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Abstract—Shortened time to knowledge discovery and adapting prior domain knowledge is a challenge for computational and data-
intensive communities such as e.g., bioinformatics and neuroscience. The challenge for a domain scientist lies in the actions to obtain
guidance through query of massive information from diverse text corpus comprising of a wide-ranging set of topics when: investigating
new methods, developing new tools, or integrating datasets. In this paper, we propose a novel “domain-specific topic model” (DSTM) to
discover latent knowledge patterns about relationships among research topics, tools and datasets from exemplary scientific domains.
Our DSTM is a generative model that extends the Latent Dirichlet Allocation (LDA) model and uses the Markov chain Monte Carlo
(MCMC) algorithm to infer latent patterns within a specific domain in an unsupervised manner. We apply our DSTM to large collections of
data from bioinformatics and neuroscience domains that include more than 25,000 of papers over the last ten years, featuring hundreds
of tools and datasets that are commonly used in relevant studies. Evaluation experiments based on generalization and information
retrieval metrics show that our model has better performance than the state-of-the-art baseline models for discovering highly-specific
latent topics within a domain. Lastly, we demonstrate applications that benefit from our DSTM to discover intra-domain, cross-domain

and trend knowledge patterns.

Index Terms—Topic Model, Theoretical Model for Big Data, Latent Dirichlet Allocation, Multi-disciplinary Knowledge Discovery

1 INTRODUCTION

Scientific domains such as bioinformatics and neuroscience
have the potential to benefit from Big Data analytics that
uses underlying machine learning techniques for solving
computational and data-intensive research problems. Bold
innovations will increasingly emerge from processing a
large number of datasets or recognizing complex knowledge
patterns using text mining. Moreover, the bold innova-
tions will occur from solving multi-disciplinary research
problems that require prior knowledge discovery within
disciplines and from cross-domain scientist collaborations.
To enable the rapid pace of innovation, scientists are con-
tinuously seeking to investigate new methods, develop new
tools or integrate structured /unstructured data sets.
However, finding relevant knowledge patterns featur-
ing tools, methods, and datasets amongst vast informa-
tion archives to obtain timely guidance to solve multi-
disciplinary research problems can be challenging for do-
main scientists. As shown in Fig. 1, it involves both intra-
domain and cross-domain knowledge discovery. An intra-
domain scenario commonly occurs when scientists are look-
ing to adapt a state-of-the-art solution in their domain.
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Fig. 1: Discovery of relationships between research topics, tools (with
“T” notation) and datasets (with “S” notation) for scientific domains with
intra-domain knowledge and cross-domain knowledge discovery.

For example, biologists wanting to know if there is a new
tool developed for improving the performance of sequence
alignment. Alternately, a cross-domain scenario can be seen
when scientists are investigating new solutions by extend-
ing relevant methods from other domains. A few example
scenarios are as follows: biologists applying relevant ma-
chine learning and statistical methods for protein structure
predictions; machine learning studies may need to extend
new algorithms/tools to solve unique problems in person-
alized medicine; data-intensive neuroscience efforts could
adopt cyberinfrastructure integration best practices from
bioinformatics [1] for building workflows across distributed
computing resources.

In this paper, we propose a novel “domain-specific topic
model” (DSTM) to enable the discovery of latent knowledge
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patterns in scientific domains that rely on prior knowledge
discovery and cross-domain collaborations. DSTM is funda-
mentally a generative model to discover the relationships
among research topics, tools, and datasets within intra-
domain and cross-domain cases. Our DSTM extends the
existing topic models (such as Latent Dirichlet Allocation
(LDA) [2], PLSA [3]) that only consider topics or relation-
ships between topics. It is the first to handle documents
by modeling the relationship among research topics, tools,
and datasets within documents that are relevant to partic-
ular scientific communities. Our main focus goes beyond
discovering topics among scientific publications and reveals
the relevant knowledge patterns among topics, tools, and
datasets. Such an approach allows us to understand trends,
as well as cross-domain patterns of tools/datasets, use
within scientific communities. Such insights can in turn
provide pertinent guidance for scientists to choose suit-
able tools/datasets or observe potential trends for future
research purposes.

