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Abstract—The rapid growth of GPS technology and mobile devices
has led to a massive accumulation of location data, bringing consid-
erable benefits to individuals and society. One of the major usages of
such data is travel time prediction, a typical service provided by GPS
navigation devices and apps. Meanwhile, the constant collection and
analysis of the individual location data also pose unprecedented privacy
threats. We leverage the notion of geo-indistinguishability, an extension
of differential privacy to the location privacy setting, and propose a
procedure for privacy-preserving travel time prediction without collecting
actual individual GPS trace data. We propose new concepts to examine
the impact of geo-indistinguishability sanitization on the usefulness of
GPS traces and provide analytical and experimental utility analysis for
privacy-preserving travel time prediction. We also propose new metrics
to measure the adversary error in learning individual GPS traces from
the collected sanitized data. Our experiment results suggest that the
proposed procedure provides travel time analysis with satisfactory ac-
curacy at reasonably small privacy costs.

Index Terms—differential privacy, geo-indistinguishability, effective
number of mapped full trajectories, usefulness, usable trajectory, con-
tinuous positioning degree, average distance

1 INTRODUCTION

1.1 Motivation and Problem
The rapid growth of GPS technology and mobile devices has
led to a quick accumulation of massive location data. Anal-
ysis and understanding of the data have brought enormous
benefits to individuals and society. Meanwhile, collection
and processing of location data can easily expose personal
behaviors, interests, social relations, or other private in-
formation, especially if combined with other data sources.
de Montjoye et al. [1] studied 15-month location data from
1.5 million people and found that as little as 4 space-time
points can uniquely identify 95% individuals. Meanwhile,
users are often not fully aware of privacy risks from sharing
their location data with service providers and how their data
are used [2, 3].
One important application of GPS data is Travel time Pre-
diction with Uncertainty (TPU). TPU examines how quickly
a person arrives at a destination with a certain level of
confidence. It is important for transportation and urban
planning and a typical route planning service provided by
navigation systems and mapping apps. TPU often relies
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on continuous collection and processing of users’ travel
trajectories and thus exposes data contributors to privacy
threats from adversaries, honest-but-curious (e.g., the ser-
vice provider itself) and malicious, as depicted in Fig. 1(a)).
To our best knowledge, there is no work focusing on
privacy-preserving TPU (PP-TPU) analysis. We display in
Fig. 1(b) and 1(c) two possible strategies for PP-TPU. Fig.
1(b) focuses on sanitizing aggregated statistics calculated
from the actual user data, say via a differentially private
randomization mechanism such as the Laplace [4] or the
Gaussian mechanisms [5, 6]). This strategy mitigates the
privacy threats from the adversaries who aim to learn some-
thing new about their targets from the released aggregate
information, but it cannot manage the privacy risk brought
by the adversaries who have access to the original data, such
as the service provider itself. In Fig. 1(c), sanitization occurs
during data collection; that is, the true individual responses
go through a sanitization mechanism locally before being
shared with a third party. As a result, the true responses are
only known to the users themselves.
We aim to develop a PP-TPU procedure that implements the
strategy in Fig. 1(c), leveraging the state-of-the-art notions
and sanitization mechanisms in data privacy research as
stepping stones to achieve our goal.

1.2 Related Work
Data encryption, anonymization, and obfuscation are com-
mon frameworks for controlling the privacy risks incurred
by location data collection and sharing. The PP-TPU pro-
cedure we propose can be regarded as a data obfuscation
approach. Below we provide a brief overview of each frame-
work, analyze their limitations and challenges, and state the
rationale for us adopting the data obfuscation framework to
develop the PP-TPU procedure.
Location encryption uses cryptographic techniques to miti-
gate privacy risks in location data [7–13]. This is a common
approach for protecting individual privacy but can be costly
in terms of computation and resource [14]. Furthermore,
data, once decrypted, are no longer private to those who
have the authority to access the data; the privacy:utility
ratio from the data user perspective is either 100:0% or
0:100%, corresponding to the two states of encryption and
decryption, respectively. These two extreme options of data
access often do not meet the practical needs for data sharing.
Indeed, a non-zero small privacy cost is often acceptable in
practice so to create more options between the two extremes
and share information with more data users.
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Fig. 1: Privacy Protection Strategies for Analysis using GPS Data

Data anonymization and obfuscation provide options in
between the two extremes. These concepts focus on privacy-
preserving data processing and analysis via methods such
as data coarsening, removal of identifiers, reporting dummy
locations via randomization mechanisms, among others.
The key issue in these approaches is to strike a good
balance between privacy loss and data utility (the higher
the privacy loss, the more utility there is in the anonymized
or obfuscated data relative to the original data).
Several formal privacy concepts have been developed to
attain anonymization for general data, such as k-anonymity
[15, 16] and l-diversity [17]. Both concepts have been
adapted and applied in the location privacy setting (e.g.,
[18–29] for k-anonymity, [30–32] for l-diversity). Though the
concepts are intuitive, neither k-anonymity nor l-diversity
involves randomization; it has been shown that adversaries
may still learn sensitive information or re-identify individu-
als from anonymized location data [1, 33].
Differential privacy (DP) [4] involves randomization and is a
mathematically robust conceptual for data obfuscation. DP
is proved to be robust against a wide range of adversary
attacks [34, 35], processes properties such as privacy loss
composability [36] and immunity to post-processing [5] that
facilitate practical implementation, and has quickly become
the mainstream in privacy research and applications. Big
tech companies (e.g., Apple, Google, IBM) and government
agencies (Census2020) also adopt DP or its variants to collect
or release data. The classical DP concept is also applicable
in location data analysis [37–40].
Conceptual extensions of DP for location privacy also exist,
among which geo-indistinguishability (GI) [41] is perhaps
the most popular. GI has been explored in a wide range
of location privacy applications. Andrés et al. [41] propose
the planar Laplace mechanism to perturb the 2-dimensional
location data. Chatzikokolakis and Palamidessi [42] extend
GI by developing an elastic indistinguishability metric that
adapts the amount of injected noises according to the area
density. Cunha et al. [43] propose a clustering mechanism
for continuous location traces clustering application. Shi
et al. [44] apply GI to preserve location information of pas-
sengers in vehicles of transportation companies. Qian et al.
[45] propose a GI task allocation mechanism to preserve
location privacy in mobile crowdsensing applications. Qiu
et al. [46] design a strategy to minimize the loss in quality
of service due to GI obfuscation. Shi et al. [47] present
a closed-form relationship between localization accuracy

