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Abstract
Much of our understanding of congestion control algorithm

(CCA) throughput and fairness is derived from models and mea-
surements that (implicitly) assume congestion occurs in the last
mile. That is, these studies evaluated CCAs in “small scale” edge
settings at the scale of tens of flows and up to a few hundred Mbps
bandwidths. However, recent measurements show that congestion
can also occur at the core of the Internet on inter-provider links,
where thousands of flows share high bandwidth links. Hence, a
natural question is: Does our understanding of CCA throughput
and fairness continue to hold at the scale found in the core of the
Internet, with 1000s of flows and Gbps bandwidths?

Our preliminary experimental study finds that some expecta-
tions derived in the edge setting do not hold at scale. For example,
using loss rate as a parameter to the Mathis model to estimate TCP
NewReno throughput works well in edge settings, but does not
provide accurate throughput estimates when thousands of flows
compete at high bandwidths. In addition, BBR – which achieves
good fairness at the edge when competing solely with other BBR
flows – can become very unfair to other BBR flows at the scale
of the core of the Internet. In this paper, we discuss these results
and others, as well as key implications for future CCA analysis and
evaluation.
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protocols; Network measurement.
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1 Introduction
Congestion control algorithms (CCAs) are a fundamental build-

ing block of the modern Internet, and the networking community
has been analyzing and designing CCAs for over three decades [12,
18, 26, 37, 39, 48]. Of specific interest to us is the wide-area set-
ting. In this setting, throughput and fairness are important CCA
properties, as they determine the effectiveness with which data
can be transferred across the Internet, and the ability for multiple
TCP flows to co-exist. To this end, many past efforts have used
systematic models and experimental studies to understand these
properties. For instance, the model by Mathis et al. [37] and Padhye
et al. [41] predict the throughput of a NewReno flow as a function of
packet loss and round-trip time (RTT), and the BBR model by Ware
et al. [48] predicts the throughput of BBR when competing with
other CCAs. Application developers can use such results to decide
which CCA best suits the network conditions they experience or
to debug performance issues.

One implicit assumption in many of these results is that in the
wide-area setting, congestion almost always occurs close to the
edge or last mile of the network. To this end, many findings have
been derived in contexts that emulate congestion occurring at the
edge (e.g., residential link settings). Specifically, they consider a
few or tens of flows competing for a shared bottleneck link with a
capacity of a few tens or hundreds of Mbps [26, 37, 45, 52].

Many measurements suggest, however, that this assumption of
congestion-at-the-edgemay not always hold. Indeed, measurements
both new [21] and old [11] show that congestion does occur at
inter-domain links. These settings are characterized by higher flow
counts and a larger network pipe [4, 13]. Indeed, past work on
router buffer sizing has shown that CCA properties can change in
such a setting [13].

This raises a natural question: do the known findings and models
about TCP throughput [37] and fairness [20, 26, 28, 39] derived from
edge-link settings, hold at the scale found in the core of the Internet?
To this end, we revisit aspects of TCP throughput and fairness at
high bandwidths of 10Gbps and with thousands of concurrent flows.
Specifically, we ask:
• Throughput Model: The commonly accepted Mathis analyti-
cal model [37] for TCP throughout prediction says that the
throughput depends only on the RTT and loss. Does this model
accurately predict TCP NewReno’s throughput at scale?

• Intra-CCA fairness: NewReno, Cubic, and BBR have shown to
be fair at lower flow counts when all the flows have the same
CCA and RTT [20, 26, 28, 39]. Does this continue to hold at
scale?
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Figure 1: Testbed topology for emulated settings.

• Inter-CCA fairness: Does the Inter-CCA unfairness observed in
the home link setting, where Cubic takes up to 80% of link band-
width when competing with NewReno [26], or BBR starves
competing NewReno and Cubic flows [28, 47, 48, 52], continue
to hold at scale?

