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ABSTRACT

Low-Power Wide-Area Networks (LPWANS) are an emerging Internet-
of-Things (IoT) paradigm marked by low-power and long-distance
communication. Among them, LoRa is widely deployed for its
unique characteristics and open-source technology. By adopting
the Chirp Spread Spectrum (CSS) modulation, LoRa enables low
signal-to-noise ratio (SNR) communication. However, the standard
demodulation method does not fully exploit the properties of chirp
signals, thus yields a sub-optimal SNR threshold under which the
decoding fails. Consequently, the communication range and energy
consumption have to be compromised for robust transmission.
This paper presents NELoRa, a neural-enhanced LoRa demodu-
lation method, exploiting the feature abstraction ability of deep
learning to support ultra-low SNR LoRa communication. Taking
the spectrogram of both amplitude and phase as input, we first
design a mask-enabled Deep Neural Network (DNN) filter that
extracts multi-dimension features to capture clean chirp symbols.
Second, we develop a spectrogram-based DNN decoder to decode
these chirp symbols accurately. Finally, we propose a generic packet
demodulation system by incorporating a method that generates
high-quality chirp symbols from received signals. We implement
and evaluate NELoRa on both indoor and campus-scale outdoor
testbeds. The results show that NELoRa achieves 1.84-2.35 dB SNR
gains and extends the battery life up to 272% (~0.38-1.51 years) in
average for various LoRa configurations.
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Figure 1: SNR gains can benefit energy efficiency by keep-
ing SF small. State-of-the-arts (SoTAs) use multiple gate-
ways/nodes to enhance the observed SNR. We design a DNN
demodulator (NELoRa) which lowers the SNR threshold of

the chirp symbol decoding at a single gateway.

1 INTRODUCTION

Recent years have witnessed the emergence of Low-Power Wide-
Area Networks (LPWANS) as a promising mechanism to connect bil-
lions of low-cost Internet of Things (IoT) devices for wide-area data
collection (e.g., smart-industry, smart-city, smart-agriculture) [29,
32]. Long Range (LoRa) [1], SIGFOX [5], and NB-IoT [40] are the
three commercialized wireless technologies that facilitate the estab-
lishment of LPWANSs. Among them, LoRa is the only open-source
one and works on unlicensed frequency bands. By modulating data
via Chirp Spread Spectrum (CSS), LoRa allows sensor nodes to send
data at low data rates to gateways several or even tens of miles away.
Unfortunately, recent studies [8, 10, 12, 14, 15, 22, 27, 28, 31, 50]
show that the communication range of LoRa is far from the expecta-
tion in complex real-world environments (e.g., urban areas, campus).
The blockage attenuation could severely degrade the Signal-to-
Noise Ratio (SNR) of LoRa packets, causing decoding failures even
at a sub-kilometer distance. Consequently, a LoRa node has to adapt
its configuration with more energy consumption to compensate for
the SNR degradation, reducing its battery life drastically.

In LoRa, Spreading Factor! (SF) and Bandwidth (BW) are two key
configurable knobs that balance the range and energy consumption
of LoRa communication [44, 45]. Given a specific LoRa configura-
tion (i.e., SF, BW), the standard LoRa demodulation method, dechirp,
determines an SNR threshold above which chirp symbols can be de-
coded. A larger SF enables a lower SNR threshold, which results in a
longer communication range and larger energy consumption under
the same BW. To minimize battery drain for packet transmission,
LoRa employs a rate adaption strategy that uses the observed his-
torical SNR to choose the smallest feasible SF [10]. Intuitively, if we
can obtain extra SNR gains to enlarge the gap between the observed

! The spreading factor denotes the number of bits that can be encoded per chirp symbol,
determining the data rate of LoRa’s CSS modulation.
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Table 1: Comparison between NELoRa and recent studies re-
garding primary feature, performance, and deployment cost.
GW, HD, and MDTS stand for the gateway, hardware diver-
sity, and multi-dimension temporal-spatial features.

Feature SNR Gain GW/Node
Charm [10] | Energy 1-3dB 2-8/1
OPR[2] | Frame 15-25dB  2-6/1
Chime [14] Freq. 2.4-3.4dB 4-6/1
Choir [12] HD N/A 1/36
NELoRa MDTS  1.8-2.4dB 1/1

SNR and the SNR threshold determined by a LoRa configuration, the
communication range will be enlarged, and the upper layer protocol
will have more spaces to extend the battery lifetime [2, 12, 14].

Figure 1 illustrates an example of how the extra SNR gains could
help improve LoRa nodes’ energy efficiency. Specifically, the black
curve represents the observed SNR of a LoRa link, fluctuating at
the SNR threshold of the currently applied SF indicated by the
black dashed line. When the observed SNR is lower than the SNR
threshold, a larger SF must be applied for successful decoding. As
a result, more energy is consumed during this period. However, if
the extra SNR gains can be obtained through either increasing the
observed SNR to the blue curve (e.g., blue up-arrow) or reducing
the SNR threshold to the red line (e.g., red down-arrow), the larger
SF is no longer needed so that the energy efficiency of LoRa nodes
can be significantly improved.

Status Quo and their Limitations. Status quo approaches [2, 10,
12, 14] obtain extra SNR gains by enhancing the observed SNR
over a weak LoRa link as the blue curve depicted in Figure 1. Such
SNR gains are obtained by leveraging information collected from
multiple LoRa nodes or gateways. For instance, Choir [12] leverages
up to 36 co-located LoRa nodes to boost the received signal strength;
Charm [10] utilizes the spatial diversity of 2 to 8 gateways to decode
weak chirp symbols through coherent combining; OPR [2] explores
the disjoint link-layer bit errors across 2 to 6 gateways to recover
the corrupted packets; and Chime [14] uses a heart-beat packet
and three gateways to estimate wireless channel state to select the
optimal frequency for packet transmissions.

As summarized in Table 1, although these approaches have
achieved impressive SNR gains, such gains are obtained costly if the
LoRa nodes and gateways are not densely deployed. The root cause
of the limitations shared across the status quo approaches described
above is that they are all designed based on dechirp, which decodes
a chirp symbol by only relying on its energy in the spectrum [12].
Such a design choice, though simple, is coarse-grained: it ignores
fine-grained information embedded inside the chirps, which can be
helpful in chirp symbol decoding.

Overview of the Proposed Approach. The limitation of dechirp
motivates us to rethink the design of the LoRa demodulation method.
To this end, we present NELoRa?, a neural-enhanced demodulation
method that achieves ultra-low SNR LoRa communication with
a single gateway. The key idea of NELoRa is to use Deep Neural
Networks (DNN) to extract the fine-grained information embedded
inside the chirps for decoding. Compared to the single-dimension

2The datasets and source codes are available at https:/github.com/hanqingguo/NELoRa-
Sensys.
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energy information used in dechirp, the extracted fine-grained in-
formation contains robust and consistent multi-dimension patterns
across time, frequency, phase, and energy information of the chirps.
By doing this, NELoRa breaks the SNR threshold of dechirp and
obtains extra SNR gains by lowering the SNR threshold depicted
as the red line in Figure 1. As a result, NELoRa can enlarge the
LoRa communication range and reduce the energy consumption at
a single gateway.