and the GI privacy level. Takagi et al. [48] propose Geo-
Graph-Indistinguishability that extends DP to the setting
of location privacy on road networks. Ren and Tang [49]
present the “Expanding GI” framework to protect the pri-
vacy of vehicle locations by abstracting maps as bitmaps and
utilizing linear programming to control information loss.
In summary, despite the various applications of GI in prac-
tical problems, its potential in TPU analysis has not been
explored to our knowledge. The reasons for us adopting the
GI concept for developing a PP-TPU procedure rather than
other privacy protection frameworks for location data are
as follows. First, our GI-based PP-TPU procedure avoids
the limitations of encryption-based approaches, thanks to
the tunable parameter (privacy budget/loss ε) in GI, and
provides options between the two extremes of zero util-
ity/full protection (ε → 0) and full utility/zero protection
(ε→∞). Second, while PP-TPU can leverage the classical DP
concept to release aggregate location information, it often
requires the collection of actual individual data (Fig. 1(b)). In
contrast, GI provides a framework to perform TPU analysis
without collecting actual individual GPS records (Fig. 1(c)).
This strategy, compared to Fig. 1(b), better protects users’
privacy and boost users’ confidence in data sharing as the
data sanitization is performed locally on users’ own devices;
in addition, users can pick ε themselves depending on how
willing they are to share their data. Third, GI follows similar
mathematical reasoning as DP and many desirable proper-
ties of DP are also applicable to GI such as composability
and immunity to post-processing that are important to meet-
ing the specific challenges in the development of the PP-
TPU procedure. Specifically, the TPU analysis requires the
collection of multiple 3-tuple GPS records (2-dimensional
location coordinates and timestamp) from a single trip in
a traveler. Due to the sequential composition of privacy
loss, the overall privacy loss can become unrealistically
high to obtain a useful sanitized trajectory, or the sanitized
trajectory is useless if the overall cost is kept reasonable.
Besides, the GPS records, after sanitization, have to make
sense in the 3-dimensional spatiotemporal space and for the
actual road networks on which TPU is performed.

1.3 Our Contribution

Our PP-TPU procedure balances the trade-off between the
privacy risk from collecting individual travel trajectories
and the utility of sanitized trajectories, while being mindful
of its practical feasibility. The conceptual and methodolog-
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ical contributions and the potential practical impacts of the
procedure are summarized as follows.
• The procedure takes into account privacy loss compos-

ability when sanitizing multiple GPS records per trajec-
tory. To limit the overall privacy loss, it curbs the number
of GPS records collected per trajectory and leverages pub-
lic information of maps to filter out unusable trajectories.

• We propose new concepts of usable set of travel trajectories,
effective number of mapped full trajectories,usefulness, and dif-
ferent distance deviation measures to quantify the utility
of sanitized GPS records and trajectories for PP-TPU.

• We propose new metrics continuous positioning degree and
average distance to quantify the adversary error in learning
individual trajectories given sanitized GPS records.

• We examine the feasibility of the proposed PP-TPU pro-
cedure by quantifying the trade-off between privacy loss
and the utility of sanitized GPS records and traces ana-
lytically and empirically, providing insights on choosing
privacy loss parameters in different application scenarios.

• The procedure is easy to implement. Service providers
and GPS navigation systems and apps may use it to
collect user location data and provide TPU service with
guaranteed privacy protection.

2 PRELIMINARIES

2.1 Map Matching of GPS Records
TPU starts with the collection of GPS records that contain
the spatial-temporal information of a traveler and then
matches the GPS locations with physical road network
maps. Each GPS record contains the location Pi (latitude
and longitude coordinates) and timestamp ti information.
Due to satellite signal blockage, multi-path effects, and
other factors that may affect GPS signals, collected GPS
location information is not always accurate. Commonly
direct projections of GPS coordinates may not correspond
to any meaningful real map coordinate, and road mapping
algorithms often involve some level of approximation. Fig.
2 shows an example of the shortest path map-matching
algorithm [50] that project 3 GPS registration points onto
the physical road network.

Fig. 2: Shortest path map matching

2.2 Travel Time Prediction with Uncertainty
Various approaches to travel time prediction have been
developed. The naı̈ve travel time prediction outputs a single
projected travel time value, but the reachable time-space
range of a traveler is rather stochastic, due to the dynamic
nature of human behaviors, traffics, etc [51]. Studies [52]
have shown that individuals, when facing uncertainty in
travel time, tend to avoid the risk of lateness and often

reserve some time to ensure that they can arrive on time
with a high level of confidence [1]. It is also important for
transportation and urban planning to understand the un-
certainty around travel time for infrastructure development
and designs, among others.
The analysis of Travel time Prediction with Uncertainty
(TPU) aims to obtain f(t), the probability density function
(pdf) of travel time t spent over a trip with starting point
A and destination B. The probability that the destination
B can be reached within time b can be easily obtained
from the cumulative density function (CDF) of t, that is,
p=Ft(b) =

∫ b
0 f(t)dt. For example, suppose b= 10 minutes

and p=0.9, then there is a 90% chance of arriving at the des-
tination within 10 minutes. In reality, f(t) is unknown and
is often estimated by an empirical f̂(t) based on collected
individual travel data, such as via the GPS.

