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Abstract

Differential Privacy (DP) formalizes privacy in mathematical terms and provides a
robust concept for privacy protection. DIfferentially Private Data Synthesis (DIPS)
techniques produce and release synthetic individual-level data in the DP framework.
One key challenge to developing DIPS methods is preservation of the statistical utility
of synthetic data, especially in high-dimensional settings. We propose a new DIPS
approach, STatistical Election to Partition Sequentially (STEPS) that partitions data
by attributes according to their importance ranks according to either a practical or
statistical importance measure. STEPS aims to achieve better original information
preservation for the attributes with higher importance ranks and produce thus more
useful synthetic data overall. We present an algorithm to implement the STEPS pro-
cedure and employ the privacy budget composability to ensure the overall privacy cost
is controlled at the pre-specified value. We apply the STEPS procedure to both simu-
lated data and the 2000-2012 Current Population Survey youth voter data. The results
suggest STEPS can better preserve the population-level information and the original
information for some analyses compared to PrivBayes, a modified Uniform histogram
approach, and the flat Laplace sanitizer.
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1 Introduction

Researchers have developed various approaches to provide protection for individual sensitive

information when releasing data to researchers or the public. Among these approaches,

data synthesis is a popular technique that generates synthetic individual-level data given

the original data (Drechsler, 2011; Little, 1993; Little et al., 2004; Liu and Little, 2003;

Raghunathan et al., 2003; Reiter, 2003, 2009; Rubin, 1993). The data synthesis concept is

appealing as it provides surrogate data sets that have the same structure as the original data,

and users may perform their own analyses as if they had the original data. A recent data

synthesis approach is DIfferentially Private data Synthesis (DIPS) (Bowen and Liu, 2020)

that performs data synthesis based on differential privacy (DP), a mathematical framework

for controlling privacy risk with a prespecified privacy budget (Dwork et al., 2006).

Some researchers consider DIPS methods as “flat” or one-step in the sense that DP noises

are injected all at once or in parallel, such as the smooth and perturbed histograms (Wasser-

man and Zhou, 2010), MOdel-based DIPS (MODIPS) (Liu, 2016), DPCopula (Li et al.,

2014b), and PrivBayes (Zhang et al., 2017), among others. There also exist DP procedures

that partition data sequentially and inject random noises in a hierarchical manner to im-

prove accuracy of certain types of queries in low-dimensional settings. Though the focus

of these DP mechanisms is not data synthesis, they may be used for data syntheses with

some adaptations or with additional steps. We refer to this type of DIPS as sequential or

hierarchical as opposed to flat. For example, Xiao et al. (2010) proposed Privelet via a two-

step wavelet-based multidimensional partitioning approach to release range count queries.

Privelet is effective in the one-dimensional case but makes only slight improvements in the

two-dimensional case, and the performance could be even worse at higher dimensions (Qar-

daji et al., 2013a). Xiao et al. (2012) presented DPCube as a two-phase partitioning approach

for data cubes. Gardner et al. (2013) implemented DPCube in biomedical data to explore

its practical feasibility on real-world data, but discovered that DPCube is inefficient in con-

structing accurate high-dimensional histograms. Hay et al. (2010) developed the universal

histogram (UH) to inject noise to histogram bi-partitioning with improved accuracy in his-

togram bin counts by exploring the inherent consistency constraints. Qardaji et al. (2013b)

extended the method to relatively high dimensional data. Hay et al. (2016) conducted an

extensive comparison on most of the above mentioned algorithms using a set of evaluation

principles (DPBench), and provided valuable insights on the pros and cons on the methods

for answering 1- and 2-dimensional range queries. Li et al. (2017) introduced the privacy-

aware partitioning mechanism and the utility-based partitioning mechanism that depend on

a public but personalized privacy parameter. These methods have not been implemented to

real-world data likely due to being “unable to provide corresponding error guarantees with

such procedures for general functions” (Cummings and Durfee, 2018).

In summary, most of the hierarchical procedures focus on low dimensional data with numer-

ical attributes. To explore the potentials of hierarchical sanitization in improving the utility

of synthetic data in relatively high dimensional settings when the original data have both cat-

egorical and numerical attributes, we propose a new DIPS procedure – STatistical Election
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to Partition Sequentially (STEPS). STEPS injects noises to a hierarchical histogram. The

structure of the histogram is informed either by domain or prior knowledge, or by a statistical

metric that explores the inherent statistical information in the original data. Different layers

on the same branch in the constructed hierarchical histogram contains different attributes.

The hierarchical histogram built by STEPS is subject to equality constraints among the

nodes from different layers on the same branch; thus a post-processing procedure similar to

the UH approach (Hay et al., 2010) is used to ensure that the equality constraints are sat-

isfied. The final step of STEPS is to generate synthetic data from the differentially private

hierarchical histogram. We expect that STEPS will improve the statistical utility of the

released data compared to data synthesized through a hierarchical histogram with random

partitioning given that the data partitioning in STEPS is an informed decision, leveraging

knowledge in the data or publicly available relevant knowledge. We apply STEPS to simu-

lated data and the youth voter data from the 2000-2012 Current Population Survey (CPS)

and benchmark its utility against some DIPS approaches. To assess the overall utility of

the synthetic data, we also develop a propensity score based method that provides a general

utility metric and a holistic measure for the similarity between two data sets of the same

structure.

The remainder of the paper is organized as follows. Section 2 provides some preliminaries re-

garding DP and introduces the STEPS procedure. Section 3 applies STEPS to simulated data

and compares its capability in preserving the population-level information against PrivBayes

and a modified UH procedure. Section 4 implements the STEPS method to the CPS youth

voter data and compares the statistical utility of the synthetic data generated by STEPS,

PrivBayes, a modified UH procedure, and a flat Laplace sanitizer via several utility analysis.

In Section 5, we discuss the implications of our results and provide future research directions.

2 Methodology

2.1 Preliminaries on Differential Privacy

DP provides a mathematical and rigorous framework for protecting individual information

in a data set, regardless of the background knowledge or behaviors of data intruders, when

releasing queries to the public. Query results, in statistical terminology, are statistics; so we

use queries, query results, and statistics, interchangeably in this discuss and denote them

by s. We denote the data for privacy protection by x = {xij} for i = 1, . . . , n; j = 1, . . . , p.

Each row xi represents an individual record with p variables/attributes. We assume that

the sample size n and the number of attributes p are public knowledge and carry no privacy

information.

Definition 1 (Differential Privacy (Dwork et al., 2006)). Let d(x,x′) = 1 represents all

possible ways that data set x′ differing from x by one individual. A sanitization algorithm

R gives ε-DP, if for all data sets (x,x′) that is d(x,x′) = 1 and all result sets Q ⊆ T , where

T denotes the output range of R, to queries/statistics s that∣∣∣∣log

(
Pr(R(s,x) ∈ Q)

Pr(R(s′,x′) ∈ Q)

)∣∣∣∣ ≤ ε, (1)
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where ε > 0 is the privacy loss parameter.

The smaller ε is, the more noise are injected to the statistic s via the sanitized algorithm R;

and each individual in the data set has a lower risk of being identified or having their sensitive

information disclosed, because s would be about the same with and without that individual

in the data. In addition to the ε-DP in Definition 1, there are also conceptual relaxations

of the “pure” DP such as the approximate DP (Dwork and Roth, 2013), probabilistic DP

(Machanavajjhala et al., 2008), and concentrated DP (Dwork and Rothblum, 2016), among

others, so to lessen the amount of noises injected by DP methods by sacrificing a certain

amount of privacy.

In regard to what value of ε is considered appropriate or acceptable for practical use, Dwork

(2008) states the choice of ε is a social question. Abowd and Schmutte (2015) acknowledge

this and suggest ε at 0.01 to ln(3), or even up to 3 in releasing certain statistics in social

and economic studies. A wide range of ε values have been examined in the literature. For

instance, Machanavajjhala et al. (2008) applied DP in the OnTheMap data (commuting

patterns of the United States population) and used (ε = 8.6, δ = 10−5)-probabilistic DP (a

relaxation of the pure DP) to synthesize commuter data. Ding et al. (2011) and Li et al.

(2014b) used ε = 1 in their experiments. These examples suggest there are many factors

that affect the choice of ε, including the type of information released to the public, social

perception of privacy protection, statistical accuracy of the release data, among others. For

a socially acceptable ε given a certain type of information, a differentially private mechanism

should aim for maximizing the accuracy of released information. In other words, choosing

an “appropriate” ε is essentially a question of balancing the privacy loss and the accuracy

of the released information.

An important property of DP is that the privacy cost increases for every new query released

from the same data set, because more information is “leaked” with releasing more query

results. Therefore, the data curator must track all statistics calculated on the data set to

guarantee the privacy budget does not exceed the prespecified level. For example, if all q

queries are sent to data set x, then ε/q can be allocated to each query to ensure the privacy

budget is maintained at ε overall per the sequential composition principle (McSherry, 2009).

When no overlapping information is requested by different queries, such as when they are

calculated from disjoint subsets of a data set, the privacy cost does not accumulate. In such

a case, the parallel composition principle applies and the overall privacy cost is the maximum

privacy budget spent across all the queries (McSherry, 2009).

A common and easy way to implement DP is the Laplace mechanism. A key concept for

the Laplace mechanism is the l1 global sensitivity of statistic s (either a scalar or a vector)

is ∆1 = maxx,x′,d(x,x′)=1‖s(x) − s(x′)‖1 for all d(x,x′) = 1 (Dwork et al., 2006). Global

sensitivity can also be defined in other forms, such as the l2 global sensitivity (Dwork and

Roth, 2013) and lp global sensitivity for any p ≥ 1 (Liu, 2019).

Definition 2 (Laplace mechanism (Dwork et al., 2006)). The Laplace sanitizer adds noise

to statistics s = (s1, . . . , sK) via s∗k = sk + ek, where ek∼Lap(0,∆1/ε) and is independent for

k = 1, . . . , K and ∆1 is the l1 global sensitivity of s.
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When ε is small or ∆1 is large, more Laplace noise is added to s. Other common DP

mechanisms include the Gaussian mechanism that is built upon the approximate or the

probabilistic DP (Dwork and Roth, 2013; Liu, 2019), and the exponential mechanism that

can release both numerical and non-numerical queries (McSherry and Talwar, 2007), among

others. The definition of the exponential mechanism is presented below, which will be used

in our proposed STEPS procedure.

