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Abstract. A given order type in the plane can be represented by a
corresponding point set. However, it might be difficult to recognize the
orientations of some point triples. Recently, Aichholzer et al. [3] intro-
duced exit graphs for visualizing order types in the plane. We present
a new class of geometric graphs, called OT-graphs, using abstract order
types and their axioms described in the well-known book by Knuth [15].
Each OT-graph corresponds to a unique order type. We develop effi-
cient algorithms for recognizing OT-graphs and computing a minimal
OT-graph for a given order type in the plane. We provide experimental
results on all order types of up to nine points in the plane including a
comparative analysis of exit graphs and OT-graphs.
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1 Introduction

The orientation of three noncollinear points in the plane is either clockwise CW
or counterclockwise CCW. In this paper we assume that point sets are in general
position the plane. Two finite point sets in the plane have the same order type
if there is a bijection between them preserving orientation of any three distinct
points. The equivalence classes defined by this equivalence relation are the order
types [14].

Recently, Aichholzer et al. [3] asked “... suppose we have discovered an inter-
esting order type, and we would like to illustrate it in a publication.” This is
exactly the problem that we were facing in our recent paper [5] where we found
that the order type 1874 for 9 points from the database [2] provides a (tight)
lower bound for Tverberg partitions with tolerance 2, see Fig. 2(a). Of course,
any order type in the plane can be represented by a corresponding point set (or
explicit coordinates of the points). However, it might be difficult to recognize the
orientations of some point triples. Aichholzer et al. [3] introduced exit graphs
for visualizing order types in the plane. Let S be a set n points in the plane and
let a,b,c € S. Then (a,b) is an exit edge with witness c if there is no p € S such
that line ap separates b from c or line bp separates a from c, see Fig. 1(a). Geo-
metrically, it means that an hourglass defined by a, b, ¢ is empty. The set of exit
edges form the exit graph of S. To verify that (a,b) is an exit edge with witness
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¢, one can check that every point p € S\ {a,b,c} is in AU B, see Fig. 1(a). Note
that ANS and (BN.S)U{c} is a partition of S\ {a, b} by line ab. We will define
a new class of graphs called OT-graphs using such partitions.

(a) (b)

Fig. 1. (a) Exit edge (a, b) with witness c. The hourglass-shaped region (shown in gray)
is empty of points. (b) An exit graph for 9 points in convex position.

We define an OT-graph on S using two ingredients. First, every edge (a,b)
in an OT-graph is equipped with the partition of S by line ab, i.e. S\ {a,b} =
S:b U S,, where S;'b (S,,) contains points ¢ € S such that a,b,c has counter-
clockwise (clockwise) orientation. Second, we assume that an OT-graph contains
a sufficient number of edges to decide the order type of points using axioms
described in the well-known book by Knuth [15]. It is easy to visualize the par-
titions of S for the edges of an OT-graph by drawing lines through them. This
may result in a dense drawing, so we omit lines in the drawing if their partitions
can be easily seen. For example, the OT-graph for the order type 1874 for 9
points from the database [2] shown in Fig. 2(b) has ten edges and only two lines
are sufficient. The property of this graph (since it is an OT-graph) is that the
orientation of any triple abc can be decided either (a) directly from the graph if
there is an edge with both endpoints in {a,b,c}, or (b) algebraically using five
axioms [15].

Comparison of OT-Graphs and Exit Graphs. Both exit graphs and OT-graphs
can be used for visualizing order types of points. It is not sufficient for verifying
an order type to just draw such graphs. For exit graphs, one needs to see the
witness and the hourglass for every exit edge. For OT-graphs, one needs to see
only the lines extending the edges. The hourglasses for exit graphs and the lines
for OT-graphs are needed only when some triples of points are almost collinear.