We use a simple but effectivemeasurement set up to answer these
questions, and re-evaluate past beliefs on a 10 Gbps bottleneck link
with thousands of competing flows, representative of the core of
the Internet [4, 13]. We see if we obtain the same results as past
research derived from measurements and models verified on the
edge. Indeed, we find that some edge-derived expectations do not
hold at scale:
• The Mathis model [37] for NewReno throughput relies on a
parameter 𝑝 which is commonly interpreted as the network
loss rate [44, 46]. While using loss rate for 𝑝 works well in edge
settings, we find that using packet loss rate for 𝑝 at scale re-
sults in more than 45% error in estimating throughput. Instead,
operators should use direct measurements of the congestion
window halving rate for throughput estimates at this scale.

• BBR surprisingly becomes unfair at scale even when competing
with solely other BBR flows at the same RTT, with a Jain’s
Fairness Index (JFI) as low as 0.4. This is in contrast to the
fairness observed by past research in the edge setting or at low
flow counts, where the JFI is typically 0.99 [28, 47, 52].

On the other hand, our findings validate at scale prior claims about
CCAs which were derived from analyses evaluating the edge:
• A single BBR flow takes up 40% of link capacity even when
competing with thousands of NewReno or Cubic flows at scale.
Prior work had only measured this phenomenon at up to 16
competing flows [42, 47, 48], and our measurements illustrate
that this phenomenon persists even at scale. This confirms the
prediction from the model by Ware et al. [48].

• The intra-CCA fairness of NewReno and Cubic and the inter-
CCA unfairness of Cubic competing with NewReno, continue
to hold at scale. The extreme inter-CCA unfairness when multi-
ple BBR flows compete with multiple Cubic or NewReno flows
also persists at scale.

Our results, though preliminary, have key implications for CCA
design and analysis and suggest the need for future analysis. First,
applying the Mathis model over the Internet precisely will require
end-host TCP instrumentation to obtain the congestion window
values as one cannot rely on just measured packet loss. Second,
BBR’s unexpectedly high unfairness when competing with just
other BBR flows at scale highlights the importance of explicitly
including evaluations with thousands of flows andGbps bandwidths
as part of future CCA design and evaluation roadmaps.

2 Related Work & Motivation
We begin this section with an introduction to CCAs, followed by

past work on throughput models and fairness. Lastly, we discuss
congestion at the core of the Internet and CCA results in data
centers and high bandwidth settings.
CCA Background: Today there are many CCAs on the Internet,
including NewReno [25], Cubic [44], Vegas [17], Copa [14], and
BBRv1 [18] (hereafter referred to as ‘BBR’) as well as BBRv2 [2]
(which remains a work in progress). Developers and network ad-
ministrators evaluate CCAs for many important properties, in-
cluding (1) throughput, or the rate at which a connection trans-
fers data [26, 37, 41] and (2) fairness, or how equitably multiple
connections share throughput when competing over a bottleneck
link [20, 39, 44].
Throughput Models: To help us understand how well a CCA
performs in a given network setting, analytical models predict the
throughput of a connection as a function of key network properties
(e.g., loss, delay). For example, the NewReno models by Mathis et
al., [37] and Padhye et al., [41] predict the throughput of a NewReno
flow given the network RTT and loss rate. Researchers have derived
other models with similar goals for Cubic [26] and BBR [48]. In this
paper, we revisit the simpler model for NewReno throughput by
Mathis et al. [37] and investigate the fairness implications of the
BBR model by Ware et al. [48].
Fairness: Fairness determines how deployable a CCA is. Say, for
example, that Cubic flows completely starve NewReno flows when
competing for bandwidth over a shared link. This would result in
Netflix streams (which use NewReno) seeing degraded performance
every time they share a bottleneck link with large downloads using
Cubic. Fairness is typically evaluated in two settings: (1) Intra-
CCA fairness, where all competing flows have the same CCA; and
(2) Inter-CCA fairness, where the competing flows have different
CCAs.

