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Mobility and Blockage-aware Communications in
Millimeter-Wave Vehicular Networks

Muddassar Hussain†, Maria Scalabrin‡, Michele Rossi‡, and Nicolò Michelusi†

Abstract—Mobility may degrade the performance of next-
generation vehicular networks operating at the millimeter-wave
spectrum: frequent mis-alignment and blockages require re-
peated beam-training and handover, with enormous overhead.
Nevertheless, mobility induces temporal correlations in the com-
munication beams and in blockage events. In this paper, an
adaptive design is proposed, that learns and exploits these tempo-
ral correlations to reduce the beam-training overhead and make
handover decisions. At each time-slot, the serving base station
(BS) decides to perform either beam-training, data communi-
cation, or handover, under uncertainty in the system state. The
decision problem is cast as a partially observable Markov decision
process, with the goal to maximize the throughput delivered
to the user, under an average power constraint. To address
the high-dimensional optimization, an approximate constrained
point-based value iteration (C-PBVI) method is developed, which
simultaneously optimizes the primal and dual functions to meet
the power constraint. Numerical results demonstrate a good
match between the analysis and a simulation based on 2D
mobility and 3D analog beamforming via uniform planar arrays
at both BSs and UE, and reveal that C-PBVI performs near-
optimally, and outperforms a baseline scheme with periodic
beam-training by 38% in spectral efficiency. Motivated by the
structure of C-PBVI, two heuristics are proposed, that trade
complexity with sub-optimality, and achieve only 4% and 15%
loss in spectral efficiency. Finally, the effect of mobility and
multiple users on blockage dynamics is evaluated numerically,
demonstrating superior performance over the baseline scheme.

I. INTRODUCTION

Current sub-6GHz vehicular communication systems cannot
support the demand of future applications such as autonomous
driving, augmented reality and infotainment, due to limited
bandwidth availability [2]. To this end, new solutions are being
explored that leverage the large bandwidth in the 30−300GHz
band, the so called millimeter-wave (mm-wave) spectrum.
While communication at these frequencies is ideal to support
high capacity demands, it relies on highly directional transmis-
sions and is susceptible to blockages and mis-alignment, which
are exacerbated in highly mobile and dense environments:
the faster the environment mobile users operate in and the
higher the density of users, the more frequent the loss of
alignment and blockages, and the more resources need to be
allocated to maintain beam alignment and perform handover
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to compensate for blockage. Mobility can thus be a source of
severe overhead and performance degradation. Nevertheless,
mobility induces temporal correlation in the communication
beams and in blockage events. In this paper, we design
adaptive strategies for beam-training, data transmission and
handover, that exploit these temporal correlations to reduce
the beam-training overhead and optimally trade-off throughput
and power consumption. Our design allows to: 1) predict
future beam-pointing directions and narrow down the beam
search procedure to few likely beams, thus avoiding the
enormous cost of exhaustive search; 2) more efficiently detect
blockage and perform handover in response to it; 3) dynam-
ically adjust the duration of the data communication phase
based on predicted beam coherence times. However, two key
questions arise: How do we leverage the system dynamics to
optimize the communication performance? How much do we
gain by doing so? To address these questions, in this paper we
envision the use of adaptive communication strategies and their
formulation via partially observable (PO) Markov decision
processes (MDPs) to optimize the decision-making process
under uncertainty in the state of the system [3].

In the proposed scenario, two base stations (BSs) on both
sides of a road link serve a user equipment (UE) moving along
it. At any time, the UE is associated with one of the two BSs
(the serving BS). To enable directional data transmission (DT),
the serving BS performs beam-training (BT); to compensate
for blockage, it performs handover (HO) of the data traffic to
the backup BS on the opposite side of the road link. The goal
is to design the BT/DT/HO strategy so as to maximize the
throughput delivered to the UE, subject to an average power
constraint. Mobility induces dynamics in the communication
beams and in blockage events; we show that these dynamics
can be captured by a probabilistic state transition model,
which can be learned from interactions with the UE. However,
the system state is not directly observable due to noise, beam
imperfections, and detection errors; we thus formulate the
optimization of the decision-making process as a constrained
POMDP, and develop an approximate constrained point-based
value iteration (C-PBVI) method to meet the average power
constraint requirement: compared with PERSEUS [4], orig-
inally proposed for unconstrained problems, C-PBVI allows
to simultaneously optimize the primal and dual functions by
decoupling the hyperplanes associated to reward and cost.
We demonstrate its convergence numerically. Our numerical
evaluations reveal a good match between the analysis based
on a sectored antenna model with Markovian state transitions,
and a more realistic scenario with analog beamforming and
Gauss-Markov mobility, hence demonstrating the effectiveness
of our proposed scenario in more realistic settings: simulations
based on a 2D mobility model and 3D analog beamforming
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on both BSs and UE equipped with uniform planar arrays
(UPA), demonstrate that C-PBVI performs near optimally, and
outperforms a baseline scheme with periodic beam-training by
up to 38% in spectral efficiency. Motivated by its structure, we
design two heuristic policies with lower computational cost
– belief-based and finite-state-machine-based heuristics – and
show numerically that they incur a small 4% and 15% degra-
dation in spectral efficiency compared to C-PBVI, respectively.
Finally, we demonstrate numerically the effect of mobility and
multiple users on the performance, based on the statistical
blockage model developed in [5]: the proposed low-complexity
belief-based and finite-state-machine-based schemes achieve
50% and 25% higher spectral efficiency than the baseline
scheme, respectively, demonstrating their robustness in mobile
and dense user scenarios.

Related Work: Beam-training design for mm-wave systems
has been an area of extensive research in the past decade;
various approaches have been proposed, such as beam sweep-
ing [6], estimation of angles of arrival (AoA) and of departure
(AoD) [7], and data-assisted schemes [8]. Despite their sim-
plicity, the overhead of these algorithms may offset the benefits
of beamforming in highly mobile environments [2]. While
wider beams require less beam-training, they result in a lower
beamforming gain, hence a smaller achievable capacity [9].
Contextual information, such as GPS readings of vehicles [8],
may alleviate this overhead, but it does not eliminate the
need for beam-training due to noise and inaccuracies in GPS
acquisition. Thus, the design of schemes that alleviate the
beam-training overhead is of great importance.

In most of the aforementioned works, a priori information
on the vehicle’s mobility as well as blockage dynamics is
not leveraged in the design of communication protocols.
In contrast, we contend and demonstrate numerically that
learning and exploiting such information via adaptive com-
munications can greatly improve the performance of mm-wave
networks [10]. In our previous work [6], we bridged this
gap by leveraging worst-case mobility information to design
beam-sweeping and data communication schemes; in [11], we
designed adaptive strategies for BT/DT that leverage a Marko-
vian mobility model via POMDPs, but with no consideration
of blockage (hence no handover).

A distinctive feature of the mm-wave channel is its highly
dynamic link quality, due to the occurrence of blockages on
very short time-scales [12]. In this respect, handover represents
a fundamental functionality to preserve communication in
the event of link obstruction; however, it is challenging to
implement it in mm-wave networks, since the mm-wave link
quality needs to be accurately tracked and blockages need to
be quickly detected – a difficult task to accomplish using
highly directional communications. Therefore, MDP-based
handoff strategies proposed for sub-5GHz systems cannot
be readily applied [13], [14]. In this paper, we develop
feedback-based techniques to quickly detect blockages, and
enable a fully-automatic and data-driven optimization of the
handover strategy via POMDPs.

Recent work [15]–[19] that applies machine learning to
mm-wave networks reveal a growing interest in the design
of schemes that exploit side information to enhance the

overall network performance. For example, [15] develops a
coordinated beamforming technique using a combination of
deep learning and ray-tracing, and demonstrates its ability
to efficiently adapt to changing environments. More recent
solutions are based on multi-armed bandit, by leveraging con-
textual information to reduce the training overhead as in [16],
or the beam alignment feedback to improve the beam search as
in [17]–[19]. However, no handover strategies are considered
in these works, resulting in limited ability to combat blockage.
In addition, these works neglect the impact of realistic mobility
and blockage processes on the performance. Compared to this
line of works, in this paper we design adaptive communication
strategies that leverage learned statistical information on the
mobility and blockage processes in the selection of BT/DT/HO
actions, with the goal to optimize the average long-term
communication performance of the system. Our proposed
approach is in contrast to strategies that either use non-adaptive
algorithms [15], lack a handover mechanism [16]–[19], or
assume a non realistic mobility pattern in their design.
Our Contributions:
• We define a POMDP framework to optimize the BT/DT/HO

strategy in a mm-wave vehicular network, subject to 2D
mobility of the UE and time-varying blockage, with the
goal to maximize throughput subject to an average power
constraint;

• We propose a novel feedback mechanism for BT, which
reports the ID of the strongest BS-UE beam pair if the
received power is above a threshold (a design parameter),
otherwise it reports ∅ to indicate mis-alignment or blockage.
We analyze its detection performance in closed form;

• To address the complexity of POMDPs, we design C-PBVI,
a constrained point-based value iteration method. In or-
der to incorporate the average power constraint, we ex-
tend PERSEUS [4], originally designed for unconstrained
POMDPs, via a Lagrangian formulation, the separation of
hyperplanes for reward-to-go and cost-to-go functions, and
a dual optimization step to solve the constrained problem.
We demonstrate its convergence numerically;

• Inspired by the C-PBVI policy, we propose two heuristic
schemes that trade complexity with sub-optimality, namely
belief-based (B-HEU) and finite-state-machine-based (FSM-
HEU) heuristic policies. We analyze the performance of
FSM-HEU in closed form.

The rest of the paper is organized as follows. In Section II,
we introduce the system model: signal and channel models
(Section II-A), codebook structure (Section II-B), mobility
and blockage dynamics (Section II-C), sectored antenna model
(Section II-D), and BT/DT mechanisms (Section II-E). We
provide the POMDP formulation in Section III and its opti-
mization via C-PBVI in Section IV. In Section V, we present
the two heuristic policies B-HEU and FSM-HEU, along with a
mathematical analysis of the latter. Selected numerical results
are presented in Section VI, while Section VII reports some
concluding remarks.

II. SYSTEM MODEL

We consider the scenario of Fig. 1, where multiple base sta-
tions (BSs) serve user equipments (UEs) moving along a road.
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Fig. 1: A cell deployment with BSs on both side of the road.

