
Utility Analysis of Horizontally Merged Multi-Party Synthetic
Data with Differential Privacy

Bingyue Su and Fang Liu
{bsu1, fliu2}@nd.edu

Applied and Computational Mathematics and Statistics, University of Notre Dame
Notre Dame, IN 46556

Abstract—A large amount of data is often needed to train ma-
chine learning algorithms with confidence. One way to achieve the
necessary data volume is to share and combine data from multiple
parties. On the other hand, how to protect sensitive personal
information during data sharing is always a challenge. We focus
on data sharing when parties have overlapping attributes but
non-overlapping individuals. One approach to achieve privacy
protection is through sharing differentially private synthetic
data. Each party generates synthetic data at its own preferred
privacy budget, which are then released and horizontally merged
across the parties. The total privacy cost for this approach is
capped at the maximum individual budget employed by a party.
We derive the mean squared error bounds for the parameter
estimation in common regression analysis based on the merged
sanitized data across parties. We identify through theoretical
analysis the conditions under which the utility of sharing and
merging sanitized data outweighs the perturbation introduced
for satisfying differential privacy and surpasses that based on
individual party data. The experiments suggest that sanitized
HOMM data obtained at a practically reasonable small privacy
cost can lead to smaller prediction and estimation errors than
individual parties, demonstrating benefits of data sharing while
protecting privacy.

Index Terms—data synthesis, differential privacy, multi-party,
mean squared error, horizontally merged, regression, utility

I. INTRODUCTION

A. Background and Motivation
Big data has enabled extensive and efficient applications of

statistical models and machine learning algorithms to solve
practical problems. One way to obtain the necessary data
volume to train a model with confidence is to share and
combine data across multiple parties; for example, patient data
collected by different hospitals and education data collected
from various sources and platforms. On the other hand, there
are always privacy concerns when it comes to data sharing.
Differential privacy (DP) is a popular concept for privacy
protection in recent years[1]. In this paper, we focus on
applying DP to sharing data among multiple parties, where
each party has overlapping attributes but non-overlapping
individuals with other parties. Being able to share and merge
small data sets into large ones is important especially if the
cost on data collection is high for each individual party and
aggregating data across multi-parties becomes necessary to
obtain a sizable data with improved analytical potentials.

This research is funded by NSF Award #1717417 and the University of
Notre Dame Blockchain Project Grant.

B. Our Approach and Contributions
We assume the individuals from different parties come from

the same underlying population, so that it makes sense to
share and combine the information from multiple sources.
Information sharing can take different forms, as presented in
the related work in Sec I-C, we focus on sharing and merg-
ing individual-level data horizontally with DP. Specifically,
differentially private synthetic data are first generated given
the original information in each party, and they are released
and combined to obtain the HOrizontally Merged Multi-parties
(HOMM) data.

The overall privacy cost for sharing and releasing the
sanitized HOMM data is the maximum budget employed by
a party across all the parties per the parallel composition
principle [2] in DP, given that each party has non-overlapping
individuals with other parties. This implies that the sanitized
HOMM can involve as many parties as possible without having
to increase the overall privacy cost. As more parties join the
sharing efforts, the size of the sanitized HOMM data will grow,
and the amount of information will outweigh the noise injected
to achieve DP. As a result, the trained models and algorithms
will become more efficient and robust, surpassing those based
on the original individual-party data.

We derive the error bounds for parameter estimation and
outcome prediction based on the sanitized HOMM data in
regression settings. We examine how the relevant factors,
including sample complexity and privacy budget, affects the
errors, and the conditions under which the errors will be
smaller than those based on the original individual-party data.
Both our theoretical analysis and empirical studies suggest that
the sanitized HOMM data helps to improve the robustness and
stability of learning and estimation tasks in regression settings.
To the best of our knowledge, our work provides the first in-
depth look at the utility of sanitized HOMM data and the
theoretical results on the error bounds on the queries results
in the regression setting.
C. Related Work

An alternative way to combine information from multiple
data-parallel parties while protecting privacy is to train models
locally and then aggregate the local models to obtain a
composite model in a differentially private manner [3, 4, 5,
6, 7, 8, 9]. Differentially private federated learning [10] falls
under this category. The downside of this approach is that
each training of an optimization algorithm or machine learning
procedure on the original data will cost a certain amount of
privacy, the cost accumulates per the sequential composition978-1-7281-5628-6/20/$31.00 ©2020 IEEE
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theorem in DP [2] until all the pre-set privacy budget is used
up and no more training is allowed. The sanitized HOMM data
approach does not suffer from this as the data are individual-
level and has the same structure as the original; data users
can perform analysis on their own without having to worry
about running out of privacy budget. This paper deals with data
merging from data-parallel parties. Another line of work on
merging information from multiple parties with DP focuses on
vertical combination of feature-parallel data sets [11, 12, 13],
where the parties possess non-overlapping sets of attributes
but overlapping individuals.