Our DSTM assumes each topic is represented as a distri-
bution over words, and each tool or dataset is modeled as
an individual distribution over topics. Such distributions or
parameters can be learned through unsupervised learning
from collections of text corpus that reflect the patterns of
tools or datasets that are more likely to be used for domain
research problems by using the Markov chain Monte Carlo
inference algorithm for a specific domain. In order to tangi-
bly apply our DSTM for research activities in scientific com-
munities, we propose three algorithms to apply our DSTM
under different knowledge pattern perspectives: (a) intra-
domain knowledge representation that guides scientists to find
existing solutions from their respective domains; (b) cross-
domain knowledge representation that guides investigation of
new solutions by referring to prior solutions in other syner-
gistic domains; (c) trend representation that tracks the change
in trends or reveals emerging trends over time, in order to
guide scientists to make intelligent decisions while choosing
tools or datasets to solve a research problem at hand.

We evaluate the performance of DSTM and reveal the
latent patterns in large collections of scientific publications
from reputed journal archives belonging to two exemplar
scientific domains: neuroscience and bioinformatics. Specif-
ically, we collect 16,721 papers from reputed neuroscience
journals including the areas of theory and computation,
10, 681 papers from well-known bioinformatics journals in-
cluding the fields of genome computation, over the last ten
years. We extract 30% contents for each document/paper to
generate the results in our evaluation experiments, which
may contain all the contents of a paper’s abstract and intro-
duction for understanding the paper’s topics. We generate
a combined vocabulary size of V' = 19,488 terms. We also
collect the names of hundreds of tools and types of datasets
that are commonly used in these domains. Our evaluation
results feature a perplexity metric that can measure the
DSTM performance in revealing the highly-specific latent
topics in accordance with a user’s exploration scope of a
catalog of tools or datasets. We demonstrate our model in
different aspects to provide insightful guidance for choosing
pertinent tools and datasets for solving cutting-edge domain
research problems. Given our design of DSTM, our model
can be easily extended with satisfactory generalization per-
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formance to other domains (e.g., material science) by chang-
ing the datasets relating to the types of publications, tools,
and datasets.

The remainder of the paper is organized as follows:
Section 2 describes the problem motivation in greater detail.
Section 3 discusses the related works. In Section 4, we
describe our DSTM’s generative process, inference algo-
rithms for model parameter estimation, and three exemplar
applications for use of DSTM to discover latent intra-domain,
cross-domain, and trend knowledge patterns. In Section 5, we
discuss the datasets that we used for DSTM evaluations and
demonstrations. Section 4.2 discusses the model parameter
selections for achieving optimal generalization performance
based on the datasets. We also provide comparisons of gen-
eralization and information retrieval performance of DSTM
with state-of-the-art models. Application demonstrations
for insightful knowledge discovery cases are detailed in
Section 7. Section 8 concludes the paper.

2 PROBLEM MOTIVATION

One of the major challenges in obtaining useful guidance
through query of massive information is to discover knowl-
edge patterns amongst diverse text corpus comprising of a
wide-ranging set of topics. With the access to such knowl-
edge pattern digests that feature a pertinent list of topics,
tools and data sets, it is possible for domain scientists to
more easily answer research questions such as e.g., “What
are the best tools to handle particular modeling problems
with high accuracy?”; “Which types of datasets have been
used previously to evaluate a certain kind of hypothesis?”;
“Which deep learning tool is most popular for a specific
bioinformatics research problem?”; Given that computa-
tional and data-intensive research problems are expensive
and time-consuming to solve, relevant topic models are
critical to provide useful guidance through text mining
of massive open information within a scientific domain
or across domains. They can significantly benefit domain
scientists by drastically shortening the time to knowledge
discovery and adaptation of prior domain knowledge for
their innovations.

In our preliminary experiments that involved manu-
ally querying/surveying the publications from neuroscience
and bioinformatics domains, we found that common knowl-
edge patterns within a domain, as well as across the do-
mains, can be useful to domain scientists. We found by
observing novice/expert researchers that significant text
corpus relating to popular tools (e.g., Pegasus [4] in bioin-
formatics and NEURON [5] in neuroscience) and datasets
(e.g., RNA, Interneuron) are frequently used as guidance
using a manual (slow/inefficient) approach. Also, the lat-
est computational and data-intensive research problems in
neuroscience tend to be influenced by efforts in prior bioin-
formatics literature that successfully accomplished investi-
gations of related problems with relevant combinations of
topic sets. Exemplar topic sets include e.g., integration of
data sets with community-wide standards, and sustainable
toolkits in distributed computing environments.