At any time, each UE is associated with one BS – the serving
BS. Each UE and the serving BS use beamforming with
large antenna arrays to achieve directional data transmission
(DT); they use beam-training (BT) to maintain alignment. The
communication links are subject to time-varying blockages,
which cause the signal quality to drop abruptly and DT to fail.
As soon as the serving BS detects blockage, it may decide to
perform handover (HO) to the BS on the other side of the
road, which then continues the process of BT/DT/HO, until
either another blockage event is detected, or the UE exits the
coverage area of the two BSs.

In this work, we focus on a specific segment of the road link
covered by a pair of BSs and a single UE,1 as depicted in the
framed area of Fig. 1. Within this segment, the BT/DT/HO
process continues until the UE exits the coverage region of
the two BSs, denoted by the area X ⊂ R2. In this context,
we investigate the design of the BT/DT/HO strategy during
a transmission episode, defined as the time interval between
the two instants when the UE enters and exits the coverage
area of the two BSs. The goal is to maximize the average
throughput delivered to the UE subject to an average power
constraint. Note that, when the episode terminates, the UE
enters the coverage area of another pair of BSs, and the same
analysis may be applied to each segment traversed.

Time is discretized into time-slots of duration ∆t, corre-
sponding to the transmission of a beacon signal during BT or
of a data fragment during DT. Next, we describe the signal,
channel and UE mobility and blockage dynamics models used
throughout the paper.
A. Signal and Channel Models

Let I ∈ {0, 1} , I denote the index of the serving
BS at time k. Let xk∈CL be the transmitted signal with
E[‖xk‖22]=L, where L denotes the number of symbols trans-
mitted. The received signal at the UE is expressed as

yk =
√
Pkf

H
k H

(I)
k ckxk + wk, (1)

where Pk is the average transmit power of the serving BS
I; ck∈CM

(I)
tx ×1 and fk∈CMrx×1 are unit-norm beamforming

vectors with M (I)
tx and Mrx antenna elements at BS I and the

reference UE, respectively; H
(I)
k ∈CMrx×M(I)

tx is the channel
matrix; wk∼CN (0, σ2

wI) with σ2
w=(1+F )N0Wtot is additive

white Gaussian noise, N0 is the noise power spectral density,
Wtot is the signal bandwidth, F is the receiver noise figure.

1The proposed system model and techniques can be applied to a multi-user
scenario by partitioning the BS resources using orthogonal frequency division
multiple access (OFDMA) and multiple RF chains or time division duplexing
(TDD) [20].

In this paper, we model H(I)
k as a single line of sight (LOS)

path with binary blockage [21] and diffuse multipath [22],

H
(I)
k =

√
M

(I)
tx MrxB

(I)
k h

(I)
k drx(θ(I)(Xk))d

(I)
tx (φ(I)(Xk))H︸ ︷︷ ︸

H
(I)
k,LOS

+

NDIF∑
l=1

√
M

(I)
tx Mrxh̃

(I)
k,ldrx(θ̃

(I)
k,l )d

(I)
tx (φ̃

(I)
k,l )

H

︸ ︷︷ ︸
H

(I)
k,DIF

,

where B
(I)
k ∈{0, 1} denotes the binary blockage variable of

BS I , equal to 1 if the LOS path is unobstructed, equal to 0
otherwise; d

(I)
tx (φ)∈CM

(I)
tx and drx(θ) ∈ CMrx are the unit-

norm array response vectors of BS I and UE, as a function of
the AoD φ and AoA θ (note that these include both azimuth
and elevation information for UPAs); φ(I)(Xk) and θ(I)(Xk)
are the AoD and AoA of the LOS path with respect to BS
I and the UE in position Xk ∈ X ;2 h

(I)
k ∼CN (0, σ2

h,I) is
the complex channel gain of the LOS component, i.i.d. over
slots, with σ2

h,I=1/`(dI(Xk)); `(dI(Xk)) = (4πdI(Xk)/λc)
2

denotes the pathloss as function of the BS I-UE distance
dI(Xk); λc=c/fc is the wavelength. Finally, H

(I)
k,DIF de-

notes the channel corresponding to diffuse multipath com-
ponents with coefficients h̃k,l, AoD φ̃

(I)
k,l and AoA θ̃

(I)
k,l ; we

model H
(I)
k,DIF as zero-mean complex Gaussian, with i.i.d.

entries (over time and over antennas), each with variance
σ2

DIF,I . These components have been shown to be much
weaker than the LOS path (up to 100× weaker at a BS-UE
distance of only 10 meters [21]), so that σ2

DIF,I�σ2
h,I .

Then, letting G
(I)
tx (ck, x)=M

(I)
tx |d

(I)
tx (φ(I)(x))Hck|2 and

Grx(fk, x)=Mrx|drx(θI(x))Hfk|2 be the beamforming gains
of the serving BS I and UE, respectively, with re-
spect to the LOS path, and Θk=6 d

(I)
tx (φ(I)(Xk))Hck +

6 fHk drx(θ(I)(Xk)) be the unknown phase of the overall gain,
the signal received at the UE can be expressed as

yk=
√
Pk

[
B

(I)
k h

(I)
k

√
G

(I)
tx (ck, Xk)Grx(fk, Xk)ejΘk+Ω

(I)
k

]
xk

+ wk, (2)

where Ω
(I)
k , fHk H

(I)
k,DIFck ∼ CN (0, σ2

DIF,I) is the contri-
bution due to the diffuse multipath channel components. The
SNR averaged over the fading coefficients is then given as

SNRk=
Pk
σ2
w

[
B

(I)
k

G
(I)
tx (ck, Xk)Grx(fk, Xk)

`(dI(Xk))
+ σ2

DIF,I

]
. (3)

B. Codebook Structure

Each BS has a codebook of beamformers to cover the
intended coverage region X on the road. The beamforming
codebook of BS I is denoted by CI,{cI,1, . . . , cI,|CI |}. The

2Note that the AoA θ(I)(Xk) should also depend on the angle of rotation
(azimuth and elevation) of the antenna array of the UE; herein, we assume
that it only depends on the UE position Xk . This is a good approximation in
vehicular networks, where the antenna array may be mounted on the rooftop
of the vehicle; the more general case with non-fixed array orientation can be
addressed by including the angle of rotation information in the AoA, which
may be estimated using a gyroscope sensor [23].
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UE uses the codebook F,{f1, . . . , f|F|}. Let VI,CI × F
denote the joint codebook containing all possible beamforming
codeword pairs of BS I and UE. We index these codeword
pairs by the beam pair index (BPI), with values in S̄I ,
{1, 2, . . . , |CI ||F|}; let (c

(j)
I , f

(j)
I ) be the jth such pair, with

j∈S̄I . With this definition, note that, if the UE is in position
Xk=x and is being served by BS I , then the maximum
beamforming gain is achieved with the strongest BPI (SBPI),
which also yields the maximum SNR in (3), defined as

s∗I(x) , arg max
j∈S̄I

G
(I)
tx (c

(j)
I , x)Grx(f

(j)
I , x). (4)

Let SI , {s∗I(x) : x ∈ X} ⊆ S̄I be the set of SBPIs across
all possible UE positions. Note that this set can be constructed
over time utilizing the feedback from the UE and excluding
the BPIs that do not yield significant signal power [8]. It
follows that the directional communication between BS I and
UE can be achieved by restricting the choice of beamforming
codewords to the optimal set SI , since any other beam pair
achieves lower SNR. This can be obtained using a coordinated
beamforming strategy where, before start of BT or DT, the
serving BS I and UE coordinate to select a subset of BPIs
from the set SI to be scanned synchronously during BT or
used for DT, as explained in Section II-E.

C. Mobility and Blockage Dynamics

Note that, to achieve directional communication, the pair
of BS I and UE should detect the SBPI s∗I(Xk) via beam-
training – a source of severe overhead; the mobility of the UE
along the road induces temporally correlated dynamics on the
SBPI s∗I(Xk), which may be exploited to reduce the training
overhead via POMDPs. Similarly, the blockage state exhibits
temporal and spatial correlations, which can be exploited to
efficiently detect/predict blockages and perform HO if needed.
To define such POMDP model, we now define a Markov model
on the SBPI and blockage states, induced by the UE mobility.
Let Sk = (s∗0(Xk), s∗1(Xk)) be the pair of SBPIs at both BSs,
taking values from S , {(s∗0(x), s∗1(x)) : x ∈ X}. Let Bk ,
(B

(0)
k , B

(1)
k ) ∈ {0, 1}2 be the pair of binary blockage states

with B(I)
k denoting the blockage with respect to BS I . Then,

the one-step transition probability of (Sk, Bk) is expressed as

Ps′b′|sb , P(Sk+1 = s′, Bk+1 = b′|Sk = s,Bk = b) (5)
=P(Sk+1=s′|Sk=s)︸ ︷︷ ︸

Ss′|s

P(Bk+1=b′|Bk=b, Sk=s, Sk+1=s′)︸ ︷︷ ︸
Bb′|bss′

.

Here, it is assumed that the next SBPI Sk+1 is independent of
the current blockage state Bk, given the current beam index
pair Sk (indeed, the dynamics of SBPI depend solely on UE
mobility). Note that

∑
s′,b′ Ps′b′|sb ≤ 1, since the UE might

exit the coverage area of the two BSs. In practice, (5) can be
estimated based on estimated time-series of SBPI and blockage
pairs, {(ŝk, b̂k, ŝk+1, b̂k+1), k ∈ Tsound}, which in turn may
be acquired at times k ∈ Tsound via exhaustive search beam-
training methods. Based on these time-series, the BSs can
estimate the transition probabilities in (5) as

Ŝs′|s =

∑
k∈Tsound

χ(ŝk = s, ŝk+1 = s′)∑
k∈Tsound

χ(ŝk = s)
, (6)

B̂b′|bss′=

∑
k∈Tsound

χ(ŝk=s, B̂k=b, ŝk+1=s′, B̂k+1=b′)∑
k∈Tsound

χ(ŝk=s, B̂k=b, ŝk+1=s′)
, (7)

where χ(·) is the indicator function. Note that the estimates
Ŝs′|s and B̂b′|bss′ can be improved over time as more samples
of (ŝk, b̂k, ŝk+1, b̂k+1) become available. This approach does
not require a dedicated learning phase; instead, estimated
time-series can be collected based on beam-training and data
communication feedback, so that the estimation overhead is
minimal. Following their updates, the proposed policies can be
updated accordingly. As more and more samples are collected,
the estimation accuracy improves, leading to policies that more
optimally leverage the mobility and blockage dynamics within
the environment, yielding a more efficient use of resources.