Past research has found that in the wide-area context, NewReno,
Cubic, and BBR all exhibit high intra-CCA fairness when all flows
have the same RTT, with most flows getting the same through-
put [18, 20, 26, 28]. There is also work on intra-CCA fairness when
flows have different RTTs [26, 32, 35, 39]. In this paper, as a simpler
starting point, we specifically evaluate the same-RTT setting.

In the inter-CCA setting, prior work shows that Cubic flows
compete unfairly with NewReno, with Cubic obtaining up to 80%
of total bandwidth [26]. Past research also finds that BBR competes
unfairly with both Cubic and NewReno, with a single BBR flow tak-
ing up 40% of link capacity irrespective of the number of competing
Cubic and NewReno flows [47, 48]. Multiple BBR flows competing
with an equal number of Cubic flows also result in the BBR flows
obtaining 90% to 95% of link bandwidth with large buffers [45]
and up to 99% with small buffers [28]. We re-evaluate all of these
properties at scale.
Congestion in the core: Many prior CCA efforts implicitly as-
sume that Internet congestion occurs mostly at the network edge,
evaluating only tens of flows at the scale of a hundred Mbps [18, 26,
37]. However, both older and more recent work [11, 21] show that
there is persistent congestion on inter-provider links in the Internet
core. This is significant in the light of analysis that the properties
of CCAs can change as network parameters scale; e.g., the work
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p EdgeScale
CoreScale Flow Count
1000 3000 5000

Packet Loss 1.78 3.95 3.64 3.24
CWND Halving 1.47 1.36 1.36 1.34

Table 1: Deriving theMathis constant𝐶 using the packet loss
rate results in different flow count-dependent constants in
CoreScale vs EdgeScale, while using the CWND halving rate
results in closer and more consistent values across settings
and flow counts.
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Figure 2: The median prediction error for the Mathis model
in CoreScale is ≤ 10% using CWND halving rate, but 45% to
55% with packet loss rate. In EdgeScale both packet loss rate
and CWND halving rate result in <10% error.

of Appenzeller et al. [13] finds that when thousands, rather than
tens, of NewReno flows compete over a “core” bottleneck link, they
desynchronize, allowing the use of smaller router buffers compared
to recommendations in the edge setting.

CCAs in data centers and high-bandwidth settings: While
past research has investigated CCA properties in the data center
setting [12, 19, 30, 33, 43], we are interested in the wide-area setting,
which sees higher RTTs and has routers with larger buffers [13, 38].
There is also work on CCA fairness at Gbps bandwidths [10, 28,
32, 39], but they typically evaluate tens to a few hundred flows,
not thousands. To the best of our knowledge, the Mathis model
and fairness properties of CCAs when thousands of flows compete
on Gbps links have not been rigorously studied in the wide-area
setting.

3 Problem Scope and Methodology
In this section, we define the scope and methodology of our

analysis, its relevance, and its limitations.

3.1 Problem Scope
Before we begin, we concretely define the two settings of interest

for our study:
• EdgeScale: This represents the edge-link setting with a bottle-
neck bandwidth of 100 Mbps with 2 to 50 competing flows and
a 3MB buffer.

• CoreScale: The “at scale" setting with a bottleneck bandwidth
of 10 Gbps [4], 1000 to 5000 competing flows, and a 375MB
buffer.

In both cases, a drop-tail queue is used at the bottleneck link, and
the buffer size is approximately 1 BDP (bandwidth-delay product)
based on the bandwidth of the bottleneck link and assuming a
maximum RTT of 200ms. We choose this size based on the rule of
thumb used to size router buffers [13]. It is the smallest buffer that
would allow a single NewReno flow to saturate the link. While past
work has shown that smaller buffers equal to a fraction of the BDP

are sufficient to ensure upto 99% link utilization at scale [13, 16],
recent work [38] has found that in practice ISPs still use extremely
large buffers.

CCAs Analyzed:We focus our evaluation on three popular CCAs:
NewReno, Cubic, and BBR. These CCAs are chosen based on both
the depth of their research literature and their widespread usage
on the Internet today [5, 40, 40]:
1. NewReno is a classic example of a loss-based CCA. It is widely

used today, most notably by Netflix [40], which is believed to
make up 13% of all traffic on the Internet [5].