Definition 3 (exponential mechanism (McSherry and Talwar, 2007)). Let u be a utility

function that assigns a score to each possible output of a query. The exponential mech-

anism that satisfies ε-DP releases query result s calculated from data D with probability

exp(u(s) ε
2δu

)

/∫
s′

exp
(
u(s′) ε

2δu

)
ds′, where δu is the maximum change in score u with one

element change in data D.

2.2 STatistical Election to Partition Sequentially (STEPS)

2.2.1 Overview

STEPS aims at privately selecting a decomposition sequence of the joint distribution of p

attributes X = (X1, X2, . . . , Xp) in the data, and sanitizing each component in the decom-

position sequentially to achieve better original information preservation for the attributes

that are more important to the practical or statistical understanding of the population-level

signals in the data. The outcome of STEPS is a private joint distribution f(X), from which

synthetic data can be generated and released.

The decomposition of the joint distribution can be a “full” decomposition such as f(X) =

f(X1)f(X2|X1) . . . , f(Xp|X1, . . . , Xp−1), or “partial” decomposition such as f(X) =f(X1)

f(X2|X1)f(X3, . . . , Xp−1|X1, X2) or f(X) =f(X1, . . . , Xj|Xj+1, . . . , Xp)f(Xj+1, . . . , Xp), etc.

For example, suppose a data set has three attributes X1, X2, X3, and the decomposition se-

quence chosen by STEPS is f(X3)f(X1|X3)f(X2|X1, X3). STEPS sanitizes the three compo-

nents f(X3), f(X1|X3), and f(X2|X1, X3), independently, taking into account the necessary

equality constraints along the way. Since all three components contain information on X3,

STEPS will aggregate all the sanitized information on X3 when generating the private joint

distribution; similarly for X1, the information on which is contained in two queries (f (X1|X3)

and f(X2|X1, X3)), and STEPS will aggregate both sources of sanitized information on X1

when generating the private joint distribution. Suppose that the sanitization of each com-

ponent is allocated the same amount of privacy budget, since X3 is involved in all three

components in the decomposition, it receives the most amount of privacy budget collectively

and its original information is expected to be better preserved than the other two; so does

X1 compared to X2.

2.2.2 Procedure

The STEPS procedure has three main steps: data partitioning and hierarchical tree con-

struction; sanitization and correction; and synthesis and release. While STEPS can deal

with both categorical and numerical attributes, the numerical ones will be first cut into his-
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togram bins and be treated as categorical attributes afterwards until the last step of synthetic

data generation.

In the first step of data partitioning and hierarchical tree construction, STEPS selects a

decomposition of the joint distribution f(X). The decomposition sequence, once decided,

can be represented in the format of a hierarchical tree T . The closer an attribute is placed to

the top of the tree, more statistics that involve that attribute will be sanitized the subsequent

steps, the more privacy budget the attribute will receive collectively, and thus more original

information is expected to be preserved for that attribute. Figure 1 shows an example of

T built by STEPS when p = 4. The layers are denoted by l = 0, 1, . . . , L = 4, and the

nodes in layer l are denoted by v(l) and each of them contains the subset of data following

the partitioning rule till that node along its branch of the tree. v(0), the node at the top

of T contains the whole data set. Kj represents the number of levels of variable Xj for

j = 1, . . . , 4. Note that the order of the variables for partitioning may differ by branch, and

the branches do not have to be of the same length. The decomposition in the tree in Figure

1 is f(X) =f(X3, X4|X2 = 1, X1 = 1)f(X2 = 1|X1 = 1)f(X1 = 1) + . . . +
∑K4

j=1 f(X3|X2 =

K2, X1 = 1, X4 = j)f(X4 = j|X2 = K2, X1 = 1)f(X2 = K2|X1 = 1)f(X1 = 1) + . . . +

f(X2, X3|X1 = K1, X4 = 1)f(X4 = 1|X1 = K1)f(X1 = K1) +
∑K2

j=1 f(X3|X4 = K4, X1 =

1, X2 = j)f(X2 = j|X4 = K4, X1 = K1)f(X4 = K4|X1 = K1)f(X1 = K1).

Figure 1: Illustration of an hierarchical tree built by STEPS in a 4-variable case.

The sequence by which the data are partitioned or by which the attributes are aligned

and placed on trees can be determined in at least two ways. First, one can leverage prior

information or domain knowledge regarding the importance of the attributes, either practical

or statistical, in a particular data set. The attributes that are of more interest to practitioners

or more important per the prior knowledge will be placed closer to the root (top) of the tree.
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Applying external knowledge to aid certain aspects of developing a DP procedure (e.g.,

hyper-parameter tuning) has been used in other privacy-preserving approaches to help save

on privacy cost and improve the utility of released results. This approach does not cost any

privacy of the current data as the information comes from outside. For the second approach,

one may apply a metric that measures the importance of each attribute to the statistical

understanding the original data, such as a quantity that quantifies the contribution of an

attribute in explaining the variability of the data; attributes that explain more variability will

be placed closer to the root of the tree. For example, information-theoretic model selection

criteria such as AIC and BIC can be used to determine the then the attribute selected to

partition the data in a parent node is the one with the smallest AIC among all the univariate

log-linear models fitted to the data. Since the metric is calculate from the original data and

determines the tree structure, a portion of the total privacy budget should be allocated to

this step to keep the determination of the partitioning sequence private.

In the second step of sanitization and correction, a differentially private mechanism injects

noises to the count of the data points contained in each of the nodes of the constructed

tree T . After the independent noise injection, the sum of the counts in the children nodes

(denoted by succ(v)) are very likely not equal to the count in their parent node v, but they

should. For example, a node v contains all the data points whose attribute “race” is “white”.

Say its original count of 100, and its children succ(v) from further partitioning by “gender”

include “white female” with an original count of 44 and “white male” of with an original

count of 56. Suppose the sanitized counts are 120, 48, and 50, respectively, then “white

male” and “white female” no longer add up to “white”. To ensure the equality constraints

between
∑

succ(v) and v in the hierarchical decomposition, a post-processing procedure

similar to the UH approach is applied, with some necessary modifications. Specifically, z is

first calculated via Eqn (2) as a weighted average of the directly sanitized count n∗[v] and the

indirectly sanitized count
∑

u∈succ(v) z[u] summed from its children nodes in a bottom-up

manner, and then the inconsistency is corrected to obtain the final consistent counts n̄∗ via

Eqn (3).

z[v(l)] =

{
n∗[v(l)], if l = L (v is a leaf node)
bL−l−bL−l−1

bL−l−1 n∗[v(l)] + bL−l−1−1
bL−l−1

∑
u∈succ(v(l)) z[u] if l = L− 1, . . . , 1

; (2)

n̄∗[v] =

{
z[v(l)], if l = L (v is a leaf node)

z[v(l)] + 1
b
(n̄∗[w]−

∑
u∈succ(w) z[u]) if l = L− 1, . . . , 1

. (3)

w in Eqn (3) represents v’s parent; b in Eqns (2) and (3) is the number of children per node,

assumed to be the same across all nodes in T in the UH approach (Hay et al., 2010), and

can be set by the data user (b ≥ 2); bl denotes b to the l power in Eqn (2). A tree built

by STEPS might have branches of different length (e.g. Figure 1). To accommodate the

requirement of the same b across all nodes so that Eqns (2) and (3) still apply, phantom

categories can be generated to make each attribute have the same number of categories as
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the attribute with the most categories. The “original” counts in the phantom categories are

0, and will remain at 0 during the sanitization and correction process.

In the last step of synthesis and release, if all attributes are categorical, we can release

directly the sanitized counts of the nodes in the bottom layer of the tree; otherwise, we can

apply uniform sampling to draw synthetic values for the numerical attributes in each bin of

the formed histograms in each node.

2.2.3 Algorithm

The algorithmic steps of the STEPS procedure are given in Algorithm 1.

Algorithm 1 STatistical Election to Partition Sequentially with L layers (STEPS-L)

1: Input: number of layers L (≤ p) (layer 0 is not counted toward L which contains all data
points); overall privacy budget ε; the portion rε for r ∈ [0, 1) allocated for determining
decomposition; utility function u (e.g., AIC) for the exponential mechanism and its
sensitivity δu; number of synthetic sets m; original data D.

2: Output: m synthetic sets D̃(1), . . . , D̃(m)

3: If there is a predefined partitioning sequence, r = 0 and build tree T according to the
predefined sequence.

4: Else define A(0)

v(0)[1]
that includes all p attributes in D.

5: For l = 0 to L
6: For k = 1 to K(l) (K(l) is number of nodes in layer l)
7: • Apply a univariate loglinear model to the data contained in node v(l)[k] on each

8: attribute from its availability set A(l)

v(l)[k]
, and calculate u.

9: • Choose a partitioning variable via the exponential mechanism with privacy budget
10: rε/(mL). Denote the selected attribute by Xj[k].
11: • Exclude Xj[k] from the availability sets for the all children nodes of v(l)[k] in layer
12: l + 1.
13: End For
14: Obtain the full histogram over all the attributes in A(L)

v(L) for all nodes in layer L.
15: End For
16: End Else
17: Sanitize all nodes in the generated tree T (e.g. via the Laplace mechanism), and apply

the inconsistency correction in Eqns (2) and (3) to obtain the final sanitized counts n̄∗.
18: If all attributes are categorical, release the sanitized counts of the nodes in the bottom

layer of T ; otherwise, apply uniform sampling to draw synthetic values for the numerical
attributes on which histograms are formed.

The input to the STEPS algorithm includes a user-specified number for the partition layers

L. Though the case of L > p would be possible by allowing the levels of an attribute to

span across multiple layers, this does not seem necessary from a data synthesis perspective,

especially when the partitioning sequence is determined statistically. Therefore, we require

that a variable used in partitioning data in earlier layers is no longer available along that
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branch; in other words, the set of available attributes A(l)

v(l)[k]
for partitioning the k-th node

v(l)[k] in layer l will shrink as the tree grows. When L < p, there are more than one attributes

in A(L)

v(L)[k]
for the k-th nodes in layer L, but no more partitioning will be applied and the

leaf nodes will be made of the cells from the full cross-tabulation over all the remaining

attributes in A(L)

v(L)[k]
.