2.3 Differential Privacy and Geo-indistinguishability

Differential privacy (DP) is a state-of-the-art privacy protec-
tion model that guarantees privacy for released information
in mathematically rigorous terms.

Definition 1 (ε-differential privacy [4]). A randomization
mechanismM is ε-differentially private, if for any pair data
sets X and X ′ that differ by one record and every possible
outcome set Ω to a query,

Pr[M(X) ∈ Ω] ≤ eε · Pr[M(X ′) ∈ Ω], (1)

where ε > 0 is the privacy budget or loss parameter. The
smaller ε is, the more privacy protection there is on the
individuals in the data set. X and X ′ differ by one record
may refer to the case that X and X ′ are of the same size
but differ in the attribute values in exactly one record, or the
case that X ′ is one record more than X or vice versa.
The classical DP in Definition 1 provides a mathematical
model for privacy guarantees when releasing aggregate
statistics from a group of individuals. The local DP [53, 54]
is an extension of the classical DP to a single user’s data and
can be used to develop mechanisms for sanitizing individ-
ual responses rather than aggregate results, with privacy.

Definition 2 (ε-local differential privacy [54, 55]). A ran-
domization mechanismM provides ε local DP if

Pr[M(x) ∈ Ω] ≤ eε · Pr[M(x′) ∈ Ω]. (2)

for all pairs of an individual’s possible personal data x and
x′ and all possible output subset Ω fromM.

The local DP implies that even if an adversary has access
to the sanitized personal responses from a randomization
mechanism that satisfies local DP, the adversary is still
unable to learn much new about the user’s actual responses.
GI is an extension of DP to location privacy and aims at
releasing individual location records. In that sense, GI is
more similar to the local DP concept than the classical DP;
but all three concepts are based on similar mathematical
formulations. The formal definition of GI is given below.

Definition 3 (Geo-indistinguishability [41]). Let d(P, P ′)
denote the Euclidean distance between any two distinct
locations P and P ′, and ε be the unit-distance privacy
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loss. A randomization mechanism M satisfies GI iff for all
possible released location P ∗, γ > 0, and any possible pair
of P and P ′ within the radius of γ,

Pr(P ∗|M(P )) ≤ eεγ · Pr(P ∗|M(P ′)). (3)

In other words, M in Eq (3) enjoys (εγ)-privacy for any
specified γ, and the probability of distinguishing any two
locations with a radius of γ, given the released location
P ∗, is eεγ times the probability when not having P ∗. For
a fixed ε, the larger γ is, the larger the privacy loss (εγ)
will be. For example, Tom is standing in Times Square in
NYC and looking for a restaurant for lunch. He sends a
request to a service provider for a list of restaurants nearby.
However, he does not want to disclose his exact location
and chooses to release a perturbed location P ∗ via GI with
ε = 0.1 per mile. The probability the service provider will
identify his true location within a radius of γ = 1 mile
given the perturbed location information is at most 1.1
folds of the probability when not having the information,
and at most 148 folds within a radius of γ = 50 miles.
In the latter case, though the probability of distinguishing
locations given P ∗ dramatically increases compared to not
having P ∗, it is not practically alarming from a privacy
perspective as the increase is caused by the large γ rather
than a large ε. In other words, the service provider will have
great confidence that Tom is in NYC given the released P ∗,
but little confidence in pinpointing exactly where in NYC.
If it were the combination of ε = 50 and γ = 1, then
the probability the service provider identifying Tom’s true
location within a radius of 1 mile would increase by 248
folds given the perturbed location information, constituting
a disastrous situation in privacy.
The planar Laplace mechanism can be used to achieve ε-GI
by perturbing location information in polar coordinates.

Definition 4 (polar Laplace mechanism [41]). The sanitized
location P ∗, given the actual location P with coordinates
(x, y) in the Euclidean space, satisfies GI with coordinates

(x∗, y∗) = (x+ r cos(θ), y + r sin(θ)), (4)

where the joint distribution of R and θ is

f(r, θ) = ε2re−εr/(2π). (5)

Eq (5) implies R and θ are independently distributed and

r ∼ gamma(2, ε) = rε2e−εr (6)
θ ∼ Unif(0, 2π) = 1/(2π). (7)

In summary, to generate a sanitized location P ∗, one may
draw R from the gamma distribution with shape 2 and
scale ε−1 and θ from Unif(0, 2π), and then calculate the
coordinates of P ∗ in the Euclidean space per Eq (4).

3 PRIVACY-PRESERVING TPU WITH GI
Applied to the collection of GPS records, the GI notion
can help protect individual privacy on several types of
information: an individual location at a given time point,
the travel trajectory of an individual over a time period,
and any derived information from the collected sanitized
trajectories, including TPU.

In what follows, we present a procedure to achieve PP-
TPU in the framework of GI, taking into the composability
of privacy costs from disclosing multiple location points
from a trajectory and leveraging public knowledge of maps
and road networks to improve the utility of PP-TPU on a
given target road. We also examine the accuracy of sanitized
information relative to the original information; analyze the
privacy guarantees and indistinguishability of the proposed
procedure, along with newly proposed metrics for quantify-
ing adversary errors.

3.1 Proposed PP-TPU Procedure

We propose a new PP-TPU procedure. The PP-TPU proce-
dure sanitizes GPS records locally via the planar Laplace
mechanism to guarantee GI before the information is shared
with the service provider (the strategy in Fig 1(c)). This
approach mitigates the privacy risks of learning new pri-
vate information about an individual from the collected
GPS records for various types of adversaries, as only the
users themselves possess the true responses. We also take
several measures to improve the accuracy of the proposed
PP-TPU procedure and to quantify the utility of sanitized
trajectories, detailed below.
First, given a fixed total per-trajectory privacy cost, we limit
the number of records to be collected per traveler so that the
sanitization of each location record does not inject too much
noise to render the sanitized record useless.
Second, we filter out non-usable trajectories for the PP-
TPU given a target route R. Due to the sanitization noise
injected to satisfy GI at each location, the travel direction
between two consecutive time points may be opposite route
R, which has a pre-specified direction. Not to bias the total
travel distance, we keep the sanitized locations as is, as
long as they can be mapped onto route R, but attach a
sign to indicate the travel direction consistency with route
R, namely, positive distance if the traveling direction is
consistent with the direction of routeR, negative if opposite,
and 0 if the two mapped locations completely overlap. After
the complete set of the GPS records from the traveler is
mapped, we sum the signed distances on R for the traveler.
If the summed distance is negative, then the trajectory is not
usable, as defined in Definition 5.