First, NELoRa incorporates a dual-channel spectrogram to create
amulti-dimension feature space, in which extra information beyond
energy can be extracted for decoding chirp symbols. The dual-
channel spectrogram contains not only the amplitude but also the
phase. Since amplitude and phase are orthogonal regarding different
noise, diverse high-level features extracted from the dual-channel
spectrogram provide the foundation to decode chirp symbols at
ultra-low SNR levels (§3.2.1).

Second, NELoRa incorporates a dual-DNN design. The first DNN
acting as a noise filter recovers clean chirp symbols by masking
their noisy input spectrogram. The second DNN acts as an adaptive
decoder, which classifies the recovered chirp symbols. Given the
finite coding space of LoRa, training and testing datasets share
the same chirp symbols except for the distorted noises. Hence, the
well-known “bad” overfitting® of DNN can be turned into a useful
characteristic for chirp symbol decoding [52]. We further compress
our dual-DNN design in terms of latency and parameter size to
efficiently run on a resource-constrained gateway (§3.2.2).

Third, NELoRa incorporates a chirp-level data synthesis scheme

to enhance its generalization capability for diverse deployment
environments. In comparison with data collected from a specific
environment, our chirp-level data synthesis scheme can generate
chirp symbols with a wide range of noise given a LoRa configuration
(§3.2.3).
Implementation and Evaluation Results. We have implemented
NELoRa on a USRP N210 Software Defined Radio (SDR) combined
with a back-end host and evaluated its performance with commod-
ity LoRa nodes in both indoor and outdoor deployments. Our results
show that NELoRa can achieve 1.8-2.35 dB extra SNR gains across
a wide range of LoRa configurations and extend the LoRa node
battery lifetime by up to 272% (~0.38-1.51 years).

In summary, our work makes three major contributions:

o To the best of our knowledge, NELoRa represents the first neural-
enhanced LoRa demodulation method with the minimum deploy-
ment cost. Furthermore, it consistently outperforms the standard
method under a wide range of LoRa configurations.

e We have incorporated two novel techniques, including the dual-
channel spectrogram for multi-dimension feature space construc-
tion and the dual-DNN design for noise removal and chirp symbol
decoding. These techniques represent unique contributions that
altogether push the SoTA of LoRa systems forward.

e We have implemented a prototype of NELoRa via COTS devices
and evaluated its performance in both indoor and outdoor deploy-
ments. The results show that NELoRa can achieve 1.84-2.35 dB
SNR gains and 0.38-1.51 years battery life improvement.

30verfitting refers to a model that precisely models the foreground information in
training data.
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Figure 2: Illustration of LoORaWAN architecture.

2 UNDERSTANDING THE PROBLEM

2.1 LoRaWAN Architecture

As illustrated in Figure 2, a LoRaWAN consists of end nodes, gate-
ways, a network server, and an application server. The collected
sensory data (e.g., temperature, humidity) transmitted from the
distributed end nodes is relayed by several gateways to the network
server. In LoRa’s communication stack, its physical layer enables
long-distance communication via CSS modulation at the end nodes
and dechirp (§2.2) at the gateways. We summarize the deployment
issues and protocol design concerns at the end node and gateway
sides as follows:

e End nodes are widely distributed in a large area and powered
by batteries or harvesting energy from solar power and ambi-
ent wireless signals [17, 38]. Since energy is precious at the end
node, LoORaWAN makes the up-layer protocols as simple as pos-
sible. For example, the commonly used class A mode [1] adopts
a simple ALOHA media access protocol to avoid the energy con-
sumption on carrier sense. Additionally, end nodes are operating
in infrastructure mode. They directly communicate with a gate-
way without a multi-hop relay among themselves. Hence, the
demodulation task is rarely performed on an end node.

e LoRa gateways are deployed with tethered power supplies.
Thus the energy consumption is no longer a problem at the
gateways [44, 45]. The onboard micro-control unit (MCU) (e.g.,
STM32), however, is computationally limited. Therefore, a low-
cost computing platform (e.g., Raspberry PI, Arduino) is also
physically connected to provide extra computation resources to
execute the tasks (e.g., remote programming). Besides, from the
view of network and application servers, the second-level delay
at the gateway can also be tolerated due to the low duty cycle of
LoRa traffic flows.

The design of NELoRa fits LoRaWAN architecture well. At the
end node side, there is no additional cost incurred, and end nodes
benefit from our SNR gains, resulting in a longer communication
range and battery life. At the gateway side, by leveraging the gate-
way'’s tolerance on power consumption and its extra compute re-
sources, NELoRa adopts the deep learning techniques for weak
chirp symbol decoding.

2.2 Standard Modulation and Demodulation

LoRa uses CSS modulation [3]. Given the pre-configured BW, CSS
first defines a base up-chirp whose frequency increases linearly

at the rate of k over time from —% to %, denoted as C(t) =
- BW | kt
e/27(=7-*%) The data bits are then encoded by shifting the

initial frequency of a base up-chirp to f;, rendering a chirp symbol
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Figure 3: In dechirp, the energy peak of a chirp symbol’s
spectrum is distorted or overwhelmed as the SNR decreases.

as ye = C(t)el 27t shown in Figure 3a (top). Propagating through
the wireless channel, the received chirp symbol y, at the gateway
can be formulated as follows:

yr[n] = hye[n] +wln] (n=0,1,--- ,N - 1) 1)

where y,[n] and h are the n'? sample of the chirp symbol with
total N = 25F samples and the amplitude of the received chirp
symbol. w is the channel noise following the compound Gaussian
distribution [46] in the I-Q space, namely R(w) ~ N(0,0?) and
I(w) ~ N(0,a2).

A LoRa receiver adopts dechirp to decode the initial frequency
fs of areceived chirp symbol by first multiplying the chirp symbol
with a time-aligned base down-chirp, indicated as C~1, the con-
jugate of the base up-chirp. With Fast Fourier Transform (FFT),
Equation (2) demonstrates the energy of the frequency component
|X[m]] at bin m:

N-1
X[m]| = |F(y-C Ol =] Y e 7N (hyeCl + )| (2)
n=0

X[m] consists of two parts. One is X¢[m] indicating the energy
from chirp symbol y.. The other is noise energy X,[m] (ie., w)
that still follows the compound Gaussian distribution [46] with
parameter o. Equation (3) shows |X;[fs]| can be estimated as the
product of the amplitude h and the total sample number N.
N-1 -
Xelfill= lim | he AR =hxN - (3)
m/T—fs =0

Hence, as shown in Figure 3a (bottom), the energy of the chirp sym-
bol can be accumulated and form an energy peak at the frequency
fs in the spectrum [46]. Consequently, in dechirp, we determines
fs by finding the frequency bin with the maximum energy.