Regarding the choice of L, a larger L is associated with more computational complexity and

less privacy budget per layer. On the other hand, since the counts in then top layers are

weighted averages per Eqn. (3), the decrease in the privacy budget per layer could be offset

or even trumped by the information gain aggregated over multiple sources of information.

Given the above reasoning, we conjecture that there exists an optimal L based on the trade-

off between privacy budget and data utility. Users may try different values of L and pick a L

leads to the best utility among all available choices; but the procedure of choosing L itself,

if using the original data, costs privacy.

If the tree structure is suggested by external knowledge, then the tree building costs no

privacy; if the data set itself is used to suggest the structure of a tree, the overall privacy

budget will be split between building and sanitizing the hierarchical tree. Specifically, a

certain portion r of the overall privacy, which is further split into L layers, will be allocated

to find the optimal split variable for a node in each layer via the Exponential mechanism; the

rest of the privacy budget (1− r) can be used to sanitize the node counts in the constructed

tree, which is also further split into L partition layers. The optimal r, a hyperparameter,

likely depends on the data; but users could preset a r value they are willing to spend on tree

building if they do not want to spend budget to pick r. Since different nodes in the same

layer do not have overlapping information, choosing the split variables and sanitation of the

nodes follow the parallel composition principle. Taken together, with m synthetic data sets,

and if each layer receives the same amount of budget for count sanitization, then each node

count in layer l receives a budget of (1− r)ε/(mL).

When the exponential mechanism is used to privately choose a partitioning variable from

the availability set A(l)

v(l)[k]
for node v(l)[k], it samples attribute j ∈ A(l)

v(l)[k]
with probability

exp
(
uj(v

(l)[k])ε
(l)
k /(2δu)

)
∑

j′∈A(l)

v(l)[k]

exp (uj′(v(l)[k])ε/(2δu))
, (4)

where δu is the maximum change in the utility function u with one element change in the

data contained in v(l)[k], and ε
(l)
k is the privacy budget node v(l)[k] receives for employing the

exponential mechanism. Users may choose any reasonable utility function u in Algorithm 1,

but an easy and useful choice is AIC, whose δu = 2 per Lemma 1.

Lemma 1. The sensitivity δu is 2 when the utility function u in the exponential mechanism

is AIC from a univariate log-linear model with a single attribute.

Proof. AIC = −2 log(L)+2K, where L is the likelihood function and K is the number of the

parameters of the model. For the univariate log-linear model with an independent variable
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of K levels,

L =
nv!∏K

k=1 nv,k!

K∏
k=1

p
nv,k

k ; and log(L) = log(nv!)−
K∑
k=1

log(nv,k!) +
K∑
k=1

nv,k log(pk), (5)

where nv is the data size, and nk,v is the count in level k of that attribute. Removing one

element from v leads to a loss of one observation in one of the K categories, say level j. The

likelihood function based on the nv − 1 observation is

L′ = (nv − 1)!

(nv,j − 1)!
∏

k 6=j nv,k!
p
nv,j−1
j

∏
k 6=j

p
nv,k

k ; and

log(L′)=log((nv − 1)!)−log((nv,j − 1)!)−
∑
k 6=j

log(nv,k!)+nk log(pk)+
K∑
k=1

nv,k log(pk). (6)

The change in AIC is ∆AIC= −2 log(L) + 2K + 2 log(L′) − 2K ′ with the removal of one

attribute. Plugging the log-likelihoods from Eqns (5) and (6) in the right side of ∆AIC,

we have ∆AIC= log(nv) − log(nv,j) + nn,j log(pj) − (nn,j − 1) log(pj) + 2K − 2K ′. The

true parameter pj is unknown and its maximum likelihood estimate is nv,j/nv and (nv,j −
1)/(nv−1) before and after removing an observation. Therefore, ∆AIC = log(nv)−log(nv,j)+

nv,j log(nv,j/nv) − (nn,j − 1) log((nv,j − 1)/(nv − 1)) + 2K − 2K ′ = (nv,j − 1) log(nv,j(nv −
1)/(nv(nv,j−1))+2K−2K ′. When nj ≥ 2, K = K ′ and thus ∆AIC = (nv,j−1) log(nv,j(nv−
1)/(nv(nv,j − 1)) ∈ (0, 1). When nj = 1, then K ′ = K − 1, and ∆AIC= 2. Taken together,

δu with AIC is 2. �

Setting δu = 2 (from Lemma 1) in Eqn (4), then attribute j is sampled with probability

exp(−AICjε
(l)
k /4)/

∑
j′ exp

(
−AICj′ε

(l)
k /4

)
(7)

If an AIC has a large negative value, direct application of Eqn (7) may lead to overflow

problems in computation. It is thus suggested to replace AICj and AICj′ above by their

differences from maxj′ AICj′ in practical implementation.

Algorithm 1 may have other variants. One such variant is that the data in a node can be

partitioned by a group of variables rather than by a single variable, if that group of variables

are similar in their importance measures. For example, suppose there are 5 variables in a

data set, each associated with their respective importance measure. Suppose L is pre-set

at 2. There are 15 ways of splitting the 5 variables into two clusters if each cluster has

to have at least one variable. To choose which splitting scheme to use, we may use the l1
difference between the two clusters on the average importance measures across the variables

in each cluster as the utility function for the exponential mechanism. The clustering scheme

with the largest l1 difference has a higher probability being chosen. Once the exponential

mechanism chooses a clustering, the group with the higher average importance measure will
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be put in layer 1 and the other will be in layer 2. This generalized splitting scheme is what

is used in the simulation studies in Sec 3.

Algorithm 1 suggests releasing multiple synthetic sets (m > 1) so to capture the sanitization

and synthesis uncertainty to yield valid statistical inferences based on the released synthetic

data. While releasing multiple sets is not the only way to capture the uncertainty, it is likely

the most straightforward and simplistic way in terms of practical implementation. Statistical

inference for analysis over the multiple sets can be obtained via the formulas given in Liu

(2016) and Bowen and Liu (2020). To preserve the overall DP in the release of m sets, each

synthetic set is allocated 1/m of the total privacy budget ε per the sequential composition.

In terms of the choice for m, m too large will lead too much information loss for a single

synthetic set to be remedied by aggregating over m sets of information; and m too small

might not adequately propagate the inherent uncertainty from sanitization and synthesis.

Our empirical studies suggest m = 3 to 6 is a good choice (Liu, 2016).

2.3 STEPS vs UH and PrivBayes

The STEPS procedure focuses on constructing a differentially private joint distribution,

in relatively high dimensional settings, from which synthetic data are generated. It aims at

preserving more information for important variables, where “important” can be defined either

statistically or per domain knowledge. By contrast, most existing partitioning approaches

focus on improving the accuracy of marginal counts in low-dimensional setting. In addition,

they often allow the same attribute to span multiple layers whereas different layers in STEPS

contain non-overlapping attributes.

Among the existing partitioning-based DP approaches, STEPS relates to the UH the most as

it uses the inconsistency correction rules developed in the latter. Exploring and maintaining

the inherent consistency constraints in the UH procedure helps improve the accuracy of

low-dimensional marginal queries. The UH is mostly studied in the context of a single

attribute, where the high-level nodes present large-range queries and the leaf nodes in the

lowest level are the finest categories/bins for the attribute. Though it can be applied to

multidimensional data, its benefit over the one-step Laplace sanitizer seems to diminish over

increasing dimensionality (Qardaji et al., 2013a,b). In addition, the UH approach has an

exponential time complexity O(bL) in L for a given b (Eqns (2) and (3)), implying a large L

would dramatically increase the computational time (Qardaji et al., 2013b).

Another related DIPS method to STEPS is PrivBayes (Zhang et al., 2017), which also

relies on the decomposition of the full distribution f(X) of the attributes in the data.

However, PrivBayes is different from STEPS in several aspects. First, PrivBayes uses a

low-dimensional distribution to approximate the full distribution f(X) by exploring the

conditional independence among the attributes. In other words, PrivBayes is model-based

approach (though Bayesian networks) to represent the signals in the data. As such, the

sanitized data are subject to bias if the Bayesian network does not provide a good fit to the

data. In contrast, STEPS does not imposes a model on the data and it always sanitizes the

full-dimensional empirical distribution, though it may leverage modelling to determine which
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layer to put a certain attribute and emphasizes the preservation of more information on more

important attributes. Second, the PrivBayes injects noises to all parent-children node pairs

in parallel to derive the differentially private approximate probability mass function to f(X)

from which synthetic data can be generated; correction for inconsistency is not needed after

the sanitation.

2.4 A General Utility Metric

To assess the similarity between synthetic data and actual data, we develop the SPECKS

(Synthetic data generation; Propensity score matching; Empirical Comparison via the

Kolmogorov-Smirnov distance) metric. SPECKS is a propensity-score-based general utility

measure and can be used to compare the similarity of two data sets of the same structure

of any dimension without making assumptions on the distributions of the attributes. The

procedure of SPECKS is given below. Each step is straightforward and easy to implement.

1) Combine the original and synthetic data, each of size n. Create an indicator variable T

where Ti = 1 if record i is from the synthetic data and Ti = 0 otherwise for i = 1, . . . , 2n.

2) Calculate the propensity score for each record i, ei = Pr(Ti = 1|xi), through a classifi-

cation algorithm, with the data attributes as input features.

3) Calculate the empirical CDFs of the propensity score, F̂ (e) and F̃ (e), for the actual

and the synthetic groups, separately.

4) Compute the Kolmogorov-Smirnov (KS) distance d = supe |F̃ (e) − F̂ (e)| between the

two empirical CDFs (if multiple synthetic data sets are generated, the average KS

distance over the multiple sets is taken).

