastic material models. Pan et al [2-4] used the Ogden
hyperelastic material model for the simulation of kinematics of
CNS white matter and in their optimization procedure to identify
material properties using an inverse FE method. Karami et al
[6] used the Ogden hyperelastic model in their fiber reinforced
composite model of CNS white matter. Yousefsani et al [5]
used the Ogden hyperelastic model in developing the embedded
element technique for brain white matter. Mihai et al [12]
developed a family of hyperelastic modeling approaches using
experimental results from multiaxial loading of brain samples.

In this study, we used the Ogden hyperelastic material model
to simulate the ECM and the axons. The versatility of the Ogden
model allows for neural tissue to be characterized relatively easily.
The Ogden hyperelastic model is based on the three principal
stretches A1, A2, A3 and 2N material constants. The strain energy
density function, W, for the Ogden material model in Abaqus is
formulated as [10]:
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where Ii = J_%)»,- and 111213 = 1. w; are shear moduli, o;
and D; are material parameters. The first and the second terms
represent the deviatoric and hydrostatic components of the strain
energy function. The parameter D = K , allows for the inclusion
of compressibility where Ky is the initial bulk modulus. An
incompressible, single parameter Ogden hyperelastic material is
considered in this study. Therefore, N = 1. Incompressibility
implies that J,; = 1 and is specified in Abaqus by setting D; = 0.
As aresult, Abaqus eliminates the hydrostatic component of the
strain energy density equation, and the expression reduces to the
following:
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For uniaxial tension, the principal stress is given by:
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Undulation prevents the axons from experiencing full tension
until a threshold strain is reached and the undulation for the
axon becomes 1. The values for the shear modulus for the
axons and ECM are based on research by Wu et al [13]. The
value of « is based on the model developed by Meaney [11].
The shear modulus of the ECM is assigned based on the shear
modulus of the axon, as the axon is three times stiffer than the
ECM as reported by Arborgast and Marguile’s findings [1]. To
model incompressibility of the hyperelastic materials, we use
a special family of hybrid elements available in Abaqus. In
an incompressible material, a tiny change in displacement can
produce an extremely large change in pressure. As a result, a
purely displacement-based solution is too sensitive to achieve
meaningful solutions. Abaqus treats this singular behavior by
interpolating the hydrostatic pressure independently as a basic
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Material Properties

u D Element
Component afl1]
(MPa) [13] (1/MPa) Type
C3DS8H,
Axon 2.150-1073 0 6.19
C3D4H
ECM 0.850-1073 0 6.19 | C3D4H

TABLE 1. Material Properties for the FE Model

solution variable coupled to the displacement solution through
the constitutive theory and compatibility conditions [10]. The
modified Cauchy stress is therefore written by introducing an
independent hydrostatic pressure field p as [8]:

o=0+(1-p)l(p-p), )

where p is the hydrostatic stress component and p is a small
number. This modified expression for the Cauchy stress is used
in the expression for virtual work with a Lagrange multiplier
enforced constraint Ap —Ap = 0. Table 1 shows the material
properties and the element types used in the FE model.

2.3 FINITE ELEMENT SUBMODELS

To study the effect of tethering of oligodendrocyte on
the mechanical response of axons, two submodels have been
developed. For the first submodel, a plane between the axon
layers is created and 25 grid points are evenly spaced. The
oligodendrocyte nucleus is generated as a sphere with a radius
of 0.025 um at each point. The oligodendrocyte spheres are
attached to any axon connection point that lay within a radius of
0.05 pm by a spring-dashpot connection. The maximum number
of axons connected to a single oligodendrocyte is 4, with some
oligodendrocytes only connecting to one axon (Figure 4).

For the second submodel, a single oligodendrocyte is tied to
all the axons at different locations. The oligodendrocyte is placed
at the center of the ECM. The number of connections between
the axons and the oligodendrocyte is parameterized as shown
in Figure 5. As detailed in previous sections, spring-dashpot
elements simulate the tethering arms of the oligodendrocyte. An
exhaustive literature search yielded no studies or test data that
characterize the stiffness of the oligodendrocytes. Therefore, in
this study, the stress-strain response of the axons were obtained

by parameterizing the stiffness of the spring-dashpot connection.

Since oligodendrocytes essentially tether to the axons via a sheath
of myelin, the material properties of myelin served as the upper
limit for the parameterization of the oligodendrocyte stiffness.

