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Variants of the coordinate descent approach for minimizing a nonlinear function are distinguished in part
by the order in which coordinates are considered for relaxation. Three common orderings are cyclic
(CCD), in which we cycle through the components of x in order; randomized (RCD), in which the
component to update is selected randomly and independently at each iteration; and random-permutations
cyclic (RPCD), which differs from CCD only in that a random permutation is applied to the variables at
the start of each cycle. Known convergence guarantees are weaker for CCD and RPCD than for RCD,
though in most practical cases, computational performance is similar among all these variants. There is
a certain type of quadratic function for which CCD is significantly slower than for RCD; a recent paper
by Sun & Ye (2016, Worst-case complexity of cyclic coordinate descent: O(n2) gap with randomized
version. Technical Report. Stanford, CA: Department of Management Science and Engineering, Stanford
University. arXiv:1604.07130) has explored the poor behavior of CCD on functions of this type. The
RPCD approach performs well on these functions, even better than RCD in a certain regime. This paper
explains the good behavior of RPCD with a tight analysis.
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1. Introduction

The basic (component wise) coordinate descent framework for the smooth unconstrained optimization
problem

min f (x), where f : Rn → R is smooth and convex, (1.1)

is shown in Algorithm 1. Here we denote

∇i f (x) = [∇f (x)
]

i, ei = (0, . . . , 0, 1, 0, . . . , 0)T, (1.2)

where the single nonzero in ei appears in position i. Each outer cycle (indicated by index �) is called an
‘epoch’, with each epoch consisting of n iterations (indexed by j). The counter k = �n + j keeps track
of the total number of iterations. At each iteration, component i(�, j) of x is selected for updating; a step
is taken along the negative gradient direction in this component only.

There are several variants within this simple framework. One important source of variation is the
choice of coordinate i = i(�, j). Three popular choices are as follows:

• Cyclic coordinate descent (CCD): i(�, j) = j + 1.

• Randomized coordinate descent (RCD), also known as stochastic coordinate descent: i(�, j) is
chosen uniformly at random from {1, 2, . . . , n}—sampling with replacement.
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RANDOM PERMUTATIONS FIX A WORST CASE FOR CYCLIC COORDINATE DESCENT 1247

Algorithm 1 Coordinate descent

Choose x0 ∈ R
n;

for � = 0, 1, 2, . . . do

for j = 0, 1, 2, . . . , n − 1 do

Define k = �n + j;

Choose index i = i(�, j) ∈ {1, 2, . . . , n};
Choose αk > 0;

x k+1 ← x k − αk∇i f (x k)ei;

end for

end for

• Random-permutations cyclic coordinate descent (RPCD): At the start of epoch �, we choose a
random permutation of {1, 2, . . . , n}, denoted by π�+1. Index i(�, j) is chosen to be the (j + 1)th
entry in π�+1. This approach represents sampling without replacement, within each epoch.

(Other ways to choose i(�, j) include weighted forms of RCD in which i(�, j) is selected from a
nonuniform distribution, and a Gauss–Southwell form in which i(�, j) is the component that maximizes
|∇i f (xk)|.)

When f is a convex quadratic function, and when αk in Algorithm 1 is chosen to minimize f
exactly along each coordinate direction, these variants are simply different variants of the Gauss–Seidel
approach for solving the equivalent system of linear equations.

The coordinate descent approach is enjoying renewed popularity because of its usefulness in data
analysis applications. Its convergence properties have come under renewed scrutiny. We refer to Wright
(2015b) for a discussion of the state of the art as of 2015 but make a few additions and updates here,
with an emphasis on results concerning linear convergence of the function values, by which we mean
epoch wise convergence of the form

f
(

x(�+1)n
)

− f ∗ � ρ
(

f (x�n) − f ∗) for some ρ ∈ (0, 1), (1.3)

where ρ is typically much closer to 1 than to 0 and f ∗ is the optimal value of (1.1). For randomized
methods, we consider a corresponding expression in expectation:

E

[
f
(

x(�+1)n
)

− f ∗] � ρE
[
f
(
x�n)− f ∗] , (1.4)

where the expectation is taken over all random variables encountered in the algorithm. When (1.3) holds,
a reduction in function error by a factor of ε can be attained in approximately | log ε|/(1 − ρ) epochs.
We sometimes refer to 1/(1 − ρ) as the ‘complexity’ of an algorithm for which (1.3) or (1.4) holds.
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1248 C.-P. LEE AND S. J. WRIGHT

1.1 Characterizing the objective

We preface a discussion of linear convergence rates with some definitions of certain constants associated
with f . We assume for simplicity that the domain of f is the full space R

n. The component Lipschitz
constants Li, i = 1, 2, . . . , n satisfy

∣∣∇i f (x + tei) − ∇i f (x)
∣∣ � Li |t| ∀ x ∈ R

n and t ∈ R. (1.5)

We have

Lmax := max
i=1,2,...,n

Li, Lmin := min
i=1,2,...,n

Li, Lavg :=
n∑

i=1

Li/n. (1.6)

The standard Lipschitz constant L is defined so that

∥
∥∇f (x + d) − ∇f (x)

∥
∥ � L‖d‖ ∀ x, d ∈ R

n. (1.7)

(Here and throughout we use ‖ ·‖ to denote ‖ ·‖2.) For reasonable choices of the constants in (1.5), (1.6)
and (1.7) the following bounds are satisfied:

1 � L

Lmax
� n. (1.8)

The following property of Łojasiewicz (1963) is useful in proving linear convergence:

∥∥∇f (x)
∥∥2 � 2μ

[
f (x) − f ∗] for some μ > 0. (1.9)

This property holds for f strongly convex (with modulus of strong convexity μ), and for the case in
which f grows quadratically with distance from a nonunique minimizing set, as in the ‘optimal strong
convexity’ condition of Liu & Wright (2015, (1.2)). It also holds generically for convex quadratic
programs, even when the Hessians are singular. Further, condition (1.9) holds for the functional form
considered by Luo & Tseng (1992, 1993), which is

f (x) = g(Ex), where E ∈ R
m×n and g : Rm → R strongly convex, (1.10)

without any conditions on E. (For a proof, see Appendix C.) In Karimi et al. (2016), property (1.9) is
called the Polyak–Łojasiewicz condition.

In this paper our focus is on the case of f convex quadratic, that is,

f (x) = 1
2 xTAx, where A is symmetric positive semidefinite. (1.11)

For this function the values of Li, L, Lmax and μ are

μ = λmin,nz(A), Li = Aii, i = 1, 2, . . . , n; Lmax = max
i=1,2,...,n

Aii; L = ‖A‖2; (1.12)
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RANDOM PERMUTATIONS FIX A WORST CASE FOR CYCLIC COORDINATE DESCENT 1249

where λmin,nz(·) denotes the minimum nonzero eigenvalue. For such functions the upper bound in (1.8)
is achieved by A = 11T (where 1 = (1, 1, . . . , 1)T), for which Li = 1, i = 1, 2, . . . , n; Lmax = 1;
and L = n.

We have not included a linear term in (1.11), but note that there is no loss of generality in doing so.
If we were to consider instead

f (x) = 1
2 xTAx − bTx = 1

2 (x − x∗)TA(x − x∗) − 1
2 bTA−1b, where x∗ = A−1b

(note that x∗ is the minimizer of this function), the main results of Sections 2 and 3 would continue to
hold, except that in several theorems the initial iterate x0 would be replaced by x0 − x∗, and f (x) is
replaced by f (x) − f (x∗).

1.2 Linear convergence results for CD variants

Luo & Tseng (1992) prove linear convergence for a function of the form (1.10), where they require E
to have no zero columns. They obtain expressions for the constant ρ in (1.3) for two variants of CD—a
Gauss–Southwell variant and an ‘almost cyclic’ rule—but these constants are difficult to characterize
in terms of fundamental properties of f . In Luo & Tseng (1993), the same authors analyse a family
of methods (including CD) for more general functions that satisfy a local error bound of the form
‖x − P(x)‖ � χ‖∇f (x)‖ (where P(x) is the projection of x onto the solution set of (1.1) and χ is some
constant). Again, their analysis is not clear about how the constant ρ of (1.3) depends on the properties
of f .

