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Creteil, France San Francisco, USA
Fig. 4: Area maps in Experiments 3 and 4 (source: Google
Map). AB is the target route for TPU in each experiment.

speed distributions). Each simulated speed corresponds to
one trip, on which 10 location records were generated at
a fixed timestamp of every 7 = 20 seconds, leading to
travel trajectories of different lengths, depending on the
speed. The vehicular mobility trace data in Experiment
3 [57] are downloadable from http://vehicular-mobility-
trace.github.io/ and contains 857,136 sets of location coordi-
nates per second from around 5102 trips during the morning
rush hour (7 to 9 AM), simulated based on real data. We
randomly chose 1,000 trips within the rectangle bounded
by the coordinates of the ends points A and B of the target
route. The dataset in Experiment 4 [58] contains real mobil-
ity traces of taxi cabs and is downloadable from http://
crawdad.org/epfl/mobility /20090224 /index.html. It con-
tains the GPS coordinates of approximately 500 taxis over
30 days. For this experiment, we used a subset of 30,900
location-time GPS records over the morning rush hours (8
to 9 AM) from 419 trips. In Experiments 3 and 4, we set the
maximum number of GPS records per trip at 10 so to control
the privacy loss per traveler. If a traveler has < 10 records,
we used all of them; otherwise, we randomly sampled 10
records or had 10 records spaced equally over the trajectory
if there were enough records to allow that.

4.2 Sanitization and Implementation Details

The GPS records were sanitized via the planar Laplace
mechanism and projected into the road map in each ex-
periment using the shortest path algorithm. The PP-TPU
was then conducted via algorithm 1 in each experiment.
For the GI sanitization, we set the per-location per-meter
privacy loss at 0.005, 0.01, 0.03, 0.05, and 0.08 in all 4
experiments. Since the maximum of GPS records per trip
is 10, the total privacy cost for releasing a trajectory is
<0.05,0.1,0.3,0.5, 0.8, respectively.

Fig 5 presents some examples of the sanitized GPS records,
and the mapped travel trajectory on road networks given
the GPS records. Take Experiment 2 as an example, which
plots the GPS records and mapped trajectories from three
different travelers. The target road is road 1 for which the
TPU analysis is performed. If there was no privacy concern,
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the three travelers would share their GPS records (blue cir-
cles) with the service provider who would then project the
records using a mapping algorithm onto the road network
and use the usable travel trajectory on road 1 to calculate
travel time and carry out TPU. In this example, the mapped
trajectories (cyan lines) fall on the target road for all three
travelers. For PP-TPU, the service provider does not collect
the actual GPS records, but only their sanitized versions (red
squares). The mapping procedure and TPU analysis are the
same as in the non-private setting. Since the sanitized GPS
records deviate from their original counterparts, it is almost
certain the mapped trajectories also deviate from the non-
private trajectories. For traveler 1 (the leftmost plot), all ten
sanitized GPS records are mapped onto road 1 and can be
used for the subsequent travel time calculation. For traveler
2, eight out of the ten sanitized GPS records are mapped
on road 1 and two on the nearby road 2. The eight records
on road 1 form two location strings of length [ = 4 and
l = 2, respectively, that are used for the subsequent PP-
TPU analysis. For traveler 3, three out of the ten sanitized
GPS records are mapped onto road 1 but none of the two are
consecutive in time, so traveler 3 does not contribute toward
the PP-TPU. In summary, out of the sanitized trajectories
from the three travelers, only those from travelers 1 and 2
contribute to U.

Experiment 2

Experiment 1 Experiment 3 Experiment 4

Fig. 5: Examples of sanitized GPS records and mapped
travel trajectories at per-trajectory privacy cost of € = 0.1

4.3 Utility and PP-TPU Results

Fig 6 presents the empirical CDFs of the privacy-preserving
travel times in the four experiments. As expected, the sani-
tization deviates the travel time distribution f*(t) from the
original f(t); the smaller per-trajectory privacy cost € is, the
more deviation there is. At € > 0.3, f*(¢) is close to f(t)
and satisfactory utility can be reached for PP-TPU in all ex-
periments. From the CDF curves, we can read how quickly
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a traveler arrives at the destination with a certain level of
confidence, and vice versa. For example, in Experiment 4,
there is an 80% probability that a traveler finishes the trip
AB within 100 minutes if € = 0.5 is used. In addition to the
unweighted TPU in Fig 6, we also performed the weighted
TPU analysis; the results are presented in Fig 7. A similar
overall trend across € is observed as in the non-weighted
setting. In experiments 1 and 2, the weighting seems to affect
f*(t) more for smaller ¢, and the left tail of f*(¢) (smaller
t) is more sensitive to the weighting than the right tail. In
experiments 3 and 4, the weighted distributions are similar
to the unweighted version across all e.
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Fig. 6: PP-TPU

Table 2 presents the effective number of mapped full trajec-
tories Kef. Due to the inherent error of the mapping algo-
rithm, not every GPS record can be mapped onto the actual
route where the traveler is on, or give a sensible trajectory
after mapping. Therefore, K is smaller the number of trips
even without any GI sanitization. With the GI sanitization
and as € decreases, K¢ decreases, as expected.