FIGURE 4. Submodel-1: Oligodendrocytes arbitrarily tethered to
axons

FIGURE 5. a-c) Parameterization of number of connections between
oligodendrocyte and each axon in submodel-2 - Showing 1,3 and 5
connections per axon d) boundary conditions for the FE model with the
left end fixed and a stretch applied on the right.

The FE model is set up with symmetry boundary conditions
on the top and bottom faces in x coordinate direction and side
faces in y coordinate direction. The model is constrained in the
z direction using fixed boundary conditions on one face and a
stretch applied to the opposite face using a non-zero displacement
boundary condition. An implicit time integration technique in
Abaqus is used to solve the FE model. Contact stabilization is
used to prevent rigid body modes before contact is established
between the interacting surfaces of the axons and ECM.

3 RESULTS AND DISCUSSION

A Von Mises stress plot for the axons and the ECM subjected
to 20 percent stretch in z direction is shown in Figure 6. Undu-
lation prevents the axons from experiencing full tension. The
undulation and the interaction of the axons with the ECM creates
high stress in the concave regions. High stress would occur in
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FIGURE 6. Von Mises stress contour for the Axons and the ECM at
20 percent applied stretch. Undulation of axons result in high stress in
the concave regions.

these regions even if the axons are subjected to purely affine
boundary conditions. However, allowing the axons to interact
with the ECM through non-affine boundary conditions creates a
more even stress distribution in both the axons and the ECM. It
can be seen in Figure 6 that the straight axon (with undulation
= 1) is in full tension. The undulated axons however experience
bending stresses along their tortuous path. These bending stresses
appear to undergo cyclic reversal from tension to compression at
each inflection point along the length of axon as seen in Figure 7.
This makes the axons more susceptible to damage accumulation
and failure due to fatigue. Traumatic events such as large and
sudden impacts are known to cause diffuse axonal injury (DAI),
but the mechanics behind cumulative damage is still unknown.
Further research is essential to understand the susceptibility of
axons to fatigue failure.

A comparison of the stress-strain response for submodel-
1 and submodel-2 with the oligodendrocyte arm stiffness set
to 10 N/m is shown in Figure 8. Submodel-1 contains a total
of 25 oligodendrocyte spheres tethering to the nearest axons
while submodel-2 contains a single oligodendrocyte at the FE
model center tethered to all the axons. Here, submodel-2 has
5 oligodendrocyte connections per axon. It is observed that the

FIGURE 7. Bending stresses undergoing full reversal from tension to
compression.

response of the two models are nearly identical with submodel-1
indicating a slightly higher stiffness in response to tensile loads.
The root mean square deviation (RMSD) between the two curves

1s 0.00139, where RMSD is defined as \/ZM for curves
f(x), g(x) and N being the number of points x; at which the
curves are compared. Looking at Figure 9, which compares the
stress-strain response for submodel-2 with different number of
oligodendrocyte connections per axon, it is observed that the
responses are again nearly identical. Upon closer inspection, it is
seen that the difference in stress-strain response between 3 and
5 connections per axon is much smaller with RMSD 0.00131
than the difference between 1 and 3 connections per axon with
RMSD 0.00341. Thus, it is noted that there is only a modest
increase in the stiffness of the axons with increasing number of
oligodendrocyte connections per axon.

From Figures 8,9 it can also be inferred that for nearly the
same number of total oligodendrocyte connections per axon, the
stress response is almost identical. The response is independent
of whether the number of connections come from a single
oligodendrocyte or if they come from multiple oligodendrocytes.
This explains the near identical behavior of submodels 1,2. The
FE model is subjected to a maximum applied stretch of up to
a 100 percent. For an applied stretch of 90 percent and above,
the axons in the FE model containing a single oligodendrocyte
connection reach an undulation of 1 and begin to experience full
tension. This can be observed in the increased stiffening response
of the “1 connection per axon” model shown in figure 9.