2. Cubic is another loss-based CCA [26]. It is currently the default
CCA on Linux andWindows Server and is the standard baseline
almost every new CCA is compared with [18, 35, 39, 48].

3. BBR is a comparatively new CCA proposed by Google [18].
However, it is used by YouTube [40], which accounts for 6% of
all Internet traffic [5]. While a new version ‘BBRv2’ [2] exists,
it is currently a work in progress. We, therefore, focus on the
well-studied BBRv1 [28, 45, 47, 48].

3.2 Setup and Methodology
Studying TCP properties at scale is challenging; e.g., traditional

packet-level simulators such as ns-3 [27] take several days for a
simple Gbps-scale experiment [31], and past work on data-center
networking that uses such simulators at scale typically run experi-
ments modeling just a few seconds [34]. Approximations (e.g., flow
or fluid model simulations [1]) may not accurately capture fine-
grained dynamics. To achieve both fidelity (e.g., running actual TCP
stacks) and scale, we use a simple testbed setup described below.

Our testbed uses a physical network with a dumbbell topology,
with ten sender-receiver node pairs connected to a BESS software
switch [3], as seen in Figure 1. We choose this topology as it is a
common topology used to evaluate throughput models and fairness,
and has been used to model a wide variety of scenarios [26, 37,
39, 45]. The bottleneck bandwidth for the experiments is varied
between EdgeScale and CoreScale by changing the bandwidth and
buffer size on the BESS software switch. We use a software switch
as it allows greater control over the queue size and bottleneck
bandwidth than the physical switches available to us, while still
being closer to using physical network elements than a simulator
like ns-2 [6] or ns-3 [27]. The edge link bandwidths between the
sender/receiver nodes and bottleneck link at the BESS switch is
always 25 Gbps, which guarantees that congestion occurs at the
BESS switch. The base RTT of flows is set using netem [8] to add the
appropriate delay at the receiver, similar to past work [39, 45, 51].
We calculate the packet loss rate by logging packet drops at the
bottleneck queue in the software switch, and use the Linux tool
tcpprobe [9] to measure the congestion window halving rate to
validate the Mathis throughput model. The testbed was hosted on
CloudLab [22].

All TCP flows are distributed equally across each of the sender-
receiver pairs and send infinite data, as common in past experi-
ments [26, 28, 39, 45, 51]. The flows run for a maximum duration
of 3 hours, significantly longer than past studies [26, 28, 45, 48],
or until the metric being evaluated changes by less than 1% over
20 minutes. When an experiment starts, each flow waits a random
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(a) CoreScale
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(b) EdgeScale

Figure 3: The ratio between packet losses and congestion
events (i.e., CWND halvings) changes between CoreScale and
EdgeScale, and across across different flow counts within
CoreScale.
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Figure 4: BBR shows intra-CCA unfairness in CoreScale, with
JFIs as low as 0.4. Milder unfairness can also be seen beyond
10 flows in EdgeScale, with JFIs as low as 0.7.
period of time between 0 and 2 minutes before it establishes a con-
nection with the receiver, and the throughput obtained by all flows
in the first 5 minutes of the experiment is ignored.

Limitations: As observed by many others, capturing the dynamics
of Internet links with high fidelity — including random loss, arrival,
and departures of new flows, application-level sending behaviors,
etc — is perhaps impossible to achieve perfectly [15, 49, 50]. Fur-
thermore, understanding the behaviors of CCAs can be challenging
in “real” settings where many uncontrolled variables combine to
influence CCA behavior. We instead opt to focus directly on only
two key variables: the number of concurrent flows (which increases
by two orders of magnitude between EdgeScale and CoreScale) and
the link capacity (which increases similarly between EdgeScale and
CoreScale). Therefore, when we say ‘at scale’, we refer to the setting
where the bottleneck bandwidth is 10 Gbps and the flow count
ranges from 1000 to 5000 flows. By controlling all other aspects of
the experiment (all flows have the same, lengthy duration; there is
no random loss; buffer sizes are approximately 1 BDP in both set-
tings; all flows have the same RTT etc.) we can more easily inspect
the impact of these two variables on CCA behavior.