To be efficient and effective (i.e., to obtain quick and
meaningful guidance), we further found that ideal topic
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models need to handle several uncertain factors. Uncer-
tainty can be caused by changing/evolving relationships
among topics, tools, and datasets as a domain knowledge
base matures, its text corpus increases in size/variety, and
new developments arise in tools or datasets for improving
the state-of-the-art solutions. For instance, observing Fig. 1,
uncertainty can occur when efficiently determining whether
the tool 75 is an appropriate tool for solving a problem
related to Topic 1 in a scientific domain B. Alternately,
uncertainty can also occur when scientists from domain A
are looking for referring relevant solutions from another do-
main B by exploring similar topics from corresponding lit-
erature. Therefore, the design of an ideal topic model should
be scalable and flexible to deal with daily/monthly/yearly
changes in the Big Data “volume”, “velocity”, “variety” and
“value” within scientific domains, and satisfy knowledge
discovery related query needs on state-of-the-art problems
for domain scientists.

In the context of the knowledge discovery prob-
lem, scientists can leverage our model to find suitable
“tools/datasets” for different research topics. In addition,
our DSTM can also be effectively applied to different sci-
entific or engineering communities based on their research
needs by replacing the “tools/datasets” with their specific
interests. For example, in medical science, our model can
help researchers/clinicians to find relevant research topics
for certain drugs or genes; in material sciences, our model
can help researchers/engineers to discover the topics based
on certain material properties.

3 RELATED WORK

Prior related works can be organized under three broad
categories: (a) probabilistic topic models; (b) inference al-
gorithms; (c) deep learning in topic models; and (d) cross-
domain recommendations.

Probabilistic Topic Models. Topic model is a suite of
algorithms that are used to extract useful information from
text corpus in an unsupervised learning manner. LSA [6]
and pLSA [3] are a few of the early topic models that
decompose documents into latent vector representations
using the SVM and the probabilistic model, respectively.
In recent years, Latent Dirichlet Allocation (LDA) [2] is
the most widely used topic model that was invented by
Blei et al. in 2003. It discovers the latent topic structures
from a collection of documents or text corpus automatically
with a Bayesian hierarchical model. In LDA, each topic is
modeled as a distribution over words, and each document
is represented as a mixture over topic proportions. The LDA
model has been widely applied to document classification,
searching, and recommendation.

Based on the LDA model, many researchers have tried
to extend it for discovering interesting patterns of docu-
ments. Rosen-Zvi et al. [7] proposed an Author-Topic model
that extends the LDA by including authorship information
to establish the relationships between topics and authors.
Relationships between topics and authors are explored by
representing each author with a mixture of weights for
different topics.

Mimno et al. [8] also proposed a similar author topic
model for matching papers with peer-reviewers. Blei et
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al. [9] proposed a dynamic topic model (DTM) in order to
extract the evolution of topics within sequentially organized
documents. Blei and Lafferty in [10] proposed a correlated
topic model (CTM) to demonstrate the correlations between
topics using a logistic normal distribution on the simplex
to model dependence between two topics. This distribution
represents the correlations between components.

Other researchers also successfully applied latent based
topic modeling to different areas. Li et al. [11] adapted the
LDA model for image scene categorization without any hu-
man annotations, which achieved comparable performance.
Flaherty et at. [12] developed a model that is able to cluster
genes within experiments that do not require inputs of a
gene or drug. Wang et al. [13] combined the collaborative
filtering and probabilistic topic models (i.e., LDA variants)
in a recommendation system to recommend scientific ar-
ticles. Their model leverages collaborative filtering and a
topic model to perform matrix factorization that decom-
poses a rating matrix into latent users and items structure.
Luo ef al [14] proposed a generative probabilistic model for
optimizing workforce personnel allocation using employee-
activity logs. They used latent variables to learn hidden
patterns between employees and activities in terms of their
job performance. Zhao et al [15] applied LDA to biological
or medical datasets for clustering analysis.