D. Sectored antenna model

In this paper, we use the sectored antenna model to
approximate the beamforming gain, as also used in [10],
[19]. As we will show in Section VI, when coupled with
an appropriate design of the BSs beamforming codebooks
CI , I ∈ I and of the UE beamforming codebook F [24], the
sectored model provides an accurate and analytically tractable
approximation of the actual beamforming gain. Consider the
BPI j ∈ SI and let G(I)(j, x) , G

(I)
tx (c

(j)
I , x)G

(I)
rx (f

(j)
I , x) be

the overall gain between BS I and UE position x, under the
beamforming codeword pair (c

(j)
I , f

(j)
I ). Under the sectored

model, if the UE is aligned with BS I under the BPI j,
i.e., its position x is such that the SBPI s∗I(x) = j, then
the aligned gain satisfies G(I)(j, x)�1 with gain-to-pathloss
ratio G(I)(j, x)/`(d(I)(x)) ≈ Υ

(j)
I ,∀x :j=s∗I(x). On the other

hand, if the UE is mis-aligned with BS I under the BPI j, i.e.,
s∗I(x) 6= j, then the mis-aligned beamforming gain of BPI
j ∈ SI is such that G(I)(j, x)≈g(I)

j �1,∀x :j 6=s∗I(x) (i.e., it
is small and equal to the sidelobe gain g

(I)
j for all positions

x such that j is not the SBPI). Based on this model, we now
derive expressions for the transmission power to achieve a
target SNR at the receiver. We denote the case with the aligned
beam pair and no blockage (j = s∗I(x) and bI=1) as “active
SBPI” and the complementary case of blockage or UE in the
sidelobe (j 6= s∗I(x) or bI=0) as “inactive SBPI”. In the case
of active SBPI, from (3) we have

SNRact=
P

(I)
j

σ2
w

[
Υ

(I)
j +σ2

DIF,I

]
⇔P (I)

j =
σ2
wSNRact

Υ
(I)
j +σ2

DIF,I

, (8)

which yields the transmission power to achieve a target SNR
equal to SNRact in case of active SBPI. In the case of inactive
SBPI, we can express the SNR in (3) using (8) as

SNRiact =
P

(I)
j

σ2
w

[
B(I)G

(I)(j, x)

`(dI(x))
+σ2

DIF,I

]
=

[
B(I)G

(I)(j, x)

`(dI(x))
+σ2

DIF,I

]
SNRact

Υ
(I)
j + σ2

DIF,I

. (9)

Note that, to help the BS detect the inactive SBPI condition,
this value of SNR should be as small as possible; for this
reason, we determine the worst case SNR under inactive
SBPI by maximizing (9) over all possible blockage states
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B(I)∈{0, 1}, mis-aligned beam j and UE position x∈X , as

SNRiact

≤max
x∈X

max
j∈SI\{s∗I (x)}

[
B(I)G

(I)(j, x)

`(dI(x))
+σ2

DIF,I

]
SNRact

Υ
(I)
j +σ2

DIF,I

, ρISNRact. (10)

In other words, to achieve a target SNRact within the main-
lobe, the BS should transmit with power given by (8); however,
if the signal is blocked or the UE receives on the sidelobe (or
both), the associated worst-case SNR is ρISNRact.3 In this
case, data transmission is in outage since ρI � 1 (numerically,
we found ρI = −15dB, ∀I based on the setup of Section VI).

E. Beam-Training (BT) and Data Transmission (DT)

We now introduce the BT and DT operations.
BT phase: At the start of a BT phase, the serving BS I

selects a set of BPIs SBT⊆SI over which the beacons xk are
sent, and a target SNR SNRBT. The beacon transmission is
done in sequence over |SBT| time-slots, using one slot for each
BPI j∈SBT, with the serving BS transmitting using the beam-
forming vector c(j)

I , and the UE synchronously receiving using
the combining vector f

(j)
I . Therefore, the duration of the BT

phase is TBT,|SBT|+1, including the last slot for feedback
signaling from the UE to the BS. Let i ∈ {0, . . ., TBT− 2} be
the ith time-slot of the BT phase, and ji ∈ SBT be the BPI
scanned by the BS I and UE in this slot. The UE processes
the received signal yk+i with a matched filter,

Γji ,
|xHk+iyk+i|2

(1 + F )N0Wtot‖xk+i‖22
. (11)

Upon collecting the sequence {Γj ,∀j ∈ SBT}, the UE
generates the feedback signal

Y =

{
j∗ , arg maxj∈SBT

Γj , maxj∈SBT
Γj > η

(I)
BT,

∅, maxj∈SBT Γj ≤ η(I)
BT.

(12)

In other words, if all the matched filter outputs are smaller than
η

(I)
BT, Y=∅ indicates that no beam pair is deemed sufficient for

data transmission, either due to blockage (B(I)
k =0), or the UE

receiving on the sidelobes of the BPIs j ∈ SBT. Otherwise,
Y=j∗ indicates the index of the strongest BPI detected.

We now perform a probabilistic analysis of feedback. To
this end, let SI=s∗I(Xk) and BI=B

(I)
k be the SBPI and

blockage state under BS I at the beginning of the BT phase.
We assume that these state variables do not change during
the transmission of the beacon sequences, i.e., s∗I(Xk+i)=SI
and B

(I)
k+i=BI ,∀i∈{0, . . ., TBT−2}. This is a reasonable as-

sumption, since the duration of the BT phase (×0.1ms) is
typically much shorter than the time required by the UE
to change beam (×100ms) or the time-scales of blockage
(×100ms). With this assumption, given the state (SI , BI)
of BS I during BT, the signal sequence {Γj ,∀j∈SBT} is
independent across j, due to the i.i.d. nature of h(I)

k+i, Ω
(I)
k+i and

3For the sake of analytical tractability, ρI (found by maximizing over j 6=
s∗I (x)) is the worst case over the BPI j ∈ SI . The model can be generalized
to express the dependence of ρI on j, leading to a more complicated BT
feedback analysis, possibly not in closed form.

wk+i. In addition, in case of active SBPI (SI=j and BI=1),
by using (2) and (8), Γj has exponential distribution with mean
1+SNRBTL, Γj∼E(1+SNRBTL); otherwise (inactive SBPI,
SI 6=j or BI=0) Γj∼E(1+ρISNRBTL). It follows thatΣI,1 , P(Γj≤η(I)

BT|SI = j, BI = 1) = 1− e
−η(I)

BT
1+SNRBTL ,

ΣI,0 , P(Γj≤η(I)
BT|SI 6= j or BI = 0)=1−e

−η(I)
BT

1+ρISNRBTL .

Now, let us consider separately the two events
{SI /∈ SBT} ∪ {BI = 0} (“inactive SBPI in SBT”) and
{SI ∈ SBT} ∩ {BI = 1} (“active SBPI SI ∈ SBT”). In case
of inactive SBPI in SBT, the probability of generating the
feedback signal Y = ∅ (i.e., of correctly detecting inactive
SBPI within the SBT scanned in the BT phase) is

P(Y = ∅|inactive SBPI in SBT) (13)

=
∏

j∈SBT

P(Γj ≤ η(I)
BT|SI 6= j or BI = 0) = Σ

|SBT|
I,0 ,

since Y=∅ is equivalent to Γj ≤ η
(I)
BT,∀j ∈ SBT, and Γj are

independent across j, conditional on (SI , BI). Similarly, in
case of active SBPI SI ∈ SBT, the probability of incorrectly
detecting inactive SBPI is

P(Y = ∅|active SBPI SI ∈ SBT)

= P(Γj≤η(I)
BT|SI=j, BI=1)

∏
j∈SBT\{SI}

P(Γj≤η(I)
BT|SI 6=j, BI=1)

= ΣI,1Σ
|SBT|−1
I,0 , (14)

since SI is the SBPI, implying ΓsI ∼ E(1 + SNRBTL).
In case of inactive SBPI in SBT, the probability of generat-

ing the feedback signal j∗ ∈ SBT (i.e., of incorrectly detecting
an active SBPI) is

P(Y = j∗|inactive SBPI in SBT) (15)

=
1

|SBT|

[
1−P(Y=∅|inactive SBPI in SBT)

]
=

1−Σ
|SBT|
0,I

|SBT|
;

in fact, Γj are i.i.d. across beams, conditional on inactive SBPI,
so that incorrect detections are uniform across the feedback
outcomes j∗ ∈ SBT.

Instead, in case of active SBPI SI ∈ SBT, we need to
further distinguish between the two cases j∗ = SI (the SBPI is
detected correctly) and j∗ ∈ SBT\{SI} (incorrect detection).
The probability of correctly detecting the SBPI is found as

P(Y = SI |active SBPI SI ∈ SBT)

=P(ΓSI>η
(I)
BT,ΓSI>Γj ,∀j∈SBT\{SI}|active SBPI SI∈SBT)

=

∫ ∞
η
(I)
BT

[
f(ΓSI = τ |active SBPI SI ∈ SBT)

×
∏

j∈SBT\{SI}

P(Γj < τ |SI 6= j, BI = 1)
]
dτ

=

∫ ∞
η
(I)
BT

[
1

1 + SNRBTL
exp

{
− τ

1 + SNRBTL

}
×
(

1− exp

{
− τ

1 + ρISNRBTL

})|SBT|−1]
dτ
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=

|SBT|−1∑
n=0

(
|SBT|−1

n

)
(−1)n(1−ΣI,1)(1−ΣI,0)n

1+ 1+SNRBTL
1+ρISNRBTL

n
, (16)

where in the first step we used the definition of Y=SI , i.e.,
ΓSI must be greater than the threshold η(I)

BT, and all other Γj
must be smaller than ΓSI ; in the last step, we used Newton’s
binomial theorem to solve the integral. Finally, the probability
of incorrectly detecting the SBPI, j∗ ∈ SBT\{SI} is

P(Y = j∗|active SBPI SI ∈ SBT)

=
1

|SBT|−1

[
1−

∑
y∈{SI ,∅}

P(Y=y|active SBPI SI∈SBT)

]
(17)

since, similarly to (15), erroneous detections are uniform
across the remaining |SBT|−1 beams.