A family of linear convergence results is proved in Beck & Tetruashvili (2013, Theorem 3.9) for the
case in which f is strongly convex (immediately extendable to the case in which f satisfies the condition
(1.9)). For constant stepsizes αk ≡ α � 1/Lmax, convergence of the form (1.3) holds with

ρ � 1 − μ

(2/α)(1 + nL2α2)
. (1.13)

In particular, for α = 1/L, we have ρ � 1 − μ/(2L(n + 1)). The upper bound on ρ is optimized by
steplength α = 1/(

√
nL), for which ρ � 1 − μ/(

√
nL). For the case in which f is a convex quadratic

(1.11) and an exact line search is performed at each iteration (that is, αk = 1/Aii, where i = i(�, j)
is the index to be updated in iteration j of Algorithm 1), Beck & Tetruashvili (2013, (3.23)) show that
ρ � 1 − μ/(2Lmax(1 + n2L2/μ2)) in expression (1.3). Paradoxically, as noted by Sun & Ye (2016), use
of the exact steplength leads to a considerably slower rate bound than the conservative fixed choices.
The bound for this case is improved in Sun & Ye (2016) to

ρ � 1 − max

{
μLmin

nLLavg
,

μLmin

L2(2 + log n/π)2 ,
μLmin

n2L2
avg

}

. (1.14)

For the random-permutations cyclic version RPCD, the convergence theory in Beck & Tetruashvili
(2013) can be applied without modification to attain the bounds given above. As we discuss below,
however, the practical performance of RPCD is sometimes much better than these bounds would
suggest.
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1250 C.-P. LEE AND S. J. WRIGHT

Convergence of the sampling-with-replacement variant RCD for strongly convex unconstrained
problems was analysed by Nesterov (2012). It follows from the convergence theory of Nesterov (2012,
Theorem 2) that (1.4) holds over the i.i.d. uniformly random choices of indices i(�, j) with

ρ �
(

1 − μ

nLmax

)n

≈ 1 − μ

Lmax
. (1.15)

A different convergence rate is proved in Nesterov (2012, Theorem 5), namely,

E
(

f (xk) − f ∗) � C

(
1 − 2μ

n(Lmax + μ)

)k

, (1.16)

for some constant C depending on the initial point. This is an R-linear expression, obtained from Q-
linear convergence of the modified function f (x) − f (x∗) +∑

i Li(xi − x∗
i )

2/2, where x∗ is the (unique)
solution of (1.1). It indicates a complexity of approximately | log ε|(Lmax + μ)/(2μ).

An important benchmark in studying the convergence rates of coordinate descent is the steepest-
descent (SD) method, which takes a step from xk along all coordinates simultaneously, in the direction
−∇f (xk). For some important types of functions, including empirical-risk-minimization functions that
arise in data analysis, the computational cost of one SD step is comparable to the cost of one epoch of
Algorithm 1 (see Wright, 2015b). Standard analysis of SD shows that fixed-steplength variants applied
to functions satisfying (1.9) have linear convergence of the form (1.3) (with one iteration of SD replacing
one epoch of Algorithm 1) with ρ = 1 −μ/L. This worst-case complexity is not improved qualitatively
by using exact line searches.

In comparing convergence rates between CCD and SD (on the one hand) and RCD (on the other
hand), we see that the former tend to depend on L while the latter depends on Lmax. These bounds
suggest that CCD may tend to track the performance of SD, while RCD could be significantly better if
the ratio L/Lmax is large, that is, toward the upper end of its range in (1.8). The phenomenon of large
values of L/Lmax is captured well by convex quadratic problems (1.11) in which the Hessian A has a
large contribution from 11T . Such matrices were used in computations by one of the authors in 2015
(see Wright, 2015a; reported briefly in Wright, 2015b). These tests showed that on such matrices, RCD
was indeed much faster than CCD (and also SD). The performance of RPCD was as fast as that of RCD;
it did not track CCD as the obvious worst-case analysis would suggest. Later work, reported in Wright
(2015c), identified the matrix

A := δI + (1 − δ)11T, where δ ∈ (0, n/(n − 1)
)

(1.17)

(where 1 = (1, 1, . . . , 1)T) as being the archetype of a problem with large ratio L/Lmax. This matrix has
one dominant eigenvalue δ + n(1 − δ) with eigenvector 1, with the other (n − 1) eigenvalues equal to
δ. (This matrix also has PTAP = A for all permutation matrices P—a property that greatly simplifies
the analysis of RPCD variants, as we see below.) In Wright (2015c) the RPCD variant was shown to
be significantly superior to CCD in computational tests. Independently, Sun & Ye (2016) studied this
same matrix (1.17), using analysis to explain the practical advantage of RCD over CCD and showing
that the performance of CCD approaches its worst-case theoretical bound. RPCD is also studied in Sun
& Ye (2016, Proposition 3.4, Section C.2), the results suggesting similar behavior for RPCD and RCD
on problem (1.11), (1.17). However, these results are based on upper bounds on the quantity ‖E(xk)‖.
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RANDOM PERMUTATIONS FIX A WORST CASE FOR CYCLIC COORDINATE DESCENT 1251

By Jensen’s inequality this quantity provides a lower bound for Ef (x k) and also for E‖x k‖2, but not an
upper bound. (The latter is the focus of this paper.)

The matrix (1.17) is also studied in Arjevani et al. (2016), which investigates the tightness of the
worst-case theoretical Q-linear convergence rate for RCD applied to the problem (1.11), (1.17) proved
in Nesterov (2012). This paper shows a lower bound for O(‖E[x k]‖) for RCD, but not for the expected
objective value.

1.3 Motivation and outline

Our focus in this paper is to analyse the performance of RPCD for minimizing (1.11) with A defined
in (1.17). Our interest in RPCD is motivated by computational practice. Much has been written about
randomized optimization algorithms (particularly stochastic gradient and coordinate descent) in recent
years. The analysis usually applies to sampling-with-replacement versions, but the implementations
almost always involve a sampling-without-replacement scheme. The reasons are clear: convergence
analysis is much more straightforward for sampling with replacement while for sampling without
replacement, implementations are more efficient, involving less data movement. Moreover, it has long
been folklore in the machine-learning community that sampling-without-replacement schemes perform
better in practice. In this paper we take a step toward bringing the analysis into line with the practice, by
giving a tight analysis of the sampling-without-replacement scheme RPCD, on a special but important
function that captures perfectly the advantages of randomized schemes over a deterministic scheme.

In Section 2, we derive tools for analysing epoch wise convergence of CD variants on convex
quadratic problems (1.11), focusing on the permutation-invariant matrix (1.17) and recalling results
for the CCD and RCD variant in this case (obtained from Sun & Ye, 2016 and Nesterov, 2012).
Section 3 contains our results for RPCD applied to (1.11) with the permutation-invariant matrix (1.17),
characterizing its convergence rate in terms of a two-parameter recurrence. The relationship of this two-
parameter sequence to the expected function value at the end of each epoch is described in Theorem 3.3.
Our main result, Theorem 3.4, gives bounds on these two parameters in terms of δ (the parameter that
defines (1.17)) and epoch number. These bounds indicate that the convergence rate of RPCD matches
that of RCD and both are much faster than CCD on the problem defined by (1.11) and (1.17). We
also note that a slightly tighter bound on the asymptotic behavior of the two-variable recurrence can be
obtained from the spectral radius of the 2 × 2 matrix governing this recurrence, in a regime in which δ

is close to zero. We derive an estimate of this spectral radius in (3.15), using results from Appendix B.
Theorem 3.5 explores the behavior of the randomized methods on the very first iteration, showing that
a significant decrease can be expected just on this one iteration. (Similar results can be expected for the
cyclic variant CCD, as we remark in comments following Theorem 3.5.)

Empirical verification of our analysis of RPCD and computational comparisons with CCD and RCD
are presented in Section 4. The theoretical results are confirmed nicely in all cases. We conclude with
some discussions in Section 5.