However, Equation (4) depicts the maximum noise energy | X, [m]],
which follows the Rayleigh distribution with N (0, %) [44].

max| X, [m]| = V202N x Hy_4 (4)

where Hy_q is the value of N — 1 term harmonic series [41] as
fl\[: _11 % Consequently, as shown in Figure 3b and 3¢, when SNR
is decreased gradually, the energy peak can be distorted or even
overwhelmed by the noise energy.
To decode a received chirp symbol, the energy peak |X.[fs]|
should be higher than the maximum noise energy |X;,[m]| in the
spectrum. To ensure that the energy peak is not overwhelmed by

the noise energy (|Xc[fs]| > max|X,[m]|), Equation (5) provides
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Figure 4: The SNR threshold of dechirp under different LoRa
configurations across different SFs (left) and BWs (right).

the SNR threshold, under which chirp symbols cannot be decoded
by dechirp:
Hn_1
N ®)
Furthermore, we use our synthesis chirp symbol dataset col-
lected from our indoor testbed (§5) to validate the existence of the
SNR threshold in Equation (5). Figure 4 illustrates the decoding
accuracy of dechirp as SNR decreases. Specifically, it shows the
SNR threshold under different configurations across SFs and BWs.
With higher SF or smaller BW, the SNR threshold is getting lower.
For example, when BW=125kHz and SF=12, we achieve over 90%
accuracy when SNR is larger than -30 dB. Although the decoding
accuracy of dechirp can achieve 90% when the SNR is higher than
-13 dB across all the experimental settings, we argue that the derived
SNR threshold is sub-optimal since the energy feature only reflects
a part of the chirps, which motivates the design of NELoRa.

h2
SNRpres = IOIg(ﬁ) = 10lg(

3 NELORA OVERVIEW

3.1 NELoRa Architecture

Figure 5 illustrates the overall architecture of NELoRa. NELoRa
consists of three stages to realize reliable symbol generation and
neural-enhanced demodulation. In the Packet Identification stage,
a LoRa packet is first detected from raw signal samples via the
Chirp Enhance and Preamble Detection modules. The detected packet
is then putted into the DNN Input Generation stage. The Offset
Recovery module exploits the redundant chirp symbols in packet
preamble to compensate offsets in frequency and time domains to
generate the time-aligned and offset-free chirp symbols in packet
payload. Each extracted chirp symbol is then transformed by the
Symbol Transform module into a dual-channel spectrogram. The
final stage is DNN-based Demodulation. Given the dual-channel
spectrogram, the Mask-enabled Filter module alleviates the channel
noise to obtain a masked spectrogram, which is decoded by the
Spectrogram-based Decoder module to generate the packet.

3.2 Key Design Choices

The design of NELoRa involves three critical design choices. We
provide an overview of these design choices in this section before
presenting details of NELoRa in the next section.

3.2.1 Feature Space Selection.

Key Issue: A DNN consists of multiple layers to capture different
kinds of features from its input [51]. A multi-dimensional input
is preferred to enlarge the feature spaces. Many wireless sensing
systems [6, 25] demonstrate the effectiveness of feeding a DNN
with a 2D spectrogram via Short-time Fourier Transform (STFT).
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Figure 5: NELoRa’s architecture integrates symbol genera-
tion (purple) and neural-enhanced demodulation (gray).
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However, compared to the energy feature extracted from a chirp
symbol’s 1D spectrum, whether its 2D spectrogram can provide a
richer feature space that benefits LoRa demodulation at low SNR
levels is questionable.

Our Approach: To address this issue, given a chirp symbol, we
first divide it into a sequence of short chirp segments with equal
length. Then we compute the spectrum of each short chirp segment
separately as dechirp does to generate an amplitude spectrogram.
In addition, we extract the phase of each short chirp segment’s
spectrum, which leads to a dual-channel spectrogram in § 4.2.
To demonstrate the feature space of our dual-channel spectrogram,
we collect four SF-7 chirp symbols representing four different but
very close data bits (e.g., 0x40, 0x41, 0x43, 0x45) at a high SNR level.
The dual-channel spectrogram creates the desired feature space
only if the spectrograms of the four chirp symbols are distinct
enough. Then, we take 0x40 chirp symbol as a reference to compute
the dual-channel spectrogram differences with others. The results
are shown in Figure 6. The spectrograms of amplitude and phase
are on top and bottom, separately.

For a chirp symbol, the spectrum energy peaks derived by contin-
uous short chirp segments form a linearly increasing energy peak
distribution in its amplitude spectrogram. The initial frequency of
the energy peak distribution is determined by the initial frequency
of the chirp symbol, which corresponds to the data bits it repre-
sents. As shown at the top of Figure 6, although the encoded initial
frequencies among the four chirps are close, we can clearly observe
the energy peak distributions from the amplitude spectrogram dif-
ferences. This indicates energy peak distribution is a useful feature
dimension. Additionally, as shown in Figure 6b and Figure 6c, we
can see peaks (e.g., bright areas) and valleys (e.g., dark areas) al-
ternatively appear in both amplitude (e.g., circle) and phase (e.g.,
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dashed rectangle) spectrograms. Specifically, the patterns observed
by amplitude and phase are correlated, but different chirp symbols
exhibit diverse patterns. Hence, the staggered pattern is another
feature dimension of the dual-channel spectrogram to distinguish
different chirp symbols.

When SNR is getting low, however, the dual-channel spectro-
gram will be polluted by noise. To illustrate this, we collect an SF-7
chirp symbol to calculate its amplitude spectrogram under different
SNR levels. As shown in Figure 7a, when SNR is 35 dB, we can
see the spectrum energy peaks of all short chirp segments. When
SNR drops to -10 dB, Figure 7b shows only several short chirp seg-
ments’ energy peaks (e.g., white circles) can be explicitly observed
compared to surrounding noise energy.

Facing the seriously polluted dual-channel spectrogram, a DNN
can succeed in recognizing chirp symbols due to the noise-resilient
patterns obtained from both amplitude and phase spectrograms.
Specifically, the energy peak distribution exhibits a linear pattern,
which can still be observed with several explicit energy peaks in
Figure 7b. Moreover, the staggered pattern exists in both amplitude
and phase spectrograms. Since the amplitude and phase of a short
chirp segment’s spectrum are affected by the noise independently,
the staggered pattern has the potential to tolerate specific noise. A
well-designed DNN is good at learning these patterns. Although
random noises may be much stronger than chirp symbols, it is
hard to simultaneously form similar patterns in multi-dimensional
feature space to mislead the DNN. Hence, we feed the dual-channel
spectrogram of a chirp symbol to our DNN.