II. PRELIMINARIES

A. Definitions
Definition 1 (ε-differential privacy (DP) [1]). A randomiza-
tion mechanismM is ε-differentially private if for all data sets
D1 and D2 that differ by one element and all S ∈ Range(M),
e−ε ≤ Pr[M(D1)∈S]

Pr[M(D2)∈S] ≤ e
ε.

Definition 2 (parallel composition [2]). Let {Dk}k=1,...,g

represent a sequence of disjoint subsets of data D. The Parallel
Composition states that releasing the g query results from the
sequence of randomization mechanisms Mk (D ∩Dk) of εk
for k = 1, . . . , g satisfies maxk εk-DP.

Definition 3 (Laplace mechanism [1]). For a given query f
on data D, the Laplace mechanism that satisfies ε-differential
privacy is defined as f∗(D)= f(D)+Lap(∆f/ε), where ∆f =
max
D1,D2

‖f(D1) − f(D2)‖1 is the l1 global sensitivity of query

f , for all D1, D2 differing by one element.

B. Problem Setting
Suppose there are g parties; each owns a data set Dk for

k = 1, ..., g. We assume all g data sets have at least one
common attributes, and the individuals from different data
sets are independent from each other; in other words, there
is minimal overlapping information across different parties.
Merging horizontally the g sets leads to a larger data set,
providing opportunities for more efficient and robust training
of learning algorithms with higher accuracy rates in prediction
and more efficient statistical inferences. To mitigate privacy
concerns, before data merging, each party generates synthetic
data in a differentially private manner given the original data.
Denote by εk the privacy budget party k chooses to sanitize
its data, then the privacy cost of merging and sharing the g
parties of data is ε = maxk εk per the parallel composition
principle (Def 2).

While there are various approaches to generate differentially
private synthetic data (model-based v.s. model-free, Bayesian
v.s. Frequentist, etc; readers may refer to [14] for an overview
if interested more on this topic), we focus on generating syn-
thetic data from differentially private empirical distributions
estimated by histograms, due to a couple of reasons. First,
the approach is straightforward to implement; and second,
differentially private histograms converge to the true under-
lying distributions at the rate of O(n−2/(2+p)) [15], where n
is the sample size and p is the dimension of the histogram.

In this approach, party k ( k = 1, ..., g) first forms a full-
dimensional histogram over Dk with mk bins with bin counts
nkj for j = 1, . . . ,mk. It then sanitizes the histogram as in
ñkj = max{nkj + ekj , 0}, where ekj ∼ Lap(0, ε−1

k ) indepen-
dently. Finally, it draws ñkj samples from Unif(ckj,0, ckj,1),
where ckj,0, ckj,1 are the cutoff points that bound the j-th bin
for j = 1, . . . ,mk. The collection of the

∑
j ñkj samples

from all mk bins makes the synthetic data D̃k in party k.
After each party releases its synthetic data, they are combined
horizontally to form one set of sanitized HOMM data.

The totality of the information contained in the sanitized
HOMM data relates to its sample size ñ =

∑g
k=1

∑mk

j=1 ñkj ,
as well as the amount of injected noise to guarantee DP. As
more parties join the sharing efforts, the accumulated infor-
mation will eventually outweigh the amount of injected noise
and surpass the non-private unshareable original information
in at least some individual parties if not in all parties. In other
words, we conjecture ∃k′ ∈ {1, . . . , g} that Ĩ ≥ I(k′), where
Ĩ is the information contained in the sanitized HOMM data
and I(k′) is k′-th highest amount of information among the
g individual parties, for a given g, ε > 0, and the party
size configuration n = (n1, . . . , ng). To facilitate testing of
the conjecture, we focus on some commonly seen analyses
and learning procedures (generalized linear models including
linear and logistic regression, kernel regression, and tree-based
learning procedures) and present both the theoretical results
and empirical conclusions in these setting. We will continue
to explore ways to test the conjecture in general settings, such
as using the information-theoretic framework.

III. THEORETICAL ANALYSIS

In this section, we present the mean squared error (MSE)
bounds based on the sanitized HOMM data for mean esti-
mation and prediction, parameter estimation and prediction in
linear regression and generalized linear models, and prediction
from kernel regression with the Box kernel.