2. Convergence of CD variants on convex quadratics

We consider the application of CCD and RPCD to the convex quadratic problem (1.11). This problem
has solution x∗ = 0 with optimal objective f ∗ = 0. We assume that the matrix A is diagonally scaled so
that

Aii = 1 for i = 1, 2, . . . , n. (2.1)
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1252 C.-P. LEE AND S. J. WRIGHT

Under this assumption the step of Algorithm 1 with exact line search will have the form

xk+1 = xk − 1

Aii
(Axk)iei = xk − (Axk)iei, with k = �n + j and i = i(�, j). (2.2)

Some variants of CD methods applied to (1.11) can be viewed as Gauss–Seidel methods applied to the
system Ax = 0. Cyclic CD corresponds to standard Gauss–Seidel, whereas RCD and RPCD are variants
of randomized Gauss–Seidel.

2.1 CCD and RPCD convergence rates: general A

Writing A = L + D + LT , where L is strictly lower triangular and D is the diagonal, one epoch of the
CCD method can be written as

x(�+1)n = −(L + D)−1(LTx�n) = Cx�n, where C := −(L + D)−1LT. (2.3)

By applying formula (2.3) recursively we obtain the following expression for the iterate generated after
� epochs of CCD:

x�n
CCD = C�x0, f

(
x�n

CCD

)
= 1

2
(x0)T(CT)�AC�x0. (2.4)

The average improvement in f per epoch is obtained from the formula

ρCCD(A, x0) := lim
�→∞

(
f
(

x�n
CCD

)
/f (x0)

)1/�

. (2.5)

To obtain a bound on this quantity we denote the eigenvalues of C by γi, i = 1, 2, . . . , n, and recall that
the spectral radius ρ(C) is maxi=1,2,...,n |γi|. Since A is positive definite we have ρ(C) < 1 (Golub &
Van Loan, 2012, Theorem 11.2.3). We have from Gelfand’s formula (Gelfand, 1941) that

ρ(C) = lim
�→∞ ‖C�‖1/�. (2.6)

We can obtain a bound on ρCCD(A, x0) in terms of ρ(C):

ρCCD(A, x0) := lim
�→∞

(
f
(

x�n
CCD

)
/f (x0)

)1/�

= lim
�→∞

(
xT

0 (CT)�AC�x0/xT
0 Ax0

)1/�

= lim
�→∞

(
‖A1/2C�x0‖2

2/‖A1/2x0‖2
2

)1/�

= lim
�→∞

(
‖(A1/2C�A−1/2)(A1/2x0)‖2

2/‖A1/2x0‖2
2

)1/�

� lim
�→∞

(
‖A1/2C�A−1/2‖2

2

)1/�

� lim
�→∞ cond(A)1/�‖C�‖2/� = ρ(C)2. (2.7)
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RANDOM PERMUTATIONS FIX A WORST CASE FOR CYCLIC COORDINATE DESCENT 1253

We can describe each epoch of RPCD algebraically by using a permutation matrix Pl to represent
the permutation πl on epoch l − 1. We split the matrix PT

l APl and define the operator Cl as

PT
l APl = Ll + Dl + LT

l , Cl := − (Ll + Dl

)−1
LT

l . (2.8)

The iterate generated after � epochs of RPCD is

x�n
RPCD = P�C�PT

� P�−1C�−1PT
�−1 . . . P1C1PT

1 x0. (2.9)

(Note that in epoch l − 1 the elements of x are permuted according to the permutation matrix Pl, then
operated on with Cl, then the permutation is reversed with PT

l .) The function value after � epochs is

f
(

x�n
RPCD

)
= 1

2

(
x0
)T (

P1CT
1 PT

1 . . . P�CT
� PT

� AP�C�PT
� . . . P1C1PT

1

)
x0. (2.10)

If we could take the expected value of this quantity over all random permutations P1, P2, . . . , P� we
would have good expected-case bounds on the convergence of RPCD. This expectation is quite difficult
to manipulate in general (though, as we see below, it is not so difficult for A defined by (1.17)). When
the elements of x0 are distributed according to N(0, 1) we have

Ex0 f
(

x�n
RPCD

)
= 1

2
trace

(
P1CT

1 PT
1 . . . P�CT

� PT
� AP�C�PT

� . . . P1C1PT
1

)
. (2.11)

Figure 1 shows typical computational results of the CCD and RPCD variants of Algorithm 1 in the
case in which the eigenvalues of A follow a log-uniform distribution, with κ(A) ≈ 104. The eigenvectors
form an orthogonal matrix with random orientation. Here we plot the relative expected values with
respect to x0 of the f on the vertical axis, that is, Ex0( f (x�n))/Ex0( f (x0)) (see (2.11) for Ex0 f (x�n

RPCD);
similar formulas apply for Ex0 f (x�n

CCD) and Ex0 f (x0)). This figure captures the typical relative behavior
of CCD and RPCD for ‘benign’ distributions of eigenvalues: there is little difference in performance
between the two variants.

2.2 CD variants applied to permutation-invariant A

In our search for the simplest instance of a matrix A for which the superiority of randomization is
observed, we arrived at the matrix (1.17). As mentioned above the eigenvalues of A are

δ + n(1 − δ), δ, δ, . . . , δ, where δ ∈ (0, n/(n − 1)).

The restriction in (1.17) ensures that A has the following properties:

• symmetric and positive definite;

• unit diagonals: Aii = 1, i = 1, 2, . . . , n;

• invariant under symmetric permutations of the rows and columns, that is, PTAP = A for any n × n
permutation matrix P;

• L/Lmax is close to its maximum value of n when δ is small, opening a wide gap between the worst-
case theoretical behaviors of CCD and RCD.
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1254 C.-P. LEE AND S. J. WRIGHT

Fig. 1. CCD and RPCD on convex quadratic objective, for log-uniform eigenvalue distribution.

Fig. 2. CCD, RPCD and RCD on convex quadratic objective, with A defined by (1.17) with n = 100 and various δ.

Figure 2 shows results for the CCD, RPCD and RCD variants on the matrix A from (1.17) with
n = 100 and two different values of δ. Here the vertical axis shows actual function values (not expected
values) relative to f (x0), for some particular x0 whose elements are drawn i.i.d. from N(0, 1). For both
values of δ, both randomized variants are much faster than CCD. For the larger value of δ RPCD has a
clear advantage over RCD. Our analysis below supports these empirical observations.
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RANDOM PERMUTATIONS FIX A WORST CASE FOR CYCLIC COORDINATE DESCENT 1255

We now derive expressions for the epoch iteration matrix C of Section 2.1 for the specific case of
the permutation-invariant matrix (1.17). This is needed for the analysis of RPCD on this matrix. By
applying the splitting (2.3) to (1.17) we have

D = I, L = (1 − δ)E, where E =

⎡

⎢⎢
⎢⎢⎢
⎣

0 0 0 . . . 0 0
1 0 0 . . . 0 0
1 1 0 . . . 0 0
...

...
...

...
...

1 1 1 . . . 1 0

⎤

⎥⎥
⎥⎥⎥
⎦

. (2.12)

Thus, defining

L̄ := −(L + D)−1, (2.13)

we have

L̄ij =

⎧
⎪⎨

⎪⎩

−1 if i = j,

(1 − δ)δi−j−1 if i > j,

0 if i < j,

(2.14a)

C = (1 − δ)L̄ET. (2.14b)

Writing L̄ explicitly we have

L̄ =

⎡

⎢⎢⎢
⎢⎢⎢⎢
⎣

−1 0 0 0 . . . 0
(1 − δ) −1 0 0 . . . 0
(1 − δ)δ (1 − δ) −1 0 . . . 0
(1 − δ)δ2 (1 − δ)δ (1 − δ) −1 . . . 0

...
...

...
. . .

...
(1 − δ)δn−2 (1 − δ)δn−3 (1 − δ)δn−4 . . . . . . −1

⎤

⎥⎥⎥
⎥⎥⎥⎥
⎦

.