Exit graphs and OT-graphs are also different in the following sense. For a
given order type (as a point set), the exit graph is unique but OT-graphs are not
since OT-graphs are defined using combinatorial axioms of Knuth [15]. Therefore
we have an optimization problem of computing a minimum-size OT-graph for
a given order type. We believe that this optimization problem is NP-hard. For
example, we believe that the OT-graph shown in Fig. 2(b) has the least number
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Order type 1874

(b) ()

Fig. 2. (a) The order type 1874 for 9 points from the database [2]. (b) An OT-graph
with 9 edges for the order type 1874 (several OT-graphs with 9 edges were computed
by an extensive search). (c) The exit graph for the order type 1874.

of edges (9) for order type 1874 but we do not have a proof for it. Note that the
OT-graph has 9 edges but the edge graph has 12, see Fig. 2(c) .

Identification of Order Types. Aichholzer et al. [3] suggested requirements for a
graph representing an order type: “... we want to reduce the number of edges in
the drawing as much as possible, but so that the order type remains uniquely
identifiable.” OT-graphs (including the set of edges and the corresponding par-
titions) characterize order types, i.e. each OT-graph corresponds to only one
order type. Unfortunately, it does not hold for the exit graphs. As an example,
Aichholzer et al. [3] constructed two sets each of 14 points! such that the exit
edges are the same but the order types are different. With respect to minimiz-

! Using a pseudoline arrangement from [11].
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ing the number of edges, we provide a comparative analysis of exit graphs and
OT-graphs of all order types of up to 9 points in Sect. 6. Except few cases,
OT-graphs have smaller number of edges. For example, Fig. 3 shows order type
1268 of 9 points where the exit graph has 15 edges but the OT-graph has only
8 edges. Furthermore, the OT-graph shown in Fig. 3(b) has non-crossing edges.

(b)

Fig. 3. The order type 1268 of 9 points represented as (a) the exit graph and (b) the
OT-graph.

and we provide some algorithms for computing OT-graphs using combinato-
rial proofs and axioms in Sect. 5.

An interesting question is to find the smallest OT-graphs for points in convex
position in the plane. Let ¢, be the minimum number of edges in an OT-graph
for n points in convex position.

Theorem 1. For anyn >4, ¢, < [2n/3].

It is interesting to find exact values of sequence c¢,,. We experimented with our
randomized algorithm from Sect. 5 and conjecture that the bound in Theorem 1
is tight for all n up to 20. It is also interesting that the exit graph for n points
in convex position has n edges, see Fig. 1(b) for an example.

Lower Bound. Another interesting question is to find the smallest OT-graph for
an order type of n points in the plane. Based on our experiments, it is achieved
for points in convex position if n is up to 9. Is it true for any n? One can argue
that [n/4] is a lower bound for the number of edges in any OT-graph for n
points in convex position. It is based on the fact that two consecutive points in
the clockwise order along the boundary cannot be both isolated in an OT-graph.

Upper Bound. An obvious upper bound the smallest OT-graph for an order type
of n points is (Z) We prove an upper bound in Sect. 4 which is smaller than n? /4.
The proof uses the idea of restricting the axioms in OT-graphs. Specifically, we
prove the bound by using only Axioms 1, 2, and 3. Surprisingly, in this case,
the smallest OT-graphs for any order type of n points have the same number of
edges depending on n only.
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Algorithms. For any set T triples with orientations, one can define its CC-closure
CI(T) as the set of all triples that can be derived using Axioms 1-5. It is straight-
forward to make an algorithm for testing in O(n®) time whether a set of triples
T is the closure of itself, i.e. CI(T)) = T. This can be modified to an algorithm
for computing the CC-closure for an OT-graph (i.e. the set of triples defined
by G). The algorithm repeats the following step. If new triples are found in the
testing algorithm, they are added to the set of triples. This algorithm has O(n®)
running time. We show that it can be improved to O(n®) time. We also develop
a randomized algorithm for computing an OT-graph for a given order type in
O(n®) time. We implemented it and run on many order types. For example, the
smallest OT-graphs for all order types forn = 4 and n = 5 are shown in Fig. 4.