Denote the number of parties by g, and the number of
histogram bins in party k by mk; and m =

∑g
k=1mk is the

total number of histogram bins across all the parties. n denotes
the sample size of the HOMM data, and nkj is the original
count in the j-th bin of the histogram in party k, nk =

∑
j nkj

is the data sample size in party k, and n =
∑
k,j nkj is the

sample size of the original HOMM data. We assume that the
Laplace mechanism (Def 3) is used to obtain the differentially
private histograms in each party; that is, the bin size after
sanitization is ñkj = nkj +ekj , where ekj ∼ Lap(0, ε−1), and
ñ =

∑
k,j ñkj .

A. Expected Value
Theorem 1 (MSE bound for sample mean). Assume Y ∼
[µ, σ2] and |Y | ≤ BY (that is, BY is the global bound that
does not depend on the local data). Let µ̃ denote the sample
mean, an estimate of µ, based on the sanitized HOMM data.
MSEµ̃ = E(µ̃− µ)2 =

O

((
6m

ε̄
+n2 + 2nn′

)
B2
Y

n2
+
σ2

n

)
, where (1)
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n2 =
∑
k,j

n2
kj

m2
k

; nn′=
∑
k

∑
j 6=j′

nkjnkj′

m2
k

+
∑
k 6=k′

∑
j,j′

nkjnk′j′

mkmk′
. (2)

ε̄=m

(
g∑
k=1

mk

εk

)−1

is the weighted harmonic mean of {ε}gj=1.

Proof. The estimates of µ based on the original and the
sanitized HOMM data are respectively ŷ = n−1

∑
k,j nkj ȳkj

and ỹ = ñ−1
∑
k,j ñkj ỹkj , where ȳkj and ỹkj are the means

of Y in bin j of the original and sanitized histograms in party
k. The MSE of ỹ is

E(ỹ − µ)2 ≤ 2E(ỹ − ŷ)2 + 2σ2/n. (3)

E(ỹ − ŷ)2 in Eq (3) =

E
(∑

k,j ñkj ỹkj

ñ
−
∑
k,j ñkj ỹkj

n
+

∑
k,j ñkj ỹkj

n
−
∑
k,j nkj ȳkj

n

)2

≤2E

(1

ñ
− 1

n

)∑
k,j

ñkj ỹkj

2

+2E
[∑

k,j ñkj ỹkj−
∑
k,jnkj ȳkj

n

]2

=2E
[(
n−ñ
n

)∑
k,j ñkj ỹkj

ñ

]2

+2E
[∑

k,j ñkj ỹkj−
∑
k,jnkj ȳkj

n

]2

≤ 2B2
Y

n2

g∑
i=1

mi

εi
+2E

[∑
k,j ñkj ỹkj−

∑
k,jnkj ȳkj

n

]2
=

2mB2
Y

n2ε̄
+

2A

n2
+

2B

n2
, where (4)

A =
∑

(k 6=k′)∪(j 6=j′) E[ñkj ỹkj − nkj ȳkj ]E[ñk′j′ ỹk′j′ −
nk′j′ ȳk′j′ ] and B =

∑
k,jE[ñkj ỹkj − nkj ȳkj ]

2. The term
E[ñkj ỹkj − nkj ȳkj ] in A can be written as

E{E[ñkj ỹkj − nkj ỹkj |ñkj ]}+ E[nkj ỹkj − nkj ȳkj ]. (5)

Since E(ỹkj |ñkj) = ckj , where ckjis a constant independent
of the actual value of Y (as ỹkj is the mean of a set of
samples from a uniform distribution with fixed bounds), Eq (5)
becomes ckjE{ñkj−nkj}+E[nkj ỹkj−nkj ȳkj ] = E[nkj ỹkj−
nkj ȳkj ] ≤ nkjBY

mk
. Similarly, the term E[ñk′j′ ỹk′j′−nk′j′ ȳk′j′ ]

in A is ≤ nk′j′BY

mk′
. Taken together,

A ≤ B2
Y

∑
(k 6=k′)∪(j 6=j′)

nkj
mk

nk′j′

mk′
= B2

Y nn
′, and (6)

B =
∑
k,j

E[ñkj ỹkj−nkj ỹkj+nkj ỹkj−nkj ȳkj ]2

≤2
∑
k,j

E[(ñkj−nkj)2ỹ2
kj+n

2
kj(ỹkj−ȳkj)2]

≤ 2mB2
Y

ε̄
+2B2

Y n
2. (7)

Plugging Eqs (6) and (7) in Eq (4), we have E(ỹ − ŷ)2 ≤
2mB2

Y

n2 ε̄ +
2B2

Y

n2 nn′+
4B2

Y

n2

(
m
ε̄ + n2

)
=

6mB2
Y

n2 ε̄ +
2B2

Y

n2 nn′+
4B2

Y

n2 n2,
and Eq (3) becomes

MSEµ̃ ≤
12mB2

Y

n2ε̄
+

2B2
Y

n2
nn′+

4B2
Y

n2
n2 + 2

σ2

n

= O

((
6m

ε̄
+n2 + 2nn′

)
B2
Y

n2
+
σ2

n

)
.