TABLE 2: Effective number of mapped full trajectories K

Experiment 1
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Experiment 2

€ original (no | # trips
experiment | 0.05 0.1 0.3 0.5 0.8 | sanitization)
1 792 853 873 889 892 901 1,000
2 682 721 820 834 845 876 1,000
Kest 3 229 314 435 460 478 513 1,000
4 45 49 52 52 53 53 419

In summary, we can draw the following conclusions from
the utility analysis in this subsection. (1) The quality of the
PP-TPU analysis relates to the type and structure of the road
network onto which the GPS records are mapped; some
road networks are more sensitive to € than others in the
utility of sanitized trajectories. (2) The difference between
the unweighted and weighted TPU analysis diminishes as €
increases. (3) The CDFs of the privacy-preserving travel time
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Fig. 7: Weighted PP-TPU

in the 4 experiments are similar to the original CDFs with
the per-trajectory e as small as 0.3, so is the effective number
of mapped full trajectories, implying useful TPU analysis
can be achieved with satisfactory privacy guarantees.

4.4 Adversary Error

Table 3 shows the expected AD between a sanitized and
its original mapped trajectories calculated via Eq (13). Note
that the 100 repeats were generated differently for experi-
ments 1 and 2 vs. experiments 3 and 4 because the former
two are synthetic data while the latter two are quasi-real
and real open-source datasets, respectively. Specifically, in
experiments 1 and 2, we generated 100 GPS data sets per the
simulation setting in Sec 4.1; in experiments 3 and 4, the 100
repeats were obtained by performing 100 sets of sanitization
on a fixed GPS dataset in each experiment. As a result, the
variability of AD comes from two sources — sampling error
and sanitation error — in experiments 1 and 2 and contains
only the sanitization error in experiments 3 and 4.

The first observation is that the smaller e is, the larger the
distance is, as expected. Second, the AD value varies across
the experiments for the same ¢, which makes sense, as the
AD works with the distance between a pair of locations on
a map and the road network matters. Given that the road
networks differ in the four experiments, it is not surprising
that the AD varies by experiment. Third, the adversary error
measured by the AD at ¢ < 0.3 is sufficiently large per
location on a trajectory for each experiment (> 30 meters).

Fig. 8 presents the probability distributions of CPD [ and the
correctly identified positions m (whether consecutive or not)
for three different clip radius C' (20, 40, and 80 meters) when
the number of records per trajectory n = 10 for different e.
Since all 4 experiments used the same n and ¢ value, the
results in Fig. 8 apply to all four experiments. As expected,
as C increases (the criterion for claiming correct positioning
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TABLE 3: Mean (SD) average distance between mapped
locations on sanitized and original trajectories (100 repeats)

€

experiment 0.05 0.1 0.3 0.5 0.8
1 180 (6.7) 87(2.0) 30(0.9) 18(0.3) 11(0.1)
ADf 2 1189 (16.4) 814 (6.8) 435 (4.9) 341 (4.5) 296(2.4)

(meters) 3 739 (24.1) 438 (32.3) 185 (31.4)121 (5.4) 99 (2.1)
4 214 (21.5) 108 (11.4) 38 (3.7) 23 (2.1) 13 (1.4)

loosens) or as per-trajectory e increases, the adversary’s
accuracy for correctly identifying more positions and more
consecutive positions increase. In the case of C' = 80 meters
— a rather relaxed criterion for correct identification, the
probability of identifying 10 positions out of 10 is > 80%.
The probability decreases to ~ 10% for C' = 40 meters
and ~ 0% for C' = 20 meters. The plots also illustrate
the differences between CPD [ and the number of correctly
identified locations m. For example, for C' = 20, Pr(1=6) is
close to 0%, but Pr(m=6) is ~ 20%, regardless of whether
the 6 positions are consecutive or not.
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Fig. 8: Probability distributions of CPD [ (left column) and
correctly identified positions m (right column)

In summary, we can draw the following conclusions from
the adversary error analysis in this subsection. (1) The
magnitude of the adversary error closely relates to the
road network type and structure. (2) The adversary error
in reconstructing a trajectory from the sanitized trajectory
around ¢ < 0.3 is sufficiently large per the measures of
AD and CPD to not pose serious privacy threats. (3) Taken
together with the observations in the utility analysis, a good
trade-off between the PP-TPU utility and privacy protection
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can be achieved at per-trajectory ¢ ~ 0.3 with < 10 GPS
records per trajectory in these 4 experiments. Users of the
PP-TPU procedure can run similar analysis and choose an
€ that leads to a good balance between utility and privacy
protection for their specific problems.

5 CONCLUSIONS

This paper addresses privacy-preserving TPU analyses. We
employ the notation of GI to protect individual GPS spatial-
temporal records and the subsequent TPU analysis. The
proposed PP-TPU procedure can be adopted by service
providers (e.g., mobile phone companies, GPS navigator
apps) at the GPS data collection stage. We define the ef-
fective number of mapped full trajectories, the usefulness
concept, and different types of deviations in distance mea-
sures based on sanitized GPS records to quantify the utility
of the sanitized trajectories. We also propose the concepts
of average distance and consecutive positioning degree to
assess the adversary error based on released GPS trajectory
records. Our analytical results and empirical studies suggest
that it is feasible to employ the GI concept to collect and
release GPS information for TPU analysis while guarantee-
ing location privacy for the individuals who contribute their
GPS data. Our future work will look into incorporating the
dependency among the location points on the same travel
trajectory and better utilizing the public road network maps
to develop new randomization mechanisms of better utility
without comprising privacy.
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