I P NN
L e e

Fig. 4. Order types forn = 4 and n = 5.

Ezperiments. In Sect. 6 we provide experimental results using our algorithms on
all order types of up to nine points in the plane. We also discuss a comparative
analysis of exit graphs and OT-graphs using the size of the graphs.

Related Work. Order types are studied extensively, see for example the sur-
veys [10,16]. Aichholzer et al. [4] studied representation of order types using
radial orderings. Cabello [7] proved that the problem of deciding whether there
is a planar straight-line embedding of a graph on a given set of points is NP-
complete. Goaoc et al. [12] explored the application of the theory of limits of
dense graphs to order types. The order types of random point sets were studied
in [8,9] Goaoc and Welzl [13] studied convex hulls of random order types.

2 Preliminaries

Knuth [15] introduced and studied CC-systems (short for “counterclockwise sys-
tems”) using properties of order types for up to five points. A CC-system for n
points assigns true/false value for every ordered triple of points such that they
satisfy the following axioms.

Axiom 1 (cyclic symmetry). pgr = qrp.

Axiom 2 (antisymmetry). pgr = —prq.

Axiom 3 (nondegeneracy). Either pgr or prq.

Axiom 4 (interiority). tqr A ptr A pgt = pqr-.

Axiom 5 (transitivity). tsp A tsq A tsr Atpg A tqr = tpr.
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Any set of n points in general position in the plane induces a CC-system if we use
the “counterclockwise” relation on the points. The converse is not true due to the
9-point theorem of Pappus [6,15]. When defining a graph for order types using
partitions (by the lines extending the edges) one should be careful. For example,
we can ask whether a given set of orientations of some triples can be extended
somehow to a CC-system. If by “extended” we mean finding a CC-system such
that the given orientations are preserved in the CC-system, then this problem
is NP-complete. Knuth [15] proved that it is NP-complete to decide whether
specified values of fewer than (g) triples can be completed to a CC-system.
We define OT-graphs using the extension of the given orientations by simply
applying 5 axioms. Note that Axioms 1, 2, 4, and 5 imply some orientations.
Axiom 3 also can be formulated as an implication:
Axiom 3’ (nondegeneracy). ~pgr = prq.

Definition 2. Let G be a graph for a point set S in the plane and let T be the
set of triples abc such that ab, ac, or be is an edge of G. Then G is the OT-graph
if the orientation of every triple on S can be derived from T wusings Axioms,

1,2,3° 4, and 5.

3 Convex Position

In this section, we explore OT-graphs for point sets in convex position and prove
Theorem 1. Recall that ¢, is the minimum number of edges in an OT-graph for
n points in convex position. First, we prove that ¢, < n (Fig.5).

Lemma 1. Let S be a set of n points in convex position and let G be the graph
(S, E) where E contains the edges of the convex hull of S. Then G is an OT-graph
for S.

Po
N Pa+1
Po+1 / \\\
I N
./_____-——"'— Pa
De

Fig. 5. Proof of Lemma 1.

Proof. Let pg,p1,...,pn—1 be the points of S in counterclockwise order. It suf-
fices to prove that any triple pappp. with 0 < a < b < ¢ < n —1 has a CCW
orientation. We prove it by induction on m = min{b — a,c —b,a — c+ n}. In
the base case, m = 1. Then (pa,ps), (Pb,Pe); OF (e, pa) is in E. Thus, pa, s, pe
has a CCW orientation.

Suppose that m > 1 and m = ¢—b. Then a+1 < b and b+ 1 < ¢. Edges
(Pas Pa+1) and (py, pp+1) imply that triples papa+1Pp, PaPa+1Pb+1; PaPa+1Pe, and
PaPuPo+1 have a CCW orientation. By induction hypothesis, triple p,pp+1p. has
a CCW orientation. By Axiom 5, p,pyp. has a CCW orientation.



808 S. Bereg and M. Haghpanah

Proof of Theorem 1. Let pg,p1,-..,pn—1 be the points of S in counterclockwise
order. We denote set {0,1,...,n — 1} by [n].