As mentioned in the previous section, this study is limited
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Stress vs strain
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FIGURE 8. Stress-strain response for submodels 1, 2. The stiffness of
the oligodendrocyte is set to 10 N/m. For this comparison, submodel 2
has 5 oligodendrocyte connections per axon.

to characterizing the impact on the stiffening of the axons due
to tethering by the oligodendrocyte connections and not the
oligodendrocyte itself. The stiffening response of the axons
due to oligodendrocytes is in general agreement with the trends
observed by Pan et al [4]. The transitional behavior from non-
affine to affine boundary conditions as described by Pan et al
is due to a larger recruitment of nodes of Ranvier as the axons
stretch thus causing the axons to stiffen [4]. Similarly, each
connection between an oligodendrocyte and the axon results in
the creation of a node of Ranvier. An increasing number of
connections imply a greater number of nodes being created and
thus, a stiffer axon. The creation of these nodes are independent
of if the connections are made with a single oligodendrocyte or
with multiple oligodendrocytes as seen in the comparison between
submodels 1 and 2 (Figure 8).

Finally, the results for the response of submodel-2 for
different stiffness values of the oligodendrocyte arms is shown
in Figure 10. The FE model with 5 oligodendrocyte connections
per axon is subjected to increasing strains up to a maximum of a
100 percent applied stretch. The response is recorded for different
spring-dashpot stiffness values. It is observed that the model
becomes increasingly stiffer with higher values of “k”. This
indicates that the oligodendrocytes do act as a supporting scaffold
for the axons in addition to the stiffening provided by the myelin
sheath.

4 CONCLUSIONS

In this study, a 3-D simulation of two submodels of axons
embedded in an ECM have been developed to understand the
mechanical response of axons tethered to the oligodendrocytes
using purely non-affine boundary conditions. Undulated axons
embedded in the ECM experience bending stresses that appear

Stress vs strain

~—— 1 Oligodendrocyte connection per axon
+~— 3 Oligodendrocyte connections per axon
oo 5 Oligodendrocyte connections per axon

0.20 / /

Stress (MPa)
o
=
7]

0.10

Strain, (%)

FIGURE 9. Stress-strain response for submodel-2 parameterizing the
number of connections between the oligodendrocyte and the axons.
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FIGURE 10. Stress-strain response for submodel-2 parameterizing
the stiffness of the oligodendrocyte arms. Simulations performed for 5
oligodendrocyte connections per axon.

to undergo cyclic reversal along their tortuous paths. This makes
the axons susceptible to failure due to fatigue. Traumatic events
such as DAI will destroy axons over a very short period (within
milliseconds), while repeated stresses can take anywhere from
tens to millions of cycles before failure. Like ductile materials,
hyperelastic materials also suffer from low and high cycle fatigue
[14]. The magnitude of the bending stress will largely depend on
the geometry of the axons — which is mostly random. Differences
in brain mass and load direction for each individual axon will also
play a large part in damaging the cerebral region [15]. Future
work incorporating damage models for the axons subjected to
cyclic loads is essential to understand axonal fatigue and trauma
due to damage accumulation from repeated impact to the brain.
Parameterization of number of oligodendrocyte connections
per axon reveal that the axons exhibit increased stiffness for
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increasing number of connections. However, it is immaterial
if the total number of connections are provided by a single oligo-
dendrocyte or multiple oligodendrocytes. This is in agreement
with the trends observed by Pan et al [4]. The increase in the
number of connections between an axon and the oligodendrocyte
results in a larger recruitment of nodes of Ranvier, which aids the
stiffening response of the axons. Creation of nodes of Ranvier
is independent of if the connections are made with a single or
multiple oligodendrocytes. Parameterization of the stiffness of
the oligodendrocyte connections also reveal that the axons exhibit
a stiffer behavior to tensile load for oligodendrocyte arms with
greater stiffness. This indicates that the oligodendrocyte connec-
tions do aid in the mechanical response of the axons to external
loading. While it is well established that oligodendrocytes support
the axons by creating a sheath of myelin around the axons, this
study, in addition, also suggests the possibility of a direct influence
on the mechanical response of the axons due to the act of tethering
by the oligodendrocytes.

This study has potential limitations. As described in the
introduction, axons exhibit a transitional behavior from non-affine
boundary conditions at low stretch to a purely affine behavior at
higher stretches. This study approximates a non-affine boundary
condition for the entire stretch history. Future models that incorpo-
rate this transition mechanism from non-affine to affine behavior
as a function of tortuosity will yield more accurate results. The
study also approximates the oligodendrocyte connections using a
linear spring-dashpot connections. Finally, this model does not
incorporate damage initiation and evolution. Bending stresses
that undergo cyclic reversal are prominent in the undulated axons.
A 3-D model that incorporates damage accumulation and fatigue
analysis will yield a more comprehensive picture of the structural
response of axons to external loading.
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