The drawback in the existing topic models is that none
of them utilize any kind of domain-specific knowledge
to explore specific latent patterns that are meaningful for
particular research problems involving tools and datasets.
Consequently, they are not suitable for the domain-specific
topic modeling problems that we address in our DSTM
approach for the knowledge discovery problems in compu-
tational and data-intensive scientific communities or other
domains based on users’ interests. Moreover, in contrast
with the LDA, our DSTM not only discovers what topics
are expressed in a published document, but also provides
insightful information about the pertinent tools or datasets
that are associated with each topic. Our DSTM is the
first topic model to discover the latent knowledge patterns
among research topics, tools, and datasets for scientific
communities.

Inference Algorithms. Inferring the latent variables in a
probabilistic model (such as the LDA) has also been an area
of active research investigations. The original LDA work [2]
used a variational expectation maximization algorithm to
estimate latent parameters. Hoffman et al. [16] designed an
online stochastic optimization with a natural gradient step.
Their optimization results showed the variational Bayes ob-
jective function convergence to a local optimum. Griffiths et
at. [17] presented a collapsed Gibbs sampling algorithm
(i-e., a Markov chain Monte Carlo method) to infer latent
parameters of their model. In general, MCMC estimates
the latent variables using sampling methods [18]. In con-
trast, variational inference uses optimization methods [19]
to minimize the lower bound. Hence, MCMC may need
more computation time to achieve similar performance as
the variational inference. In comparison to the variational
inference, Gibbs sampling has a low bias but with a high
variance. In our work, we do not consider computation time
as a factor, thus we use Gibbs sampling as our inference
algorithm and mitigate the issues of high variance by run-
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ning multiple Markov chains. Moreover, Gibbs sampling is
slightly easier to implement without comprising much of
the learning speed and the generalization performance.

Deep Learning in Topic Models. In recent years, the
deep latent model is also a popular area that has been inves-
tigated in many prior works. In general, deep latent models
utilize the deep neural network to infer latent variables. In
2013, Kingma et al. [20] proposed the VAE model that uses
the Stochastic Gradient Variational Bayes (SGVB) with a re-
parameterization trick to approximate the posterior distri-
bution. VAE model shows an efficient variational inference
method using stochastic gradient descent. Prior works have
started to use this method to infer latent variables in the
topic model. Miao et al. [21] proposed a neural variational
document model (NVDM) to present documents with the
latent variables using variational autoencoder. Srivastava et
al. [22] presented an autoencoding variational Bayes (AEVB)
based model ProdLDA for efficient LDA inference, which
demonstrated better performance in topic coherence, com-
putational efficiency, and simplicity. Deep learning methods
have shown their efficiency in inference and simplicity with-
out requiring rigorous mathematical derivations. However,
they have limitations in the aspects of interpretability and
controllability of learning the causal relationships based on
human knowledge.

Cross-domain Recommendations. Cross-domain rec-
ommendation or cross-domain collaboration is an impor-
tant study area that helps to transfer knowledge from one
domain to another domain effectively. Associated methods
exploit knowledge for auxiliary (synergistic) domains con-
taining pertinent information to improve knowledge utility
in a target domain. For example, we can learn users’ prefer-
ences using their purchase records in the “Movie” domain to
recommend possible book items. The common approaches
for cross-domain recommendation are collaborative filtering
(including matrix factorization or factorization machines
techniques) [23] when dealing with a structured dataset
(e.g., movie or book ratings). Probabilistic modeling is often
applied when dealing with an unstructured dataset (e.g.,
text, logs). Li et al. [24] proposed a Topic Correlation Analy-
sis (TCA) model for cross-domain text classification, which
extracts both the shared and the domain-specific latent
features to transfer knowledge from a given source domain
to a target domain. Gao et al. [25] proposed a supervised
cross collection Latent Dirichlet Allocation (scLDA) model
that extends the traditional LDA model for dealing with
data from multiple data collections. Sun et al. [26] proposed
a probabilistic generative model to explore the expert be-
haviors in collaborative networks by analyzing IBM ticket
tracking logs. Tang et al. [27] adapted the LDA and Author-
Topic model [7] to find potential cross-domain collabora-
tions. They computed the chance of collaborations between
two researchers based on their research topics and existing
connections among these two domains. Sleeman in [28]
applied a Dynamic Topic Model (DTM) to extract topics
for cross-domain analysis. Zhao et al. [29] used embedding
techniques for product review sentiment analysis. Shi et
al. [30] embedded heterogeneous information to provide
auxiliary data in a recommendation system using a meta-
path based random walk strategy. Zheng et al. [31] surveyed
the methods to fuse data from multiple domains. Min et
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al. [32] proposed a cross-platform multi-modal topic model
(CM3TM) for inter-platform recommendations that can dif-
ferentiate the shared topics among different platforms and
align multiple modalities.