4 Revisiting the Mathis Throughput Model
Background: The Mathis model [37] predicts the throughput of a
NewReno flow as a function of loss (𝑝) and round-trip time (RTT ).
It depends on two constants:𝐶 , which may be different for different
CCAs, andMSS (maximum segment size), which in our case is fixed
to 1448 bytes. The Mathis model equation can be expressed as:

Throughput =
MSS ∗𝐶
RTT ∗ √𝑝 (1)

The original paper by Mathis et al. [37] states that 𝑝 refers to the
congestion event rate. This can be interpreted in one of twoways: (a)
the congestion window (CWND) halving rate or (b) the packet loss
rate. While the original paper states that the CWND halving rate
should be used for TCP with selective ACKs, subsequent research
has often applied the packet loss rate instead [44, 46]. We, therefore,
evaluate the Mathis equation with both the packet loss rate and the
CWND halving rate.

The original paper derives a constant 𝐶 = 0.94 for NewReno
with delayed and selective ACKs [37]. The paper also demonstrates
how to derive 𝐶 empirically for varying NewReno configurations.
For our modern NewReno [7, 36] stack we derive 𝐶 empirically
following the methodology described by Mathis: we calculate the
𝐶 which minimizes the least squared prediction error of the Mathis
equation at a given flow count and setting. For the following results,
all flows run NewReno and have a 20ms RTT.

Finding 1: Deriving 𝐶 using packet loss rate results in flow-
count dependent values and different values in CoreScale vs.
EdgeScale. Using CWND halving rate produces consistent 𝐶
values across both settings and flow counts. (Table 1)

Table 1 shows the empirically derived “best-fit” constant 𝐶 for
NewReno in a few example settings. We see two main observations
here. First, when using the packet loss rate the 𝐶 value is quite dif-
ferent between EdgeScale and CoreScale and also changes between
different flow counts in CoreScale. This violates the Mathis model
which states that 𝐶 depends only on the CCA being used, and
should not change with the number of competing flows or bottle-
neck bandwidth. However, using the CWND halving rate produces
a more consistent constant that changes only slightly between the
EdgeScale and CoreScale, and does not change significantly between
flow counts within CoreScale.

Finding 2: Using the CWND halving rate results in accurate
predictions (≤ 10% median error) in CoreScale; using packet
loss rate results in 45%-55% median error. In EdgeScale, how-
ever, both are accurate. (Fig 2)

Fig 2 shows the median Mathis prediction error at different flow
counts in CoreScale, while the two horizontal lines represent the
median prediction error obtained in EdgeScale. These results show
that the Mathis model does indeed hold at scale, as long as we use
the CWND halving rate for 𝑝 . The 45%-55% median error when
using the packet loss rate implies it cannot be used to accurately
predict NewReno throughput at scale, even though the packet loss
rate works well in EdgeScale. The error at scale is foreshadowed by
the significantly different 𝐶 values derived across settings and flow
counts when using the packet loss rate.
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Figure 5: Cubic takes 70% to 80% of to-
tal throughput when competing with
an equal number of NewReno flows in
CoreScale.
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Figure 6: 1 BBR flow takes 40% of
total throughput when competing
with thousands of NewReno flows in
CoreScale.
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Figure 7: 1 BBR flow takes 40% of to-
tal throughput when competing with
thousands of Cubic flows in CoreScale.