We have from (2.14b) and the properties of E and L̄ that

Cij = (1 − δ)

n∑

�=1

L̄i�Ej� = (1 − δ)

min(i,j−1)∑

�=1

L̄i�.
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1256 C.-P. LEE AND S. J. WRIGHT

Thus, for i < j we have

Cij = (1 − δ)

i∑

�=1

L̄i�

= (1 − δ)
[
(1 − δ)(δi−2 + δi−3 + · · · + δ + 1) − 1

]

= (1 − δ)

[
(1 − δ)

1 − δi−1

1 − δ
− 1

]

= −(1 − δ)δi−1.

For the complementary case i � j we have

Cij = (1 − δ)

j−1∑

�=1

L̄i�

= (1 − δ)
[
(1 − δ)(δi−2 + δi−3 + · · · + δi−j)

]

= (1 − δ)2δi−j(δj−2 + δj−3 + · · · + 1)

= (1 − δ)2δi−j 1 − δj−1

1 − δ

= (1 − δ)δi−j(1 − δj−1)

= (1 − δ)(δi−j − δi−1).

To summarize we have

Cij =
{

−(1 − δ)δi−1 for i < j,

(1 − δ)(δi−j − δi−1) for i � j.
(2.15)

2.3 Convergence rates of CCD and RCD on the permutation-invariant A

Here we examine the theoretical convergence rate of CCD on the quadratic function with Hessian (1.17)
by using the results of Sun & Ye (2016).

Recalling the rate (1.14) from Sun & Ye (2016, Proposition 3.1) and substituting the following
quantities for (1.17):

L = n(1 − δ) + δ, Lmin = 1, Lavg = 1, μ = δ, (2.16)

we find that

ρCCD(δ, x0) � 1 − max

{
δ

n(n(1 − δ) + δ)
,

δ

(n(1 − δ) + δ)2(2 + log n/π)2
,

δ

n2

}
.
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RANDOM PERMUTATIONS FIX A WORST CASE FOR CYCLIC COORDINATE DESCENT 1257

Fig. 3. Convergence of f for CCD, RCD and RPCD applied to (1.11), (1.17), with δ = 0.001 and n = 10, 20, 40, 80. Convergence
rate of CCD deteriorates as n grows, as predicted, while the convergence rates of RCD and RPCD are independent of n.

(We use ρCCD(δ, x0) in place of ρCCD(A, x0) to emphasize the dependence of A in (1.17) on the parameter
δ.) By making the mild assumption that δ � 3/4, this expression simplifies to

ρCCD(δ, x0) � 1 − δ

n
(
n(1 − δ) + δ

) . (2.17)

On the other hand, Sun and Ye show the following lower bound on ρCCD(δ, x0) (obtained by substituting
from (2.16) into Sun & Ye, 2016, Theorem 3.1):

ρCCD(δ, x0) �
(

1 − 2δπ2

n
(
n(1 − δ) + δ

)

)2

. (2.18)

By combining (2.17) and (2.18) we see that for small values of δ/n the average epoch wise decrease in
error is ρCCD(δ, x0) = 1− cδ/n2, for some moderate value of c. Classical numerical analysis for Gauss–
Seidel derives similar dependency on n2 for this case from the eigenvalues of A, D and L; see Samarskii
& Nikolaev (1989), Young (1971, p. 464) and Hackbusch (2016, Theorem 3.44). This dependency on n
is confirmed empirically, by running CCD for A with the same δ but different n, as shown in Fig. 3(a).

For RCD we have, by substituting the values in (2.16) into (1.15), that the expected per-epoch
improvement in error is given by

ρRCD(δ, predicted) �
(

1 − μ

nLmax

)n

=
(

1 − δ

n

)n

≈ 1 − δ + O(δ2). (2.19)

This result suggests that complexity of RCD is O(n2) times better than CCD for small δ and that its rate
does not depend strongly on n. This independence of n is confirmed empirically by Fig. 3(b). Expression
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1258 C.-P. LEE AND S. J. WRIGHT

(1.16) suggests a slightly better complexity for RCD of roughly | log ε|(1 + δ)/(2δ) epochs, rather than
| log ε|/δ epochs, corresponding to replacing 1 − δ in (2.19) by

(
1 − 2δ

n(1 + δ)

)n

≈ 1 − 2δ

1 + δ
. (2.20)

A kind of lower bound on the per-iterate improvement of RCD on the problem (1.11), (1.17) can be
found by setting xi = (−1)i, i = 1, 2, . . . , n with n even. It can be shown that the function values for this
x and the next RCD iterate x+ are

f (x) = 1

2
δn, f (x+) = 1

2
δ(n − δ) =

(
1 − δ

n

)
f (x),

regardless of the component of x chosen for updating. This expression reveals a one-iteration
improvement that matches the upper bound (1.15). However, as with some other lower-bound examples,
the longer-term behavior of the iteration sequence is more difficult to predict. This same example
provides a Q-linear rate in the quantity f (x) − f (x∗) +∑

i Li(xi − x∗
i )

2/2 of (1 − 2δ/(n(1 + δ)), exactly
matching the upper bound of (1.16), (2.20), proving that the R-linear rate of (1.16) is also tight, in a
sense. A lower bound on ‖E(xk)‖ is proved in Arjevani et al. (2016), but this does not translate into a
lower bound of the expected function value.

Figure 3(c) shows that RPCD too has a convergence rate independent of n on this matrix. (The
performances of RPCD and RCD are quite similar on the problems graphed.) The convergence rate of
CCD deteriorates with n, according to the predictions above.

3. Convergence of RPCD for the permutation-invariant A

We now analyse the expected convergence behavior of RPCD on the convex quadratic problem (1.11)
with permutation-invariant Hessian A defined by (1.17). We start by deriving a two-parameter recurrence
that captures the behavior of the method over each epoch and by deriving an estimate for the expected
convergence of f (x�n) to zero, as a function of these parameters. In our main results we analyse the rate
of convergence of this sequence of parameter pairs to zero.

3.1 A two-parameter recurrence

Since A in (1.17) is invariant under symmetric permutations the matrices L and D are the same for all
PTAP, where P is any permutation matrix. When considering RPCD applied to this problem we have in
the notation of (2.8) that C� ≡ C for all �. The expression (2.9) simplifies to

x�n
RPCD = P�CPT

� P�−1CPT
�−1 . . . P1CPT

1 x0. (3.1)

The function values are

f
(

x�n
RPCD

)
= 1

2

(
x0
)T (

P1CTPT
1 . . . P�CTPT

� AP�CPT
� . . . P1CPT

1

)
x0. (3.2)

We now analyse the expected value of the function (3.2) obtained after � epochs of RPCD, where A
has the form (1.17). Expectation is taken over the independent permutation matrices P�, P�−1, . . . , P1 in
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RANDOM PERMUTATIONS FIX A WORST CASE FOR CYCLIC COORDINATE DESCENT 1259

succession, followed finally by expectation over x0. We define Ā(t), t = 0, 1, 2, . . . , � as

Ā(t) := EP�−t+1,...,P�

(
P�−t+1CTPT

�−t+1 . . . P�CTPT
� AP�CPT

� . . . P�−t+1CPT
�−t+1

)
,

and note that Ā(0) = A and (by comparison with (3.2)) that

Ef
(

x�n
RPCD

)
= 1

2
Ex0

[
(x0)TĀ(�)x0

]
. (3.3)

We have the following recursive relationship between successive terms in the sequence of Ā(t) matrices:

Ā(t) = EP�−t+1

(
P�−t+1CTPT

�−t+1Ā(t−1)P�−t+1CPT
�−t+1

)
= EP

(
PCTPTĀ(t−1)PCPT

)
. (3.4)

(We can drop the subscript on P�−t+1 since the permutation matrices at each stage are i.i.d.) We will
show by a recursive argument that each Ā(t) has the form ηtI+νt11

T, for some parameters ηt and νt. Note
that for Ā(t) of this form we have PTĀ(t)P = Ā(t), a property that is crucial to our analysis. We derive
a stationary iteration between the successive pairs (ηt−1, νt−1) and (ηt, νt) and reveal the convergence
properties of RPCD by analysing the 2 × 2 matrix that relates successive pairs.

We start with a technical lemma.