However, scientists or researchers in most cases want to
have an efficient way to explore synergies from other do-
mains in an interactive manner. Hence, instead of only rec-
ommending and ranking possible solutions with scores, our
work provides a visualization method with a topic embed-
ding algorithm that enables domain scientists/researchers
to self-explore the closest synergistic topics in a low di-
mension space. Grbovic et al. [33] proposed items and users
embedding techniques for comparing the similarity between
items. t-SNE [34] is a popular algorithm that can map high
dimensional datasets to a lower dimensional space (such as
2D or 3D space) for better visualization. However, it is not
suited to be directly applied for multivariate distribution
(i.e., multinomial distribution in our case). Lee et al. [35] also
developed a visualization solution to easily explore plots
and tables in scientific articles. They used machine learning
or deep learning methods to classify 8 million figures into
five types (e.g., plots, tables, equations). However, these
classification types do not reflect the relevant latent topics
of knowledge patterns, and our approach makes it signifi-
cantly easier to interpret topic associations in the processed
information of cross-domain collaborations.

TABLE 1. Notations for the generative model

Symbols  Description

D a collection of documents D = {d1, ...,dn}

K the number of topics

T a set of tools

S a set of datasets

\% a set of words in the vocabulary

Ny the number of word tokens in a document d

tg a set of tools in a document d

Sq a set of dataset in a document d

Wen , W the nt" word token in a document d

Tdn, X tool indicator chosen from t; for word w,

Ydn,Y dataset indicator chosen from s; for word wyg,,

Zdns % the topic assignment for word w,

Lgn,L binary indicator to label which is responsible for z4,,
T, T Bernoulli parameter for generating label L for a document d

n (N7, Ny ) parameters for Beta distribution prior

bz, P multinomial distribution over words specific to a topic z
0,0 multinomial distribution over topics specific to a tool ¢
As, A multinomial distribution over topics specific to a dataset s
a, B,y parameters of symmetric Dirichlet priors

4 DOMAIN-SPECIFIC ToPiCc MODEL

In this section, we first detail our Domain-specific Topic
model (DSTM) in terms of its generative process, inference
algorithm, and model parameter estimation. Following this,
we present three possible applications for the DSTM to be
used for the discovery of knowledge patterns for guiding
researchers in computational and data-intensive scientific
communities.
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Fig. 2: Graphical representation of the generative model. The boxes are “plates” representing replicates; the “shaded” nodes are observed variables;
the “unshaded” nodes are unobserved variables; the nodes without cycle are hyperparameters; See Table 1 for node notations.

4.1 The Generative Model

The purpose of our DSTM generative model is to discover
the latent knowledge patterns underlying a collection of
documents for a specific scientific domain in terms of the
relationships among research topics, tools, and datasets.
The generative model refers to our text modeling approach,
where we generate each word in a document based on the
distributions of words. As opposed to the LDA model that
generates each word based on random topics, our model
generates each word based on reference tools or datasets oc-
currence in a document. In the generative process, we do not
assume that a tool and/or dataset is responsible for a certain
word simultaneously. For simplifying the computational
complexity, each word is generated by either a tool or a
dataset. Considering this sentence that is extracted from the
BMC Bioinformatics journal: “We tested the performance of
three widely used short-read alignment tools (BWA, Bowtie
and Bowtie2) on simulated sequencing runs of varying cov-
erage”, we can intuitively infer that the tools BWA, Bowtie
and Bowtie2 contribute to generate the bioinformatics topic
“short-read alignment tools”.