Finding 3: The ratio between packet losses and congestion events
(i.e., CWND halvings) changes between CoreScale and EdgeScale,
and across across different flow counts within CoreScale. (Fig
3)

While investigating why the packet loss rate results in differ-
ent constants in EdgeScale vs CoreScale, we discovered the ratio
of packet loss rate to CWND halving rate is different in the two
settings. As seen in Fig 3, in EdgeScale, the ratio of packet losses
to CWND halvings is approximately 1.7 regardless of the number
of concurrent flows. But in CoreScale the ratio varies between 6
and 9 and depends on the flow count. This explains why using
packet loss rate results in different constants between EdgeScale
and CoreScale, and different constants within CoreScale at different
flow counts. While the idea that packet loss rate diverges from
CWND halving rate is not new [23, 37, 41], we believe the drastic
increase in divergence as we move from EdgeScale to CoreScale is a
new finding.

Since the ratio is stable for EdgeScale, there is no reason to doubt
past research that uses packet loss rate for 𝑝 when evaluating links
with tens of flows and only tens or hundreds of Mbps [44, 46].
However, our results show one should not use the packet loss rate for
estimating throughput over the Internet core.

We hypothesize that the reason for different packet loss rate to
CWND halving rate ratios is that losses are burstier at scale, causing
multiple losses in the same burst or RTT which result in only one
congestion window halving. We corroborate this hypothesis by
measuring the burstiness of losses at the queue using the Goh-
Barabasi burstiness score [24] which ranges from -1 to 1, where a
higher score means the drops are burstier. We obtain median values
close to 0.2 in EdgeScale and closer to 0.35 in CoreScale, implying
that losses are indeed burstier at scale (Figure not shown).

Implications: Overall, we find that the Mathis model for through-
put still holds in CoreScale, if 𝐶 is calculated using CWND halving
rate and not the more commonly used packet loss rate for the vari-
able 𝑝 . Unfortunately, this makes applying the Mathis model in
practice more challenging, as obtaining the CWND halving rate re-
quires end-host state reconstruction, where packet loss rate can be
measured more easily via network-measurable loss. Furthermore,
our findings also change our expectations regarding NewReno’s
performance with respect to loss: a flow on a congested core link
can tolerate four times the packet loss rate of a flow on a congested
home link, and still obtain the same bandwidth because the CWND
halving rate is the same.

5 Revisiting Fairness
In this section, we measure how fairly competing flows share

bandwidth in our CoreScale setting.

5.1 Intra-CCA Fairness
Background: The classic metric used for measuring fairness is
Jain’s Fairness Index (JFI) [29], which ranges from 0 to 1 with a
higher value indicating greater fairness. Past research in the edge
setting has found Cubic, NewReno, and BBR to be intra-CCA fair –
i.e., fair when competing only with other flows of the same CCA
and RTT – with a JFI of 0.9 or more [18, 20, 26, 45, 52].

Finding 4: NewReno&Cubic continue to showhigh intra-CCA
fairness in CoreScale with a JFI > 0.99, as expected from past
research. (Figure not shown)

Both theoretical [20] and empirical studies [26, 39] have shown
that when NewReno flows compete with other NewReno flows, or
Cubic flows compete with other Cubic flows, throughput is shared
almost equally when all flows have the same RTT. Our experiments
confirm this in the CoreScale setting: NewReno and Cubic show
high fairness with a JFI > 0.99.

Finding 5: BBR surprisingly shows intra-CCA unfairness in
CoreScale, with JFIs as low as 0.4, which is not expected from
past research. Milder unfairness also occurs when more than
10 flows compete in EdgeScale, with JFI’s as low as 0.7. (Fig 4)

Fig 4 shows the JFI for BBR flows with the same RTT when they
compete amongst themselves at different flow counts. It also shows
the JFI based on results from past work (0.99) which finds BBR to be
intra-CCA fair when all flows have the same RTT [18, 28, 47, 52].

We see that at scale BBR surprisingly becomes unfair at 20ms
and 100ms RTTs, with the JFI going as low as 0.4. We investigate
further and discover that BBR shows signs of unfairness even in
EdgeScale, but at relatively higher flow counts (greater than 10) not
examined by past research. This unfairness is exacerbated at scale.

Cardwell et al. [18] argue that BBR flows, share bandwidth fairly
amongst each other at lower flow counts due to flow synchro-
nization. While we have not verified it, we hypothesize that the
unfairness in CoreScalemight be due to BBR flows desynchronizing
at scale, similar to NewReno [13].