Lemma 3.1 Given any matrix Q ∈ R
n×n and permutation matrix P selected uniformly at random from

the set of all permutations Π we have

B := EP[PQPT] = τ1I + τ211
T, (3.5)

where

τ2 = 1TQ1 − trace(Q)

n(n − 1)
, τ1 = trace(Q)

n
− τ2. (3.6)

Proof. For any P ∈ Π if P shifts the ith position to the jth position then (PQPT)jj = Qii. Since the
probability of taking any permutation from Π is identical we have

P
(
(PQPT)jj = Qii

)
= 1

n
∀ i, j ∈ {1, . . . , n}

(where P(·) denotes probability). Therefore, each diagonal entry B is the average over all diagonal
entries of Q:

Bjj =
∑n

i=1 Qii

n
, j = 1, 2, . . . , n.

Consider permutations that shift the ith and the jth entries to the kth and the lth positions, respectively,
that is,

(PQPT)kl = Qij. (3.7)
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1260 C.-P. LEE AND S. J. WRIGHT

Note that we always have i 
= j ⇒ k 
= l because permutations are bijections from and to {1, . . . , n}.
Thus, there are (n − 2)! permutations in Π with the property (3.7). Under the same reasoning as before,
each off-diagonal entry of B is the average of all off-diagonal entries of Q:

Bkl =
∑

1� i,j� n,i
=j Qij

n(n − 1)
, k, l ∈ {1, 2, . . . , n}, k 
= l.

Finally, we obtain (3.6) by noting that Bii = τ1 + τ2, while Bij = τ2 for i 
= j. �
We have immediately from Lemma 3.1 that

EP(PTCTCP) = d1I + d211
T, EP(PTCT11TCP) = m1I + m211

T, (3.8)

where

d2 = 1TCTC1 − trace(CTC)

n(n − 1)
= ‖C1‖2

2 − ‖C‖2
F

n(n − 1)
, (3.9a)

d1 = trace(CTC)

n
− d2 = ‖C‖2

F

n
− d2, (3.9b)

m2 = (1TC1)2 − (1TC)(CT1)
n(n − 1)

= (1TC1)2 − ‖CT1‖2
2

n(n − 1)
, (3.9c)

m1 = (1TC)(CT1)
n

− m2 = ‖CT1‖2
2

n − 1
− (1TC1)2

n(n − 1)
. (3.9d)

Note that for (3.9c) and (3.9d) we used the property trace(AB) = trace(BA).
The following theorem reveals the relationship between successive matrices in the sequence

Ā(0), Ā(1), . . . .

Theorem 3.2 Consider solving (1.11) with the matrix A defined in (1.17) using RPCD. For Ā(t) defined
in (3.4), with Ā(0) = A, we have

Ā(t) = ηtI + νt11
T, (3.10)

where (η0, ν0) = (δ, 1 − δ) and

[
ηt+1
νt+1

]
= M

[
ηt
νt

]
= Mt+1

[
δ

1 − δ

]
∀ t � 0, (3.11)

where

M :=
[

d1 m1
d2 m2

]
, (3.12)

and d1, d2, m1, m2 are defined in (3.9).

Proof. We first prove (3.10) by induction. By (1.17) it holds at t = 0. Now assume it holds for t = k,
for some ηk and νk, then for k + 1 we have from (3.4),

Ā(k+1) = EP

[
PCTPTĀ(k)PCPT].
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RANDOM PERMUTATIONS FIX A WORST CASE FOR CYCLIC COORDINATE DESCENT 1261

Because Ā(k) is in the form (3.10) it is invariant to row and column permutations, that is, PTĀ(k)P = Ā(k)

for all P ∈ Π . Hence,

Ā(k+1) = EP

[
PCTĀ(k)CPT]

= ηkEP[PCTCPT] + νkEP[PCT11TCPT]

= ηk(d1I + d211
T) + νk(m1I + m211

T)

= (ηkd1 + νkm1)I + (ηkd2 + νkm2)11
T, (3.13)

giving the result. �
We obtain a result for the expected value of f after � epochs by taking the expectation as in (3.3),

showing that the sequence of expected function values at the end of each epoch is governed by the
behavior of the sequence {(η�, ν�)}.
Theorem 3.3 Consider solving (1.11) with the matrix A defined in (1.17) using RPCD. Then, using the
notation of Theorem 3.2, we have

EP1,P2,...,P�
f (x�n) = 1

2

(
η�‖x0‖2 + ν�(1

Tx0)2
)
�
∥∥∥∥

[
η�

ν�

]∥∥∥∥max
(
‖x0‖2, (1Tx0)2

)
.

Proof. The result is obtained by taking expectations with respect to P�, P�−1, . . . , P1 in (3.2) and using
the definition of Ā(t) (with t = �) together with Theorem 3.2. �

Figure 4 plots the expected value from Theorem 3.3 against the value of f (x�n
RPCD) obtained from

(3.2) for particular random choices of x0 and the permutation matrices P1, P2, . . . , P�, showing that the
estimate in this one instance tracks the expected value closely. (This behavior is typical.)

3.2 Convergence of the two-parameter recurrence

It is evident from Theorems 3.2 and 3.3 (and Gelfand’s formula) that the asymptotic convergence of the
expected value of f is governed by ρ(M), which, because of definitions (3.12) and (3.9), is a function of
δ and n. In Fig. 2(b) and Table 1, we see that this rate is significantly better than those obtained for RCD
and CCD when δ is not too close to zero (that is, δ � 0.2). In this section we estimate the convergence
rate of RPCD for δ close to zero, showing that in this regime it is close to the rate of approximately
1 − 2δ obtained by RCD (2.20), and much faster than the rate of CCD discussed in (2.17) and (2.18),
which is 1 − cδ/n2, for some modest value of c.

We start with a rigorous bound on the convergence rate for the sequence {(η�, ν�)}, without resorting
to eigenvalue calculations for M. The details of bounding the elements of M (d1, d2, m1 and m2 from
(3.9)) as functions of δ and n are shown in Appendix A. For the case of δ ∈ [0, 0.4] and n � 10 the
formulas (A.11) yield the following bounds:

0 � d1 � 1 − 2δ + 3.6δ2,

|m2| � 0.05δ2,

0 � d2 � 1 − 2δ + 3.2δ2,

|m1| � 0.15δ2.
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1262 C.-P. LEE AND S. J. WRIGHT

Fig. 4. Empirical objective value and expected objective value of RPCD.

Table 1 Observed and predicted per-epoch convergence rates for CCD, RCD and
RPCD, for various values of δ (n = 100 in all experiments)

δ 0.80 0.50 0.33 0.20 0.10 0.03

ρCCD(δ, x0) 0.9340 0.9924 0.9971 0.9988 0.9995 0.9998
ρ(C)2 0.9342 0.9924 0.9971 0.9988 0.9995 0.9999
ρRCD(δ, x0) 0.3146 0.4764 0.5945 0.7059 0.8287 0.9428
ρRCD(δ, predicted) 0.4095 0.5123 0.6081 0.7161 0.8336 0.9434
ρRPCD(δ, x0) 0.1054 0.3306 0.4929 0.6615 0.8178 0.9415
ρ(M) 0.1162 0.3289 0.4994 0.6635 0.8164 0.9412

By appealing to Theorems 3.2 and 3.3 we obtain our main result.