If the synthetic data preserve the original information well, then the observations from the

two groups are indistinguishable and a small KS distance between the original and synthetic

empirical CDFs is expected. In the second step of the SPECKS procedure, any classifier

(e.g., logistic regression, random forests, SVM) can be used. In the case of logistic regression,

the model covariates may include the main effects of the data attributes or interaction terms

among the attributes. This implies that the propensity scores will vary by classifier. Bowen

and Snoke (2019) note that different classifiers measure different types of distributional

similarity. For instance, a logistic regression model with only main effects measures data

similarity in the marginal distributions (simultaneously) whereas a more complex CART

model can measure similarity in high-order dependency among the attributes.

Compared to other propensity-score-based utility measures or discriminate-based methods,

SPECKS has similar steps such as the calculation of propensity scores, but differs in how

it formulates the final utility metric from the estimated propensity scores (Steps 3 and 4

above). In Sakshaug and Raghunathan (2010), the propensity scores are discretized based

on how the Chi-squared test is formulated. Woo et al. (2009) calculate the mean squared

error (MSE) of the calculated propensity score vs the true proportion of synthetic cases.

Snoke et al. (2018) normalize the MSE statistic by its expected null value and standard

deviation, which helps with its interpretability and also seems to be more sensitive in telling
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the synthetic data apart from the actual data. However, the derivation of the expected

null value and standard deviation is driven large-sample assumptions. In contrast, SPECKS

utilizes the KS distance which is the maximum distance of two empirical CDFs, and thus

considers the worst-case separation between the synthetic data and the actual data.

3 Simulation Studies

In this section, we implement the STEPS method in simulated data to generate differentially

private synthetic data, and compare the statistical utility of the synthesized data between

STEPS vs. a modified version of the UH and PrivBayes.

3.1 Choice of Methods for Comparison

The reasons for choosing the UH and PrivBayes to compare with STEPS are given below.

The same justifications apply to the case study in Sec 4.

First, the UH and PrivBayes methods are the most related methods to STEPS as presented

in Sec 2.3. STEPS uses the inconsistency correction rule of the UH In addition, Qardaji et al.

(2013b) suggest that the UH generally is the best data-independent algorithm and achieves

lower error for range queries from one-dimensional histograms, compared to many data-

independent methods. When implementing the procedure, we made some modification to

the original UH to accommodate computational constraints and to handle multi-dimensional

data. Both STEPS and PrivBayes build a differentially private joint distribution among the

data attributes from which synthetic data are generated. Similar to STEPS, PrivBayes deals

with numerical attributes by discretizing them into histogram bins.

Though Privelet and DPcube, originally developed for answering range queries from one- or

two- dimensional histograms, can be potentially used for data synthesis, we do not examine

them in the simulation studies as neither offers better performance than the UH approach

in general even in the low-dimensional setting (Hay et al., 2016). MWEM (Hardt et al.,

2012) aims to obtain differentially private queries rather than generating synthetic data

from an empirical distribution. To use MWEM for data synthesis, choosing a good set

of queries that represent the information of the original data is vital. Even with a good

set of queries to start with, it does not necessarily outperform the flat Laplace sanitizer

when generating synthetic data (Eugenio and Liu, 2018). In addition, MWEM is proved to

be inconsistent and its performance highly depends on the number of iterations (Eugenio

and Liu, 2018; Hay et al., 2016; Li et al., 2014a). Though the DAWA method (Li et al.,

2014a) beats other methods including DPcube, MWEM, and Privelet for low-dimensional

range queries, the good performance replies on allocating some privacy budget to identify an

optimal bucketing scheme on the numerical attributes before the sanitization. Given most

of the attributes in our simulation and case studies are either categorical or ordinal with

limited number of levels, the advantages of DAWA will not be brought into full strength.

Though the model-dependent MODIPS method can deal with all types of data in theory,

it has a couple of limitations for practical implementation, such as that not every sufficient

statistic is easy to sanitize and a mis-specified model would generate biased synthetic data.
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DPcopula uses copula to model pairwise dependency among attributes, based on which data

are synthesized; the method assumes continuous marginal CDF; and the synthetic data can

also be sensitive to the type of copula employed.

3.2 Simulation Setting

We simulated data from two linear regression models. For each model, we simulated 200

data sets. Model 1 is main-effect model: Y = β0 +
∑10

j=1 βjXj + ε with ε ∼ N(0, 1). X1

to X4 are categorical predictors with 2, 3, 4 and 5 levels respectively, and the true β val-

ues are 0, 0.5, (0.5,−0.8), (1, 0.5, 0.5), (0.5, 0.7, 0.8, 0.5), respectively. Model 2 is a saturated

model: Y = βTX1234 + ε with ε ∼ N(0, 1). X1234 refers the 4-way interaction term among

X1, X2, X3, X4, and β is 120-dimensional with each of its elements sampled from a standard

normal distribution and then fixed for all 200 repeats. The two models represent the two

extremes of a wide spectrum of possible models with 4 predictors.

We examined two sample sizes scenarios, n = 10, 000 and n = 4, 000, in each model. We

set privacy budget ε at 0.5, 2, 5, 10, respectively. For each of the 12 simulation scenarios

(two models at two sample sizes with three DIPS methods), four sets of synthetic data

were generated by each of the three DIPS approaches (STEPS, UH, and PrivBayes). The

numerical attribute Y was cut into 15 bins before the application of each method, and was

treated as categorical until the last step before data release (refer to line 18 of Algorithm 1).

For STEPS, we split the total ε in a 1 : 9 ratio between building the tree and sanitizing node

counts for the tree. We used AIC as the utility function in the exponential mechanism for

choosing partitioning attributes. Since the group of variables (X1, X2, X4) had much smaller

AIC than the group (X3, Y ), we used the former group as the partitioning variables in Layer

1, and put the second group (X3, Y ) in Layer 2 to form a tree with L = 2. The Laplace

mechanism was applied to sanitize the node counts in the tree. In addition, We created

phantom categories for X1 to X4 to match the number of bins b in discretized Y so that the

inconsistency correction formulas in Eqns (2) and (3) can be applied (see Sec 2.2.2). For the

UH, we modified the original approach to allow unequal number of children per node. In

fact, the modified UH is more of a STEPS procedure with a random partitioning sequence

and L = 4. For PrivBayes, we applied the Python codes by Ping et al. (2017), available on

GitHub (Ping, 2018). The degree of the Bayesian network was set at 2 in all the simulation

scenarios. The total ε was split in half between choosing a Bayesian network vs. sanitizing

the joint distribution among the attributes (the default setting).

We run the true underlying linear regression models on each synthetic set and calculated

the inferences on the regression coefficients using the combination rule given in Liu (2016)

and Bowen and Liu (2020). We define the parameter of interest as β and the estimate of β

in the jth synthetic data by β̂j and the associated standard error by SEj. The final point

estimate β is

β̄ = m−1
∑m

d=1β̂j (8)

with Var(β̄) estimated by

T = m−1B +W, (9)
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where B =
∑m

j=1(β̂j−β̄)2/(m−1) (between-set variability) and W = m−1
∑m

j=1 SE
2
j (average

per-set variability); and tests and confidence intervals are based on

(β̄ − β)T−1/2 ∼ tν=(m−1)(1+mW/B)2 . (10)

For Model 2, the ridge regression was applied given the large number of parameters. The

bias, root mean squared error (RMSE), and coverage probability (CP) of the 95% confidence

interval (CI) were obtained for each regression coefficient in each model. We also applied

the estimated private models based on the synthetic data to predict Y in an independent

testing data set of n = 100, and reported the prediction MSE.

3.3 Results

The results are presented in Figures 2 and 3 for the main-effect model (Model 1) and the

saturated model (Model 2), respectively.

When the true model contains only the main effects, PrivBayes performs the best in parame-

ter estimation bias, CP, and prediction RMSE and the worst in parameter estimation RMSE;

STEPS performs the best in parameter estimation RMSE; the modified UH is the worst in

parameter estimation bias, CP, and the prediction RMSE. As expected, the inferences im-

prove as n or ε increases; the only exception is the trend of CP across ε for PrivBayes at both

n scenarios, where more deviation from the nominal 95% level is observed as ε gets larger.

This counter-intuitive observation is likely due to the Y discretization. Specifically, when ε

is large, the main source of information loss comes from the (deterministic) discretization in

Y and the main source of variation across the multiple synthetic sets is the uniform sampling

from each sanitized bin, rather than the noises introduced by sanitization. When ε is small,

the main source of information loss and variability across multiple synthetic sets is saniti-

zation, and releasing multiple synthetic sets is designed to take into account that source of

variation and the CP is rather better than that at large ε.

When the true model is saturated, STEPS performs the best overall; PrivBayes is the worst

in parameter estimation RMSE, and the modified UH is the worst in CP and prediction

RMSE. For STEPS, the inferences improve as n or ε increases as expected, with the only

exception in the case of CP across all ε values at both n scenarios – likely due to the same

reason as discussed above in the case of PrivBayes in the main-effect model. For the modified

UH, the inferences get better as n increases, but the trend is not obvious across all ε values.

For PrivBayes, the trends across n and ε are not obvious in any of the examined metrics.

4 Application to the 2002-2012 CPS Youth Voter Data

4.1 Data Description

The 2000-2012 Current Population Survey (CPS) is downloaded from the Harvard Data-

verse. The CPS is the primary source of labor force statistics for the United States pop-

ulation. In election years, the CPS also collects data on reported voting and registration,
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Figure 2: Inferences based on differentially private synthetic data in the simulation study for Model
1. Each line represents a different regression coefficient in Model 1 in each of the top 3 plots.
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Figure 3: Inferences based on differentially private synthetic data in the simulation study for Model
2. In the bias figure, each box plot represents the distribution of the biases over the 120 model
parameters in a specific simulation scenario; similarly for the RMSE and CI.
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providing a large and nationally representative sample with coverage of both registered and

non-registered individuals, and reports statistics on the voter turnout, age, race, among oth-

ers. The voting and registration data from the CPS are frequently used and cited by various

news outlets such as Time (ABRAMS, 2019), New York Times (Hill and Grumbach, 2019),

Fortune (Eversley, 2019), and Newswise (Flamisch, 2019), among others.

In this application, we focus on the youth voter subset. The data was used to examine the

effect of preregistration laws on turnout among young voters (Holbein and Hillygus, 2016).