Definition 5 (usable trajectory). A usable trajectory given
a target route is a trajectory that satisfies the following two
conditions: 1) at least two consecutive locations are mapped
onto the target route R; 2) the total travel distance summed
over distance segments calculated from the mapped coordi-
nates on R is non-negative. The set of usable trajectories is
the usable set U .

Third, we provide users an option to weigh different tra-
jectories for their various levels of contribution towards the
TPU on a given target route R. The motivation behind this
is as follows. It is very likely that not all the GPS records
will be mapped to route R, even if the traveler stays on
R all the time at least for the period of interest, for a few
reasons. First, GPS information is not always accurate due
to satellite signal blockage and multipath effects, causing
difficulty in road matching. Second, road mapping proce-
dures themselves often involve approximation and errors.
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Third, with the additional randomness introduced by the
GI sanitization, the location accuracy will further decrease.
Therefore, each trajectory may have a different number of
GPS records mapped onto R, some of which are consecutive
in times and others are not. When calculating the travel
distance on R for a traveler, it makes sense to only count
the distances between the locations at two consecutive time
points if both are mapped onto R. One way to formulate the
weight is to let it be proportional to how much a sanitized
mapped trajectory overlaps with the target route.

Definition 6 (trajectory weight). Denote by d∗i the travel
distance for traveler i on the target route R of length d from
the usable set U . The weight that traveler i carries in the
TPU is wi = d∗i /d.

Algorithm 1 lists the steps of our proposed PP-TPU pro-
cedure, with the above three utility-improvement measures
implemented in various stages of the procedure. With the

Algorithm 1: The PP-TPU Procedure

input : GPS location coordinates (xij , yij) with
timestamp τij for i=1, . . . ,K trajectories
and j=1, . . . , ni(≤ n the maximum records
per trajectory); per-trajectory privacy budget
εi; target route with total distance d.

output: sanitized travel time t∗, trajectory weight w.
1 Usable set U ← ∅;
2 for i = 1, . . . ,K do
3 d∗i ← 0; δti ← 0;
4 for j = 1, . . . , ni do
5 Perturb Pj = (xij , yij) via the planar Laplace

mechanism in Eq (4) with privacy budget
εi/ni to yield P ∗j = (x∗ij , y

∗
ij) at time τij ;

6 Map P ∗j onto the area map to obtain the map
coordinates Q∗j ;

7 if (Q∗j−1, Q
∗
j ) for j > 1 fall on Route R then

8 Calculate the signed Euclidean distance
dij between Q∗j−1 and Q∗j ;

9 d∗i←d∗i + d∗ij ; δti←δti + (τij − τi,j−1);
10 end
11 end
12 if d∗i ≥ 0 then
13 U ← U ∪ i;
14 Calculate speed s∗i=d∗i /(δti), predicted travel

time t∗i = d/s∗i , and weight wi = d∗i /d.
15 end
16 end

output weights w from Algorithm 1, we can calculate the
effective number of mapped full trajectories to provide an
overall metric on the impact of mapping and sanitation of
GPS records on the TPU on a target road.

Definition 7 (effective number of mapped full trajectories).
The effective number of mapped full trajectories is Keff =∑
i∈U wi.

Since wi ∈ [0, 1], Keff ≤ |U|, where |U| is the number
of trajectories in U . |U| in turn is ≤ K , where K is the
number of raw GPS trajectories before mapping, sanitation,
and filtering out.Keff in a PP-TPU depends on ε, the number

of GPS trajectories K before mapping, and the pattern
and complexity of the road networks onto which the GPS
records are projected. Besides using weights to calculate
Keff, we can also incorporate the weights in the TPU by
define a weighted version of f∗w(t). For example, we may
sample Keff travel times from set (t∗1, . . . , t

∗
|U|) with the

sampling probabilities proportional to w = {w1, . . . , w|U|}
and obtain an empirical f̂∗w(t) based on the samples.

3.2 Accuracy of Sanitized Information
As mentioned above, road mapping procedures per se in-
volve approximation and errors, the quantification of which
is challenging and case-dependent. As such, we focus on
the accuracy of the perturbed GPS records relative to their
original, instead of on the mapped coordinates. It is reason-
able to assume that if sanitized and original GPS records are
close, so are their mapped locations.
We quantify the closeness between a sanitized GPS location
vs its original using the “usefulness” definition [41]. A
location perturbation mechanism is (α, δ)-usefulness if the
distance between the sanitized and original locations is ≤ α
with a probability of 1 − δ, for every original location. For
example, for a unit-distance privacy budget ε = 2, the
probability that a sanitized location via the planar Laplace
mechanism is within α = 1.5 units of the original location is
1 − δ = 0.8, calculated directly from the CDF of gamma(2,
1.5). In other words, the planar Laplace mechanism of ε = 2
GI is (1.5, 0.2)-useful for sanitizing locations. We plot the
relationships between α and 1− δ for a range of ε values for
the planar Laplace mechanism in Fig. 3(a).
In addition, we may assess the accuracy of the distance
between two sanitized locations. Denote by (xj , yj) and
(xj′ , yj′) the coordinates of two recorded GPS locations at
times τj and τj′ , respectively. The sanitized coordinates for
the two locations via the planar Laplace mechanism in Eq
(5) are respectively,{

x∗j = xj + r cos(θ), y∗j = yj + r sin(θ)

x∗j′ = xj′ + r′ cos(θ′), y∗j′ = yj′ + r′ sin(θ′)
, (8)

the distance between which can be calculated by the Eu-
clidean distance

d∗2jj′ = (x∗j− x∗j′)2 + (y∗j− y∗j′)2 = d2jj′ + ∆jj′ , where (9)