Since Y=∅ represents the fact that the inactive SBPI condi-
tion has been detected, we choose η(I)

BT so that the misdetection
and false alarm probabilities are both equal to δBT, yielding
from (14)-(15) (over all j∈SBT),

δ
(I)
BT = 1−Σ

|SBT|
I,0 = ΣI,1Σ

|SBT|−1
I,0 . (18)

For a given SNRBT and |SBT|, the value of η(I)
BT and the

corresponding δ(I)
BT can be found numerically using the bisec-

tion method, since the left- and right- hand sides of (18) are
decreasing and increasing functions of η(I)

BT, respectively.
DT phase: At the start of the DT phase, the BS I chooses a

BPI j∈SI used for data transmission, along with the duration
TDT of the DT frame, the target average SNR at the receiver
SNRDT, and a target transmission rate R̄DT; the last slot
is used for the feedback signal from the UE to the BS, as
described below. We assume that a fixed fraction κ∈(0, 1)
out of L symbols in each slot is used for channel estimation.
Consider slot t ∈ {k, . . . , k+TDT−2} of data communication;
then, if s∗I(Xt)6=j or B

(I)
t =0, i.e., the selected BPI j is

inactive, then the communication is in outage; otherwise
(s∗I(Xt)=j and B

(I)
t =1, i.e., the selected BPI j is an active

SBPI) assuming that channel estimation errors are negligible
compared to the noise level (achieved with a sufficiently long
pilot sequence κL), from the signal model (2), we find that
outage occurs if (note that E[|h(I)

t |2`(dI(Xt))] = 1)

Wtot log2(1 + |h(I)
t |2`(dI(Xt))SNRDT) < R̄DT, (19)

yielding the outage probability

POUT(R̄DT,SNRDT)=P
(
|h(I)
t |2`(dI(Xt))<

2R̄DT/Wtot−1

SNRDT

)
=1− exp

{
− 2R̄DT/Wtot − 1

SNRDT

}
. (20)

In this paper, we design R̄DT based on the notion of
ε−outage capacity, i.e., R̄DT is the largest rate such that
POUT(R̄DT,SNRDT) ≤ ε, for a target outage probability
ε < 1. Imposing (20) equal to ε, this can be expressed as

R̄DT=Cε(SNRDT)=Wtot log2 (1− SNRDT ln(1− ε)) . (21)

With this choice, the transmission is successful with probabil-

ity 1− ε, and the average rate (throughput) is

T (ε,SNRDT) , (1− κ)(1− ε)Cε(SNRDT), (22)

where (1−κ) accounts for the channel estimation overhead. In
what follows, we select ε to maximize the throughput, yielding
the optimal ε∗(SNRDT) at a given SNR SNRDT as the unique
fixed point of dT (ε,SNRDT)/dε = 0, or equivalently,

ln
(

1−SNRDT ln(1−ε)
)(

1−SNRDT ln(1−ε)
)

= SNRDT.

We denote the resulting throughput maximized over ε as
T ∗(SNRDT) , T (ε∗(SNRDT),SNRDT).

We envision a mechanism in which the pilot signal transmit-
ted in the last data transmission slot (at time t = k+TDT−2)
is used to generate the binary feedback signal

Y =

{
j, Γj > η

(I)
DT ,

∅, Γj ≤ η(I)
DT ,

(23)

transmitted by the UE to the BS in the last slot of the DT phase
(at time t = k + TDT − 1). As in (11) for the BT feedback,
Y=j denotes active SBPI detected, whereas Y = ∅ denotes
inactive SBPI detection, due to either loss of alignment or
blockage. Similarly to (11),

Γj ,
|x(p)H
k+TDT−2y

(p)
k+TDT−2|2

(1 + F )N0Wtot‖x(p)
k+TDT−2‖22

is based on the pilot signal x(p)
k+TDT−2 (of duration κL) and

on the corresponding signal y(p)
k+TDT−2 received on the second

last slot of the DT phase. The distribution of the feedback
conditional on s∗I(Xt)=SI and B(I)

t =BI at the 2nd last slot
(t=k+TDT−2) can be computed as a special case of (14) and
(15) with |SBT|= 1 (since in the DT phase only one beam j is
used for data transmission) and κL in place of L (since only
κL symbols are used as pilot signal), yielding the probability
of incorrectly detecting an active SBPI as

P(Y=j|SI 6= j or BI = 0)=exp

{
− ηDT

1+ρIκSNRDTL

}
, (24)

and that of incorrectly detecting j to be an inactive SBPI as

P(Y=∅|SI = j, BI = 1)=1− exp

{
− ηDT

1+κSNRDTL

}
. (25)

As in the BT phase, we choose η(I)
DT so that the probabilities of

misdetection and false alarm are both equal to δ(I)
DT, yielding

δ
(I)
DT=exp

{
−ηDT

1+ρIκSNRDTL

}
=1− exp

{
−ηDT

1+κSNRDTL

}
.(26)

III. POMDP FORMULATION

We now formulate the problem of optimizing the BT, DT
and HO strategy as a constrained POMDP. In the following,
we define the elements of this POMDP.
States: the state at time k is denoted by Zk. We introduce the
state z̄ to characterize the episode termination, so that Zk=z̄ if
the UE exited the coverage area of the two BSs, i.e., Xk /∈X .
Otherwise (Zk 6=z̄), we define the state as Zk,(Uk, Ik), where
Ik∈I is the index of the serving BS, Uk,(Sk, Bk) is the joint
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SBPI-blockage state, taking values from the set U=S×{0, 1}2,
Sk=(S

(0)
k , S

(1)
k )∈S with S

(i)
k ,s∗i (Xk) is the SBPI at the

current UE position Xk, Bk=(B
(0)
k , B

(1)
k ) is the blockage

state of the two BSs. The overall state space, including the
absorbing z̄, is then Z=(U ×I)∪ {z̄}. Note that the position
of the UE and the blockage state cannot be directly observed,
thereby making the state Uk unobservable. We model such
state uncertainty via a belief βk, representing the probability
distribution of Uk, given the information collected (actions
selected and feedback) up to time k.
Actions: the serving BS can perform three actions: beam-
training (BT), data transmission (DT), or handover (HO).
However, differently from standard POMDPs in which each
action takes one slot, in this paper we generalize the model to
actions taking multiple slots, as explained next.

If action HO is chosen, the data plane is transferred to the
other BS, which becomes the serving one for the successive
time-slots, until HO is chosen again or the episode terminates.
HO requires THO time-slots to complete, due to the delay to
coordinate the transfer of the data traffic between the two BSs.

If actions BT is chosen, the serving BS I chooses the
BPI set SBT⊆SI to scan and the target SNR SNRBT. The
transmission power is then found via (8), and the feedback
error probability δ

(I)
BT is found by solving (18). The action

duration is TBT = |SBT|+1: |SBT| slots for scanning the BPI
set SBT, and one slot for the feedback back to the serving BS.

If action DT is chosen, then the serving BS I selects the
BPI j∈SI to perform data communication with the UE, along
with the duration TDT≥2 of the data communication session,
and the target SNR SNRDT. The transmission power is then
determined via (8), and the transmission rate is given by (21)
to achieve ε-outage capacity, so that the resulting throughput
(in case of LOS and correct alignment) is T ∗(SNRDT). The
duration of the data communication session TDT includes the
second last slot for the feedback signal, which is transmitted
from the UE to the BS in the last slot. The feedback error
probability δ(I)

DT is the unique fixed point of (26).
We represent compactly these actions as (c,Πc)∈ AI , with

action space AI , where c∈{BT,DT,HO} refers to the ac-
tion class and Πc=(Sc,SNRc, Tc) specifies the corresponding
parameters: Sc ⊆ SI is a subset of BPIs of serving BS I ,
used during the action, SNRc is the target SNR, so that the
corresponding transmission power is given by (8), and Tc is
the action duration. For HO, we set SNRHO=0 and SHO=∅.
Observations: after selecting action Ak∈AI of duration T
in slot k and executing it in state uk∈U , the BS observes
Yk+T taking value from the observation space Ȳ , Y∪{z̄},
where Y , S1∪S2∪{∅}∪{z̄}. Yk+T=z̄ denotes that Zk = z̄,
so that the UE exited the coverage area of the two BSs and
the episode terminates; otherwise, Yk+T denotes the feedback
signal after the action is completed, as described in (12) and
(23) for the BT and DT actions (Yk=∅ under the HO action).
Transition and Observation probabilities: Let
P(Zk+T = z′, Yk+T = y|Zk = z,Ak = a) be the probability
of moving from a non-absorbing state z = (u, I) ∈ Z \ {z̄}
to state z′ ∈ Z and observing y ∈ Ȳ under action a ∈ AI of
duration T . If the episode does not terminate (Zk+T 6= z̄ and

y 6= z̄), let Zk+T = (u′, I ′) be the next state. Note that the
new serving BS I ′ is a function I(a, I) of the chosen action:
if a is the HO action then I ′ = I(a, I) = 1 − I , otherwise
I ′= I(a, I) = I . Using the law of conditional probability, the
transition probability is then expressed as

P(Zk+T=(u′, I ′), Yk+T=y|Zk=(u, I), Ak=a) (27)
= P(Uk+T=u′, Yk+T=y|Uk=u, Ik=I, Ak=a)χ(I ′=I(a, I)),

since (Uk+T , Yk+T ) is conditionally independent of Ik+T

given (Uk, Ik, Ak). To characterize the first term in (27), under
the HO action a=(HO, ∅, 0, THO), of duration T=THO, the
observation signal is deterministically Yk+T=∅, yielding

P(Uk+T=(s′,b′),Yk+T=∅|Uk=(s,b),Ik=I, Ak=a)

= Ps′b′|sb(T ), (28)

where Ps′b′|sb(T ) is the T steps transition probability
from Uk=(s, b) to Uk+T=(s′, b′), found recursively
as Ps′b′|sb(T )=

∑
s′′,b′′ Ps′b′|s′′b′′(T−1)Ps′′b′′|sb with

Ps′b′|sb(1)=Ps′b′|sb. In other words, the UE moves from s to
s′ and the BSs’ blockage states move from b to b′, in T slots.