The data set has n = 44, 821 observations and p = 15 variables (Table 1), with sensitive

attributes such as Family Income and Voted and pseudo-identifiers such as gender, race

information, and location information that can be used by adversaries to identify subjects or

to link to other databases. Therefore, it is important to ensure that the private information

is protected before releasing the data.

Variable category (percentage)
Voted yes (34.7), no (63.3)
Preregistration State yes (10.5), no (89.5)
Age (years) 18 (20.5), 19 (19.7), 20 (20.0), 21 (20.0), 22 (19.8)
Married yes (7.5), no (92.5)
Female yes (50.7), no (40.3)
Family Income‡ 14 levels (3.1, 5.9, 26.5)‡

College Degree yes (3.1), no (96.9)
White yes (69.3), no (31.7)
Hispanic yes (14.6), no (85.4)
Registration Status yes (52.4), yes (47.8)
Metropolitan Area yes (77.9), no (22.1)

Length of Residence
<1 month (2.7), 1-6 months (20.0), 7-11 months (6.9),
1-2 years (15.0), 3-4 years (9.8), ≥ 5 years (45.6)

Business/Farm Employment yes (12.6), no (12.62)
In-Person Interview yes (36.7), no (63.3)
DMV Registration yes (12.7), no (87.3)

For Family Income, the minimum, medium and maximum percentages among the 14 levels are listed.

Table 1: List of variables and their values from youth voter subset in the 2000-2012 CPS data.

4.2 Implementation

Similar to the simulation studies, we compare the STEPS procedure in data utility against

the modified UH approach and PrivBayes. Hay et al. (2016) observe that when n or ε is

large, it is unlikely that any of the more complex algorithms will beat a simpler and easier-to-

deploy flat algorithm. Similar observations regarding the Laplace sanitizer are also obtained

in Bowen and Liu (2020), especially when p is large. Given that the voter data set has a

large n (44, 821) and a relatively large p (15), it will be of interest to see how STEPS fares

against the simple flat Laplace sanitizer, which is included as another benchmark.

For STEPS, we applied Algorithm 1. When deciding on the variable order for partitioning

and building the tree, we leveraged domain knowledge in pubic policy instead of using
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the exponential mechanism. Our domain expert, a public policy researcher at the Urban

Institute, suggested that “Voted”, “College Degree”, and “Preregistration State” are the

top three important variables to practitioners in this data set. “Voted” is ranked first,

because this is voter data set and “voted” is perhaps the variable that is of interest to most

researchers and practitioners who use the data. Also, this attribute presents an important

predictor for turnout in future elections (Malchow, 2004). “College Degree” is ranked the

second since scholars have consistently noted that highly educated individuals participate in

politics more than the average citizen (Campbell et al., 1980; Rosenstone and Hansen, 1993).

Some researchers have also concluded that education is the socio-demographic variable most

strongly correlated with turnout (Wolfinger et al., 1980), which also relates to education

status. The third variable is “Pre-registration State”. McDonald and Thornburg (2010)

found higher turnout rates in Florida and Hawaii among those who preregistered (registered

before they were able to take part in the next election) compared to those who registered

after they turned 18. Pre-registrants were 4.7% more likely to vote in the 2008 election

than those who registered after they turned 18. For comparison, we built a tree with L = 2

(partitioning by “voted” then “College Degree”), and a tree with L = 3 (partitioning by

“voted” then “College Degree”, then “Pre-registration State”). Figure 4 shows the tree

structure for STEPS at L = 2. Since “family income” has the most categories, thus b = 14

and the phantom categories are created for all the other 14 attributes to have b = 14

universally. These phantom categories are created solely for the purposes of applying the

inconsistency correction rule in Eqns (2) and (3), and will be removed once the synthetic

data are generated.

Whole Data

Voted 0  Voted 1  

College 
Degree 0

College 
Degree 1

College 
Degree 0

College 
Degree 1

13-way cross-
tabulation on 

remaining attributes

13-way cross-
tabulation on 

remaining attributes

13-way cross-
tabulation on 

remaining attributes

13-way cross-
tabulation on 

remaining attributes

+12 phantom 
nodes

+12 phantom 
nodes

+12 phantom 
nodes

Figure 4: A sketch of the constructed tree in STEPS-2.

For UH, We did not set the number of layers at L = logbN per the original procedure Hay

et al. (2010), but used L = 2 and L = 3. The main reason is the computational constraints

and practical limitations. If we had used b = 14 with 15 attributes, with L = 15 and
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N = 1415, and the computational complexity would be O(N) = O(1415). In each layer for

L = 2 and L = 3, we randomly chose an attribute to partition the data, sanitized the node

counts, and then applied Eqns (2) and (3) to obtain the final differentially private histogram,

from which data were synthesized.

For PrivBayes, we applied the GitHub codes (Ping, 2018). The degree of the Bayesian

network was set at 2 and the total ε was divided in half between selecting a Bayesian network

vs. sanitizing the resultant joint distribution.

The flat Laplace sanitizer injected independent noises from Laplace(0, ε−1) to each of the

1, 290, 240 cells, after removing the impossible case of a person voting if they are not regis-

tered, from the 15-way cross-tabulation (Table 2). Given the enormous number of cells, the

majority of the cells are empty (98.35%). Since the empty cells are sample zeros rather than

population zeros, they were and should be sanitized rather than being kept at zero. Data

were synthesized from the 15-dimensional sanitized table.

Cell size 0 1 2 3 4 5 > 5
Number of Cells 1,268,911 14,061 3,545 1,508 740 425 1,050

Proportion 98.35% 1.09% 0.27% 0.12% 0.06% 0.03% 0.08%

Table 2: Summary of cell sizes and frequencies in the full cross tabulation of the youth voter data.

We varied privacy budget at ε ∈ exp{−2,−1, 0, 1, 2} to examine how ε affects the utility

of the synthetic data in each of the DIPS methods. We generated 5 synthetic data sets,

each at a budget of ε/5 to account for the synthesis and sanitization variability. We ran 10

repetitions to quantify the stability of the DIPS methods.

4.3 Statistical Utility Assessment

We assess the statistical utility of the synthetic data via three analyses: the SPECKS metric,

chi-squared tests of association, and a difference-in-differences (DID) model. As discussed

in Sec 2.4, the SPECKS metric measures the worst-case separation in two data sets as a

whole, whereas the latter two focus on exploring relationships among the attributes that

practitioners would be interested in learning from this data set. Interested readers may refer

to Bowen and Snoke (2019) for further discussion on different types of utility analysis.

In the SPECKS analysis, we used the logistic regression that contains the main effects and

first order interactions among all the attributes as predictor as the classifier. The results

from the 5 synthetic data sets were averaged.

For the chi-squared tests of association, we conducted tests for all possible 2-way tables

(105 in total) across the 15 attributes to see how well the statistically significant 2-way

associations detected in the original data are preserved in the synthetic data. Since the goal

here is not to to pick at least one statistically significant associations out of 105 tables, we

did not apply the multiplicity adjustment. We first conducted the 105 chi-squared tests

and obtained the chi-squared test statistic X2
jk for the k-th test in synthetic data set j for

k = 1, . . . , 105 and j = 1, . . . ,m = 5. The degree of freedom of the k-th chi-squared test
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is denoted by νk. We then calculated the combined p-value for the k-th test across the 5

synthetic sets via the procedure in Li et al. (1991). We note the p-value combination rule

is developed in the framework of the Wald-type chi-squared test in Li et al. (1991), whereas

the chi-squared test in our case is a score test. We don’t expect this discrepancy to be a

problem given the large sample size in this case study. Specifically, the combined p-value for

the k-th test is calculated as

Pr(D̂k > Fνk,ηk(1− α)), (11)

where D̂k = (X2
kν
−1
k − ((m+ 1)(m− 1)−1) rD,k)(1 + rD,k)

−1 is the test statistic, X2
k =

m−1
∑m

j=1X
2
jk, rD,k = (1 +m−1)

[
(m− 1)−1

∑m
j=1

(√
X2
jk −

√
X2
k

)]
, ηk=ν

−3/m
k (m−1)(1+

r−1D,k)
2, and Fνk,ηk(1−α) is the (1−α) percentile of the Fνk,ηk distribution.

For the third analysis, we ran the DID logistic regression in Holbein and Hillygus (2016) to

examine the effects of “Preregistration State” and ‘Registration Status” on “Voted”; all 14

attributes are included as predictors plus an interaction term between “Preregistration State”

and “Registration Status”. “Age” is treated as a numerical predictor whereas the others are

categorical, leading to a total of 32 regression coefficients β, including the intercept. We

first applied the inferential combination rules from Eqns (8) to (10) to obtain the 95% CIs

for β. We then calculated the CI overlap metric (Karr et al., 2006), which is defined as

0.5

(
min(uo, us)−max(lo, ls)

uo − lo
+
min(uo, us)−max(lo, ls)

us − ls

)
, (12)

where uo, lo and us, ls are the upper and lower bounds for the original and synthetic CIs

respectively. This metric measures how much the CI estimation for a parameter based on

the original data overlaps that based on the synthetic data. In other words, a value of 1

corresponds to perfect match between the CIs based on the synthetic and original data;

and a value of 0 means there is no overlap between the two CIs (regardless of the degree of

non-overlap). When one CI is completely contained within the other, the CI overlap value

is greater than 0.5.

4.3.1 Utility Result Summary

We summarize the utility results from all three types of analysis in Table 3. The numbers

in parentheses are their performance rank, where 1 is the best and 6 is the worst. The

overall score is the sum of all ranks: the smaller, the better. The consistency rate column

refers to the percentage that the chi-squared test conclusions are consistent between the

original and synthetic data out of 105 tests at the significance levels of α = {1, 5, 10}%,

respectively. For the CI overlap metric, we report that the average CI overlap values across all

32 coefficients, as well as those on the coefficients associated with covariates “Preregistration

State”, “Registration Status”, and the interaction term between “Preregistration State” and

“Registration Status” (Prereg. x Reg.), which are the three covariates are of primary interest

in the DID model of Holbein and Hillygus (2016).
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log(ε)
DIPS Method SPECKS:

KS
Distance

Consistency Rate with α Confidence Interval Overlap
Overall
Score

1% 5% 10%
All

Coeff.
Preg.
State

Reg.
Status

Prereg.
x Reg.