∆jj′=r2+r′2−2rr′(cos(θj) cos(θj′) + sin(θ) sin(θ′))+

2(xj − xj′)(r′ cos(θ′)− r cos(θ))+

2(yj − yj′)(r′ sin(θ′)− r sin(θ)), (10)

and djj′ is the Euclidean distance between the original GPS
records at times τj and τj′ . ∆jj′ can be regarded as the bias
of the squared sanitized distance from the original distance,
d∗jj′ conditional on djj′ is a random variable as r, r′, θ, θ′ are
all random variables. We propose two metrics to examine
the accuracy of d∗jj′ relative to djj′ .
For the first metric, we define (d, α, δ)-usefulness for sani-
tized distances, in a similar manner to the (α, δ)-usefulness
in general [56] and for sanitized locations [41].

Definition 8 ((d, α, δ)-usefulness of sanitized distance). A
randomization mechanism is (d, α, δ)-useful, if there is a
probability of 1 − δ that the sanitized distance d∗ satisfies
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Fig. 3: Usefulness analysis on perturbed GPS location (a) and distances (b) to (d)

|d∗/d− 1| < α for every pair of locations with a distance of
at least d.

α is the relative error of the sanitized d∗ to the original d.
The smaller α and the larger δ are for a given d, the more
useful the mechanism is in terms of distance preservation.
Figs. 3(b) to 3(d) depict the relationship between α and δ
when the original distance d is 5, 10, and 20 at different
levels of unit-distance privacy cost ε. As d increases, δ
decreases for the same α. From the plots, we can claim that
there is a 80% probability that the distance d∗ between the
perturbed locations via the planar Laplace mechanism of
ε = 1 GI is ±25% of d ≥ 10; in other words, the mechanism
is (10, 0.25, 0.2)-useful at ε = 1. Similarly, we may also
claim the mechanism is (5, 0.5, 0.2)-useful for ε = 1, and
(5, 1.0, 0.3)-useful for ε = 0.5, etc.
For the second utility metric on sanitized distances, we
calculate the expected %deviation E(d∗jj′/djj′−1) and the

% root mean squared deviation (%RMSD)
√

E(d∗ij/dij−1)2

of the sanitized distance from the original distance, respec-
tively. Eqs (9) and (10) suggest there is no closed-form
expression for either of them; but we can always examine
the numerical deviations for a given scenario. Table 1 lists
the expected %deviation and %RMSD in distance for dif-
ferent scenarios of ε and d. As expected, the larger ε or
the larger d is, the smaller the %deviation is. Also listed
in the table is the expected %deviation in squared distance
E(d∗2)/d2)−1, which has a closed-form solution. Specifically,
E(r2) = E2(r) + V(r) = 6ε−2 (V denotes variance), so is
E(r′2); since 2(xj − xj′)(E(r′)E(cos(θ′))− E(r)E(cos(θ)) +
2(yj−yj′)(E(r′)E(sin(θ′))−E(r)E(sin(θ)) = 0, then

E(d∗2jj′ − d2jj′) = 12ε−2 = O(ε−2); (11)

and E(d∗2jj′/d
2
jj′ − 1) = 12/(djj′ε)

2. (12)

Eq (11) indicates that, in expectation, the squared distance
between two sanitized GPS locations always deviates from
the squared original distance by a constant 12ε−2 for a
given ε, regardless of djj′ ; however, Eq (12) implies that the
deviation is not meaningful for large djj′ .

3.3 Privacy Guarantee and Adversary Error
As illustrated in Fig 1(c), the proposed PP-TPU procedure
is based on sanitized GPS trajectory data, mitigating the
privacy risk from both the honest-and-curious and mali-
cious adversaries. The employed privacy model, GI, is an
extension of the notion of DP to location settings with a
similar mathematical concept for controlling privacy loss

TABLE 1: Expected %deviation and %RMSD in distance,
and expected %deviation in squared distance(

E(d∗)
d −1

)
(%)†

√
E(d

∗

d −1)2(%)†
(

E(d∗2)
d2 −1

)
(%)‡

d 50 100 200 50 100 200 50 100 200
ε=0.01 5.00 2.09 0.75 6.17 2.80 1.23 48 12 3
ε=0.05 0.51 0.13 0.03 0.95 0.47 0.24 1.92 0.48 0.12
ε=0.25 0.02 0.00 0.00 0.19 0.10 0.05 0.0768 0.0192 0.0048
† numerical results; ‡ analytical results via Eq (12). .

when sharing information. DP is known to provide ”prov-
able privacy protection against a wide range of potential
attacks, including those currently unforeseen” [34, 35]. The
proposed PP-TPU procedure in Sec 3.1 protects several
types of spatial-temporal information: the location of a
traveler at a given time point, a travel trajectory of the
traveler for a given time period, any calculated statistics
from the trajectory (e.g, travel distance, travel speed) per the
immunity property of DP and GI against post-processing.
We examine each yielded privacy protection type below in
detail, especially in the case of a travel trajectory.
First, per the definition of GI in Definition 3, the probabil-
ity of distinguishing the true location P from any other
locations with a radius of γ, given the released perturbed
location P ∗ increases by eεγ − 1 folds compared to the
probability when not having P ∗. In other words, the same
privacy guarantees and indistinguishability as illustrated
in Definition 3 apply to the GPS records collected at each
timestamp for the PP-TPU.
Second, the proposed PP-TPU procedure protects the pri-
vacy of a collected travel trajectory over a time period.
Though each of the location records on the trajectory is
perturbed via the planar Laplace mechanism has a straight-
forward interpretation on indistinguishability as presented
above, how to quantify the adversary error in learning
about the original trajectory based on the released sanitized
trajectory is less studied. Below we propose two metrics
– the average distance (AD) and the consecutive positioning
rate (CPD) – to quantify the adversary error and assess the
effectiveness of a randomization procedure in protecting
travel trajectory privacy. We apply both metrics to examine
the adversary error in the experiments in Sec. 4.