Under the BT action a=(BT,SBT,SNR, T ), of duration
T=|SBT|+1, the observation signal is Yk+T = y ∈ SBT∪{∅}
(see the BT signaling mechanism in Section II). Therefore,

P
(
Uk+T = (s′, b′), Yk+T = y|Uk = (s, b), Ik = I,Ak = a

)
= P(Yk+T=y|SBT, S

(I)
k =sI , B

(I)
k =bI , Ik=I)Ps′b′|sb(T ),

where P(Y=y|S, S(I)
k =sI , B

(I)
k =bI , Ik=I) has been defined

in (13)-(17) for the cases of active SBPI {sI∈S} ∩ {bI = 1}
and inactive SBPI {sI /∈S} ∪ {bI = 0}.

Finally, under the DT action a=(DT, {j},SNR, T ),
the observation signal is Yk+T=y ∈ {j, ∅} (see the DT
signaling in Section II). However, in this case the feedback
signal is generated based on the second last slot, i.e.,
it depends on the state Uk+T−2 at time k+T−2. By
marginalizing with respect to Sk+T−2=s′′ and Bk+T−2=b′′,
we then obtain (29) given at the top of page 8. To explain
it, note that: the system moves from (Sk, Bk)=(s, b)
to (Sk+T−2, Bk+T−2)=(s′′, b′′) in T−2 steps; then,
the feedback signal Yk+T is generated with distribution
P(Yk+T=y|{j}, S(I)

k+T−2=s′′I , B
(I)
k+T−2=b′′I , Ik+T−2=I),

given in (24), (25) for the cases of active or inactive SBPI in
{j}; finally, in the remaining 2 steps ,the system moves from
(Sk+T−2, Bk+T−2)=(s′′, b′′) to (Sk+T , Bk+T )=(s′, b′).

The probability of terminating the episode (z′ = z̄ and
y = z̄) is equivalent to the probability of exiting the coverage
area of the two BSs within T steps,

P(Zk+T=z̄, Yk+T=z̄|Zk = (u, I), Ak=a)

=1−
∑

u′∈U,y∈Y
P(Uk+T=u′, Yk+T = y|Uk=u, Ik=I,Ak=a)

since it is the complement event of
∪z∈Z\{z̄} ∪y∈Y {Zk = z, Yk+T = y}.
Costs and Rewards: for every state z = (u, I) ∈ Z \ {z̄}
and action a, we let r(u, I, a) and e(u, I, a) be the expected
number of bits transmitted from the serving BS to the UE
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P
(
Uk+T = (s′, b′), Yk+T = y|Uk = (s, b), Ik = I, Ak = a

)
(29)

=
∑

s′′∈S,b′′∈{0,1}2
P
(
Uk+T=(s′, b′),Yk+T=y, Sk+T−2=s′′,Bk+T−2=b′′|Uk=(s, b), Ik = I, Ak = a

)
=

∑
s′′∈S,b′′∈{0,1}2

[
Ps′′b′′|sb(T − 2)P

(
Yk+T=y|{j}, S(I)

k+T−2=s′′I , B
(I)
k+T−2=b′′I , Ik+T−2=I

)
Ps′b′|s′′b′′(2)

]
and the expected energy cost, respectively. Under the HO
and BT actions, we have that r(u, I, a) = 0 (since no bits
are transmitted during these actions). On the other hand,
under the DT action a = (DT, {j},SNR, TDT) taken in slot
k, the expected throughput in the tth communication slot,
t∈{0, . . . , TDT− 2}, is T ∗(SNR) as in (22), maximized over
ε, if the current state is such that S(I)

k+t=j and B
(I)
k+t = 1

(i.e., j is an active SBPI); otherwise, outage occurs and the
expected throughput is zero. Therefore, we find that

r((s, b), I, (DT, {j},SNR, TDT))

=T ∗(SNR)

TDT−2∑
t=0

P(S
(I)
k+t=j, B

(I)
k+t=1|Sk=s,Bk=b)

=T ∗(SNR)

TDT−2∑
t=0

∑
(s′,b′)∈U

Ps′b′|sb(t)χ(s′I = j, b′I = 1).(30)

The energy cost of a HO action is e(u, I, a)=0; that of DT
or BT action a=(c,S,SNR, T ) is found from (8) as (note that
T=|S|+1 for a BT action and |S|=1 for a DT action)

e(u, I, a) =
(T − 1)∆t

|S|
∑
j∈S

σ2
w

Υj,I + σ2
DIF,I

SNR. (31)

Note that the last slot of the DT or BT phases is reserved to
the feedback transmission, with no energy cost for the BS.
Policy and Belief updates: Since the agent cannot directly
observe the pairs of BPI S and blockage B, we define the
POMDP state as (β, I), where β denotes the belief, i.e., the
probability distribution over U=(S,B), given the information
collected so far and I is the index of the serving BS. The
belief β takes values from belief space B,{β∈R|U| : β(u) ≥
0 ∀u∈U ,

∑
u∈U β(u) = 1}. Given (β, I), the serving BS

selects an action a according to a policy a = π(β, I), that
is part of our design in Section IV; then, after executing the
action a and receiving the feedback signal y ∈ Y , the BS I
updates the belief according to Bayes’ rule as

β′(u′)=P(u′ |y, a, β, I)

=

∑
u∈U β(u)P(u′, y|u, I, a)∑

u∈U β(u)
∑
u′′∈U P(u′′, y|u, I, a)

, (32)

with P(u′, y|u, I, a) given by (28)-(29), and the serving BS
becomes I ′ = I(a, I). We denote the function that maps the
belief β, action a and observation y under the serving BS I as
β′ = BI(y,a,β). Note that Y=z̄ indicates episode termination.

IV. OPTIMIZATION PROBLEM

Our goal is to determine a policy π (a map from beliefs
to actions) maximizing the expected throughput, under an
average power constraint P̄avg, starting from an initial belief

β0=β∗0 and serving BS I0=I∗0 . From Little’s Theorem [25],
the average rate and power consumption can be expressed as

T̄π ,
R̄πtot

D̄tot
, P̄π ,

Ēπtot

D̄tot
, (33)

where R̄πtot, Ē
π
tot are the total expected number of bits trans-

mitted and energy cost during an episode; D̄tot is the expected
episode duration, which only depends on the mobility process
but is independent of the policy π. Therefore, we aim to solve

P1:

max
π

R̄πtot,Eπ
[ ∞∑
n=0

r(utn , itn , atn)χ(Ztn 6=z̄)
∣∣∣β0=β∗0 , I0=I∗0

]
,

s.t.

Ēπtot,Eπ
[ ∞∑
n=0

e(utn ,itn ,atn)χ(Ztn 6=z̄)
∣∣∣β0=β∗0 ,I0=I∗0

]
≤Emax,

where Emax,D̄totP̄avg; tn is the time index of the n-
th decision round, recursively computed as tn+1=tn+Tn,
where Tn is the duration (number of slots) of the action
taken in the n-th decision round and t0=0. We opt for a
Lagrangian relaxation to handle the cost constraint, and define
Lλ(u, i, a) = r(u, i, a)−λe(u, i, a) for λ≥0. For a generic
policy π, we define its value function as4

V πλ (β, I)=Eπ
[ ∞∑
n=0

Lλ(utn , itn , atn)χ(Ztn 6=z̄) | β0=β, I0=I

]
.

The goal is to determine the optimal policy π∗ which maxi-
mizes the value function, i.e.,

V ∗λ (β, I) , max
π

V πλ (β, I). (34)

The optimal dual variable is then found via the dual problem

λ∗ = arg min
λ≥0

V ∗λ (β∗0 , I
∗
0 ) + λEmax. (35)

It is well known that the optimal value function for a given
λ uniquely satisfies Bellman’s optimality equation [4] V ∗λ =
Hλ[V ∗λ ], where we have defined the operator V̂ = Hλ[V ] as

V̂ (β, I) = max
a∈A

∑
u∈U

β(u)

[
Lλ(u, I, a)

+
∑

(u′,y)∈U×Y

P(u′,y|u,I, a)V
(
BI(y,a,β),I(a, I)

)]
, ∀(β, I)∈B × I.

The optimal value function V ∗λ can be arbitrarily well approxi-
mated via the value iteration algorithm Vn+1=Hλ[Vn], where

4Note that the convergence of this series is guaranteed by the presence of
the absorbing state z̄.
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V0(β, I)=0,∀(β, I) ∈ B × I. Moreover, Vn is a piece-wise
linear and convex function [4], so that, at any stage of value
iteration, it can be expressed by a finite set of hyperplanes
Q(I)
n ≡ {(α(r)

n,I,`, α
(e)
n,I,`)}

N(I)
n

`=1 of cardinality N (I)
n ,

Vn(β, I) = max
αI∈Q(I)

n

〈β, α(r)
I − λα

(e)
I 〉, (36)

where 〈β, α〉 =
∑
u β(u)α(u) denotes inner product. Each

hyperplane (α
(r)
I , α

(e)
I ) ∈ Q(I)

n is associated with an action
aαI ∈ AI , so that the maximizing hyperplane α∗I in (36)
defines the policy πn(β, I) = aα∗I . Note that a distinguishing
feature of our approach compared to [4] is that we define
distinct hyperplanes α(r)

I for the reward and α(c)
I for the cost;

as we will see later, this approach will be key to solving the
dual optimization problem to optimize the power constraint,
since it allows to more efficiently track changes in the dual
variable λ, as part of the dual problem (35), and to approximate
the expected total reward and cost as

R̄n(β, I) = 〈β, α(r)∗
I 〉, Ēn(β, I) = 〈β, α(e)∗

I 〉,
where (α

(r)∗
I , α

(e)∗
I ) = arg max

αI∈Q(I)
n

〈β, α(r)
I − λα

(e)
I 〉. (37)

It can be shown (see for instance [3]) that the set of
hyperplanes is updated recursively as

Q(I)
n+1 ≡

{
(r(·, I, a), e(·, I, a))

+
∑

u′∈U,y∈Y
P(u′, y|·, I, a)

(
α

(r)
I′,y(u′), α

(e)
I′,y(u′)

)
:

a∈AI , I ′ = I(a, I), [(α
(r)
I′,y, α

(e)
I′,y)]∀y∈Y∈(Q(I′)

n )|Y|
}
, (38)

so that the cardinality grows as N (I)
n+1 = |Q(I)

n+1|= O(|A||Y|n)
– doubly exponentially with the number of iterations.