3.2.2 Feature Learning Effectiveness.

Key Issue: The primary goal of NELoRa is to accurately decode
different chirp symbols at ultra-low SNR levels. To achieve this,
NELoRa must learn the unique patterns of each chirp symbol from
its dual-channel spectrogram even if intense noise exists. However,
existing spectrogram-based DNN models [6, 25, 53, 54] cannot be
directly adopted since their black-box feature extraction process
becomes less efficient in our classification task. Specifically, there
are 1024 different chirp symbols when SF is 10. Such a large amount
of classification categories of chirp symbol decoding make these
DNN models hard to learn any useful pattern under ultra-low SNR
levels. Moreover, without any prior knowledge about the correct
pattern of each chirp symbol, the pattern features extracted by the
DNN models are easily misled by the patterns of strong channel
noises if only back-propagating the information whether a chirp
symbol is successfully classified. Hence, a tailored DNN model is
required to achieve high feature learning effectiveness.
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Our Approach: To address this issue, we design a dual-DNN model,
which consists of a noise filter and a chirp symbol decoder for
noise reduction and chirp symbol decoding, respectively. Taking
the dual-channel spectrogram of a chirp symbol as input, the noise
filter is a DNN that outputs a masked spectrogram that mimics the
ideal patterns of the chirp symbol. Analogous to the wildly-used
Smoothed Pseudo Wigner-Ville Distribution (SPWVD) [4, 7, 39],
our noise filter aims to preserve principal chirp symbol patterns in
a raw spectrogram instead of understanding the noise distribution
for noise cancellation [53, 54]. The reason is that the types of noise
distribution are infinite; but given a LoRa configuration, the types
of chirp symbols are finite. For each chirp symbol, we can generate
its ground-truth (GT) dual-channel spectrogram at high SNR levels
as labels (e.g., Figure 8a) to train the DNN together with the raw
spectrogram (e.g., Figure 8b) at different low SNR levels. Then, we
fully exploit the DNN’s over-fitting property to learn the unique
patterns, which enables efficient pattern masking under ultra-low
SNR levels. Figure 8c shows that our DNN noise filter and SPWVD
can derive the masked spectrogram, similar to the GT one, but our
DNN-masked spectrum looks better in terms of pixel similarity.
To quantify the effectiveness of our DNN noise filter against
SPWVD [4, 7, 39], we further measure the pixel-wise spectrum
loss defined as the average spectrum energy variance between the
masked spectrogram and the GT one. The less the spectrum loss is,
the more spectrogram patterns are retained. We use the spectrum
loss of the raw spectrogram without any masking as the baseline.
We collect all types of SF-7 chirp symbols at high SNR levels and
generate the chirp symbols at different low SNR levels in the range
of [-30, 0) dB by injecting noise. The results are shown in Figure 9a.
When SNR is less than 0 dB, both masking methods can filter out
the noise compared with no masking. Additionally, the spectrum
loss of our DNN noise filter shows a similar increasing trend with
that of SPWVD, but is always lower. The spectrum loss of our DNN
noise filter is about 10 at -20 dB SNR or higher, while SPWVD can
achieve the same spectrum loss only if SNR is larger than -10 dB.
This verifies that our DNN noise filter can achieve more effective
pattern preservation than SPWVD under low SNR levels.
However, we can see that when SNR is higher than 10 dB, the
spectrum loss of the raw spectrogram (i.e., no masking) is less than
that of our DNN noise filter. This indicates our DNN noise filter
induces a certain level of spectrum energy loss which is indepen-
dent of the SNR level. Hence, we cannot direct adopt dechirp to
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Figure 9: The effectiveness of our DNN noise filter and de-
coder. (a) the comparison of different masking techniques;
(b) SF-7 chirp symbol clusters in the feature space.

decode the chirp symbol converted by a masked spectrogram. To
compensate for the spectrum energy loss of our DNN noise filter,
we design the other DNN, which takes the masked spectrogram of
a chirp symbol as input and outputs the data bits represented by the
chirp symbol. Our spectrogram-based DNN decoder explores the
multi-dimension feature space created by our dual-channel spec-
trogram to over-fit the pattern difference among different chirp
symbols, which can tolerate the spectrum energy loss to achieve ac-
curate classification. As shown in Figure 9b, given 8,000 SF-7 chirp
symbols across SNR from -20 dB to 0 dB, our spectrogram-based
DNN decoder can distinguish all 27 = 128 symbol clusters in our
high-level pattern feature space via t-SNE [33, 56].

3.2.3 DNN Model Generalization and Compression.

Key Issue: In practice, considering the retraining cost and com-
putation resource limitation while deploying NELoRa, we must

provide a one-fits-all DNN model to avoid extra retraining over-
head in a new environment and compress the DNN model to fit

the limited computation resource at a gateway. Two key factors

can incur a biased training dataset, by using which we will fail to

train a one-fits-all DNN model. One is the inaccurate symbol timing

alignment or the frequency offset between a LoRa end node and

a gateway, which can cause a random shift in the spectrum of a

chirp symbol. The random spectrum shift will mislead our DNN

model and make it hardly matches the masked spectrogram with

the correct data bits it represents. Hence, the chirp symbols in both

training and testing processes should be fully time-aligned and

contain no hardware-dependent frequency offset. The other key

factor is the infinite patterns of random Gaussian noises. To make

our DNN model can generate a masked spectrogram with mini-
mum spectrum energy loss under various SNR levels, the training

dataset should contain the labeled chirp symbols under all kinds

of SNR levels corresponding to the diverse noise levels in different

environments. However, facing the long communication range of
LoRa, it is exhausted to collect such a training dataset. To compress

a DNN model, we face the tradeoff between computation efficiency

and classification accuracy. And it is not trivial to significantly

reduce the execution latency while keeping a stable classification

performance as the original DNN does.

Our Approach: To address this issue, we design a white-box method
(§ 4.1) that utilizes multiple base up-chirps in the preamble of LoRa

packets to extract “clean” chirp symbols, which are time-aligned

and offset-free, from a LoRa packet even under ultra-low SNR-
level. Moreover, we design a data augmentation method to derive

a synthesis training dataset. Specifically, after collecting a small
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set of hardware-independent chirp symbols at narrow SNR levels,
we add various kinds of random Gaussian noises with controlled
amplitudes to the I and Q traces of these chirp symbols [44, 45]. In
this way, we can obtain a high-quality synthesis training dataset
that covers all SNR levels. Additionally, we adopt structured prun-
ing [26] and lightweight layers to compress our DNN model to
achieve efficient running time on LoRa gateways.

4 DESIGN DETAILS
4.1 High-quality Chirp Symbol Generation

Packet Identification: To reap the benefits of the DNN model
in decoding chirp symbols at ultra-low SNR level, NELoRa must
efficiently detect incoming LoRa packets, then divide the payload of
each packet into some chirp symbols, which are further fed to our
DNN demodulator. The default packet detection method utilizes
the preamble of a LoRa packet, which consists of multiple continu-
ous base up-chirps. If we apply dechirp on the preamble, several
continuous energy peaks appear at FFT bin 0 of the multiple base
up-chirps’ spectrum. In practice, a gateway continuously applies
dechirp on recorded symbol-length signals (called window signal).
If a LoRa preamble appears, a window signal contains a chirp sym-
bol (called window chirp) which may not be exactly time-aligned
with the base up-chirps in the LoRa preamble. Considering the
multiple continuous base up-chirps in a LoRa preamble, we will
observe several identical window chirps. If the energy peaks of
several window signals appear at the same FFT bin, a LoRa packet
is detected. Then, we align the chirp symbols of the packet by mov-
ing the observed FFT bin to bin 0. With the base down-chirps in
the packet’s SFD (Start Frame Delimiter), we can remove carrier
frequency offsets (CFO) [44] to generate high-quality chirp symbols
in the packet. However, the dechirp based chirp symbol generation
is limited by the SNR threshold of dechirp, so that we still cannot
be directly adopted by NELoRa, which intends to achieve a lower
SNR threshold.

To tolerate a lower SNR threshold than dechirp’s, our basic idea is
that instead of using the energy peak of a window chirp, we sum up
multiple continuous window chirps to form an enhanced window
chirp, in which the window chirps are added up coherently, but the
random noise is not. We apply dechirp on the enhanced window
chirp to obtain an ideally accumulated energy peak, surpassing the
randomly increased noise energy. In theory, when we sum up eight
window chirps coherently, the resulted SNR gains will be 9dB. We
define a threshold 8. If the energy peak of the enhanced window
chirp is at least § higher than the average noise energy, a LoRa
packet is detected.