Definition 9 (average distance). The average distance (AD)
between the sanitized and original mapped travel trajecto-
ries on a road network is the averaged distance between the
two sets of mapped locations at the same set of timestamps
from the two trajectories .
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We may calculate the AD empirically for a set pf K
mapped trajectories as follows. The original and sanitized
coordinates of the mapped trajectories i (i = 1, . . . ,K) are
{(xij , yij)} and {(x∗ij , y∗ij)}, respectively, at time {τij} for
j = 1, . . . , ni. The AD is given by

K−1
∑K
i=1

(
n−1i

∑ni

j=1 d((xij , yij), (x
∗
ij , y

∗
ij))
)
, (13)

Given a set {ni} for i = 1, . . . ,K , the larger AD is, the larger
the adversary error and the more difficult it is to recover the
original trajectory from the sanitized trajectory.

Definition 10 (consecutive positioning degree). The consec-
utive positioning degree (CPD) p(l) is a probability distri-
bution of correctly identified l consecutive locations on a
trajectory based on the released sanitized trajectory with
n GPS records, for l = 0, . . . , n. The expected value of
correctly identified positions out of n is nc =

∑n
l=0 l × p(l).

We choose to examine p(l), the distribution of correctly
identified consecutive positions instead of correctly identified
positions p(m) for m = 0, . . . , n (regardless of whether
they are consecutive or not) because the former would be
regarded by many as more revealing of travel trajectory
and carrying more privacy concern than latter. How to
define “correctly identified positions” is up to the user. One
approach is hard-thresholding. Specifically, we choose a clip
radius C . If the sanitized location falls within the circle of ra-
dius C centered at the original location, then it is claimed as
correct positioning. The smaller C is, the harder it is to meet
the criterion, but the more meaningful “correct” is. Since
each location on a trajectory is perturbed independently via
the polar Laplace mechanism, with the hard-thresholding
rule, the probability of correctly identifying a location can be
determined analytically, which is p = F (C; 2, ε/n), where n
is the number of recorded positions on a GPS trajectory and
F is the CDF of gamma(2, ε/n).
The number of correctly identified positions m given p
follows m ∼ Binomial(n, p). As for the distribution of CPD
l, we can leverage Binomial(n, p) to express p(l) analytically
when n is small, but p(l) for 1 ≤ l < n − k with small
k ≥ 0 becomes less tractable as n increases considering
that a trajectory may contain multiple location strings of
different l. For example, a GPS trace with n = 10 records
may have 2 occurrences of l = 1, 1 occurrence of l = 2, and
1 occurrence of l = 3. For cases where analytical calculation
of p(l) becomes difficult, we design Algorithm 2 that uses
Monte Carlo (MC) simulations to calculate p(l). Though
the algorithm is presented with the hard-thresholding rule
for correct positioning (line 4), the steps are applicable to
other definitions of correct positioning. n(l)i in the algorithm
refers to the frequency distribution l in trajectory i, its
average over K trajectories gives the MC estimate p(l). The
algorithm also outputs n̄c, the MC estimate of the expected
value of correctly identified positions nc in Definition 10.

4 EXPERIMENTS

We conduct four experiments to investigate empirically the
impact of sanitization of GPS trajectories on the utility of
TPU in four road network scenarios. In each experiment,
there is a pre-specified target route on which the TPU

Algorithm 2: Calculation of CPD p(l)

input : K GPS trajectories and their sanitized
counterparts with n records per trajectory;
clip radius C

output: n(l)i for i = 1, . . . ,K ;

p(l) =
∑K
i=1 n

(l)
i

(∑n
l=0

∑K
i=1 n

(l)
i

)−1
;

n̄c = K−1
∑K
i=1

∑n
l=0(n

(l)
i × l).

1 for i = 1, . . . ,K do
2 for j = 1, . . . , n do
3 Calculate the distance dij between sanitized

location P ∗ij and original location Pij ;
4 If dij ≤ C , then eij = 1; else eij = 0;
5 Let ei0 = 0 and ei,n+1 = 0;
6 end
7 If eij′=0 ∀j′=1, . . . , n, then n(0)i = 1; else

n
(0)
i = 0;

8 If eij′=1 ∀j′=1, . . . , n, then n(n)i = 1; else
n
(n)
i = 0;

9 for l = 1, . . . , n− 1 do
10 n

(l)
i ← 0;

11 for j = 1, . . . , n− l + 1 do
12 if (eij′=1 ∀j′=j, . . . , j+l−1) & (ei,j−1 =

0) & (ei,j+l = 0) then
13 n

(l)
i ← n

(l)
i + 1

14 end
15 end
16 end
17 end

analysis is performed. We examine the utility of PP-TPU for
a range ε values and assess the adversary error in learning
individual trajectories. Though a privacy-preserving travel
time distribution may also be obtained by sanitizing the
original empirical distribution via a DP mechanism, as
illustrated in Fig. 1(b), the server needs to collect the actual
individual GPS locations, and the sanitization is processed
on the server. Therefore, this approach does not provide the
same privacy guarantees as the decentralized and local ap-
proach (Fig. 1(c)) taken by Algorithm 1. Since it is impossible
to match the level of privacy protection between the two
approaches, the utility comparison would not be as mean-
ingful; therefore, we choose not to compare our PP-TPU
approach with the DP-based approach in the experiments.