-2 flat Laplace 0.981 (6) 0.190 (1) 0.210 (1) 0.210 (1) 0.092 (3) 0.872 (3) 0.637 (3) 0.872 (3) 21
-2 PrivBayes 0.462 (1) 0.152 (6) 0.143 (6) 0.105 (6) 0.043 (6) 0.681 (6) 0.000 (6) 0.681 (6) 43
-2 UH modified-2 0.973 (4) 0.162 (2) 0.152 (2) 0.114 (2) 0.099 (1) 0.865 (4) 0.602 (4) 0.865 (4) 23
-2 UH modified-3 0.957 (3) 0.162 (2) 0.152 (2) 0.114 (2) 0.093 (2) 0.848 (5) 0.495 (5) 0.848 (5) 26
-2 STEPS-2 0.975 (5) 0.162 (2) 0.152 (2) 0.114 (2) 0.090 (4) 0.874 (1) 0.661 (1) 0.874 (1) 18
-2 STEPS-3 0.956 (2) 0.162 (2) 0.152 (2) 0.114 (2) 0.090 (4) 0.873 (2) 0.659 (2) 0.873 (2) 18

-1 flat Laplace 0.978 (6) 0.181 (1) 0.210 (1) 0.210 (1) 0.102 (1) 0.871 (3) 0.638 (3) 0.871 (3) 19
-1 PrivBayes 0.422 (1) 0.152 (6) 0.143 (6) 0.105 (6) 0.050 (6) 0.681 (6) 0.000 (6) 0.681 (6) 43
-1 UH modified-2 0.971 (4) 0.162 (2) 0.152 (4) 0.114 (4) 0.098 (2) 0.865 (4) 0.602 (4) 0.865 (4) 28
-1 UH modified-3 0.954 (2) 0.162 (2) 0.152 (4) 0.114 (4) 0.092 (3) 0.839 (5) 0.445 (5) 0.839 (5) 30
-1 STEPS-2 0.971 (4) 0.162 (2) 0.171 (2) 0.133 (2) 0.090 (5) 0.874 (1) 0.667 (1) 0.874 (1) 18
-1 STEPS-3 0.954 (2) 0.162 (2) 0.171 (2) 0.133 (2) 0.091 (4) 0.874 (1) 0.666 (2) 0.874 (1) 16

0 flat Laplace 0.968 (6) 0.190 (1) 0.210 (1) 0.210 (1) 0.108 (1) 0.871 (4) 0.641 (3) 0.871 (4) 21
0 PrivBayes 0.272 (1) 0.152 (6) 0.143 (6) 0.114 (4) 0.076 (6) 0.943 (1) 0.000 (6) 0.962 (1) 31
0 UH modified-2 0.964 (4) 0.162 (4) 0.152 (4) 0.114 (4) 0.106 (2) 0.864 (5) 0.605 (4) 0.864 (5) 32
0 UH modified-3 0.945 (2) 0.162 (4) 0.152 (4) 0.114 (4) 0.090 (3) 0.838 (6) 0.446 (5) 0.838 (6) 34
0 STEPS-2 0.965 (5) 0.181 (2) 0.171 (2) 0.133 (2) 0.090 (3) 0.873 (2) 0.671 (1) 0.873 (2) 19
0 STEPS-3 0.945 (2) 0.181 (2) 0.171 (2) 0.133 (2) 0.090 (3) 0.873 (2) 0.671 (1) 0.873 (2) 16

1 flat Laplace 0.930 (4) 0.276 (1) 0.371 (1) 0.448 (1) 0.092 (4) 0.867 (4) 0.651 (4) 0.867 (4) 23
1 PrivBayes 0.187 (1) 0.171 (4) 0.171 (6) 0.133 (6) 0.102 (2) 0.978 (1) 0.847 (1) 0.990 (1) 22
1 UH modified-2 0.944 (5) 0.162 (5) 0.200 (4) 0.219 (4) 0.125 (1) 0.863 (5) 0.612 (5) 0.863 (5) 34
1 UH modified-3 0.919 (2) 0.162 (5) 0.181 (5) 0.219 (4) 0.096 (3) 0.837 (6) 0.453 (6) 0.837 (6) 37
1 STEPS-2 0.944 (5) 0.200 (2) 0.257 (2) 0.238 (2) 0.091 (5) 0.871 (2) 0.677 (2) 0.871 (2) 22
1 STEPS-3 0.919 (2) 0.200 (2) 0.248 (2) 0.238 (2) 0.084 (6) 0.871 (2) 0.676 (3) 0.871 (2) 21

2 flat Laplace 0.833 (2) 0.467 (1) 0.552 (1) 0.629 (1) 0.104 (1) 0.862 (4) 0.684 (4) 0.862 (4) 18
2 PrivBayes 0.157 (1) 0.190 (6) 0.181 (6) 0.143 (7) 0.099 (3) 0.988 (1) 0.983 (1) 0.971 (1) 26
2 UH modified-2 0.885 (5) 0.352 (4) 0.400 (4) 0.410 (6) 0.100 (2) 0.860 (5) 0.635 (5) 0.860 (5) 36
2 UH modified-3 0.843 (3) 0.305 (5) 0.390 (5) 0.457 (4) 0.076 (5) 0.849 (6) 0.553 (6) 0.849 (6) 40
2 STEPS-2 0.886 (6) 0.400 (2) 0.448 (2) 0.486 (2) 0.093 (4) 0.865 (2) 0.696 (2) 0.865 (2) 22
2 STEPS-3 0.843 (3) 0.400 (2) 0.448 (2) 0.486 (2) 0.076 (5) 0.865 (2) 0.695 (3) 0.865 (2) 21

Table 3: Summary utility analysis. The numbers in parentheses are the performance ranks with 1
being the best and 6 being the worst. Overall score is the sum of all ranks: the smaller, the better.

Overall, the utility in each analysis increases with ε for each DIP method, with the only

exception on the CI overlap values from the DID model, where the improvement with ε is

not obvious. All analyses taken together, STEPS-2 and STEPS-3 with L = 2 and L = 3

are the best, followed by the flat Laplace sanitizer. PrivBayes performs the best with regard

to the SPECKS analysis, by a large margin, compared to the rest, but does not do well in

the chi-squared tests or the DID model CI overlap analysis. The Laplace sanitizer performs

the best in the chi-squared tests, slightly worse than STEPS on the other analysis especially

when ε is small. The STEPS method outperforms the random partitioning approach via

the modified UH method on almost all metrics, demonstrating the advantages of informed

partitioning.

In what follows, we provide more details on the results in each of the utility analyses.
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4.3.2 SPECKS Analysis for General Utility

Figure 5 depicts the results on the SPECKS analysis (the standard deviations on the KS

distance across the repeats are two orders of magnitude smaller than the average KS distance

and barely visible on the plots). For all methods, the KS distance decreases as ε increases, as

expected, providing empirical evidence that SPECKS does what it is supposed to measure.

Overall, PrivBayes outperforms all of the other methods for all levels of ε. STEPS-2 and

STEPS-3 are very similar and slightly outperform the flat Laplace sanitizer (until ε = e2)

and the UH modified.

Figure 5: SPECKS analysis. The plot on the left presents all the methods and the one on the right
is a zoom-in on the boxed area.

4.3.3 Chi-squared Tests of Association

Figure 6 presents the chi-squared test statistical significance consistency rates at α = 1%,

5%, 10%, respectively. For all values of ε, the Laplace sanitizer performs the best, followed

by the STEPS methods. The UH modified methods perform slightly worse than the STEPS

methods while PrivBayes remains at consistently low rates across all levels of ε. We also

present in the Appendix Tables 4 to 9 that contain the cross-tabulations of the original

vs. sanitized p-value by categories ≤ 0.01, (0.01, 0.05], (0.05, 0.1], and > 0.1. The tables

suggest there is improvement in the alignment between the original and sanitized p-values

as ε increases, but in a less satisfactory manner with this more granular categorization, even

for ε as large as e2 ≈ 7.4, compared to the binary classification on the p-values plotted in

Figure 6.

4.3.4 Difference-in-Differences (DID) Model

Figure 7 shows the results for the average CIs across all 32 regression coefficients, that on

the coefficients for “Preregistration State”, “Registration Status”, and the interaction term

between “Preregistration State” and “Registration Status” (Prereg. x Reg.), respectively
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Figure 6: Consistency rate on the statistical significance in the 105 Chi-square tests of association
based on the original and the synthetic data.

form the DID model. The effects of the latter three covariates are of primary interest in

Holbein and Hillygus (2016).

Figure 7: Confidence interval (CI) overlap value analysis averaged across the 32 regression coef-
ficients from the DID model fitted to the synthetic data generated from the flat Laplace sanitizer,
PrivBayes, STEPS, and a modified UH with random partition.
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For the average CI overlap value across the 32 coefficients, since a non-trivial proportion of

the CI overlap values are close 0, the averaged CI is close to 0 and is not very informative

in differentiating the methods. For the three covariates of interest, the CI overlap values are

around 0.75 or larger in most cases, suggesting good agreement between the CIs based on

the synthetic and original data. Among the four DIPS methods, PrivBayes has the lowest

CI overlap values when log(ε) < 0, and performs better as ε increase. The CI overlap values

are similar for all the other methods and across the examined ε values.

5 Concluding Remarks

We propose the STEPS procedure to synthesize differentially private individual-level data.

We also develop a propensity-based general utility metric, SPECKS, for assessing the simi-

larity between the original and synthetic data. The STEPS method leverages the inherent

information in the data or public domain knowledge to build a hierarchical tree among

the attributes. The sanitized counts of the nodes closer to the root of the tree (low-order

marginals) have smaller mean squared errors than the nodes further away from the root be-

cause the former are weighted averages of multiple sources of information. STEPS therefore

preserves the information on more important attributes better than on less important ones,

placing those attributes closer to the root of the tree.