There are several interesting observations from Theorem 1.
• The utility of the sanitized HOMM data for estimating µ

is determined by ε̄, the weighted harmonic mean of εk,
whereas the overall privacy cost for merging and releasing
the synthetic data from g parties is maxk εk. As a matter
of fact, ε̄ tends strongly toward mink εk, representing the
largest amount of perturbation among all parties. In other
words, the overall privacy cost relates to maxk εk, but the
utility of the sanitized HOMM data is more influenced by
mink εk∀k. When εk ≡ ε, both the privacy cost and the
utility directly relate to ε.

• The MSE error bound in Eq (1) converges to σ2n−1,
the MSE based on the original HOMM data as ε̄ →
∞ and nk → ∞ for ∀k. To see this, we notice
that the MSE bound comprises 3 components: σ2n−1;
6mB2

Y /(ε̄n
2), the error introduced due to the DP guarantee;

and
(
n2 + 2nn′

)
B2
Y n
−2, representing the approximation

error of using histograms in place of the known underlying
distribution to sample data. As ε̄ → ∞, the error term
due to privacy guarantee disappears. As m−1

k → 0 and
nkm

−1
k → ∞, the histogram in each party converges to

the underlying distribution, and
(
n2 + 2nn′

)
n−2 → 0.

• When more parties join the sharing effort, the overall n
increases, MSEµ̃ decreases and eventually becomes smaller
than the individual MSE (σ2n−1

k for party k) in at least
some if not all parties. In other words, it is beneficial
to share sanitized data compared to each individual party
holding onto their own data, for the purposes of obtaining
an estimate for µ with smaller MSE.
Theorem 1 does not impose a specific distribution family

on Y , though it does have a global bound on Y , which is
perfectly justifiable and in some cases necessary from a DP
perspective. In the case of Gaussian Y , we may express the
bound BY in term of σ and n, the formal result of which is
presented in Corollary 1.
Corollary 1 (MSE bound of sample mean for Gaussian Y ).

MSEµ̃=O

((
6m

ε̄
+n2 + 2nn′

)(
µ+σ

√
2 log(n)

n

)2

+
σ2

n

)
.

Proof. The proof uses the results from the following lemma to
replace the global bound B2

Y with E(B2
y), where y represents

the local data, and the rest of the proof is similar to that for
Theorem 1.

Lemma 1. [16, 17]] If X1, ..., Xn
i.i.d∼ N(0, σ2), then

E(X(n)) ≤ σ
√

2 log(n), and V (X(n)) ≤ Cσ2

log(n) , where C is
a constant independent of σ2 or n.

Therefore, E(B2
y) =E2(By)+V (By) =

(
µ+σ

√
2 log(n)

)2

+

Cσ2

log(n) , and MSEµ̃

= O

((
6m

ε̄
+n2+2nn′

)(µ+σ
√

2 log(n)
)2

+ Cσ2

log(n)

n2
+
σ2

n

)
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= O

((
6m

ε̄
+n2 + 2nn′

) (µ+ σ
√

2 log(n)
)2

n2
+
σ2

n

)
B. Linear Regression

Linear models are commonly used regression models to
quantify the effects of independent variables X on Gaussian
outcome Y and to predict Y given X: Yi =

∑p
j=1 βjXij +

ei, where ei ∼ N(0, σ2). Let D̃ = (x̃, ỹ) denote the
combined synthetic data from g parties generated from the
differentially private histograms in each party. Theorem 2
shows the MSE bound for the least-squared (LS) estimates
for β = (β1, . . . , βp)

T in the linear model given D̃.

Theorem 2 (MSE bounds for LS regression coefficients).
Assume |Xj | ≤ Bj for j = 1, . . . , p, and party k has privacy
budget εk. The MSE of the LS estimate β̃ = (x̃T x̃)−1x̃T ỹ of
β based on the sanitized HOMM data is

MSEβ̃,k = E||(x̃T x̃)−1x̃T ỹ − β||2 =

O

(
B2
X

n2

(
m

ε̄
+
n2

m
+nn′

)(
γ2+σ2 log(n)

)2
+
σ2

n

)
, (8)

where γ =
∑p
j=1 βjBj , B

2
X =

∑p
j=1B

2
j , n

2 =
∑
k,j

n2
kj

m2
k

, and
the other notations are the same as in Theorem 1.