First, suppose that n = 3k for some k > 2. Consider a graph G with 2k edges
as shown in Fig. 6. We prove that it is an OT-graph. By Lemma 1, it suffices to
show that for any ¢,j € [n] with j # i,4 4+ 1 (modulo n), triple p;p;+1p; has a
CCW orientation?.

(a) b .

Fig. 6. OT-graphs for n points in convex position. (a) n = 6, (b) n = 9.

There are 3 cases to consider, see Fig. 7. Case (a) is clear since (p;, pi+1) is
an edge of G. In Case (b), we can assume that j # ¢ + 2,7 — 1. Then it follows
by Axiom 5 if we choose t = pj41,5 = Dit2,0 = Dj,q¢ = pPi—1, and r = p;. In
Case (c), we can assume that j # i+ 2,7 — 1. Knuth [15] proved that Axioms
1,2,3, and 5 imply an axiom dual to Axiom 5.

Axiom 5’ (dual transitivity). stp A stq A str A tpg A\ tgr = tpr.
Then Case (c) follows by Axiom 5 if we choose t = p;,s = pi—1,p =

Dit1,q = Pit2, and 7 = pj.

@ L, . (b) o0 (©) L
Di
/ \ / Pit+1 \ / \
Pi+1
[ ] [ ) [ ]
pj pj b

Fig. 7. Proof of Theorem 1 for n = 3k.

Now, suppose that n = 3k 4+ 1 for some k£ > 2. Consider a graph G with
2k edges as shown in Fig. 8(a). We prove that it is an OT-graph. By Lemma 1,

2 This condition for a fixed i implies that (p;,pi+1) could be an edge in an OT-graph.
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it suffices to show that for any 4,j € [n] with j # i,i 4+ 1 (modulo n), tripe
pipi+1p; has a CCW orientation. If p; or p;11 is an isolated vertex in G then the
argument is the same as in Case (b) and (c) for n = 3k, see Fig. 7(b) and (c).
If (pi, pit1) is an edge of G then p;p;+1p; has a CCW orientation. It remains to
consider the case where (p;, p;+1) is one of two missing edges in the convex hull
at the top, see Fig. 8(a). By symmetry, we assume that (p;, p;11) is as shown in
Fig. 8(b).

Suppose that vertex p; has degree 2 in G. Let | be the length of path p;p;
in G. We show a CCW orientation of p;p;+1p; by induction on [. If | = 1 the
orientation follows from edge p;—1p; of G. If [ > 1 then it follows by Axiom 5 if
we choose t = piy1,5 = Pit2,D = Pj,q = Pj+1, and r = p;. Note that p;11p;q
has a CCW orientation since (pj, ¢) is an edge of G. Also, p;+1gp; has a CCW
orientation by the induction hypothesis.

If vertex p; is isolated in G then we choose p,q,7,s,t in the same way, see
Fig. 8(c). Then triple tpg has a CCW orientation from the previous case (pq is
an edge of convex hull). And triple tgr has a CCW orientation from the previous
case (¢ has degree 2). By Axiom 5 tripe p;p;+1p; has a CCW orientation.

S Pi+1 S Pi+1
*—0 *—0

Di DPi

pj
Pj q q

(a) (b) (c)

Fig. 8. Proof of Theorem 1 for n = 3k + 1.

Finally, suppose that n = 3k 4 2 for some k > 2. Consider the graph shown
in Fig. 9. It is an OT-graph by the same argument as for n = 3k + 1. O

Remark. The OT-graphs presented in the proof of Theorem 1 are not unique.
Our program finds also other graphs of the same size, see Fig. 10.

4 Axioms 1,2, and 3 only

Let e123(.5) be the minimum number of edges in an OT-graph for a set .S of points
in general position in the plane if only Axioms 1,2, and 3 are used. Surprisingly,
for any set S of n points (i.e. for any order type), the smallest OT-graph always
contains the same number of edges depending on n only.
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Fig.9. OT-graph for n = 3k + 2.

v TN T

(a) (b) () (d)

Fig. 10. OT-graphs forn = 6,7, 8,9 points in convex position computed by a program.