The graphical representation of our generative model
is illustrated in Fig. 2 using a plate notation with all of
the various notations summarized in Table 1. During the
pre-processing stage, we collect papers from particular col-
lections of documents D = {di,...,d,}. Next, we label
the corresponding tools and dataset categories mentioned
in each document based on our collections of tool names
and dataset categories provided by a domain scientist as
domain-specific knowledge. A document d is represented
as a bag-of-words with N, unique word tokens, and the n*"
word in document d is denoted as wy,. T denotes the total
number of tools and .S’ denotes the total number of dataset
categories we created in a catalog. In each document d, the
word is an observed variable with “shaded” color, and the
other observed variables are a set of tools t; and a set of
dataset categories s4. In the model, we assume that there are
K number of topics for collection documents D. ¢ denotes
the K x V matrix of topics distribution over vocabulary V.
0 denotes the T' x K matrix of tools distribution over topics,
and A denotes the S x K matrix of datasets distribution
over topics. L is a binary indicator variable to label whether
the topic assignment is from the tool distribution 6 or the
dataset distribution A.
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Algorithm 1 Generative process in the model

: for each topick =1,..., K do
| Draw a multinomial over vocabulary ¢y, ~ Dir(B);
end for
: for each toolt =1,...,T do
| Draw a multinomial over topics ; ~ Dir(a);
: end for
: for each dataset s =1, ..., S do
| Draw a multinomial over topics 8; ~ Dir(7);
9: end for
10: for each docd =1,...,D do

PN AR

11: Sample binary indicator Lg, ~ Bern(ma);
12: if Lgn, == 0 then

13: Select a tool z4n, ~ Unif(ta);

14: Sample a topic zan ~ Multi(6s,,,);

15: end if

16: if Ly, == 1 then

17: Select a dataset yq, ~ Unif(sq);
18: Sample a topic zan ~ Multi(Ay,,);
19: end if

20: | Choose a word wan ~ Multi(r=z,, );
21: end for

Algorithm 1 describes the generative process of the
model. First, each topic is associated with a multinomial
distribution over V vocabulary drawn from symmetric
Dirchlet(B) prior. Each tool ¢t draws a multinomial distri-
bution over topics from Dirchlet(a) prior, represented by
0;. And each dataset s draws a multinomial distribution
over topics from Dirchlet(y) prior, denoted as As. Second,
for each word in document d, we draw a binary indicator
L from Bernoulli(ry) distribution to decide whether this
word is generated by a tool or a dataset. The Bernoulli(mq)
distribution is applied when both t4 and s4 are not empty. If
either of them is empty, the L is assigned to the non-empty
one. Then, a tool or a dataset is chosen from either a set of
tools (tq) or a set of datasets (s4) randomly and uniformly.
A topic assignment zg,, is selected based on the tools ()
or datasets (A) distributions over topics. Finally, a word is
generated according to topic distribution (¢) over words.

By estimating the latent variables {¢, 0,A,z,x,y, 7, L}
of the model, we obtain information about topics of the
collection of documents, and which tools or datasets are
pertinent to be used for a particular research problem.
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4.2 Inference and Parameter Estimation

In this subsection, we describe the algorithm to estimate the
latent variables by using the Gibbs sampling method [17].
We choose the Gibbs sampling as our inference algorithm,
mainly because of its simplicity. Given the high variance
issues in Gibbs sampling, we run multiple Markov chains to
estimate posterior distribution. More specifically, we explain
below how we use the Gibbs sampling method [17] to
infer and estimate latent variables {&b, 0, A\, z,x,y, 7, L} of
the model. To build the Gibbs sampling, we construct a
posterior distribution of latent variables conditioned on all
other variables, and repeatedly sample from the conditional
probability distribution until it converges to a target or
equilibrium distribution. In practice, we do not need to
construct Gibbs sampling equations for each latent variable.
By taking advantage of conjugate prior, the latent variables
{®b, 0, A, ¢} can be integrated out as follows: Dirichlet is the
conjugate prior of multinomial, and Beta is the conjugate
prior of Bernoulli. Using density estimation of x,y,z, we
can still estimate {¢, 0,A} through posterior distribution.
To simplify equations, we define the set of hyperparameters
as @ = {qa,3,7,n,7T, S}.