Offset Recovery: Putting this idea into practice is still challenging
due to the existence of CFO and sampling frequency offsets (SFO),
which introduce phase shifts onto the window chirps that accu-
mulate over time. Therefore, different window chirps may have
different initial phases. To take advantage of coherently overlap-
ping, we cannot directly add up these window chirps. As shown in
Figure 10a, we superpose two window chirps and apply dechirp for
packet detection. When manually turning the phases of these win-
dow chirps and making them add up coherently, the energy peak
is much higher than the noise energy, allowing us to detect a LoRa
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Figure 10: Packet detection with an enhanced window chirp.
(a) Two window chirps are added up coherently or incoher-
ently by tuning their initial phases; (b) Initial phases of con-
tinuous window chirps.

packet at the SNR below the dechirp’s SNR threshold. Otherwise,
window chirps will be added up incoherently, resulting in signal
distortion and thus degrading the SNR gains.

NELoRa leverages an optimal phase searching algorithm for
accurately measuring and compensating the phase offsets over
multiple window chirps. Supposing the frequency bias of a LoRa
node’s oscillator is k ppm compared to the oscillator of a gateway,
the CFO and SFO are Frr X k MHz and Fs X k MHz, respectively,
where FRp is the carrier frequency and Fy is the sampling frequency.
Both the CFO and SFO influence the phase of the window chirps,
but in totally different ways. The CFO introduces continuous phase
shifts that accumulate over time, thus the initial phase of the ith
window chirp is shifted by

¢c=i-T-2n-CFO rad 6)

where T is the chirp symbol duration. The SFO induces a length
difference between the window chirps and the base down-chirp
used in dechirp. For example, the actually received window chirp
is shorter (or longer) than a base down-chirp by 7 = T/(1 + k).
This leads to a time offset between each received window chirp and
the base down-chirp, accumulating over time. Therefore, at the ith
window chirp, the phase shift introduced by the SFO is

¢s:i-T~27[-(i~¥f) rad. (7)

Putting ¢, and ¢s together, the phase shift for the it window chirp
can be finally derived as

BW
¢(K,i):T~2n-(mi2+FRF-K-i) rad 8)

which is a quadratic function related to both the frequency bias and
the window chirp index. We verify the correctness of the ¢(k, i)
by making a commodity LoRa node transmit a packet with a long
preamble. As shown in Figure 10b, the initial phase of each window
chirp perfectly fits Equation (8).

Given the frequency bias of a LoRa node is within a limited range
under all operating conditions (i.e., |[k| < A), we can search for k
between —A and A to compensate the phase shifting via:

N-1
= . JP(x,i) 1
K argiAniellc)iAmaﬂT[;(Cl(t)e )-C | 9)
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where N is the number of base up-chirps in a LoRa preamble and
C;(t) represents the i window chirp. We apply stochastic gradient-
descent algorithms to speed up the searching process with randomly
chosen initial x. We align the chirp symbols of a LoRa packet by
moving the FFT bin where the energy peak of its enhanced window
chirp appears to bin 0. Then, we apply « to remove both CFO and
SFO to generate high-quality chirp symbols.

4.2 Neural-enhanced Demodulation

Symbol Transform: To decode the encoded data bits from an
extracted chirp symbol, our DNN model takes the dual-channel
spectrogram of the chirp symbol as input. First, we take STFT on
a chirp symbol x(n). Then we concatenate the real and imaginary
parts to retain the amplitude and phase of the STFT (x(n)) as:

STFT (x(n), m, w) = Z x(M)W[n—mle /9" : C" > RS
z = [R(STFT (x(n))), I(STFT(x(n)))] 1 p (10)

where W is the Hann window whose size is m, and the chirp symbol
x(n) € C" is translated into feature z € R/ with t sampling
points and f frequency bins.

DNN-based Demodulation: Given M chirp symbols in a LoRa
packet, our objective is to learn a mapping function G : X — y¢°de
from the designed dual-channel spectrogram X = {zi}?i , to the
ground truth encoded data bits Y¢°4¢ = {yl?"de }?ﬁ »

As shown in Figure 11, our dual-DNN model includes two mod-
ules, the noise filter F and the spectrogram-based decoder D for
noise reduction and chirp symbol decoding, respectively. The first
module aims to preserve the primary spectrogram features of a
chirp symbol by masking the raw dual-channel spectrogram z as
F(z) - z. In a conceptual sense, the noise filter F is more like an end-
to-end shortcut connection in the ResNet block [18] by transform-
ing the shortcut from layers into ends. It contains multiple blocks
of CNN and one LSTM to fully exploit the spatial and temporal
features of the input, followed by two dense layers to output a well-
matched mask F(z). Moreover, a four-layer CNN-based decoder is
designed to fully capture the spatial energy peak distribution and
temporal staggered pattern in the masked spectrogram.

To evaluate the impact for each layer of the DNN noise filter,
we illustrate the intermediate mask in Figure 12. Taking a dual-
channel spectrogram as input, the 8-channel output from the 8-
block CNN module shows a distorted energy peak distribution
initially, in which it filters the random noise by exploiting the
spectrogram spatially. Figure 12c, the output from the LSTM and
Dense layer, presents a relatively clear energy peak distribution
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Figure 12: Visualizing intermediate outputs across CNN, LSTM, and Dense layers for chirp symbol at -20 dB SNR.

with the increasing frequency as time passes. We cannot derive a
reliable mask until we further compress the intermediate output
with another Dense layer, rendering a well-matched mask F(z) in
Figure 12d. Finally, by multiplying the mask with the input, we
deliver the masked spectrogram F(z) * z in Figure 12e.

To train the DNN noise filter, for each value of the encoded data
bits, we collect the corresponding chirp symbols at high SNR-level
as the GT spectrogram Y*P¢¢ = {y; spec }M To enhance the learn-
ing processing in the training stage we de51gn two loss functions
corresponding to each DNN for back-propagation. Equation 11
demonstrates that our training goal aims for optimal noise filter
F* and decoder D*, rendering the least average loss Ep; with M
symbols for each batch on the training dataset.

F*,D* :argr}r:liDnEM(/l - MSE(F(z) * z, y*P€c) (11)

+7 - CrossEntropy(D(F(z) * z), y°°%))

where MSE denotes the mean squared error between the masked
spectrogram and the GT one while we adopt the cross-entropy loss
as the decoding loss, which are weighed by A and y, respectively.
Data Augmentation: We improve the generalization of our DNN
model by training it with millions of synthesis LoRa chirp symbols,
which cover different SNR levels with diverse random noise patterns.
Specifically, we collect each type of chirp symbol at high SNR on
an indoor testbed. Then, to achieve fine-grained SNR control, we
add various Gaussian white noises with controlled amplitude on
the collected I and Q traces [44, 45] to generate new chirp symbols.
DNN Model Compression: Though NELoRa can efficiently run
on a PC equipped with GPU, the runtime cost increases when
deploying on a LoRa gateway with limited resources [55]. Thus, we
adopt the structured pruning [13] to compress the original model for
efficient running. Specifically, we calculated the L1-norm of weights
in each filter of CNN and dense layer and preserved those with the
largest L1-norm. Besides, we also replace the LSTM layer with the
GRU layer, which is a more computation-efficient version of RNN,
while achieving similar performance when the input sequence is not
too long. The compression model shows equivalent performance
with the initial NELoRa and reduces the inference runtime in our
evaluations.