Theorem 3.4 Consider solving (1.11), (1.17) with δ ∈ [0, 0.4] and n � 10 using RPCD. Then, using
the notation of Theorem 3.2, we have

|η�| � (1 − 2δ + 4δ2)�−1δ, |ν�| � (1 − 2δ + 4δ2)�−1δ ∀ � � 1. (3.14)

Thus, we have the following bound on the convergence of the expected value of the function:

EP1,P2,...,P�
f (x�n) � 1

2
(1 − 2δ + 4δ2)�−1

(
‖x0‖2 + (1Tx0)2

)
δ ∀ � � 1.
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RANDOM PERMUTATIONS FIX A WORST CASE FOR CYCLIC COORDINATE DESCENT 1263

Proof. Since (η0, ν0) = (δ, 1 − δ) we have from (3.11) and using δ ∈ [0, 0.4] that

[|η1||ν1|
]
�
[

d1 |m1|
d2 |m2|

] [
δ

(1 − δ)

]
�
[
(1 − 2δ + 3.6δ2)δ + 0.15δ2(1 − δ)

(1 − 2δ + 3.2δ2)δ + 0.05δ2(1 − δ)

]
�
[
(1 − 1.85δ + 3.6δ2)δ

(1 − 1.95δ + 3.2δ2)δ

]
�
[
δ

δ

]
,

so that (3.14) holds for � = 1. Supposing that the bound holds for some value of � � 1 we have

[|η�+1||ν�+1|
]
� (1 − 2δ + 4δ2)�−1

[
(1 − 2δ + 3.6δ2) 0.15δ2

(1 − 2δ + 3.2δ2) 0.05δ2

] [
δ

δ

]

� (1 − 2δ + 4δ2)�−1
[
(1 − 2δ + 3.75δ2)δ

(1 − 2δ + 3.25δ2)δ

]

� (1 − 2δ + 4δ2)�
[
δ

δ

]
,

verifying that the required bound still holds at � + 1, thus proving (3.14).
The final claim follows directly from Theorem 3.3. �
This result indicates a global linear rate of at worst 1 − 2δ + 4δ2, similar to the rate (2.20) obtained

for RCD (identical to O(δ)) and much faster than the rate obtained for CCD in (2.17), (2.18).
By using slightly more refined estimates of the elements of M, which involve not strict upper bounds

as in (A.11) but rather remainder terms containing higher powers of δ and/or 1/n, we can obtain an
estimate of ρ(M). In Appendix B we obtain the following estimates of d1, d2, m1 and m2:

d1 = 1 − 2δ − 2
δ

n
+ 2δ2 + O

(
δ2

n

)
+ O(δ3),

m2 = O
(

δ2

n

)
,

d2 = 1 − 2

n
+ O(δ),

m1 = O
(

δ2

n

)
.

By substituting these estimates into (3.12) and calculating the spectral radius ρ(M) as the largest root of
the characteristic quadratic det(M − λI) we obtain

ρ(M) = 1 − 2δ − 2δ

n
+ 2δ2 + O

(
δ2

n

)
+ O(δ3). (3.15)

This asymptotic rate is identical to the rate for RCD (2.20) in the 1, δ and δ2 terms, and is slightly better
because of the presence of the −2δ/n term.
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1264 C.-P. LEE AND S. J. WRIGHT

3.3 The first iteration

We noted in the numerical experiments (Figs 3 and 4) that the decrease in f over the first epoch of RPCD
is rather dramatic. In fact, after just a single iteration, the function value was often of order δ for all three
variants (CCD, RPCD and RCD). The following result supports this observation.

Theorem 3.5 Consider solving (1.11) with the matrix A defined in (1.17) using RCD or RPCD with
exact line search (2.2). Given any x0 the expected function value after a single iteration satisfies

Ei f (x1) = 1

2
δ

(
1 − δ

n

)
‖x0‖2 + 1

2
δ(1 − δ)

(
1 − 2

n

)
(1Tx0)2 � 1

2
δ‖x0‖2 + δf (x0), (3.16)

where i denotes the coordinate chosen for updating at the first iteration.

Proof. Note that i is chosen uniformly at random from {1, 2, . . . , n} for both RPCD and RCD. After one
step of CD we have

x1
i = x0

i −
⎛

⎝x0
i + (1 − δ)

∑

j
=i

x0
j

⎞

⎠ = −(1 − δ)

⎛

⎝
∑

j
=i

x0
j

⎞

⎠ ,

x1
j = x0

j for j 
= i.

Thus, from (1.17) we have

f
(

x1
)

= 1

2

(
x1
)T

Ax1

= 1

2
δ

∥∥
∥x1

∥∥
∥

2 + 1

2
(1 − δ)

⎛

⎝
n∑

j=1

x1
j

⎞

⎠

2

= 1

2
δ

⎡

⎢
⎣
∑

j
=i

(
x0

j

)2 + (1 − δ)2

⎛

⎝
∑

j
=i

x0
j

⎞

⎠

2
⎤

⎥
⎦+ 1

2
(1 − δ)

⎡

⎣
∑

j
=i

x0
j − (1 − δ)

∑

j
=i

x0
j

⎤

⎦

2

= 1

2
δ
∑

j
=i

(
x0

j

)2 +
⎛

⎝
∑

j
=i

x0
j

⎞

⎠

2 [
1

2
δ(1 − δ)2 + 1

2
δ2(1 − δ)

]

= 1

2
δ
∑

j
=i

(
x0

j

)2 + 1

2
δ(1 − δ)

⎛

⎝
∑

j
=i

x0
j

⎞

⎠

2

. (3.17)
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RANDOM PERMUTATIONS FIX A WORST CASE FOR CYCLIC COORDINATE DESCENT 1265

Since

Ei

∑

j
=i

(
x0

j

)2 = n − 1

n

n∑

j=1

(
x0

j

)2 = n − 1

n
‖x0‖2,

Ei

⎛

⎝
∑

j
=i

x0
j

⎞

⎠

2

= Ei(1
Tx0 − xi)

2

= Ei

(
(1Tx0)2 − 2xi(1

Tx0) + x2
i

)

= (1Tx)2 − 2

n
(1Tx0)2 + 1

n
‖x0‖2

=
(

1 − 2

n

)
(1Tx0)2 + 1

n
‖x0‖2,

we have by taking expectation with respect to i in (3.17) that the equality in (3.16) holds.
For the inequality in (3.16) we have from

f (x0) = 1

2
(x0)TAx0 = 1

2
δ‖x0‖2 + 1

2
(1 − δ)(1Tx0)2 � 1

2
(1 − δ)(1Tx0)2

that

Ei f (x1) = 1

2
δ

(
1 − δ

n

)
‖x0‖2 + 1

2
δ(1 − δ)

(
1 − 2

n

)
(1Tx0)2

� 1

2
δ‖x0‖2 + 1

2
δ(1 − δ)(1Tx0)2

� 1

2
δ‖x0‖2 + δf (x0),

as required. �
For CCD we have from (3.17) with i = 1 that

f (x1) = 1

2
δ(‖x0‖2 − (x0

1)
2) + 1

2
δ(1 − δ)

(
(1Tx0) − x0

1

)2

� 1

2
δ‖x0‖2 + 1

2
δ(1 − δ)

[
(1Tx0)2 − 2(x0

1)(1
Tx0)

]

� 1

2
δ
[
‖x0‖2 + (1Tx0)2 + 2‖x0‖(1Tx0)

]

= 1

2
δ
[
‖x0‖ + (1Tx0)

]2
.
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If x0 is independent of δ we have f (x1) = O(δ). However, there is no guarantee that f (x1) is substantially
smaller than f (x0). If x0 is chosen ‘adversarially’ in such a way that |1Tx0| � ‖x0‖, we may find that
f (x1) is not much smaller than f (x0). For random choices of x0, however, we would expect a significant
decrease on the first iteration, similar to that observed for RPCD and RCD.

4. Computational results

Some comparisons between empirical rates and rates predicted from the analysis are shown in Table 1,
for n = 100 and different values of δ. For the empirical rates ρCCD(δ, x0), ρRCD(δ, x0) and ρRPCD(δ, x0)

we used formulas like (2.5), but we took the average decrease factor over only the last 10 epochs, so
as to capture the asymptotic rates and discount the early iterations. We used the termination criterion
f (x�n) − f ∗ � 10−8. For the theoretical predictions we used ρ(C)2 for CCD (as suggested by (2.7)), the
formula ρRCD(δ, predicted) = (1 − 2δ/(n(1 + δ)))n for RCD (from (2.20)) and ρ(M) for RPCD (from
(3.15)). We note from this table that the theoretical predictions for CCD and RPCD are quite sharp,
even for values of δ that are not particularly small. For RCD the empirical results are slightly better
than predicted by the theory when δ is large. RPCD has the best practical and theoretical asymptotic
convergence of the three variants, with the advantage increasing as δ increases.