For this reason, computing optimal planning solutions for
POMDPs is an intractable problem for any reasonably sized
task. This calls for approximate solution techniques, e.g.,
PERSEUS [4], which we introduce next.

PERSEUS [4] is an approximate PBVI algorithm for
unconstrained POMDPs. Its key idea is to define an
approximate backup operator H̃λ[·] (in place of Hλ[·]),
restricted to a discrete subset of POMDP states in B̃0 ∪ B̃1,
where B̃I is discrete set of POMDP states with the serving
BS I , chosen as representative of the entire belief space
B; in other words, for a given value function Ṽn at stage
n, PERSEUS builds a value function Ṽn+1=H̃[Ṽn] that
improves the value of all POMDP states (β, I) with
β ∈ B̃I , without regard for the POMDP states outside of
this discrete set, β /∈B̃I . For each I ∈ I, the goal of the
algorithm is to provide a |B̃I |-dimensional set of hyperplanes
αI = (α

(r)
I , α

(e)
I ) ∈QI and associated actions aαI . Given such

set, the value function at any other POMDP state, (β, I) is then
approximated via (36) as Ṽ (β, I)=〈β, α(r)∗

I −λα(e)∗
I 〉, where

α∗I=(α
(r)∗
I , α(e)∗)= arg max

(α
(r)
I ,α(e))∈Q(I)〈β, α

(r)
I −λα

(e)
I 〉,

which defines an approximately optimal policy π(β, I)=aα∗I .
Key to the performance of PBVI is the design of B̃I ,

which should be representative of the belief points encountered
in the system dynamics. In the PBVI literature [3], most

of the strategies to design B̃I focus on selecting reachable
belief points, rather than covering uniformly the entire belief
simplex. We choose the beliefs in the following two steps.
For each I ∈ I, an initial belief set B(0)

I is selected deter-
ministically to cover uniformly the belief space. followed by
expansion of {B(0)

I , I ∈ I} using the Stochastic simulation
and exploratory action (SSEA) algorithm [3] to yield the
expanded belief points set {B̃I , I ∈ I}. After initializing B(0)

I ,
given B(n)

I at iteration n, for each β ∈ B(n)
I , SSEA performs a

one step forward simulation with each action in the action set,
thus producing new POMDP states {(βa, Ia),∀a ∈ AI}. At
this point, it computes the L1 distance between each new βa
and its closest neighbor in B(n)

Ia
, and adds the point βa∗ to B(n)

Ia∗

if min
β∈B(n)

Ia∗
‖βa∗ − β‖1≥ min

β∈B(n)
Ia

‖βa− β‖1,∀a ∈ AI , so

as to more widely cover the belief space. This expansion is
performed multiple times to obtain {B̃I , I ∈ I}.

The approximate backup operation of PERSEUS is
given by Algorithm 1, which takes as input the index of
the serving BS I , the set of belief points B̃I associated
with BS I , the sets of hyperplanes {Q(i)

n , i ∈ I} and
the corresponding actions, and outputs a new set Q(I)

n+1

along with their corresponding actions. To do so: in line
4, a belief is chosen randomly from B̂I ; in lines 5–7, the
hyperplane associated with each action a ∈ A is computed;
in particular, line 6 computes the hyperplane associated
with the future value function Vn(BI(y, a, β), I(a, I)), for
each possible observation y resulting in the belief update
BI(y, a, β); line 7 instead performs the backup operation
to determine the new hyperplane of Vn+1(β, I) associated
to action a; line 8 determines the optimal action that
maximizes the value function, so that lines 5-8 overall
approximate the value iteration update Vn+1(β, I) =
maxa EU,Y |a,β,I [Lλ(U, I, a)+Vn(BI(Y, a, β), I(a, I))]; in
lines 9-12, the new hyperplane and the associated action is
added to the set Q(I)

n+1, but only if it yields an improvement
in the value function Vn+1(β, I)>Ṽn(β, I); otherwise, the
previous hyperplane is used; finally, lines 13-14 update the
set of un-improved POMDP states based on the newly added
hyperplane; only the belief points that have not been improved
are part of the next iterations of the algorithm, and the process
continues until the set B̂I is empty. Overall, the algorithm
guarantees monotonic improvements of the value function in
B̃I . Note that PERSEUS can be executed in parallel by each
serving BS, thereby reducing the computation time.

The basic routine for C-PBVI is given in Algorithm 2.
However, differently from [4], we also embed the dual op-
timization (35) by updating the dual variable λ in line 6.
In line 4, we perform one backup operation via PERSEUS
(Algorithm 1); in line 5, we compute the new value function
Vn+1(β, I) (based on the new hyperplane sets Q(I)

n+1); in line
6, we compute the approximate cost Ēn+1 starting from state
(β∗0 , I

∗
0 ), based on the optimal hyperplane α∗; this is used in

line 7 to update the dual variable λ via projected subgradient
descent, with the goal to solve the dual problem (35) (note
that Emax − Ēn+1 is a subgradient of the dual function,
see [26]): as a result, λn is decreased if the estimated cost
Ēn+1 < Emax, to promote throughput maximization over en-
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Algorithm 1: function PERSEUS

input : I , B̃I , {Q(i)
n }i∈I , {anαi , αi ∈ Q

(i)
n },∀i ∈ I, λ

1 Init: Ṽn+1(β, I)=−∞,∀β ∈ B̃I ; B̂I ≡ B̃I ; Q(I)
n+1 = ∅

2 Ṽn(β, I)← max
αI∈Q(I)

n
〈β, α(r)

I − λα
(e)
I 〉, and

maximizer (α
(r)
β,I , α

(e)
β,I),∀β ∈ B̃I

3 while B̂I 6= ∅ do // Unimproved beliefs

4 Sample β from B̂I (e.g., uniformly)
5 for each action a do
6 I ′=I(a, I);

α∗y,a= arg max
α∈Qn

〈BI(y,a,β), α
(r)
I′ −λα

(e)
I′ 〉,∀y∈Y

7 α̂∗a=(r(·, I, a), e(·, I, a))

+
∑
u′,y

P(u′, y|·, I, a)(α
∗(r)
y,a (u′), α

∗(e)
y,a (u′))

8 Solve Vn+1(β, I) = maxa∈A〈β, α̂∗(r)a − λα̂∗(e)a 〉
and maximizing action a∗ and α̂ = α̂∗a∗

9 if Vn+1(β, I) > Ṽn(β, I) then // α̂ improves

value

10 Q(I)
n+1 ← Q

(I)
n+1 ∪ {α̂}; a

n+1
α̂ = a∗ // add α̂

to Q(I)
n+1 and define action associated

with α̂;
11 else // keep previous hyperplane αβ,I

12 α̂ = αβ,I ; Q(I)
n+1 ← Q

(I)
n+1 ∪ {α̂}; a

n+1
α̂ = anα̂

13 Ṽn+1(β̃,I)←max{〈β̃, α̂(r)−λα̂(e)〉,Ṽn+1(β̃,I)},∀β̃∈B̃I

14 B̂I←{β̃∈B̂I :Ṽn+1(β̃, I)<Ṽn(β̃, I)} // New set of

unimproved beliefs

15 return Q(I)
n+1, {an+1

α ,∀α ∈ Q(I)
n+1} // new

hyperplanes and associated actions

ergy cost minimization, otherwise it is increased; the algorithm
continues until the KKT conditions are approximately satisfied
[26], i.e., maxI∈I maxβ∈B̃I |Vn+1(β, I)−Vn(β, I)|< εV (i.e.,
an approximately fixed point of Vn+1 = H̃[Vn] has been
determined and PERSEUS converged), Ēn+1 ≤ Emax (primal
feasibility constraint satisfied) and λn|Ēn+1 − Emax|< εE
(complementary slackness; note that dual feasibility λn ≥ 0
is enforced automatically in line 7).

After returning the sets of hyperplanes {Q(I)
n+1}I∈I , the

associated actions {an+1
α ,∀α ∈ Q(I)

n+1}, and the dual variable
λn, the (approximately) optimal action to be selected when
operating under the state (β, I) can be computed as

π∗(β, I) = an+1
α∗ , where α∗ = arg max

α∈Q(I)
n+1

〈β, α(r)−λnα(e)〉,

along with the approximate expected reward and cost via (37).

In Fig. 2, we plot a time-series of the following variables
for a portion of an episode executed under the C-PBVI policy
(Algorithms 1 and 2) under the numerical setup of Section VI,
with simulation parameters listed in Table 1: serving BS index
Ik, BPI S(Ik)

k and blockage state B(Ik)
k of the serving BS Ik,

the action class c∈{DT,BT,HO}, the BT and DT feedbacks
YBT and YDT as defined in (12) and (23). It can be observed in

Algorithm 2: Constrained point based value iteration
(C-PBVI)

1 Init: beliefs {B̃i}i∈I ; hyperplanes
Q(I)

0 = {(0,0)},∀I ∈ I; optimal actions
a0

(0,0) = HO; value function
Vn+1(β, i)=0,∀β∈B̃i,∀i ∈ I; λ0 ≥ 0; stepsize
{γn = γ0/(n+ 1), n ≥ 0}

2 for n = 0, . . . do
3 for each I ∈ I do
4 (Q(I)

n+1, {an+1
α ,∀α ∈ Q(I)

n+1}) =

PERSEUS(I, B̃I , {Q(I)
n }I∈I , {anα, α∈Q

(I)
n }, λn)

5 Vn+1(β, I)= max
α∈Q(I)

n+1

〈β, α(r)−λnα(e)〉,∀β ∈ B̃I

6 Let Ēn+1 = 〈β∗0 , α
(e)∗
β0,I0
〉, where

α∗β0,I0
= arg max

α∈Q
(I∗0 )

n+1

〈β∗0 , α(r) − λnα(e)〉

7 λn+1 = max{λn + γn(Ēn+1 − Emax), 0}
8 if maxI∈I maxβ∈B̃I |Vn+1(β, I)− Vn(β, I)|< εV ,

Ēn+1 ≤ Emax and λn|Ēn+1 − Emax|< εE then
9 return {Q(I)

n+1}I∈I , {an+1
α ,∀α ∈ Q(I)

n+1}, λn

the figure that, at 0.915s, 0.985s and 1.025s, NACKs (YDT =
∅) are received after executing the DT action. After each one
of these NACKs, the policy executes the BT action. If the BT
feedback YBT 6=∅, then DT is performed; otherwise, blockage
is detected and the HO action is executed.