5 IMPLEMENTATION AND EVALUATION
METHODOLOGY
Implementation: We have implemented NELoRa and evaluated

its performance with commercial LoRa nodes. Figure 13 illustrates
the system prototype of NELoRa. Specifically, we use the USRP

‘ [1Gateway:

USRP N210

UBX Daughter Board
Low Noise Amplifier

Testbed Node:
SX1278MBALAS Client
STM32L0 R8T6

Figure 13: USRP N210 based gateway and commodity $X1278
client radio based LoRa node.

N210 software-defined radio (SDR) platform for capturing over-
the-air LoRa signals, operating on a UBX daughter board at the
470MHz bands. The captured signal samples are then delivered to
a back-end host for pre-processing and demodulation. Note that
demodulation method of NELoRa are hardware-independent, so
they can be implemented on any other commercial LoRa gateways
as long as the signal samples can be obtained. On the transmitter
side, we use SX1278 client radio based commodity LoRa nodes for
transmitting LoRa packets.

Chirp Symbol Dataset: The LoRa signals are collected for our
training dataset and evaluation of NELoRa. In addition, we config-
ure the LoRa nodes to transmit random payloads at different LoRa
configurations (e.g., SFs and BWs) periodically at various locations
in an indoor environment. Specifically, we first collect approxi-
mately 3,000 LoRa packets at the high SNR (>30 dB), including 4 SFs
(e..g, 7,8,9,10) and 3 BWs (e..g, 125K, 250K, 500K). Then, we use
our data augmentation method to render 15 million chirp symbols
covering -40 dB to 15 dB.

DNN Model Training and Testing: We can traverse all possible
SF and BW configurations to detect the applied ones of an incom-
ing LoRa packet at the packet identification. Hence, we train an
individual DNN model for each configuration based on the chirp
symbols with the corresponding configuration. We further split
the dataset into training and test sets. One containing 80% chirp
symbols is used for the DNN model training. The test set includes
the rest 20% chirp symbols.

System Parameter Settings: In NELoRa implementation, several
system parameters are set as follows. A LoRa preamble contains
eight base up-chirps. According to the datasheet of SX1278 client
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radio, the frequency bias x is not larger than 50ppm. Hence, we
set the searching range A as 50ppm. In different environments, we
first measure the average level of the noise energy as M, then we
empirically set the packet detection threshold § as 3M. When we
calculate the dual-channel spectrogram of a chirp symbol, give the
SF setting, the window size m is set as 2571, Note that we keep
the same sampling rate (i.e., 1 MS/s) for a fair comparison between
NELoRa and dechirp. Since a higher sampling rate can optimize
the packet reception rate and symbol error rate for dechirp, it also
benefits NELoRa by improving the resolution of the spectrogram
fed into our DNN model, while increasing the running time.

Baseline and Evaluation Metrics: We compare NELoRa with
dechirp, the standard demodulation method of LoRa widely used as
the baseline by existing studies [12, 42, 44], denoted as the baseline
below. For a comprehensive comparison, we utilize three metrics
to evaluate the performance of NELoRa:

(1) Symbol Error Rate (SER) is defined as the accuracy of chirp
symbol decoding on the test dataset, which measures the resilience
to the channel noise.

(2) SNR Gains is defined as the SNR gap between NELoRa and
dechirp at 10% SER on the SER-SNR curves. When SER is higher
than 10%, a LoRa packet containing tens of symbols is hard to be
correctly decoded even with coding redundancy. Thus, this metric
measures the SNR benefit NELoRa can provide.

(3) Battery Life Gain (BLG) is defined as the extended LoRa node
lifetime of NELoRa over dechirp calculated based on LoRaWAN
battery models [10, 14]. This metric measures the energy efficiency
of NELoRa. We assume an ideal error correction mechanism to map
the expected SER to the appropriate Forward Error Correction (FEC)
code length. NELoRa provides a better SNR sensitivity at a gateway.
Thus it can provide robust communication with much shorter FEC
codes (e.g., a smaller SF configuration) compared with the standard
LoRa demodulation method. This leads to a significant decrease
in the packet transmission time, which affects the battery life. We
estimate the battery life by assuming a LoRa node is powered by
two AA batteries and sending 40-byte packets six times per hour.

6 EVALUATION

In this section, we evaluate the performance of NELoRa to answer
the following questions.

e Q1 (§6.1): How much does NELoRa improve the demodulation
performance than dechirp under various LoRa configurations?

o Q2 (§6.2): How effective is each key technique incorporated in the
design of NELoRa?

® Q3 (§6.3): Is NELoRa robust to different environments for low-cost
deployment?

e Q4 (§6.4): What is the storage overhead and running time of
NELoRa?

® Q5 (§6.5): What is the performance of NELoRa in outdoor environ-
ment?

6.1 Overall Performance

Setup: We evaluate the performance of NELoRa with various LoRa
configurations, including 4 SFs (e.g., 7, 8, 9, 10) and 3 BWs (e.g.,
125K, 250K, 500K).
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Results: The results are shown in Figure 14. Given the BW is 125K,
Figure 14a and b show the impact of different SFs on SER and SNR
threshold, respectively. We can observe that NELoRa (e.g., solid
line) has obtained consistently lower SER than dechirp (e.g., dashed
line) for SFs from 7 to 10 across all SNR levels. For different SFs, the
SNR gain is ranging from 1.84 dB (e.g., SF=8) to 2.35 dB (e.g., SF=7)
The SNR threshold of NELoRa at an SF can almost catch up with
dechirp at a higher SF. For example, the SNR threshold of NELoRa
at SF=7 is close to dechirp’s at SF=8. Then, we study the trend of
SER and SNR threshold as BW changes when SF is set to 7. As
shown in Figure 14c and d, it demonstrates similar SNR threshold
improvement and SNR gains under different BWs. In all evaluated
LoRa configurations, the largest SNR gain is 5.94 dB under SF=7 and
BW=500K. Additionally, we can also find the SER of NELoRa cannot
reach 100% even at ultra-low SNR, such as the SF=10 at SNR=-40 dB.
The results verify the efficiency of our DNN demodulator in ultra-
low SNR. And multi-dimensional pattern features are successfully
abstracted during the model training process with millions of chirp
symbols. Our DNN model can be further refined as more diverse
chirp symbols are used for training.

We further evaluate the battery life for NELoRa and the base-
line (i.e., dechirp) at different SNR levels and LoRa configurations,
as shown in Figure 14e-h. And we can see all the green lines for
NELoRa are higher than the red ones, resulting a consistent BLG. In
Figure 14e-g, we can see different BWs for SF=7 have a comparable
battery life when the SNR is higher than -10 dB. Additionally, when
the SNR is getting lower, NELoRa outperforms the baseline consis-
tently, especially can provide a higher BLG for a smaller BW at a
ultra-low SNR-level. As the SF increases to 10, Figure 14h shows,
the battery life is less than three years, much smaller than that using
SF=7 for high energy consumption using a longer chirp symbol.
However, NELoRa achieves a higher BLG with SF=10 than SF=7.
Statistically, the average BLG under SF=7, BW=125K to 500K are
1.39, 1.42 and 1.51 years for SNRe[-25, -10] dB. Compared to the
baseline, NELoRa extends the median battery life by 27%, 33% and
76%, respectively. Moreover, the median BLG under SF=10 can reach
0.38 years (SNRe[-40,-18] dB), equivalent to 272% of the baseline in
battery life. The BLG is increasing as the SNR decreases. The reason
is that with a lower SNR level, a higher SF is needed in dechirp, but
our SNR gains removes the more energy consuming SF change.