Proof. E||(x̃T x̃)−1x̃T ỹ − β||2 ≤
2E||(x̃T x̃)−1x̃T ỹ−(xTx)−1xTy||2+2E||(xTx)−1xTy−β||2

≤ 4A+ 4B + +2σ2tr((xTx)−1), (9)

where A = E||(x̃T x̃)−1x̃T ỹ − (xTx)−1x̃T ỹ||2 and B =
E||(xTx)−1x̃T ỹ − (xTx)−1xTy||2. We bound A and B,
respectively. First, A =

E
{
[(x̃Tx̃)−1x̃T ỹ−(xTx)−1x̃Tỹ]T [(x̃Tx̃)−1x̃Tỹ−(xTx)−1x̃Tỹ]

}
=E
{

tr
(
[(x̃Tx̃)−1−(xTx)−1]x̃Tỹ

)T(
[(x̃Tx̃)−1−(xTx)−1]x̃T ỹ

)}
=E
{

tr( [(x̃T x̃)−1−(xTx)−1]T [(x̃T x̃)−1−(xTx)−1] x̃T ỹỹT x̃)

}
.

If matrices M1 and M2 are symmetric and positive
definite, then tr(M1M2) ≤ λ1(M1)tr(M2) [18], where
λ1(M1) is the largest eigenvalue of M1. Now let M1 be
the boxed term above and M2 be x̃T ỹỹT x̃, then A ≤
E
{
λ1(M1)tr(x̃T ỹỹT x̃)

}
= E

{
ñ2λ1(M1) tr(x̃T ỹỹT x̃)

ñ2

}
. λ1

associated with M1 is equal to the square of the maximum
eigenvalue of (x̃T x̃)−1 − (xTx)−1. Also noted is that

2σ2tr((xTx)−1) = O(n−1σ2). (10)

Since every element in (xTx)−1 is O(n−1), then λ1 =

O
(

1
ñ−

1
n

)2
. Therefore, E

(
ñ2λ1

)
= O

(
E
(
ñ−n
n

)2)
=

O
(
m
n2 ε̄

)
and E

(
tr(x̃T ỹỹT x̃)

ñ2

)
= 1

ñ2E
(∑p

j=1(ỹT x̃j)
2
)

=∑p
j=1E

(
ỹx̃j

ñ

)2

≤ B2
XE(B2

Y ) = O

((
γ+σ

√
2 log(n)

)2

B2
X

)
,

where B2
X =

∑p
j=1B

2
j and γ =

∑p
j=1 βjBj . Taken together,

A = O

 m

n2ε̄

p∑
j=1

B2
j

(
γ + σ

√
2 log(n)

)2

 . (11)

The bound on B in Eq (9) can be derived in a similar manner
as on A. Specifically, B =

E
{
[(xTx)−1x̃Tỹ−(xTx)−1xTy]T [(xTx)−1x̃Tỹ−(xTx)−1xTy]

}
= E{tr[(xTx)−2(x̃T ỹ − xTy)(x̃T ỹ − xTy)T ]}
≤ E{λ1tr((x̃T ỹ − xTy)(x̃T ỹ − xTy)T )},

where λ1((xTx)−2) is the largest eigenvalue of (xTx)−2.
Since every element in (xTx)−2 is O

(
n−2

)
, λ1((xTx)−2)∼

O
(
n−2

)
, and |(x̃Tỹ − xTy)T (x̃T ỹ−xTy)| =

∑p
i=1(ỹTx̃j−

yTxj)
2, thus

B∼O

(
B2
X

(
m

n2ε̄
+

n2

n2m
+
nn′

n2

)(
γ+σ

√
2 log(n)

)2
)
. (12)

Eqs (10), (11), and (12) taken together, the MSE in Eq (9)

≤ 4A+ 4B + 2σ2tr((XTX)−1)

=O

((
m

n2ε̄
+

n2

n2m
+
nn′

n2

)
B2
X

(
γ2+σ2 log(n)

)2
+
σ2

n

)
.

The MSE values of the LS estimates of β based on the original
HOMM data and the data from an individual party k are

MSEβ=σ2diag(xTx)−1 =σ2tr(xTx)−1 =O(n−1σ2), (13)

MSEβ,k=σ2
∑

diagk(xTk xk)−1=σ2tr(xTk xk)−1 =O(n−1
k σ2).