We used the PrivBayes codes on GitHub at Ping (2018) developed by Ping and Stoyanovich

(2017). We noticed during the implementation that we needed to set a random seed in each

synthetic generate; otherwise, every synthetic set is the same for a given ε. Users of the

codes need to keep that in mind when generating multiple synthetic sets to measure the

synthesis uncertainty. This is just one example on the importance of good documentation

when publishing and sharing nodes for implementing differentially private mechanisms and

data synthesis methods to avoid misleading interpretation or results. Kifer et al. (2020)

encourage that every DP mechanism provides an accompanying mathematical proof on DP

(not a just reference to the literature) along with proper code review and computational-

aided verification/testing tools. We will publish the codes used in the simulation and cases

studies in this paper on GitHub to facilitate the practical implementation of the proposed

method and for reproducibility checks.

For future work, we will look into developing general recommendations on the privacy budget

allocation scheme between building a tree and sanitizing node counts among the tree layers.

In addition, we will investigate the feasibility of developing a stopping rule on the tree

height, from the utility and computational prospective, instead of pre-specifying the number

of layers. We also plan to compare SPECKS with other propensity-score based general utility

measures via comprehensive empirical studies. A review commented on the CI overlapping

metric (Karr et al., 2006) we employed for the case study, and questioned whether the

degree of non-overlapping between two non-overlapping CIs should be take into account.

The existing metric set the metric at 0 for all non-overlapping CI cases, regardless of the

distance between two CIs. This is an interesting question that may lead to a new CI overlap

metric. Our initial thoughts are as follows. If negative values are to be assigned to non-
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overlapping CIs, the values should consider both the distance (say, measured by the difference

of the lower bound of the CI located on the right and the upper bound of the CI located

on the left), the width of the CIs, whether the original and synthetic CI widths should be

weighted differently, and be easy to interpret.

Acknowledgement

We thank Madeline Brown, a Policy Assistant, at the Urban Institute for her expert knowl-

edge in selecting variable order as a domain expert in the case study. We also thank the

associate editor and two referees who provided useful feedback to improve the manuscript.

We also thank the Editor, the Associate Editor and the two referees for their valuable

comments and suggestions that improved the quality of the manuscript.

References

J. M. Abowd and I. M. Schmutte. Revisiting the economics of privacy: Population statis-

tics and confidentiality protection as public goods, 2015. URL http://doi.org/10.5281/

zenodo.345385.

A. ABRAMS. Voter turnout surged among people with disabilities last year. activists want

to make sure that continues in 2020, 2019. URL https://time.com/5622652/disability-

voter-turnout-2020/.

C. M. Bowen and F. Liu. Comparative study of differentially private data synthesis methods.

Statistical Science, 35(2):280–307, 2020.

C. M. Bowen and J. Snoke. Comparative study of differentially private synthetic data

algorithms from the nist pscr differential privacy synthetic data challenge. arXiv preprint

arXiv:1911.12704, 2019.

A. Campbell, P. E. Converse, W. E. Miller, and D. E. Stokes. The american voter. University

of Chicago Press, 1980.

R. Cummings and D. Durfee. Individual sensitivity preprocessing for data privacy. arXiv

preprint arXiv:1804.08645, 2018.

B. Ding, M. Winslett, J. Han, and Z. Li. Differentially private data cubes: Optimizing noise

sources and consistency. In Proceedings of the ACM SIGMOD International Conference on

Management of Data (SIGMOD 2011), pages 217–228. ACM SIGMOD, 2011.

J. Drechsler. Synthetic datasets for Statistical Disclosure Control. Springer, New York, 2011.

C. Dwork. Differential privacy: A survey of results. In TAMC 2008, LNCS 4978, pages

1–19. Springer-Verlag Berlin Heidelberg, 2008.

C. Dwork and A. Roth. The algorithmic foundations of differential privacy. Theoretical

Computer Science, 9(3-4):211–407, 2013.

26

http://doi.org/10.5281/zenodo.345385
http://doi.org/10.5281/zenodo.345385
https://time.com/5622652/disability-voter-turnout-2020/
https://time.com/5622652/disability-voter-turnout-2020/


C. Dwork and G. N. Rothblum. Concentrated differential priacy. arXiv preprint

arXiv:1603.01887, 2016.

C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private

data analysis. In Theory of cryptography, pages 265–284. Springer, 2006.

E. C. Eugenio and F. Liu. Cipher: Construction of differentially private microdata from

low-dimensional histograms via solving linear equations with tikhonov regularization. arXiv

preprint, (1812.05671), 2018.

M. Eversley. Black women voters will be central to the 2020 presidential election, ex-

perts predict, 2019. URL https://fortune.com/2019/06/20/black-women-voters-2020-

election/.

S. Flamisch. Voter turnout surging among people with disabilitie, 2019. URL https://www.

newswise.com/articles/voter-turnout-surging-among-people-with-disabilities.

J. Gardner, L. Xiong, Y. Xiao, J. Gao, A. R. Post, X. Jiang, and L. Ohno-Machado. Share:

system design and case studies for statistical health information release. Journal of the

American Medical Informatics Association, 20(1):109–116, 2013.

M. Hardt, K. Ligett, and F. McSherry. A simple and practical algorithm for differentially

private data release. In Advances in Neural Information Processing Systems, pages 2339–

2347, 2012.

M. Hay, V. Rastogi, G. Miklau, and D. Suciu. Boosting the accuracy of differentially private

histograms through consistency. Proceedings of the VLDB Endowment, 3(1-2):1021–1032,

2010.

M. Hay, A. Machanavajjhala, G. Miklau, Y. Chen, and D. Zhang. Principled evaluation

of differentially private algorithms using dpbench. In Proceedings of the 2016 International

Conference on Management of Data, pages 139–154. ACM, 2016.

C. Hill and J. Grumbach. An excitingly simple solution to youth turnout, for the primaries

and beyond, 2019. URL https://www.nytimes.com/2019/06/26/opinion/graphics-

an-excitingly-simple-solution-to-youth-turnout-for-the-primaries-and-

beyond.html.

J. B. Holbein and D. S. Hillygus. Making young voters: The impact of preregistration on

youth turnout. American Journal of Political Science, 60(2):364–382, 2016. ISSN 1540-5907.

A. F. Karr, C. N. Kohnen, A. Oganian, J. P. Reiter, and A. P. Sanil. A framework for

evaluating the utility of data altered to protect confidentiality. The American Statistician,

60(3):224–232, 2006.

D. Kifer, S. Messing, A. Roth, A. Thakurta, and D. Zhang. Guidelines for implementing

and auditing differentially private systems. arXiv preprint arXiv:2002.04049, 2020.

27

https://fortune.com/2019/06/20/black-women-voters-2020-election/
https://fortune.com/2019/06/20/black-women-voters-2020-election/
https://www.newswise.com/articles/voter-turnout-surging-among-people-with-disabilities
https://www.newswise.com/articles/voter-turnout-surging-among-people-with-disabilities
https://www.nytimes.com/2019/06/26/opinion/graphics-an-excitingly-simple-solution-to-youth-turnout-for-the-primaries-and-beyond.html
https://www.nytimes.com/2019/06/26/opinion/graphics-an-excitingly-simple-solution-to-youth-turnout-for-the-primaries-and-beyond.html
https://www.nytimes.com/2019/06/26/opinion/graphics-an-excitingly-simple-solution-to-youth-turnout-for-the-primaries-and-beyond.html


C. Li, M. Hay, G. Miklau, and Y. Wang. A data- and workload-aware algorithm for range

queries under differential privacy. Proceedings of International Conference on Very Large

Data Bases (PVLDB), 7:341–352, 2014a.

H. Li, L. Xiong, and X. Jiang. Differentially private synthesization of multi-dimensional

data using copula functions. In Proc. 17th International Conference on Extending Database

Technology (EDBT), pages 475–486, 2014b.

H. Li, L. Xiong, Z. Ji, and X. Jiang. Partitioning-based mechanisms under personalized

differential privacy. In Pacific-Asia Conference on Knowledge Discovery and Data Mining,

pages 615–627. Springer, 2017.

K.-H. Li, X.-L. Meng, T. E. Raghunathan, and D. B. Rubin. Significance levels from repeated

p-values with multiply-imputed data. Statistica Sinica, pages 65–92, 1991.

R. Little. Statistical analysis of masked data. Journal of the Official Statistics, 9:407, 1993.

R. Little, F. Liu, and T. Raghunathan. Statistical disclosure techniques based on multiple

imputation. In A. Gelman and X.-L. Meng, editors, Applied Bayesian Modeling and Causal

Inference from Incomplete-Data Perspectives: An essential journey with Donald Rubin’s sta-

tistical family, page Chapter II.13. John Wiley & Sons, 2004.

F. Liu. Model-based differentially private data synthesis. arXiv preprint arXiv:1606.08052,

2016.

F. Liu. Generalized gaussian mechanism for differential privacy. IEEE Transactions on

Knowledge and Data Engineering, 31(4):747 – 756, 2019.

F. Liu and R. Little. Smike vs. data swapping and pram for statistical disclosure limitation in

microdata: A simulation study. Proceedings of 2003 American Statistical Association Joint

Statistical Meeting, 2003.

A. Machanavajjhala, D. Kifer, J. Abowd, J. Gehrke, and L. Vilhuber. Privacy: Theory meets

practice on the map. IEEE ICDE IEEE 24th International Conference, pages 277 – 286,

2008.

H. Malchow. Predicting turnout in a presidential election. CAMPAIGNS AND ELECTIONS,

25(8):38–41, 2004.

M. P. McDonald and M. Thornburg. Registering the youth through voter preregistration.

NYUJ Legis. & Pub. Pol’y, 13:551, 2010.

F. McSherry. Privacy integrated queries: an extensible platform for privacy-preserving data

analysis. In Proceedings of the 2009 ACM SIGMOD International Conference on Manage-

ment of data, pages 19–30. ACM, 2009.

28



F. McSherry and K. Talwar. Mechanism design via differential privacy. In Foundations of

Computer Science, 2007. FOCS’07. 48th Annual IEEE Symposium on, pages 94–103. IEEE,

2007.

H. Ping. Datasynthesizer. https://github.com/DataResponsibly/DataSynthesizer (accessed

online 3/14/2020), 2018.