5. Conclusions

Recent work has shown that problem (1.11) with Hessian matrix (1.17) is a case that reveals significant
differences in performance between cyclic and randomized variants of coordinate descent. Here we
provide an analysis of the performance of RPCD that sharply predicts the practical convergence behavior
of this approach, showing an asymptotic convergence rate that at least matches (and is even slightly
better than) that obtained by a random sampling-with-replacement scheme.

Empirically, it appears that convex quadratic instances that reveal differences between CCD, RCD
and RPCD are quite limited in scope, with (1.17) being the canonical instance and the one whose
analysis is most tractable. In work subsequent to this paper (Wright & Lee, 2017) we analyse the case
of quadratic convex f in which the Hessian has the form δI + (1 − δ)uuT, where u ∈ R

n is a vector
whose elements have magnitude not too different from 1. By a diagonal transformation this matrix has
the form δI + (1 − δ)11T + εD, where D is diagonal with elements in the range [0, 1] and ε � 0. Our
analysis in Wright & Lee (2017) builds on the approach in this paper but is somewhat more complex;
the exact two-variable recurrence of Theorem 3.2 becomes an approximate recurrence involving more
terms.
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Appendix

A. Estimating terms in the recurrence matrix M

Here we first find upper and (in some cases) lower bounds for the following quantities, for the matrix A
given in (1.17) and the corresponding value of C defined in (2.12) and (2.14):

(1TC1)2, ‖C1‖2, ‖CT1‖2, ‖C‖2
F . (A.1)
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We then use these quantities to obtain bounds on d1, d2, m1 and m2 from (3.9). We assume throughout
that n � 10 and δ ∈ [0, 0.4].

For 1TC1, we have from (2.12) and (2.14) that

1TC1 = (1 − δ)(1TL̄)(ET1) = (1 − δ)uTv,

where u = L̄T1 and v = ET1 have the following components:

vi = n − i, i = 1, 2, . . . , n

(from (2.12)) and

ui = −1 + (1 − δ)

n−i−1∑

t=0

δt = −1 + (1 − δ)
1 − δn−i

1 − δ
= −δn−i, i = 1, . . . , n

(from (2.14a)). For δ ∈ [0, 0.4], we have

0 � 1TC1 = −(1 − δ)

n∑

i=1

(n − i)δn−i

= −(1 − δ)

n−1∑

i=1

iδi

= −(1 − δ)

n−1∑

i=1

n−1∑

j=i

δj

� −(1 − δ)

n−1∑

i=1

δi

1 − δ

= −
n−1∑

i=1

δi

� − δ

1 − δ
� −2δ.

Therefore, we have

0 � (1TC1)2 � 4δ2. (A.2)
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We next seek an upper bound for ‖CT1‖2
2. We have from (2.15) that

(CT1)j =
j−1∑

i=1

Cij +
n∑

i=j

Cij

= −(1 − δ)

j−1∑

i=1

δi−1 + (1 − δ)

n∑

i=j

(δi−j − δi−1)

= −(1 − δ)

n∑

i=1

δi−1 + (1 − δ)

n−j∑

t=0

δt

= −(1 − δn) + (1 − δ)
1 − δn−j+1

1 − δ

= δn − δn−j+1.

It follows that

‖CT1‖2
2 =

n∑

j=1

(δn − δn−j+1)2

�
n∑

j=1

(δn−j+1)2

=
n∑

j=1

δ2j

� δ2

1 − δ2

� 1.34δ2. (A.3)

We now use (2.15) to compute bounds on the other quantities in (A.1). We have

(C1)i =
i∑

j=1

Cij +
n∑

j=i+1

Cij

= (1 − δ)

i∑

j=1

(δi−j − δi−1) − (1 − δ)

n∑

j=i+1

δi−1

= (1 − δ)

i∑

j=1

δi−j − (1 − δ)nδi−1

= (1 − δi) − n(1 − δ)δi−1

= 1 − nδi−1 + (n − 1)δi.
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We thus obtain

‖C1‖2
2 =

n∑

i=1

[
1 − 2nδi−1 + 2(n − 1)δi + n2δ2i−2 − 2n(n − 1)δ2i−1 + (n − 1)2δ2i

]

= n + [−2n + 2(n − 1)δ]
n∑

i=1

δi−1 +
[
n2 − 2n(n − 1)δ + (n − 1)2δ2

] n∑

i=1

(δ2)i−1

= n + [−2n + 2(n − 1)δ]
1 − δn

1 − δ
+
[
n2 − 2n(n − 1)δ + (n − 1)2δ2

] 1 − δ2n

1 − δ2 . (A.4)

Noting that [−2n + 2(n − 1)δ] < 0 and [n2 − 2n(n − 1)δ + (n − 1)2δ2] > 0 for the values of δ and n of
interest, and using 2nδn(1 − δ2) � (2δ8)nδ2 � 0.01nδ2, we continue:

‖C1‖2
2 � n + [−2n + 2(n − 1)δ]

1

1 − δ
+δn[2n − 2(n − 1)δ]+

[
n2 − 2n(n − 1)δ+ (n − 1)2δ2

] 1

1 − δ2

� 1

1 − δ2

[
n(1 − δ2) + [−2n + 2(n − 1)δ] (1 + δ) + 0.01nδ2 + n2− 2n(n − 1)δ + (n − 1)2δ2

]

= 1

1 − δ2

[
n2 − 2n2δ + 2nδ − n − 2δ + δ2

[
−n + 2(n − 1) + 0.01n + (n − 1)2

] ]

� 1

1 − δ2

[
n(n − 1)(1 − 2δ) + n2δ2

]
.

Thus, dividing by n(n − 1) and using δ ∈ [0, 0.4] to deduce that (1 − δ2)−1 � 1 + 1.5δ2, we obtain

‖C1‖2
2

n(n − 1)
� 1

1 − δ2

[
(1 − 2δ) + n

n − 1
δ2
]

� (1 + 1.5δ2)[(1 − 2δ) + 1.12δ2]

� (1 − 2δ) + (1.5 + 1.12)δ2 + 2δ4

� (1 − 2δ) + (1.5 + 1.12 + 0.5)δ2

� (1 − 2δ) + 3.2δ2. (A.5)

For the corresponding lower bound, we pick up from (A.4) and again use [−2n + 2(n − 1)δ] < 0 and
[n2 − 2n(n − 1)δ + (n − 1)2δ2] > 0, together with [n2 − 2n(n − 1)δ + (n − 1)2δ2] � n2(1 + δ2) and
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δ2n(1 + δ2) � 0.001δ2, to obtain

‖C1‖2
2 � n + [−2n + 2(n − 1)δ]

1

1 − δ
+
[
n2 − 2n(n − 1)δ + (n − 1)2δ2

] 1

1 − δ2 − δ2nn2(1 + δ2)

= 1

1 − δ2

[
n(1− δ2) + [−2n + 2(n −1)δ] (1+ δ)+

[
n2 − 2n(n−1)δ+(n − 1)2δ2

]]
−0.001n2δ2

= 1

1 − δ2

[
(n2− n)+ [2(n −1)−2n −2n(n −1)] δ+

[
−n + 2(n −1)+ (n −1)2

]
δ2
]
−0.001n2δ2

= 1

1 − δ2

[
(n2 − n) + (−2n2 + 2n − 2)δ + (n2 − n − 1)δ2

]
− 0.001n2δ2

� 1

1 − δ2

[
n(n − 1) − 2n(n − 1)δ − 2δ + n(n − 1)δ2 − δ2 − 0.001n2δ2

]
.