Similar to the expected value case in Sec III-A, the MSE based
on the sanitized HOMM data in Eq (8) has two additional
terms compared to Eq (13) due to the sanitization error and
the histogram approximation error. As ε̄→∞, and m−1

k → 0
and nkm

−1
k →∞ ∀k, the MSE in Eq (8) converges to the

MSE in Eq (13). Compared to the per-party MSE, as more
parties join the sharing effort, the MSE based on the sanitized
HOMM data will keep decreasing and become smaller than
the per-party MSE for more and more individual parties.

Theorem 2 can be easily extended when a global bound BY
on Y is used in lieu of the expected local bound.
Corollary 2 (MSE bounds for linear regression coefficients
with global bound on Y ). Provided that |Y | ≤ BY , whereas
all the other settings are the same as in Theorem 2, then

E||(x̃T x̃)−1x̃T ỹ − β||2 (14)

= O

((
m

n2ε̄
+

n2

n2m
+
nn′

n2

)
B2
XB

2
Y +

σ2

n

)
.

The error bound for the predicted ŷh at a given set of
predictor xh can also be easily derived from Theorem 2.

Corollary 3 (error bound on prediction). Given a set of
predictors xh, the MSE of the predicted outcome ỹh is

E(ỹh−E(Yh))2= ||xh||2O

((
m

n2ε̄
+

n2

n2m
+
nn′

n2

)
B2
X(∗)+

σ2

n

)
.

where (∗) =
(
γ2+σ2 log(n)

)2
if the expected local bound on

Gaussian y is used; (∗) = B2
Y if a global bound is used.
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C. Kernel Regression

Kernel regression is a non-parametric technique that esti-
mates nonlinear relation f between predictorX and outcome
Y : Y = f(X) + ε, where ε

i.i.d∼ [0, σ2]. Given a data set
(xi, yi) for i= 1, . . . , n, if the Box kernel is employed with
bandwidth h, then f(x) at any point x can be estimated as

f̂(x) =

∑n
i=1 I(|xi − x| ≤ h)yi∑n
i=1 I(|xi − x| ≤ h)

=
n∑
i=1

wi(x)yi. (15)

Theorem 3 derives the MSE bound on f̂(x) in Eq (15) based
on the sanitized HOMM data.

Theorem 3 (MSE bound on predicted Y from Box-kernel
regression). WLOG, Assume x ∈ [0, BX ] and that f(x) is
continuous and is locally bounded. The MSE of the estimator
f̃(x) for a given x in Eq (15) based on the sanitized HOMM
data is

E(f̃(x)− f(x))2≤O

(
σ2

n0
+

(
m

n2
0ε̄

+
n2

0

n2
0m

+
n0n′0
n2

0

)
B2
wB

2
Y

)
,

where n0 = B−1
X 2nh for uniformly distributed X ∈ [0, BX ].

Proof. Denote the set of observations in the neighborhood of
(x−h,+h) by S(x) for a given x, the size of which is 2ñh/BX
and 2nkh/BX in the sanitized HOMM data and in the data
of party k, respectively.

E(f(x)−f̃(x))2 ≤ 2E(f(x)− f̂(x))2 + 2E(f̂(x)−f̃(x))2

=
2σ2

n0
+

(
f(x)− 2

n0

∑
i∈S(x)

f(xi)

)2

+2E(f̂(x)−f̃(x))2. (16)

A comparison between Eq (16) and Eq (3) suggests that the
former has one additional term (f(x)−2

∑
i∈S(x) f(xi)/n0)2,

which is a constant and ignorable as f(x) is continuous and
locally bounded. The bound on the second term E(f̂(x) −
f̃(x))2 in Eq (16) can be derived in a similar manner as in
the linear regression case by noting that f̂(x) =

∑
i wi(x)yi

and f̃(x) =
∑
i wi(x̃)yi per Eq (15), both of which are linear

functions of y as in the linear regression case.

D. Generalized Linear Model
Generalized linear models (GLM) are a widely used re-

gression model family to quantify the association between
predictors X and non-Gaussian outcome Y and make pre-
diction on Y . They include some of the most popular regres-
sion models such as linear, logistic, and poisson regression.
With the canonical link, Y follows an exponential family
f(yi) ∝ exp(yiηi − b(ηi) + h(yi)), for i = 1, . . . , n, where
ηi = xiβ is the natural parameter. Parameters β in GLM
are often estimated through maximum likelihood estimation
(MLE) by minimizing the negative log-likelihood function
(the loss function). In what follows, we show the expected
l2 distance in the loss function based on the sanitized vs the
original HOMM data converges to 0 faster than based on
the individual party data vs the original HOMM data; and
subsequently, the MLE based on the sanitized HOMM data

approaches true parameters β faster since the loss function is
convex β and the MLE based on the original HOMM data is√
n-consistent for β.