4.1 Experiment Settings

In Experiment 1, the simulated road network contains a
single road. In Experiments 2, the simulated road network
contains three parallel roads with one being the target
route. In Experiment 3, the road network is around a large
roundabout in the town of Creteil in France (Fig 4(a)); the
target route AB is about 1.5 kilometers long. In Experiment
4, we examine a region in the San Francisco Bay Area (Fig
4(b)); the target road AB is about 50 kilometers long.
The GPS trajectory data in Experiments 1 (1,000 trips) and 2
(1,000 trips on the target road) are simulated as follows. We
first simulated speeds from the inverse Weibull distribution
with mean µ = 24 meter per second and variance σ2 = 8
(the values are chosen to mimic some common real traffic
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(a) experiment 3 (b) experiment 4
Creteil, France San Francisco, USA

Fig. 4: Area maps in Experiments 3 and 4 (source: Google
Map). AB is the target route for TPU in each experiment.

speed distributions). Each simulated speed corresponds to
one trip, on which 10 location records were generated at
a fixed timestamp of every τ = 20 seconds, leading to
travel trajectories of different lengths, depending on the
speed. The vehicular mobility trace data in Experiment
3 [57] are downloadable from http://vehicular-mobility-
trace.github.io/ and contains 857,136 sets of location coordi-
nates per second from around 5102 trips during the morning
rush hour (7 to 9 AM), simulated based on real data. We
randomly chose 1,000 trips within the rectangle bounded
by the coordinates of the ends points A and B of the target
route. The dataset in Experiment 4 [58] contains real mobil-
ity traces of taxi cabs and is downloadable from http://
crawdad.org/epfl/mobility/20090224/index.html. It con-
tains the GPS coordinates of approximately 500 taxis over
30 days. For this experiment, we used a subset of 30,900
location-time GPS records over the morning rush hours (8
to 9 AM) from 419 trips. In Experiments 3 and 4, we set the
maximum number of GPS records per trip at 10 so to control
the privacy loss per traveler. If a traveler has ≤ 10 records,
we used all of them; otherwise, we randomly sampled 10
records or had 10 records spaced equally over the trajectory
if there were enough records to allow that.

4.2 Sanitization and Implementation Details
The GPS records were sanitized via the planar Laplace
mechanism and projected into the road map in each ex-
periment using the shortest path algorithm. The PP-TPU
was then conducted via algorithm 1 in each experiment.
For the GI sanitization, we set the per-location per-meter
privacy loss at 0.005, 0.01, 0.03, 0.05, and 0.08 in all 4
experiments. Since the maximum of GPS records per trip
is 10, the total privacy cost for releasing a trajectory is
≤ 0.05, 0.1, 0.3, 0.5, 0.8, respectively.
Fig 5 presents some examples of the sanitized GPS records,
and the mapped travel trajectory on road networks given
the GPS records. Take Experiment 2 as an example, which
plots the GPS records and mapped trajectories from three
different travelers. The target road is road 1 for which the
TPU analysis is performed. If there was no privacy concern,

the three travelers would share their GPS records (blue cir-
cles) with the service provider who would then project the
records using a mapping algorithm onto the road network
and use the usable travel trajectory on road 1 to calculate
travel time and carry out TPU. In this example, the mapped
trajectories (cyan lines) fall on the target road for all three
travelers. For PP-TPU, the service provider does not collect
the actual GPS records, but only their sanitized versions (red
squares). The mapping procedure and TPU analysis are the
same as in the non-private setting. Since the sanitized GPS
records deviate from their original counterparts, it is almost
certain the mapped trajectories also deviate from the non-
private trajectories. For traveler 1 (the leftmost plot), all ten
sanitized GPS records are mapped onto road 1 and can be
used for the subsequent travel time calculation. For traveler
2, eight out of the ten sanitized GPS records are mapped
on road 1 and two on the nearby road 2. The eight records
on road 1 form two location strings of length l = 4 and
l = 2, respectively, that are used for the subsequent PP-
TPU analysis. For traveler 3, three out of the ten sanitized
GPS records are mapped onto road 1 but none of the two are
consecutive in time, so traveler 3 does not contribute toward
the PP-TPU. In summary, out of the sanitized trajectories
from the three travelers, only those from travelers 1 and 2
contribute to U .

Experiment 2

Experiment 1 Experiment 3 Experiment 4

Fig. 5: Examples of sanitized GPS records and mapped
travel trajectories at per-trajectory privacy cost of ε = 0.1

4.3 Utility and PP-TPU Results
Fig 6 presents the empirical CDFs of the privacy-preserving
travel times in the four experiments. As expected, the sani-
tization deviates the travel time distribution f̂∗(t) from the
original f̂(t); the smaller per-trajectory privacy cost ε is, the
more deviation there is. At ε ≥ 0.3, f̂∗(t) is close to f̂(t)
and satisfactory utility can be reached for PP-TPU in all ex-
periments. From the CDF curves, we can read how quickly
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a traveler arrives at the destination with a certain level of
confidence, and vice versa. For example, in Experiment 4,
there is an 80% probability that a traveler finishes the trip
AB within 100 minutes if ε = 0.5 is used. In addition to the
unweighted TPU in Fig 6, we also performed the weighted
TPU analysis; the results are presented in Fig 7. A similar
overall trend across ε is observed as in the non-weighted
setting. In experiments 1 and 2, the weighting seems to affect
f̂∗(t) more for smaller ε, and the left tail of f̂∗(t) (smaller
t) is more sensitive to the weighting than the right tail. In
experiments 3 and 4, the weighted distributions are similar
to the unweighted version across all ε.

Experiment 1 Experiment 2

Experiment 3 Experiment 4

Fig. 6: PP-TPU

Table 2 presents the effective number of mapped full trajec-
tories Keff. Due to the inherent error of the mapping algo-
rithm, not every GPS record can be mapped onto the actual
route where the traveler is on, or give a sensible trajectory
after mapping. Therefore, Keff is smaller the number of trips
even without any GI sanitization. With the GI sanitization
and as ε decreases, Keff decreases, as expected.