Theorem 3. For any set S of n > 2 points in general position in the plane,

e123(8) = [5]["5H].

We omit the proof due to space constraint.

5 Algorithms

Let G = (S, E) be an OT-graph for a set S of n points in the plane. Let T(G)
be the set of triples abc such that (a,b), (a,c), or (b, c) is an edge of G. Note that
the orientation of abc is given by the partition of the corresponding edge. We
define the CC-closure of G as the set all triples that can be proven by applying
Axioms 1-5 from T'(G). Note that the C'C-closure can be defined for any subset
of triples of points with orientations.

Problem 4 (ComMPUTINGCC-CLOSURE)

Given an OT-graph G.
Compute the CC-closure of G.

A naive approach to solve COMPUTINGCC-CLOSURE is to use an algorithm
for testing CC-closure.

Problem 5 (TESTINGCC-CLOSURE)
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Given a set of triples with orientations for n points.
Decide whether a new triple can be derived using Azioms 1-5. If so, find a
new triple using Axioms 1-5.

By applying an algorithm for TESTINGCC-CLOSURE to T(G) we can extend
T(G) (if possible) and solve COMPUTINGCC-CLOSURE. TESTINGCC-CLOSURE
can be done in O(n®) time (since Axiom 5 requires 5 points). There are ()
triples and, thus, the naive approach takes O(n®) time. We show that it can be
done much faster.

Theorem 6. CoMPUTINGCC-CLOSURE can be solved in O(n®) time.

Algorithm 1.

1. Make a list L; of all input triples with orientations (list L; stores all triples
with known orientations). Copy Lo = Lj.

2. While list Lo is not empty, remove any triple abc from list Ly. Apply Axioms
as follows. Find new triples using Axioms 1,2,3’,4, and 5 such that triple abc
is used in the condition of the axiom with the same orientation. If a new triple
(i.e. not in Ly) is found, say pgr, then add it to Ly and Ls.

3. Return list L.

Proof. To implement Algorithm 1 efficiently, we store triples of L; in a 3-
dimensional array A;. The value of A4[a, b, ¢] is true/ false if abc has a CCW /CW
orientation; otherwise A1[a,b, ] =null. Using array A;, we can decide in O(1)
time whether a triple is in list L; or not. Each triple abc is processed in Step 2
in O(n?) time since
(i) Axioms 1,2, and 3’ can be applied at most one time,
(ii) Axiom 4 can be applied at most n — 3 times and
(iii) Axiom 5 can be applied at most (n — 3)(n — 4) times.
Each triple is added to (and removed from) list Ly at most one time. The num-
ber of triples removed from Lo in Step 2 is O(n?). Therefore, the total time
complexity of the algorithm is O(n®).

In our implementation of Algorithm 1, we do not maintain list L;. Instead,
we compute it in the end using array A;.

The problem of computing the smallest OT-graph for a given order type
seems complicated. Note that, if we restrict the axioms to Axioms 1,2, and 3
then a simple polynomial-time algorithm for computing the smallest OT-graph
exists by Theorem 3 (by constructing two cliques). Next, we extend Algorithm
1 to a randomized algorithm for computing an OT-graph without increasing the
running time. We incrementally add edges to a graph G = (S, F) until G is
an OT-graph for S. We store Lj, a list of triples abe such that (a,b), (a,c), or
(b,c) is an edge of G. Note that the orientation of abc can be computed using
the coordinates of a,b, and ¢ in O(1) time. As in Algorithm 1, we have list Lo
which is useful for computing the CC-closure of G.
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Algorithm 2.
Input: an order type given by a set of points S.
Output: an OT-graph G for §

1. Set E = (. Set countCC =0, the number of triples in the CC-closure of

G = (S,E).