H. Ping and J. Stoyanovich. Datasynthesizer: Privacy-preserving synthetic datasets. Proceed-

ings of the 29th International Conference on Scientific and Statistical Database Management,

2017.

H. Ping, J. Stoyanovich, and B. Howe. Datasynthesizer: Privacy-preserving synthetic

datasets. SSDBM ’17: Proceedings of the 29th International Conference on Scientific and

Statistical Database Management June 2017, (42):1–5, 2017.

W. Qardaji, W. Yang, and N. Li. Differentially private grids for geospatial data. Proceedings

of 2013 IEEE 29th International Conference on Data Engineering (ICDE), pages 757–768,

2013a.

W. Qardaji, W. Yang, and N. Li. Understanding hierarchical methods for differentially

private histograms. Proceedings of the VLDB Endowment, 6(14):1954–1965, 2013b.

T. E. Raghunathan, J. P. Reiter, and D. B. Rubin. Multiple imputation for statistical

disclosure limitation. Journal of official Statistics, 19(1):1–16, 2003.

J. P. Reiter. Inference for partially synthetic, public use microdata sets. Survey Methodology,

29(2):181–188, 2003.

J. P. Reiter. Using multiple imputation to integrate and disseminate confidential microdata.

International Statistical Review, 77(2):179–195, 2009.

S. J. Rosenstone and J. Hansen. Mobilization, participation, and democracy in America.

Macmillan Publishing Company,, 1993.

D. B. Rubin. Discussion statistical disclosure limitation. Journal of official Statistics, 9(2):

461, 1993.

J. W. Sakshaug and T. E. Raghunathan. Synthetic data for small area estimation. In

International Conference on Privacy in Statistical Databases, pages 162–173. Springer, 2010.

J. Snoke, G. M. Raab, B. Nowok, C. Dibben, and A. Slavkovic. General and specific utility

measures for synthetic data. Journal of the Royal Statistical Society: Series A (Statistics in

Society), 181(3):663–688, 2018.

L. Wasserman and S. Zhou. A statistical framework for differential privacy. Journal of the

American Statistical Association, 105(489):375–389, 2010.

29



R. E. Wolfinger, S. J. Rosenstone, and S. J. Rosenstone. Who votes?, volume 22. Yale

University Press, 1980.

M.-J. Woo, J. P. Reiter, A. Oganian, and A. F. Karr. Global measures of data utility for

microdata masked for disclosure limitation. Journal of Privacy and Confidentiality, 1(1),

2009.

Y. Xiao, L. Xiong, and C. Yuan. Differentially private data release through multidimensional

partitioning. Secure Data Management, 6358:150–168, 2010.

Y. Xiao, J. Gardner, and L. Xiong. Dpcube: Releasing differentially private data cubes

for health information. In 2012 IEEE 28th International Conference on Data Engineering,

pages 1305–1308. IEEE, 2012.

J. Zhang, G. Cormode, C. M. Procopiuc, D. Srivastava, and X. Xiao. Privbayes: Private data

release via bayesian networks. ACM Transactions on Database Systems (TODS) - Invited

Paper from SIGMOD 2016, 24, 2017.

30



Appendix

sanitized consistency
log(ε) Original < 0.01 0.01− 0.05 0.05− 0.1 > 0.1 count‡

-2

< 0.01 5 5 0 79

15
0.01− 0.05 0 0 0 1
0.05− 0.1 0 2 0 2

> 0.1 1 0 0 10

-1

< 0.01 4 6 0 79

14
0.01− 0.05 0 0 0 1
0.05− 0.1 0 2 0 2

> 0.1 1 0 0 10

0

< 0.01 5 5 0 79

15
0.01− 0.05 0 0 0 1
0.05− 0.1 0 2 0 2

> 0.1 1 0 0 10

1

< 0.01 19 12 4 54

27
0.01− 0.05 0 0 0 1
0.05− 0.1 3 1 0 0

> 0.1 3 0 0 8

2

< 0.01 41 11 6 31

45
0.01− 0.05 0 0 0 1
0.05− 0.1 4 0 0 0

> 0.1 4 1 2 4
‡ sum of diagonal counts. .

Table 4: The cross-tabulation of the 105 p-values by categories < 0.01, 0.01− 0.05, 0.05− 0.1, and
> 0.1 for the original and DIPS data generated by the Laplace sanitizer.
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sanitized consistency

log(ε) Original < 0.01 0.01− 0.05 0.05− 0.1 > 0.1 count‡

-2

< 0.01 0 0 0 89

11
0.01− 0.05 0 0 0 1

0.05− 0.1 0 0 0 4

> 0.1 0 0 0 11

-1

< 0.01 0 0 0 89

11
0.01− 0.05 0 0 0 1

0.05− 0.1 0 0 0 4

> 0.1 0 0 0 11

0

< 0.01 0 0 1 88

11
0.01− 0.05 0 0 0 1

0.05− 0.1 0 0 0 4

> 0.1 0 0 0 11

1

< 0.01 2 1 0 86

13
0.01− 0.05 0 0 0 1

0.05− 0.1 0 0 0 4

> 0.1 0 0 0 11

2

< 0.01 4 0 0 85

15
0.01− 0.05 0 0 0 1

0.05− 0.1 0 0 0 4

> 0.1 0 0 0 11
‡ sum of diagonal counts. .

Table 5: The cross-tabulation of the 105 p-values in categories < 0.01, 0.01− 0.05, 0.05− 0.1, and
> 0.1 for the original and DIPS data generated by the PrivBayes.
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sanitized consistency

log(ε) Original < 0.01 0.01− 0.05 0.05− 0.1 > 0.1 count‡

-2

< 0.01 1 0 0 88

12
0.01− 0.05 0 0 0 1

0.05− 0.1 0 0 0 4

> 0.1 0 0 0 11

-1

< 0.01 1 0 0 88

12
0.01− 0.05 0 0 0 1

0.05− 0.1 0 0 0 4

> 0.1 0 0 0 11

0

< 0.01 1 0 0 88

12
0.01− 0.05 0 0 0 1

0.05− 0.1 0 0 0 4

> 0.1 0 0 0 11

1

< 0.01 1 7 4 77

10
0.01− 0.05 0 0 0 1

0.05− 0.1 0 2 0 2

> 0.1 0 0 2 9

2

< 0.01 22 8 5 54

29
0.01− 0.05 0 0 0 1

0.05− 0.1 0 0 1 3

> 0.1 1 2 1 7
‡ sum of diagonal counts. .

Table 6: The cross-tabulation of the 105 p-values by categories < 0.01, 0.01− 0.05, 0.05− 0.1, and
> 0.1 for the original and DIPS data generated by the UH Modified-2.
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sanitized consistency

log(ε) Original < 0.01 0.01− 0.05 0.05− 0.1 > 0.1 count‡

-2

< 0.01 1 0 0 88

12
0.01− 0.05 0 0 0 1

0.05− 0.1 0 0 0 4

> 0.1 0 0 0 11

-1

< 0.01 1 0 0 88

12
0.01− 0.05 0 0 0 1

0.05− 0.1 0 0 0 4

> 0.1 0 0 0 11

0

< 0.01 1 0 0 88

12
0.01− 0.05 0 0 0 1

0.05− 0.1 0 0 0 4

> 0.1 0 0 0 11

1

< 0.01 1 6 5 77

10
0.01− 0.05 0 0 0 1

0.05− 0.1 0 2 0 2

> 0.1 0 1 1 9

2

< 0.01 20 13 8 48

25
0.01− 0.05 0 0 0 1

0.05− 0.1 1 1 0 2

> 0.1 3 2 1 5
‡ sum of diagonal counts. .

Table 7: The cross-tabulation of the 105 p-values by categories < 0.01, 0.01− 0.05, 0.05− 0.1, and
> 0.1 for the original and DIPS data generated by the UH Modified-3.
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sanitized consistency

log(ε) Original < 0.01 0.01− 0.05 0.05− 0.1 > 0.1 count‡

-2

< 0.01 1 0 0 88

12
0.01− 0.05 0 0 0 1

0.05− 0.1 0 0 0 4

> 0.1 0 0 0 11

-1

< 0.01 1 2 0 86

12
0.01− 0.05 0 0 0 1

0.05− 0.1 0 0 0 4

> 0.1 0 0 0 11

0

< 0.01 3 0 0 86

14
0.01− 0.05 0 0 0 1

0.05− 0.1 0 0 0 4

> 0.1 0 0 0 11

1

< 0.01 5 8 4 72

13
0.01− 0.05 0 0 0 1

0.05− 0.1 0 0 0 4

> 0.1 0 1 2 8

2

< 0.01 30 7 8 44

36
0.01− 0.05 0 0 0 1

0.05− 0.1 0 0 0 4

> 0.1 4 1 0 6
‡ sum of diagonal counts. .

Table 8: The cross-tabulation of the 105 p-values by categories < 0.01, 0.01− 0.05, 0.05− 0.1, and
> 0.1 for the original and DIPS data generated by the STEPS-2.
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sanitized consistency

log(ε) Original < 0.01 0.01− 0.05 0.05− 0.1 > 0.1 count‡

-2

< 0.01 1 0 0 88

12
0.01− 0.05 0 0 0 1

0.05− 0.1 0 0 0 4

> 0.1 0 0 0 11

-1

< 0.01 1 2 0 86

12
0.01− 0.05 0 0 0 1

0.05− 0.1 0 0 0 4

> 0.1 0 0 0 11

0

< 0.01 3 0 0 86

14
0.01− 0.05 0 0 0 1

0.05− 0.1 0 0 0 4

> 0.1 0 0 0 11

1

< 0.01 5 8 3 73

14
0.01− 0.05 0 0 0 1

0.05− 0.1 0 0 0 4

> 0.1 0 2 0 9

2

< 0.01 30 7 8 44

36
0.01− 0.05 0 0 0 1

0.05− 0.1 0 0 0 4

> 0.1 3 2 0 6
‡ sum of diagonal counts. .

Table 9: The cross-tabulation on the 105 p-values by categories < 0.01, 0.01− 0.05, 0.05− 0.1, and
> 0.1 for the original and DIPS data generated by the STEPS-3.
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