It should be noted that, although Algorithm 2 returns an ap-
proximately optimal design, it incurs substantial computational
cost in POMDPs with large state and action spaces (hence
large number of representative belief points). To remedy this,
in the subsequent section we propose simple heuristic policies,
inspired by the behavior of the C-PBVI policy described earlier
and depicted in Fig. 2. These policies will be shown numer-
ically to trade complexity with sub-optimality and achieve
satisfactory performance.

V. HEURISTIC POLICIES

In this section, we present two heuristic policies, namely
a belief-based heuristic (B-HEU) and a finite-state-machine
(FSM)-based heuristic (FSM-HEU) and present closed-form
expressions for the performance of FSM-HEU. Similarly to
C-PBVI, B-HEU needs to track the belief β, whereas FSM-
HEU is solely based on the current observation signal that
defines transitions in a FSM. For this reason, FSM-HEU has
lower complexity than B-HEU, while achieving only a small
degradation in performance (see Section VI).

A. FSM-based Heuristic policy (FSM-HEU)

The key idea of FSM-HEU is that it selects actions based
solely on a FSM, whose states define the action to be selected,
and whose transitions are defined by the observation signal,
as depicted in Fig. 3 and described next. In FSM-HEU, we
consider the following actions:
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Fig. 2: Execution of policy π∗.

• the HO action Ak = (HO, ∅, 0, THO) of duration THO;
• the BT action Ak = (BT,SI ,SNRBT, TBT) of duration
TBT = |SI |+1; in other words, the serving BS performs an
exhaustive search over the entire set of SBPIs, with a fixed
SNR SNRBT (determined offline), followed by feedback;

• the |SI | DT actions (DT, j, SNRDT, TDT), where j ∈ SI ;
in other words, the serving BS performs DT with fixed SNR
SNRDT and duration TDT (both determined offline).

For notational convenience, we compactly refer to these ac-
tions as HO, BT and (DT, j), j ∈ SI , respectively. Let
Ak ∈ {BT,HO} ∪ {(DT, j) : j ∈ SI} be the selected action
of the serving BS I (the state of the FSM at time k), of
duration T , and Yk+T be the observation signal generated by
such action, as described in Section III; then, the FSM moves
to state Ak+T = AI(Ak, Yk+T ), which defines the next action
Ak+T to be selected in the next decision round. Note that AI
defines transitions in the FSM, and the process continues until
the episode terminates.

Let us consider the transitions in the FSM, defined by
the function AI , depicted in Fig. 3. If Ak=BT and the
observation signal is Yk+T=j∈SI , then the BS detects the
strongest beam j; hence FSM-HEU switches to DT and uses
the DT action Ak+T=(DT, j)=AI(BT, j) of serving BS I in
the next decision round, of duration TDT. On the other hand,
if the observation signal is Yk+T=∅, the BS detects blockage
and performs HO to the non-serving BS, so that the new action
is Ak+T=HO=A(BT, ∅) of serving BS I .

If Ak=(DT, j) of serving BS I , i.e., the DT action is
executed on beam j, of duration TDT, and the signal Yk+T=j
is observed, then the BS infers that the signal is still suffi-
ciently strong to continue DT on the same beam, and the same
action Ak+T=(DT, j)=AI((DT, j), j) of the serving BS I is
selected again. Otherwise (Yk+T=∅), the BS detects a loss of
alignment, hence the BT action Ak+T=BT=AI((DT, j), ∅)
of the serving BS I is executed next.

Finally, if Ak=HO of serving BS I (the HO action is cho-
sen, with observation signal Yk+T=∅), then the new serving
BS I ′ = 1−I executes the BT action Ak+T=BT=AI(HO, ∅)
next. This procedure continues until the episode terminates.

Fig. 3: Evolution of the selected action Ak of the serving BS based on the
observation signal Yk+T . Black lines represent the transitions under both
FSM-HEU and baseline policies; blue lines represent transitions under the
FSM-HEU policy only; the red line represents the transition under the baseline
policy only.

The performance of FSM-HEU can be computed in closed
form. In fact, Gk=(Uk, Ik, Ak), i.e., the system state (Uk, Ik)
and action Ak, form a Markov chain, taking values from the
state space

G ≡
⋃
I∈I
U × {I} × [{BT,HO} ∪ {(DT, j) : j ∈ SI}]. (39)

To see this, note that the observation Yk+T and next state
(Uk+T , Ik+T ) (where T is the duration of the selected action
Ak) have joint distribution given by (27), which solely depends
on Gk; then, in view of the FSM of Fig. 3, Ak+T =
A(Ak, Yk+T ) is a deterministic function of Ak and Yk+T . The
state transition probability is then obtained by computing the
marginal with respect to the observation signal Yk+T , yielding

P
(
G′k+T = (u′, I ′, a′)|Gk = (u, I, a)

)
=

∑
y∈Y:AI(a,y)=a′

[
P (Uk+T=u′, Yk+T=y|Uk=u, Ik = I, Ak=a)

× P(Ik+T = I ′|Ik = I, Ak=a)
]
.

=
∑
y∈Y

P(u′, y|u, I, a)χ(I ′ = I(a, I))χ(a′ = AI(a, y)). (40)

We remind that P(u′, y|u, I, a) is given by (28)-(29). Let
R̄FSM

tot (g) and ĒFSM
tot (g) be the total expected number of bits

delivered and energy cost under FSM-HEU, starting from state
g. Then, with P(g′|g) defined in (40) and g = (u, I, a),

R̄FSM
tot (u,I,a)=r(u,I,a)+

∑
(u′,I′,a′)∈G

P(u′,I ′,a′|u,I,a)R̄FSM
tot (u′,I ′,a′),

ĒFSM
tot (u,I,a)=e(u,I,a)+

∑
(u′,I′,a′)∈G

P(u′,I ′,a′|u,I,a)ĒFSM
tot (u′,I ′,a′),

where r(·) and e(·) are given by (30)-(31). We can solve these
equations in closed form, yielding

R̄FSM
tot = (I−PFSM)−1r, ĒFSM

tot = (I−PFSM)−1e, (41)

where R̄FSM
tot =[R̄FSM

tot (g)]g∈G , ĒFSM
tot =[ĒFSM

tot (g)]g∈G ,
r=[r(g)]g∈G , e=[e(g)]g∈G , [PFSM]g,g′=P(g′|g).

B. Belief-based Heuristic policy (B-HEU)

Unlike FSM-HEU, this policy exploits the POMDP state
(βk, Ik) in the decision-making process. However, B-HEU
selects actions in a heuristic fashion as described next, as
opposed to C-PBVI (Algorithm 1), which selects actions
(approximately) optimally. The decision making under B-HEU
are depicted in the flow chart of Fig. 4. To describe this
policy, let (β, I) be the current POMDP state. Let ΞI(j) be
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Fig. 4: Flow chart for B-HEU Policy.

the marginal probability of the UE occupying the jth BPI with
no blockage under the serving BS I , defined as

ΞI(j) ,

∑
(s,b):(sI ,bI)=(j,1)

β(s, b)∑
j′∈SI

∑
(s,b):(sI ,bI)=(j′,1)

β(s, b)
. (42)

Then, ΛI ,
∑
j∈SI

∑
(s,b):(sI ,bI)=(j,1)

β(s, b) can be interpreted

as the probability of no blockage under the serving BS I .
Given these quantities, B-HEU operates as follows, with
thresholds η1, η2 and η3 determined offline: if ΛI < η1,
then blockage is detected, hence the HO action is selected;
otherwise (ΛI ≥ η1), let ĵI = arg maxj∈SI ΞI(j) be the most
likely BPI occupied by the UE: if ΞI(ĵI) ≥ η2, i.e., the serving
BS I is confident that the UE belongs to BPI ĵI ∈ SI and there
is no blockage, then the BS performs DT over BPI ĵI , with
SNR SNRDT and duration TDT determined offline. Otherwise
(ΛI ≥ η1 and ΞI(ĵI) < η2), the BS is uncertain on the BPI of
the UE, hence it performs BT over the smallest BPI set ŜBT

with aggregate probability greater or equal to η3, defined as

ŜBT , arg min
S⊆SI

|S| s.t.:
∑
j∈S

ΞI(j) ≥ η3. (43)

By doing so, it neglects the least likely set of beams whose
aggregate probability is less than η3.

After selecting the appropriate action based on the belief,
the next serving BS with index I ′ = I(a, I) collects the
observation Yk+T and updates its belief using (32). Note that,
unlike FSM-HEU which performs an exhaustive search during
the BT phase, B-HEU exploits the current belief β to perform
BT only on the most likely beams, and therefore reduces the
BT overhead. However, it incurs higher complexity than FSM-
HEU, since the belief needs to be tracked.

VI. NUMERICAL RESULTS

In this section, we perform numerical evaluations of the
proposed policies. We compare their performance with a
baseline policy, which is the same as FSM-HEU except for
one key difference: after executing the DT action, it executes
the BT action irrespective of the binary feedback. In other
words, AI((DT, j), Y )=BT,∀Y . Note that, if no blockage is
detected, this baseline mimics the periodic exhaustive search.
Its performance can be analyzed in closed form in a similar
fashion as for FSM-HEU (see its FSM representation in
Fig. 3).