6.2 Component-wise Analysis

Setup: We evaluate the efficiency of NELoRa’s sequential DNN
noise filter and decoder on LoRa demodulation. With chirp symbols
(SF=7, BW=125K), we train and test our DNN model by disabling
certain modules separately. For example, we only run the DNN noise
filter to mask the raw dual-channel spectrogram and then convert it
back to the chirp symbol, on which we adopt dechirp for decoding,
named as the w/o Decoder. Besides, we demodulate the raw dual-
channel spectrogram directly via our DNN decoder without the
DNN noise filter, labeled as w/o Filter. We compare NELoRa with
w/o Decoder, w/o Filter and the baseline (i.e., dechirp).

Results: Ilustrated in Figure 15a, NELoRa can lower the SNR
threshold from -14 dB of the baseline to -17 dB, when the SER
is 10%. Hence, NELoRa brings a 3 dB SNR gain. However, if we
use dechirp to replace our DNN decoder, the SER is similar with
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NELoRa when the SNR is higher than -16 dB, but getting worse as
the SNR decreases. The reason for this gap is that the DNN noise
filter can reduce the noise and induce the spectrum energy loss
on the recovered chirp symbol, which is getting larger as long as
the SNR is decreasing. The spectrum energy loss will fail dechirp
accordingly. This verifies the efficiency of the DNN decoder work-
ing on the masked spectrogram. Additionally, if we remove our
DNN noise filter and directly apply the DNN decoder on a raw dual-
channel spectrogram, the performance is the worst, as the yellow
line shows. The SER begins to increase when the SNR is around
0 dB. The reason is that the masked spectrogram used to train the
DNN decoder usually has a high SNR. Therefore, the DNN decoder
cannot explore the spectrogram patterns distorted by the noise at
low SNR levels. This also verifies the efficiency of the DNN noise
filter. Hence, only combining the DNN noise filter and decoder
together can achieve SNR gains compared to the baseline.

6.3 Cross Domain Transfer-ability Analysis

Setup: According to different settings (e.g., LoRa node, location,
period), we split our dataset into several sub-datasets. The setting

combinations are different among different sub-datasets. We use a
sub-dataset to generate synthesis training data and the others to
test the demodulation performance of the pre-trained DNN model
without further model re-training. For example, the synthesis train-
ing sub-dataset (SF=7, BW=125K) is collected at the node A from
room A at 7:00pm. Then we will test the pre-trained DNN model on
the sub-dataset transmitted by node B at the same location and time
(labeled as Cross Node), node A at the same location with different
periods (labeled as Cross Period), and node A at room B with the
same period (labeled as Cross Envir). We also use the DNN model
trained by all training datasets and dechirp to evaluate the same
testing sub-datasets for comparison.

Results: As shown in Figure 15b, we can see the SER-SNR curves of
NELoRa, Cross Period, Cross Envir. and Cross Node are overlapping
with each other, demonstrating the same trend, which renders the
extra SNR gain of 3 dB at the SER=10% compared to dechirp. This
verifies the efficiency of our training data augmentation and high-
quality chirp symbol generation to train a unified DNN model.
Since all possible masked dual-channel spectrogram inputs have
been seen by NELoRa in the training stage, which is agnostic to
periods, nodes, or environments. With the finite coding space of
CSS modulation in LoRa, we can maximize the benefits of the over-
fitting property of DNN at the testing stage.

6.4 Storage Overhead and Running Time

Setup: By running our original DNN model on a local PC with
1080Ti GPU and the compressed version on a single-board computer
Raspberry Pi 4, we evaluate its storage overhead and running time of
each DNN module. Both the original and compressed DNN models
can achieve similar SNR gains on our testing dataset. The running
time measures the time used to process 16 chirp symbols and is
computed by running 160 times and taking the average.

Results: Table 2 shows the storage overheads of NELoRa’s DNN
modules under different SFs. We can see that model compression



NELoRa: Towards Ultra-low SNR LoRa Communication with Neural-enhanced Demodulation

Table 2: NELoRa’s storage overhead before and after com-
pression (BW = 125K, unit: MB)

Module SF=7 SF=38 SF=9 SF =10
DNN Filter 23/4.6 36.7/8.24 64.2/15.4 119/29.7
DNN Decoder | 9.1/2.7 36.2/7.4  144/42.7 578.8/123.2

Table 3: Time consumption of NELoRa for demodulating a
packet with 16 chirp symbols on various platforms using dif-
ferent DNN model (e.g., PC / Raspi / Raspi Compressed)

Config. Transform Filter(ms) Decoder(ms)
SF=7 1.60/21.7/- 5.12/13740/1902 0.47/173/121
SF=8 1.6/38.1/- 6.97/24179/3391 0.48/243/188
SF=9 2.06/47.4/- 9.79/45016/5823 0.46/1803/871
SF=10 | 1.89/124.2/- 29.8/120032/11237 0.55/10368/4218

reduces the model size by around 70% to 80%. We can also see that
the model size of NELoRa increases as SF goes up. This is because
the larger SF has longer chirp symbols, resulting in larger models
and more parameters to handle the large size input.

The running time of NELoRa are shown in Table 3. Similar to the
storage overhead, the running time increases as SF goes up. Also,
when NELoRa is running on a PC equipped with GPU, incurring
7.19ms when SF=7 for demodulating 16 chirp symbols. The time
consumption is much larger when running on Raspi than on GPU
since Raspi is a resource-constrained platform. Specifically, it incurs
13934.7ms under SF=7. After model compression, it incurs 2044.7ms,
achieving 6.8X speedup. In terms of larger SF (e.g., SF=10), the
total processing latency of 16 chirp symbols is up to 7 seconds. In
the future, we can further compress our DNN model to boost the
running efficiency.

6.5 Campus-scale Testbed Experiments

Setup: Figure 16 illustrates the deployment of our campus-scale
(1700m x 1200m) testbed, covering various landcover types (e.g.,
trees, buildings, roads, and pond). We deploy the LoRa nodes at six
locations. Location 1 is the closest, and location 5 is the farthest one.
We set SF and BW as seven and 125K. Each LoRa node transmits
15 packets, and each contains 188 chirp symbols. We run our LoRa
packet detection method to capture these packets and generate
chirp symbols as the input of our DNN demodulator. We first test
pre-trained NELoRa directly. Since the pre-trained NELoRa only
witness the artifact Gaussian white noises in the environment of
the indoor testbed, we further divide these new chirp symbols into
training and testing ones. Then, we use the training chirp symbols to
fine-tune our DNN model to achieve higher performance regarding
our campus environment.

Results: First of all, all 90 packets transmitted in the six locations
are detected, which verifies the efficiency of our packet detection
method. Then, Figure 17 illustrates that the SER increases as the
distance increases between the gateway and the LoRa node. Al-
though location 2 is near to the gateway, it has a high SER due to
a low SNR level incurred by the blockage of buildings. Compared
with the baseline, the original NELoRa decreases SER by 5.51% to
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Figure 16: The illustration of our outdoor testbed and the
topology of the LoRa nodes and NELoRa gateway.
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Figure 17: SER and BLG performance at six different loca-
tions on our campus-scale testbed.