TABLE 2: Effective number of mapped full trajectories Keff

ε original (no # trips
experiment 0.05 0.1 0.3 0.5 0.8 sanitization)

1 792 853 873 889 892 901 1,000
2 682 721 820 834 845 876 1,000

Keff 3 229 314 435 460 478 513 1,000
4 45 49 52 52 53 53 419

In summary, we can draw the following conclusions from
the utility analysis in this subsection. (1) The quality of the
PP-TPU analysis relates to the type and structure of the road
network onto which the GPS records are mapped; some
road networks are more sensitive to ε than others in the
utility of sanitized trajectories. (2) The difference between
the unweighted and weighted TPU analysis diminishes as ε
increases. (3) The CDFs of the privacy-preserving travel time

Experiment 1 Experiment 2

Experiment 3 Experiment 4

Fig. 7: Weighted PP-TPU

in the 4 experiments are similar to the original CDFs with
the per-trajectory ε as small as 0.3, so is the effective number
of mapped full trajectories, implying useful TPU analysis
can be achieved with satisfactory privacy guarantees.

4.4 Adversary Error

Table 3 shows the expected AD between a sanitized and
its original mapped trajectories calculated via Eq (13). Note
that the 100 repeats were generated differently for experi-
ments 1 and 2 vs. experiments 3 and 4 because the former
two are synthetic data while the latter two are quasi-real
and real open-source datasets, respectively. Specifically, in
experiments 1 and 2, we generated 100 GPS data sets per the
simulation setting in Sec 4.1; in experiments 3 and 4, the 100
repeats were obtained by performing 100 sets of sanitization
on a fixed GPS dataset in each experiment. As a result, the
variability of AD comes from two sources – sampling error
and sanitation error – in experiments 1 and 2 and contains
only the sanitization error in experiments 3 and 4.
The first observation is that the smaller ε is, the larger the
distance is, as expected. Second, the AD value varies across
the experiments for the same ε, which makes sense, as the
AD works with the distance between a pair of locations on
a map and the road network matters. Given that the road
networks differ in the four experiments, it is not surprising
that the AD varies by experiment. Third, the adversary error
measured by the AD at ε ≤ 0.3 is sufficiently large per
location on a trajectory for each experiment (≥ 30 meters).
Fig. 8 presents the probability distributions of CPD l and the
correctly identified positionsm (whether consecutive or not)
for three different clip radius C (20, 40, and 80 meters) when
the number of records per trajectory n = 10 for different ε.
Since all 4 experiments used the same n and ε value, the
results in Fig. 8 apply to all four experiments. As expected,
as C increases (the criterion for claiming correct positioning
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TABLE 3: Mean (SD) average distance between mapped
locations on sanitized and original trajectories (100 repeats)

ε
experiment 0.05 0.1 0.3 0.5 0.8

1 180 (6.7) 87 (2.0) 30 (0.9) 18 (0.3) 11 (0.1)
AD† 2 1189 (16.4) 814 (6.8) 435 (4.9) 341 (4.5) 296(2.4)

(meters) 3 739 (24.1) 438 (32.3) 185 (31.4)121 (5.4) 99 (2.1)
4 214 (21.5) 108 (11.4) 38 (3.7) 23 (2.1) 13 (1.4)

loosens) or as per-trajectory ε increases, the adversary’s
accuracy for correctly identifying more positions and more
consecutive positions increase. In the case of C = 80 meters
– a rather relaxed criterion for correct identification, the
probability of identifying 10 positions out of 10 is > 80%.
The probability decreases to ∼ 10% for C = 40 meters
and ∼ 0% for C = 20 meters. The plots also illustrate
the differences between CPD l and the number of correctly
identified locations m. For example, for C = 20, Pr(l=6) is
close to 0%, but Pr(m=6) is ∼ 20%, regardless of whether
the 6 positions are consecutive or not.

ε ε

ε ε

ε ε

Fig. 8: Probability distributions of CPD l (left column) and
correctly identified positions m (right column)

In summary, we can draw the following conclusions from
the adversary error analysis in this subsection. (1) The
magnitude of the adversary error closely relates to the
road network type and structure. (2) The adversary error
in reconstructing a trajectory from the sanitized trajectory
around ε ≤ 0.3 is sufficiently large per the measures of
AD and CPD to not pose serious privacy threats. (3) Taken
together with the observations in the utility analysis, a good
trade-off between the PP-TPU utility and privacy protection

can be achieved at per-trajectory ε ≈ 0.3 with ≤ 10 GPS
records per trajectory in these 4 experiments. Users of the
PP-TPU procedure can run similar analysis and choose an
ε that leads to a good balance between utility and privacy
protection for their specific problems.

5 CONCLUSIONS

This paper addresses privacy-preserving TPU analyses. We
employ the notation of GI to protect individual GPS spatial-
temporal records and the subsequent TPU analysis. The
proposed PP-TPU procedure can be adopted by service
providers (e.g., mobile phone companies, GPS navigator
apps) at the GPS data collection stage. We define the ef-
fective number of mapped full trajectories, the usefulness
concept, and different types of deviations in distance mea-
sures based on sanitized GPS records to quantify the utility
of the sanitized trajectories. We also propose the concepts
of average distance and consecutive positioning degree to
assess the adversary error based on released GPS trajectory
records. Our analytical results and empirical studies suggest
that it is feasible to employ the GI concept to collect and
release GPS information for TPU analysis while guarantee-
ing location privacy for the individuals who contribute their
GPS data. Our future work will look into incorporating the
dependency among the location points on the same travel
trajectory and better utilizing the public road network maps
to develop new randomization mechanisms of better utility
without comprising privacy.
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