2. Compute list R of (g) edges in the complete graph for S.
Initialize array A;[n,n,n] with entry values null and empty list Lo.
4. While countCC< n(n —1)(n —2)

(a) Remove a random edge (a,b) from R.

(b) If Aifa,b,c] #null for all ¢ € S\ {a,b} then continue the “while” loop
otherwise do the following steps (c¢) and (d).

(¢) Add (a,b) to list E. For each ¢ € S\ {a,b} such that A,[a,b, | # null,
add one of the triples (a,b,c) or (b,a,c) to list Ly which has a CCW
orientation.

(d) Process list Lo as in Algorithm 1.

@

Algorithm 2 (if repeated several times) can find the smallest OT-graph for a
given order type, see for example Fig. 10. We also make a program that helps
to verify the proof of an OT-graph. Note that a triple can be proven differently
using Axioms 1-5. We develop a program for finding a human-readable proof.
Once the best OT-graph for a given order type is found, the program computes
a proof only for triples that require Axioms 4 and 5 (Axioms 1-3 are obvious).
For example, Fig. 11 illustrates an OT-graph among all order type of 9 points
and the format of the proof.

. N\ﬂ?) Proof:
Triple (7, 2, 0), Axiom 5 [2, 5, 0, 4,

7,2,0) 5,0, 4
Triple (7, 3, 0), Axiom 5 [3, 2, 0, 4,
Triple (7, 2, 1), Axiom 5 [2, 5, 1, 4

! e

) )

Fig.11. An OT-graph for order type of 9 points and a part of the proof of it. The
format for Axiom 4 is [p, g, 7, t] and the format for Axiom 5 is [p,q,r, s, t].

Greedy Algorithm. Each iteration Algorithm 2 is quite fast (for relatively small
n). However, it may require many runs to find small OT-graphs. Another pos-
sibility is a greedy algorithm where all possible edges for adding to the cur-
rent graph are tested and the edge maximizing the size of the CC-closure is
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selected. Since the computation of the CC-closure takes O(n®) time, this app-
roach is computationally expensive (it takes O(n") time for selecting one edge
and O(n?) for constructing the OT-graph). We developed a different greedy
algorithm where the edge maximizing the size of the CC-closure using only
Axioms 1,2,3 is selected. We found an implementation of this algorithm without
increasing the running time, i.e. with running time O(n®). We add a new 2-
dimensional array C[..] for counting triples corresponding to the edges. Initially,
Cla,b] = n — 2 for all pairs (a,b) of points a # b. Every time a new triple,
say abe, is proven using Axioms we subtract one from C[x,y] for all possible
x # y € {a,b,c}. Then, the greedy selection can be done by finding an edge
(a,b) maximizing Cla, b].

The total running time of this algorithm has two components. It is O(n®)
time as in the randomized algorithm plus the total time for processing new array
C[..]- There are O(n®) new triples and each triple requires O(1) to update C[..].
This step takes O(n?) time in total. The computation of a new edge for G takes
O(n?) time. Thus, the total time for computing the edges of G = (S, E) is
O(mn?) where m = |E|. Therefore, the total time for processing array CI..]
is O(n*). Minimal OT-graphs. When an OT-graph with m edges is computed,
it can be checked for minimality. An OT-graph for some order type is minimal
if removal of any edge results in a graph which not an OT-graph, i.e. its CC-
closure does not contain all possible triples. This can be decided by applying the
algorithm for COMPUTINGCC-CLOSURE m times.