31.9%, and the re-trained NELoRa further reduces the SER by 7.72%
to 46.9%. We can see the re-trained model is a little better than the
original one by capturing more unseen noise patterns (e.g., multi-
path noise) and reducing the spectrum energy loss of the DNN
noise filter. We can further improve NELoRa by updating in an
online and distributed manner (e.g., federated learning [24, 34, 36])
as more packets are collected across multiple gateways.

We estimate the battery life of the operating LoRa node at each
location. Figure 17b shows the battery life can be extended by 1.32
to 5.73 years with the original NELoRa. The maximum BLG can
reach 8.06 years by using the re-training NELoRa at location 2.
The SER of location 2, 5, and 6 reach 100% using the dechirp. The
gateway cannot demodulate any data from those locations even
the LoRa nodes drain out their battery. With NELoRa, the SER is
lowered, and the battery life is increased significantly.

When we increase the SF (e.g., 8-10), with an increasing SNR
threshold, the SER of dechirp will be reduced at the same position.
Thus, the SNR gains of NELoRa is lower than that under SF=7.
However, when we enlarge our deployment range, we can observe
consistent SNR gains as we have observed in our indoor testbed.

7 RELATED WORK

LoRa Range and Energy Enhancement: Inspired by using mul-
tiple antennas (MIMO) to improve SNR in Wi-Fi and cellular com-
munication, recent studies [2, 10, 12] bring the diversity gains of
distributed MIMO to LoRa. At the transmitter side, Choir [12] lever-
ages up to 36 co-located LoRa nodes to boost the received signal
strength. At the receiver side, Charm [10] coordinates multiple
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gateways to decode weak signals undecodable at any individual
gateway by detecting the combined energy peak in the spectrum.
Additionally, Chime [14] eliminates the multi-path interference by
frequency selection to capture extra SNR gains for LoRa transmis-
sions. All require multiple pairs of transceivers and are built on
dechirp demodulation method. Nephalai [30] further proposes to
demodulate compressed PHY samples in the cloud with the sparse
approximation. In contrast, NELoRa utilizes the deep learning to
obtain extra SNR gains for a single pair of transceivers. Thus, it
can supplement existing works and be further enhanced with the
diversity gains of distributed MIMO.

LoRa Throughput and Deployment Study: FTrack [49], mLoRa
[48], CoLoRa [45], NScale [44], and SCLoRa [21] propose various
methods to resolve the LoRa packet collision, improving LoRa’s
throughput. Besides, NetScatter [19] designs a distributed CSS cod-
ing for hundreds of strictly synchronized concurrent transmissions.
Some other studies [8, 22, 27, 28, 50] deploy real-world LoRaWAN
to study the deployment, measurement, and localization problems.
In contrast, NELoRa develops a neural-enhanced demodulator to
enlarge a LoRa node’s communication range and optimize energy
usage, parallel to studies in this category.

Deep Learning based Wireless Communication: Instead of phys-
ical model-driven approaches, data-driven deep learning techniques
have been used to optimize wireless communication systems [25],
such as the coding [16, 23, 35, 43] and decoding [11, 37, 47] mech-
anisms. And the former learn the coding structure of signals and
decode the data bits, including polar codes [16], convolutional
codes [23], turbo codes, hamming [43], and LDPC codes [35]. In
contrast, the latter covers the decoding of DQPSK signals [11]. How-
ever, existing deep learning methods cannot be directly adopted in
LoRa since they require the signals are above the noise floor. There-
fore, we develop a new learning component to combat various
noises and enable ultra-low SNR communication under the noise
floor. Additionally, we utilize augmented learning to generalize our
DNN model with low overhead.

For LoRa communication, only a few works have proposed deep
learning based approaches recently. Specifically, DeepLoRa [31]
utilizes Bi-LSTM DNN to develop a land-cover aware path loss
model and reduces the estimation error to less than 4 dB, which is 2x
smaller than state-of-the-art [9] for link estimation. DeepSense [6]
further explores the deep learning augmented random access in the
coexistence of LPWANS, even below the noise floor (e.g., -10dB).
In comparison with DeepLoRa and DeepSense, NELoRa targets a
different task, LoRa demodulation. We first show a general DNN
demodulator can achieve lower SNR threshold than dechirp does
with only affordable computation overhead at the gateway side.

Moreover, TinySDR [20] delivers FPGA-based hardware, which
can boost the research on Al-augmented LoRa networks by support-
ing deep Al algorithms on-board. Given the strong feature learning
ability of DNN, we believe the Al-augmentation brings a new direc-
tion to design a more efficient communication stack and sensing
technique in LoRa networking.

8 DISCUSSION AND OPEN ISSUES

DNN Model Optimization: The maximum SF we evaluated is 10
and a commodity LoRa node can support two larger SFs, namely

C Li, H Guo, S Tong, X Zeng, Z Cao, M Zhang, Q Yan, L Xiao, ] Wang, and Y Liu

11 and 12. With the increasing SF, the chirp symbol length and
types exponentially increase. As a result, we must use much more
computation resources (i.e., multi-GPU cluster) to train the DNN
model. According to the consistent SNR gains observed when SF
increases from 7 to 10, similar SNR gains can be expected when SF
is 11 or 12 as long as the DNN model is trainable. To reduce the
model complexity and converge time, we can further optimize the
structure of our DNN model and loss function design.

End-to-end Neural-enhanced LoRa Demodulation: NELoRa
focuses on decoding LoRa chirp symbols with a DNN model. And
it requires extra modules for packet detection and chirp symbol
generation via signal processing, which can also be substituted by
DNN. For example, DeepSense [6] delivers the neural-enhanced
carrier sense for efficient channel access in the coexistence of LP-
WANs, even under the noise floor. Given the LoRa CSS modulation,
a holistic neural-enhanced demodulation method is still an open
issue in our future work. Besides, as Al chipsets and hardware-
enabled platforms [20], most edge devices will be equipped with
machine intelligence to support the deployment of NELoRa.

Online DNN Model Adaptation: NELoRa’s performance can be
lowered by the unseen noise patterns in a new environment, shown
in Figure 17. Given widely deployed LoRa nodes, gateways and mas-
sive collected data, a promising optimization is to update NELoRa
in an online manner.

9 CONCLUSION

In this paper, we present the design, implementation, and evalu-
ation of NELoRa, a neural-enhanced LoRa demodulation system
that breaks the SNR threshold of the standard dechirp approach.
The SNR gains enable longer communication distance and battery
lifetime in LoRa. NELoRa consists of several essential techniques.
First, we develop a new dual-channel spectrogram to maximum
the temporal-spatial feature space in our DNN model. Second, we
design a novel DNN model containing a mask-enabled DNN noise
filter and a spectrogram-based DNN decoder to fit the boundary
among different LoRa symbols in the feature space. With the finite
coding space of LoRa, the training and testing datasets have the
identical distribution of LoRa chirp symbols in the feature space.
The DNN’s over-fitting is explored to optimize our model training.
Finally, we generate massive synthesis data, covering various noise
to train a general DNN model. To further make NELoRa practical,
we compress our DNN model and develop an end-to-end LoRa
demodulation method by combining the methods of LoRa packet
detection and hardware offset cancellation. We implement NELoRa
and conduct extensive experiments to evaluate its performance.
The results show that NELoRa obtains 1.84-2.35 dB SNR gains and
a largest 272% (~0.38-1.51 years) battery lifetime gain in average
across different configurations and environments.
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