Theorem 4 (convergence rate of GLM loss function).
Assume |Y | ≤ BY and |xj | ≤ Bj . Define BX4 =∑p
j=1B

4
j , BXβ =

∑p
j=1βjBj , and D =

∑p
j=1 β

2
jB

2
j . Let

λ1(ββT ) denote the largest eigenvalue of ββT . The expected
squared difference of the loss function (negative log-likelihood)
based on the sanitized vs. the original HOMM data is

O
(
n−2

[(
6mε̄−1+n2+2nn′

)
pDB2

Y + (17)

λ2
1(ββT )

(
6mBX4 ε̄−1+BX4nn′+2BX4n2

)])
,

Proof. WLOG, we assume X is centralized. The first-order
Taylor expansion of the loss functions around ηi(:= xiβ) =
0 based on the sanitized and the original HOMM data are,
respectively,

l(β|x,y)= −1
n

[
C+βTxTy−b′(0)

n∑
i=1

xiβ

]
+O

(
1

n
‖xβ‖2

)
, (18)

l(β|x̃, ỹ)= −1
ñ

[
C̃+βTx̃Tỹ−b′(0)

ñ∑
i=1

x̃iβ

]
+O

(
1

ñ
‖x̃β‖2

)
, (19)

where C =
∑n
i=1 h(yi)−b(0) and C̃ =

∑ñ
i=1 h(ỹi)−b(0) are

independent of β and irrelevant for the optimization of the
loss functions. First, given 1

nβ
TxTy= 1

n

∑p
j=1 x

T
j yβj , then

1
ñβ

T x̃T ỹ− 1
nβ

TxTy =
∑p
j=1(

1
ñ x̃

T
j ỹ− 1

nx
T
j y)βj ,E

(
1
ñ x̃

T
j ỹ−

1
nx

T
j y

)2

=O
((

6m
ε +n2+2nn′

)
B2

jB
2
Y

n2

)
, and thus

E||ñ−1βTx̃T ỹ − n−1βTxTy||2≤p
p∑
j=1

E
( 1

ñ
x̃Tj ỹ−

1

n
xTj y

)2
= O

((
6mε−1+n2 + 2nn′

)
pDB2

Y n
−2
)
, (20)

where D =
∑m
j=1β

2
jB

2
j . Second, given

∑n
i=1 xiβ =∑p

j=1 βj
∑n
i=1 xij , then

E
∣∣∣∣∣∣∣∣ 1ñ

ñ∑
i=1

x̃iβ−
1

n

n∑
i=1

xiβ

∣∣∣∣∣∣∣∣2=O

((
6m

ε
+n2 + 2nn′

)
pD

n2

)
. (21)

Third, O(ñ−1‖x̃β‖2−n−1‖xβ‖2)=O(n−1λ1(ββT )tr(x̃T x̃
− xTx) + (ñ−1 + n−1)‖x̃β‖2). Given tr(x̃T x̃− xTx) =∑p
j=1 x̃

T
j x̃j −xTj xj , and following the proof in the expected

value case, we have

O(E(ñ−1‖x̃β‖2−n−1‖xβ‖2)2)

=O

(
λ2

1(ββT )

(
6mBX4

n2ε
+
BX4

n2
nn′+

2BX4

n2
n2

))
, (22)

where BX4 =
∑p
j=1B

4
j , and BXβ =

∑p
j=1 βjBj . Eqs (20) to

(22) taken together, the difference between the loss functions
in Eqs (19) and (18) can be written as

E(l(β|x̃, ỹ)−l(β|x,y))2 =O

(
1

n2

[(
6m

1

ε̄
+n2+2nn′

)
pDB2

Y

+λ2
1(ββT )

(
6mBX4 ε̄−1+BX4nn′+2BX4n2

)])
.
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experiment data attribute g party size learning task; performance metric # of repeats
1 (simulated data) Gaussian Y ∼ N(µ, 1) 5 20 ∼ 150

(total n = 370)
estimation of µ; root mean
squared error (RMSE) of µ̂ = Ȳ

200

2 (simulated data) Gaussian Y = βX + ε, where
ε ∼ N(0, 3), X = (1, X1, X2),
X1 ∼ N(0, 1), X2 ∼ Bern(0.5)

10 50 ∼ 275
(total
n = 1000)

prediction of Y via linear model;
prediction RMSE on testing data
(n = 100)

200

3 (simulated data) Binary Y ∼
Bernoulli( exp(Xβ)

1+exp(Xβ)
), where

X = (1, X1, X2) with
X1 ∼ N(0, 1), X2 ∼ Bern(0.5)