Implications: Prior work showed that BBR is unfair when com-
peting with other CCAs (e.g. Cubic, NewReno) – however, it was
assumed that if the entire Internet adopted BBR users could expect
fair outcomes. Our CoreScale experiments show that this is not the
case when thousands of flows compete in wide-area like settings;
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Figure 8: BBR takes 99.9% of total throughput when compet-
ing with an equal number of NewReno or Cubic flows.
this emphasizes the need for CCA testing and evaluation at scale to
understand whether a new algorithm is acceptable for deployment.

5.2 Inter-CCA Fairness
In this section, we evaluate how flows from different CCAs with

the same RTT compete with each other.
Background: Past research in the edge link setting found that
Cubic competes unfairly with NewReno, taking up to 80% of to-
tal throughput [26, 39] and that BBR is unfair to both Cubic and
NewReno [28, 45, 48]. We revisit these properties at scale.

For the following results, we measure the aggregate through-
put obtained by the flows of one CCA as a fraction of the total
throughput obtained by all flows.

Finding 6: A single BBR flow takes 40% of total throughput
when competing with thousands of NewReno or Cubic flows
in CoreScale, as predicted by past research in the edge setting.
(Figs 6, 7)

The BBR model by Ware et al. [48] shows that a single BBR flow
could take 40% of total throughput irrespective of the number of
competing NewReno or Cubic flows. We show that this result holds
at scale and that a single BBR flow takes 40% of total throughput
even when competing with thousands of NewReno or Cubic flows,
as seen in Figs 5 and 6.

Finding 7: BBR takes 99.9% of total throughput when compet-
ing with an equal number of NewReno (or Cubic) flows in
CoreScale, confirming past research in the edge setting. (Fig 8)

Past research in the edge setting has shown that BBR can take up
to 99% of total throughput when competing with an equal number
of Cubic flows [28, 45, 52]. Our results show that this inter-CCA
unfairness persists even in CoreScale, with BBR obtaining up to
99.9% of total throughput when competing with an equal number
of Cubic or NewReno flows, as seen in Fig 8.

Finding 8: Cubic takes 70% to 80% of total throughput when
competingwith an equal number ofNewReno flows inCoreScale,
confirming the unfairness results of past research in the edge
setting. (Fig 5)

Past research [26, 39] expects Cubic flows to get around 80%
of total throughput when competing with an equal number of
NewReno flows in the edge setting. Our experiments show this
holds true even in CoreScale, as seen in Figure 5.

Implications: Our results confirm that the inter-CCA unfairness
displayed byCubic to NewReno and BBR to both Cubic andNewReno
persist at higher flow counts at scale. In these settings, the dispar-
ities between flows can be even more extreme than at the edge
setting – with a single BBR flow attaining 4 Gbps and 5000 compet-
ing flows Reno or Cubic flows obtaining just 1.2 Mbps each. While
past work shows that a few ‘bad player’ flows can impact fairness
between a small number of users sharing an edge link (e.g. room-
mates in a shared house, co-workers in an office), the fact that prior
unfairness findings extend to CoreScale suggests severely unfair
outcomes where a single sender can impact thousands of physical
neighbors with whom he or she shares a large inter-domain link.

6 Conclusions
Conventional wisdom about congestion control adopted by ap-

plication and systems designers has been evaluated in settings
implicitly assuming congestion at the edge. When congestion oc-
curs in the core, as shown by many measurements, it is not clear
if these accepted norms about throughput and fairness still hold.
We revisit these and find that the widely accepted Mathis model
can be applied using either loss or congestion window halving in
edge settings, but these metrics diverge at scale. Similarly, we find
that when BBR competes with other BBR flows, it goes from being
completely fair in the edge setting to completely unfair at scale.
We hope that our work, though preliminary, serves as a cautionary
tale for naïvely extrapolating CCA properties at scale and inspires
further modeling and analysis.
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