Parameter Symbol Value
Number of BS antennas M

(I)
tx 256 = (32× 8)

Number of UE antennas M
(I)
rx 32 = (8× 4)

Number of BS beam |CI | 8
Number of UE beams |F| 8
Slot duration ∆t 100µs
Distance of BS to Rd center D 22m
Lane separation ∆lane 3.5m
BS height hBS 10m
Bandwidth Wtot 100MHz
Carrier frequency fc 30GHz
Noise psd N0 −174dBm/Hz
Noise figure F 10dB
Sidelobe/mainlobe SNR ratio ρ -15dB
Fraction of DT slot for
channel estimation κ 0.01
HO delay THO 1 slot
DT duration TDT {20, 30, 40, 50} slots
Steady state blockage prob. π

(1)
0 , π

(2)
0 0.2

Avg blockage duration D
(1)
0 , D

(2)
0 200ms

UE average speed µv 30m/s
UE speed st. dev. σv 10
UE mobility memory param. γ 0.2
UE lane change prob. q1→2 = q2→1 0.01
Accuracy for Algorithm 2 εE , εV 0.01
B-HEU thresholds (η1, η2, η3) (0.1,0.8,0.60)

TABLE 1: Simulation parameters.

The simulation parameters are listed in Table 1. The BSs and
UE are both equipped with uniform planar arrays (deployed in
the yz-plane) with M (I)

tx = M
(I)
tx,z×M

(I)
tx,y and Mrx = Mrx,z×

Mrx,y antennas, respectively. The BS and UE codebooks are
based on array steering vectors, designed to provide coverage
to a road segment of length 30m. For numerical simulation,
we adopt a blockage dynamic model independent of the UE
location, and with blockage states of the two BSs independent
of each other. This models a worst-case scenario, where the
blockage states of two BSs are independent and they show
no correlation with the current and future UE position. In this
case, the blockage transition probability can be expressed as
Bb′|bss′ = B

(0)
b′0|b0

B
(1)
b′1|b1

. The transition probabilities can be

expressed in terms of average blockage duration D(I)
0 [s] and

steady state blockage probability π(I)
0 as

B
(I)
01 =

∆t

D
(I)
0

, B
(I)
10 =

π
(I)
0

1− π(I)
0

∆t

D
(I)
0

. (44)

Using the throughput and power metrics defined in (33),
the average spectral efficiency (bps/Hz) under policy π is
expressed as T̄π/Wtot . We choose the initial BS I = 1 and
the initial belief β∗0(u)=χ(u=u0), where u0=(s0, b0) with s0

denoting the first pair of BS-UE BPI and b0 = (1, 1) denoting
absence of blockage with respect to both BSs.

We define a 2D mobility model for a two lane straight
highway with lane separation of ∆lane = 3.7m as depicted
in Fig 1.5 The UE position along the road (y-axis) follows
a Gauss-Markov mobility model and it changes lanes on the
road with probability ql→l′ . The speed Vk and position Xy,k

of the UE along the road (y-axis) follow the dynamics{
Vk = γVk−1 + (1− γ)µv + σv

√
1− γ2Ṽk−1,

Xy,k = Xy,k−1 + ∆tVk−1,
(45)

5The proposed system model and schemes can be used for multi-lane
highway with any arbitrary road shape.
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Fig. 5: Convergence of C-PBVI Algorithm 2.

where, unless otherwise stated, µv = 30m/s is the average
speed; σv = 10m/s is the standard deviation of speed; γ = 0.2
is the memory parameter; Ṽk−1 ∼ N (0, 1), i.i.d. over slots.
Note that, under this model, the SBPI Sk = (s∗0(Xk), s∗1(Xk))
does not follow Markovian dynamics, causing a mismatch
between the analysis (based on the assumption of Markov state
dynamics) and actual state trajectories (which do not follow
Markovian dynamics). In addition, there is a mismatch be-
tween the sectored antenna model used in the analysis and the
actual beamforming gain, which depends on the beam design
and the actual AoA and AoD associated with the current UE
position Xk (see (2)). This mismatch might cause the POMDP
based policy to underperform. To evaluate the accuracy of our
analysis under this more realistic setting, in the simulations,
we show the results corresponding to the analytical model
presented in the paper – where the transition model Ss′|s is
estimated from simulations of 10, 000 trajectories under the
Gauss-Markov model (45), as described in Section II-C – as
well as the results obtained through Monte-Carlo simulation
using the array steering based analog beamforming and the
Gauss-Markov mobility model: in this case, the position Xk

is generated as in (45); the beamforming gain is based on
the AoA and AoD associated with UE position Xk (see
(2)) rather than the sectored antenna approximation used in
the analytical model (see Section II-D); the UE’s feedback
signal Yk is generated as in (12); the belief is then updated
using (32); actions are selected according to the policy under
consideration – either based on the belief (C-PBVI and B-
HEU policies) or feedback signaling (FSM-HEU and baseline
policies). Table 1 summarizes the numerical parameters.

In Fig. 5, we show the convergence of the C-PBVI Al-
gorithm 2, which optimizes both the policy π and the dual
variable λ to meet the power constraint P̄π ≤ P̄avg. It
can be observed that the dual variable λ, expected spectral
efficiency R̄n/D̄tot/Wtot, average power Ēn/D̄tot and La-
grangian function [Vn(β0) + λnEmax]/D̄tot/Wtot converge,
and Ēn/D̄tot converges to the desired average power con-
straint P̄avg = 16dBm. In Fig. 6, we depict the average spectral

Fig. 6: Average spectral efficiency versus average power consumption. The
continuous lines represent the analytical curves based on the sectored model
and synthetic mobility (generated based on the beam transition probability
Sss′ , see Eq. (5)), whereas the markers represent the simulation using analog
beamforming and actual mobility.

efficiency versus the average power consumption. For the
heuristic policies, we set TDT=10 and SNRBT=SNRDT =

SNRpreM
(I)
tx Mrx,∀I ∈ I, where SNRpre, representing the

minimum pre-beamforming SNR, is varied from −12dB to
18dB.6 The upper-bound shown in the figure is obtained by
a genie-aided policy that always executes DT with perfect
knowledge of the state (u, I). It should be noted that this
upper-bound is loose since it is found by assuming perfect state
knowledge. The C-PBVI policy π∗ yields the best performance
with negligible performance gap with respect to the upper-
bound. It shows a performance gain of up to 4%, 17% and 38%
compared to B-HEU, FSM-HEU and baseline, respectively. It
is also observed that B-HEU shows 12% performance gain
over FSM-HEU. On the other hand, the baseline scheme yields
up to 24% and 15% degraded performance compared to B-
HEU and FSM-HEU, respectively: in fact, it neglects the DT
feedback and instead performs periodic BT, thus incurring
significant overhead. We also observe that the curves, obtained
through the proposed analytical model, and the markers, rep-
resenting simulation points obtained considering analog beam
design and Gauss Markov mobility, closely match, thereby
demonstrating the accuracy of our analysis in realistic settings.

In Fig. 7, we plot the spectral efficiency versus the DT
time duration TDT used in B-HEU, FSM-HEU and baseline
schemes. As observed previously, the C-PBVI policy outper-
forms B-HEU and FSM-HEU, and all of them outperform
the baseline scheme. B-HEU achieves near-optimal perfor-
mance with an optimized value of TDT' 70[slots] followed
by FSM-HEU which performs best with TDT' 40. Most
remarkably, near-optimal performance is achieved by B-HEU
at a fraction of the complexity of C-PBVI. It is observed that
the spectral efficiency initially improves by increasing TDT

due to reduced overhead of BT and feedback time. However,
after achieving a maximum value at an optimal TDT, the
spectral efficiency decreases as TDT is further increased. This
is attributed to the fact that during very large data transmission
periods, loss of alignment and blockages are more likely to
occur before the serving BS is able to react to these events.

6M
(I)
tx Mrx is the peak beamforming gain for array steering based analog

beamforming [27].
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Fig. 7: Average spectral efficiency versus TDT; SNRpre = 18dB.

It is also observed that the baseline scheme achieves peak
performance at a much higher value of TDT ' 125[slots].
In fact, since baseline performs periodic BT, it incurs severe
overhead, hence there is a stronger incentive to reduce the
overhead by extending the duration of DT, as opposed to B-
HEU and FSM-HEU which adapt the duration of DT based on
the DT feedback signal. In Fig. 8, we evaluate the impact of
mobility and multiple users on blockage dynamics, based on
the probabilistic model developed in [5]: this model defines a
relationship between the dynamics of the blockage process, the
number of UEs in the coverage area and their average speed.
In fact, mobile UEs may cause time-varying obstructions
of the signal (blockages) which may severely degrade the
performance of vehicular mm-wave systems, especially in
dense and highly-mobile scenarios. In the figure, we plot the
total average spectral efficiency versus the number of users
and the mean UE speed. The system performance is evaluated
via Monte-Carlo simulation. Moreover, we assume that the
proposed policies are executed in parallel across multiple
UEs, using OFDMA [20] to orthogonalize their transmission
resources. It can be seen that, for all policies, the spectral
efficiency decreases as the mean speed increases: in fact, at
higher speed, the UEs not only experience more frequent
beam mis-alignments, but also the frequency of occurrence of
blockages is exacerbated. The spectral efficiency also degrades
as the number of UEs increases: in fact, nearby UEs contribute
to creating obstructions and more frequent blockages, as
well as a reduced time duration for the unblocked intervals.
As previously noted, B-HEU achieves the best performance,
followed by FSM-HEU and baseline. Most importantly, the
two heuristics B-HEU and FSM-HEU achieve 50% and 25%
higher spectral efficiency than the baseline scheme, respec-
tively, demonstrating their robustness in mobile and dense user
scenarios.

VII. CONCLUSIONS

In this paper, we investigated the design of adaptive beam-
training/data-transmission/handover strategies for mm-wave
vehicular networks. The mobility and blockage dynamics have
been leveraged to obtain the approximately optimal policy via
a POMDP formulation and its solution via a constrained point-
based value iteration (PBVI) algorithm based on a variation
of PERSEUS [4]. Our numerical results demonstrate superior
performance of the C-PBVI policy compared to a baseline

Fig. 8: Total average spectral efficiency versus number of UEs for different
UE mean speed µv ; σv = 10m/s, SNRpre = 18dB, TDT = 50.

scheme with periodic beam-training (up to 38% improvement
in spectral efficiency). Inspired by the behavior of the C-PBVI
policy, we proposed two heuristic policies. These provide low
computational alternatives to C-PBVI, with mere performance
degradation of 4% and 15%, and exhibit robustness in scenar-
ios with high density and mobility of users.
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