6 Experiments

We implemented the randomized algorithm (Algorithm 2) and the greedy algo-
rithm for computing OT-graphs. The programs are written in Java 8 using multi-
threading and thread synchronization. We used a Linux server with 32 CPUs
and 62 GB RAM to execute our program. We have computed the exit graphs and
the OT-graphs on the database of order types [2] for n = 3,4,...,9. To achieve
current database and ensure the minimality of edges of OT-graphs, we run it
around more than 3 days on the dataset. The results are shown in Table 1.
Our experiments show that in many cases the greedy algorithm outperforms
Algorithm 2 by the size of an OT-graph. Therefore, we iterate the greedy algo-
rithm (with random tie-breaking) first and then iterate Algorithm 2 searching
for a possible improvement. The number of iterations used for the greedy algo-
rithm was 300,1200,10000 for n = 7,8, 9 respectively. The number of iterations
used for Algorithm 2 significantly larger (100000 for n = 9). About 70% of
OT-graphs in Table 1 were computed using the greedy algorithm. The improve-
ment achieved by Algorithm 2 was rather small: typically one edge reduction
for an order type. The program implementing Algorithm 2 is still running and
hopefully, new OT-graphs will be computed in a few months.

It is interesting that the smallest OT-graphs are achieved for 14 order types
with n = 6, for 2 order types with n = 7, for 26 order types with n = 8, and
for 124 order types with n = 9. There are only 2 order types for n = 6 whose
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Table 1. OT-graphs for n up to 9. Column 4,7 = 1,2,...,11 contains the number of
OT-graphs with i edges.

nil 234 5 6 7 8 9 10 11 | Total
3|1 1

4 2 2

5 3 3

6 14 2 16

7 2 79 54 135

8 26 696 1,802 791 3,315
9 1 234 9,379 49,331 73,906 25,671 295 |158,817

. r

(a) order type 7 (b) order type 15 (c) order type 17

Fig.12. Extreme OT-graphs for n = 6 and n = 7. (a),(b) Two order types for
n = 6 maximizing the number of edges. (¢) An order type for n = 7 (different from
the convex case) minimizing the number of edges.

OT-graphs require 5 edges. They are shown in Fig. 12(a) and (b). The two order
types for n = 7 that admit OT-graph with 4 edges are shown in Fig. 10(b) (the
convex position) and in Fig. 12(c).

Let p(n) be the minimum number of edges in an OT-graph for n points.
Based on our experiments, we conjecture that u(4) = 2, u(5) = 3,u(6) =
w(7) = 4,1(8) = p(9) = 5. This can be compared with exit graphs where the
minimum number of edges is the same for n = 5,6,7,8 but is larger for n = 9,
see Fig. 13.

Figure 13(a), (c) shows the distribution of the graph sizes (OT-graph vs exit
graph). Figure 13(b), (d) shows comparison of the graph sizes for each order type
(the order types are sorted by the size of OT-graph and exit graph). Except one
order type for n = 8 and 17 order types for n = 9, the OT-graphs are smaller
that the exit graphs. For n = 9, the maximum size of OT-graph/exit graph is
11/16, respectively. The corresponding total number of edges is 1386819 for OT
graphs and 1673757 for exit graphs which is 82.85%.
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Fig. 13. The sizes of OT-graphs and exit graphs of order types for (a,b) n = 8 and
(c,d) n = 9. The order types in (a) and (c) are sorted independently for OT-graphs
and exit graphs. The functions in (b) and (d) use the same order type on the z-axis
(the order types are sorted lexicographically).

7 Concluding Remarks

In this paper, we introduced new geometric graphs, OT-graphs, for visualizing
order types in the plane. This new concept gives rise to many interesting ques-
tions. Is it true that the smallest size OT-graphs for all order types of n points
are achieved for points in convex position? Is the bound in Theorem 1 tight?

In many cases there are different OT-graphs of minimum size for the same
order type. One can use other criteria to optimize OT-graphs, for example,
crossings. Figure 4 shows that there exist OT-graphs without crossings for all
order types of 4 and 5 points. Theorem 1 shows that there are OT-graphs without
crossings for points in convex position. Can it be generalized in this sense?

Finally, we plan to run our program on order types for larger values of n
using the database of order types developed by Aichholzer, Aurenhammer, and
Krasser [2]. It is a challenging problem since the number of order types grows as
20(nlogn) 11 10] (there are 14,309,547 order types for n = 10.)
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