10 50 ∼ 80
(total n = 650)

classification via logistic regres-
sion; mis-classification rate of Y
on testing data (n = 100)

200

4 (medical costs
data)[19]

Numerical Y (charges); X6×1 13 30 ∼ 300
(total n = 900)

prediction of Y via linear model
and via random forest; prediction
RMSE on testing data (n = 438)

100

5 (social network
ads data) [20]

Binary Y (whether purchased
products); X3×1

9 20 ∼ 50
(total n = 300)

classification via logistic regres-
sion; mis-classification rate of Y
on testing data (n = 100)

100

TABLE I
EXPERIMENT SET-UP

The expected squared difference in the loss function
based on the individual party k of size nk vs the origi-
nal HOMM data E(l(β|xk,yk) − l(β|x,y))2 can be de-
rived in a similar manner. Specifically, ||n−1

k β
TxTy −

n−1βTxTy||2 =O(n−2(n−nk)2DB2
Y );

∣∣∣∣nk−1
∑nk

i=1 xiβ−
n−1

∑n
i=1 xiβ

∣∣∣∣2 = O(n−2(n − nk)2D); O((n−1
k ‖xβ‖2 −

n−1‖xβ‖2)2) = O(n−2(n − nk)2D2). So E(l(β|xk,yk) −
l(β|x,y))2 =O(n−2(n−nk)2D2B2

Y ), which converges to zero
at a slower rate compared with with Eq (17) for small nk.

IV. EXPERIMENTS

We conducted five experiments in simulated and real-life
data, examined a range of per-party privacy budget ε (set to
be the same across the individual parties). We used the Laplace
mechanism to perturb the histograms. In the experiments, we
also explored different g and various configurations of party
sizes. We expect the results from the experiments are sufficient
to illustrate the utility of sanitized HOMM data. We will
explore the heterogeneous privacy budget case and sanitization
via other sanitation mechanisms or with relaxed versions of
DP [21, 22]) (e.g., the Gaussian mechanism [23, 24]) in a
future extension of this paper.

The set-up of the 5 experiments are listed in Table I. All
experiments were run in R on a Macbook Pro with 2.9 GHz
Intel Core i7 and 16 GB of memory. The results from the
five experiments are presented in Fig. 1. If the solid black
curve based on the sanitized HOMM data at a given privacy
budget ε is lower than those from some individual parties
(solid pink lines), then it implies that sharing the sanitized
HOMM data benefits these individual parties in inferences or
predictions; if it is lower than the average (dashed pink line),
then it implies that sharing sanitized HOMM data is more
beneficial for inferences or predictions than not sharing on
average. In general, the RMSE based on the sanitized HOMM
data is smaller than those from at least some individual parties
at some practically reasonable small ε, demonstrating benefits
of sharing data across parties at only a small privacy cost.
The smallest ε achieving that depends on the specific data
and learning tasks. In experiment 1, the RMSE based on
the sanitized HOMM data is smaller than the smallest party

(n = 20) RMSE around ε = 0.08, the averaged individual-
party RMSE around ε = 0.2, and the largest party (n = 150)
RMSE around ε = 0.5. In experiment 2, when ε ≈ 4.5, the
sanitized HOMM data yield a similar RMSE as the original
HOMM and smaller than the averaged RMSE from the original
individual parties at ε > 1. In experiment 3, when ε ≥ 1, the
sanitized HOMM data lead to a lower mis-classification rate
than the best rate among the individual parties, and approach
the rate from the original HOMM data around ε > 4.5. In
experiment 4, due to the higher dimensionality of the data
(more attributes) compared to experiments 1 to 3, the sanitized
HOMM data beats the individual parties in prediction RMSE
at a relatively larger ε. In experiment 5, the error rates based
on the sanitized HOMM data are smaller than the average
based on the individual parties when ε > 2 and remain fairly
constant around 13% for ε ≥ 3.5.

V. SUMMARY AND DISCUSSION

We have examined the MSE bounds based on sanitized
HOMM data in various estimation and regression tasks. We
have identified the factors that are associated with the error
bounds and the conditions under which bounds will be smaller
than those based on the original individual party data. Overall,
the results based on our theoretical and empirical utility
analysis encourage data sharing in a differentially private
manner, especially when there are a large number of small to
middle-sized parties, so to achieve higher accuracy and more
statistical efficiency in trained models and learning procedures.
For future research, we will look into the utility analysis of
HOMM data generated via other synthesis approaches than
from histograms, and applications to high-dimensional data
to examine the scalability of the utility based on sanitized
HOMM data. Another interesting topic is the utility of ver-
tically merged synthetic data (feature-parallel) across parties,
which can be a challenging topic if the attributes are correlated.
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