Thus, dividing by n(n − 1), we obtain

‖C1‖2
2

n(n − 1)
� 1

1 − δ2

[
1 − 2δ + δ2 − 2δ + δ2

n(n − 1)
− 0.001n2

n(n − 1)
δ2
]

� 1

1 − δ2

[
1 − 2δ + δ2 − 2.5δ

n(n − 1)
− 0.002δ2

]

� 1 − 2δ + 0.998δ2 − 3δ

n2 . (A.6)

Note that this lower bound is strictly positive in the regime δ ∈ [0, 0.4] and n � 10.
For ‖C‖2

F , we obtain from (2.15) that

1

(1 − δ)2
‖C‖2

F =
n∑

j=1

⎧
⎨

⎩

j−1∑

i=1

δ2i−2 +
n∑

i=j

(
δ2i−2j − 2δ2i−j−1 + δ2i−2

)
⎫
⎬

⎭

=
n∑

j=1

⎧
⎨

⎩
1 − δ2j−2

1 − δ2 +
(

1 − 2δj−1 + δ2j−2
) n−j∑

i=0

δ2i

⎫
⎬

⎭

=
n∑

j=1

{
1 − δ2j−2

1 − δ2 +
(

1 − 2δj−1 + δ2j−2
) 1 − δ2n−2j+2

1 − δ2

}
(A.7)

� 1

1 − δ2

n∑

j=1

{(
1 − δ2j−2

)
+
(

1 − 2δj−1 + δ2j−2
)}

� 1

1 − δ2

{
2n − 2

1 − δn

1 − δ

}
,
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so that

‖C‖2
F � 1 − δ

1 + δ

{
2n − 2

1 − δn

1 − δ

}

� 1

1 + δ

{
2n − 2nδ − 2 + 2δn}

� (1 − δ + δ2)
{

2n − 2nδ − 2 + 0.01δ2
}

(A.8)

= 2(n − 1) + [−2(n − 1) − 2n]δ + [2(n − 1) + 2n + 0.01]δ2 − [2n + 0.01]δ3 + 0.01δ4

� 2(n − 1) + [−4n + 2]δ + 4nδ2,

where in (A.8) we used 2δn � 2(δ8)δ2 � 0.01δ2. It therefore follows that

‖C‖2
F

n − 1
� 2 − 4δ − 2δ

n − 1
+ 4n

n − 1
δ2 � 2 − 4δ − 2δ

n
+ 4.5δ2. (A.9)

It follows, using again δ ∈ [0, 0.4] and n � 10, that

‖C‖2
F

n − 1
� 2 − 4δ − 2δ

n
+ 4.5δ2

� 2 − 4δ − 6δ

n2
+ 0.998nδ2

� 2

(
1 − 2δ − 3δ

n2

)
+ 0.998nδ2

� n

(
1 − 2δ − 3δ

n2 + 0.998δ2
)
�

‖C1‖2
2

n − 1
,

where we used (A.6) for the final inequality. It follows that

‖C1‖2
2 − ‖C‖2

F � 0. (A.10)

From formulas (3.9) together with (A.2), (A.5), (A.6), (A.3), (A.9) and (A.10), and using n � 10,
we have

0 � d2 = ‖C1‖2
2 − ‖C‖2

F

n(n − 1)
�

‖C1‖2
2

n(n − 1)
� 1 − 2δ + 3.2δ2, (A.11a)
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0 � d1 = ‖C‖2
F

n − 1
− ‖C1‖2

2

n(n − 1)

�
(

2 − 4δ − 2δ

n
+ 4.5δ2

)
−
(

1 − 2δ + 0.998δ2 − 3δ

n2

)

� 1 − 2δ − 2δ

n
+ 3δ

n2 + 3.6δ2

� 1 − 2δ − δ

n
(2 − 3/n) + 3.6δ2

� 1 − 2δ + 3.6δ2, (A.11b)

|m2| =
∣
∣
∣
∣
∣
(1TC1)2 − ‖CT1‖2

2

n(n − 1)

∣
∣
∣
∣
∣

�
max

(
(1TC1)2, ‖CT1‖2

)

n(n − 1)

� 4δ2

n(n − 1)
� 0.05δ2, (A.11c)

|m1| =
∣
∣∣∣∣
‖CT1‖2

2

n − 1
− (1TC1)2

n(n − 1)

∣
∣∣∣∣

� max

(
‖CT1‖2

2

n − 1
,
(1TC1)2

n(n − 1)

)

(A.11d)

� max

(
1.34

9
,

4

90

)
δ2 � 0.15δ2. (A.11e)

B. Approximation of d1, d2, m1 and m2 for estimating ρ(M)

From (A.11c), (A.11d), (A.2) and (A.3), we have

m1 = O
(

δ2

n

)
, m2 = O

(
δ2

n2

)
. (B.1)

For the two terms d1 and d2, we first need better approximations of ‖C1‖2
2 and ‖C‖2

F . From (A.4),
we proceed with

‖C1‖2
2 = n + (1 + δ + δ2) [−2n + 2(n − 1)δ] +

[
n2 − 2n(n − 1)δ + (n − 1)2δ2

]
(1 + δ2) + O

(
n2δ3

)

= n(n − 1) + δ
(
−2n2 + 2n − 2

)
+ δ2

(
2n2 − 2n − 1

)
+ O

(
n2δ3

)
. (B.2)
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For ‖C‖2
F , we obtain from (A.7) that

1

(1 − δ)2 ‖C‖2
F = 1

1 − δ2

n∑

j=1

{
2 − (δ2)j−1 − 2δj−1 + δ2j−2 − δ2n−2j+2 + 2δ2n−j+1 − δ2n

}

= 1

1 − δ2

{
2n − (1 + δ2) − 2(1 + δ + δ2) + (1 + δ2) − δ2 + O(δ3)

}

= 1

1 − δ2

{
2n − 2 − 2δ − 3δ2

}
+ O(δ3),

so that

‖C‖2
F = 1 − δ

1 + δ
(2n − 2 − 2δ − 3δ2) + O(δ3)

= (1 − δ)(1 − δ + δ2)(2n − 2 − 2δ − 3δ2) + O(nδ3)

= (1 − 2δ + 2δ2)(2n − 2 − 2δ − 3δ2) + O(nδ3)

= (2n − 2) − δ(4n − 2) + δ2(4n − 3) + O(nδ3). (B.3)

We then have from (B.3) and (B.2) that

d2 = ‖C1‖2
2 − ‖C‖2

F

n(n − 1)
= n(n − 1) + O

(
n2δ

)− (2n − 2)

n(n − 1)
= 1 − 2

n
+ O (δ) , (B.4a)

d1 = ‖C‖2
F

n − 1
− ‖C1‖2

2

n(n − 1)

= 2 − 4δ + 4δ2 + −2δ

n − 1
−
(

1 − 2δ + −2δ

n(n − 1)
+ 2δ2

)
+ O

(
δ2

n

)
+ O(δ3)

= 1 − 2δ − 2δ

n
+ 2δ2 + O

(
δ2

n

)
+ O(δ3). (B.4b)

C. Condition (1.9) for g(Ex) with g strongly convex

Suppose that f (x) = g(Ex), where g is strongly convex with modulus of convexity σ > 0, and E ∈ R
m×n.

If E = 0, all x are optimal, so the claim (1.9) holds trivially. Otherwise, we have that σmin,nz, the
minimum nonzero singular value of E, is strictly positive.

By strong convexity of g, there exists a unique t∗ ∈ R
m such that the solution set for (1.1) has

the form {x | Ex = t∗}. Let P(x) denote the projection of any vector x ∈ R
n onto this set. We have by

Hoffman’s lemma (Hoffman, 1952) that
∥∥x − P(x)

∥∥ � σ−1
min,nz

∥∥E
(
x − P(x)

)∥∥ = σ−1
min,nz‖Ex − t∗‖.

Thus, by strong convexity, we have

f (x) = g(Ex) � g(t∗) + σ

2

∥∥E(x − P(x))
∥∥2 � f ∗ + σσ 2

min,nz

2

∥∥x − P(x)
∥∥2. (C.1)
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Meanwhile we have by convexity of f that

f ∗ � f (x) + ∇f (x)T(P(x) − x
)
,

so that

f (x) − f ∗ �
∥∥∇f (x)

∥∥ ∥∥P(x) − x
∥∥ �

∥∥∇f (x)
∥∥
(

2

σσ 2
min,nz

)1/2
(

f (x) − f ∗)1/2.

Dividing both sides by ( f (x) − f ∗)1/2 we obtain

∥
∥∇f (x)

∥
∥
(

2

σσ 2
min,nz

)1/2

�
(

f (x) − f ∗)1/2 ⇒ ∥
∥∇f (x)

∥
∥2 �

σσ 2
min,nz

2

(
f (x) − f ∗),

which has the form (1.9).
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