4.2.1 Inference Algorithm

For each n'" word of document d, we construct Gibbs
sampling equation for label L, topic assignment zg4,,, and
tool assignment x4, or dataset assignment yg4,, jointly as
a block (Lgn = 0, 2dn,Zdan) of (Lan = 1, Zdn,Ydn) con-
ditioned on all other variables. Then, the full conditional
probability for considering the n'" word generated by tool
(Lan =0, zqn, = k, x4, = t) is as follows:

P(Lagn = 0,24n = k, an = t|L_dn, X—dn, Wan, (1)
Zdn, W_dn,y,§2)
_ Cl+nm —1

CtL'i_CsL""nTro + Ny — 1

y C’gf_dn +a
Dok CtTk{(_dn + Ka

y Coan +8
X Vi —an T VB

where Cl is the number of times including current instance
that a tool is selected for generating word in document
d, Cf is the number of times including current instance
that dataset is selected for generating a word in document
d, L_g4, denotes all the label assignments excluding the
current instance. C2X is the number of times tool ¢ is
assigned to topic k, and the subscript Cg,;li 4n, denotes the
exclusion of the current instance. CX is the number of
times word v in vocabulary V is assigned to topic k, and the
subscript C’ka(_ 4, denotes excluding the current instance.

Similarly, the full conditional probability considering the

nt" word generated by dataset (La, = 1, 24 = k, Yan = S)
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is as follows:

P(Lin = 1,240 = k,Yan = 5|L_an, Y —dn, Wan, 2
Z—dny W—dn, X, )
_ CLltn., —1
CE+CE+ g+ 0y — 1
y ka'},(—dn +7
Dk CSkI,(—dn + K~y

S

% Cl‘)/kK—dn + B
Z’U C\‘//lf—dn + Vﬂ

where C5E represents the number of times dataset s is
assigned to topic k, with the subscript ka{(, 4n, denoting the
exclusion of the current instance.

Having obtained the full conditional distributions from
Equations 1 and 2, the whole Gibbs sampling algorithm is
straightforward. First, we initialize the variables {L, z, x,y}
randomly. Then, in each iteration, we update {L, z,x,y} in
turn from the full conditional distributions with Equations 1
and 2, until it converges to a target distribution.

4.2.2 Parameter Estimation

Collecting sets of samples L, z, x, y obtained from the Gibbs
sampling algorithm, we can estimate variables {¢, 0, A\, 7}
with expectation of posterior distribution. The posterior
distribution of topics k over vocabularies ¢y, is written as,

P(¢x|z, w, B) o P(w|z, ¢1)P(dx|5) 3)
D Ng 1%

o [T I #wwan I] 00"

d=1n=1 v=1

v

VK | 5

= [T o " =pir(ChE +5)
v=1

Then, the expectation of the Dirichlet distribution to esti-
mate parameter ¢,;, which is the probability of vocabulary
v assigned to topic k for any single sample, is given as,

Cn +

b= o O @
Y LOLE+VE

Similarly, the parameter estimations of 6;; which is the
probability of tool ¢ assigned to topic k, and A,; which is the
probability of dataset s assigned to topic k are as follows:

C£K+Oé

O, = —L————
th > CLE + Ka

()

__CHE oy
> C ka + K~

Next, the posterior distribution of 74 that describes the

probability of choosing a tool or dataset for generating a
word, is written as,

Ask (6)

P(ma[L,m) o< P(L|ma) P(7alm) @
L 7] - —
oc gt (1—mq)Ce my o (1 — mg)m
_ 7T57:L+777\'0_1(1 o ,n_d)CSLJrnwlfl

= Beta(CF + 1o, CF + 11y
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Lastly, the expectation of the Beta distribution to estimate
the probability of choosing tools or datasets for a document
d is as follows:

Lan=0 _ CF + iy ®)
¢ CtL + CSL + Ny + Ny
_ CL -
7_‘_UlLdnfl s +77 1 (9)

T CEACE iy + 11,

4.3 Applications of Knowledge Pattern Discovery

We now present three applications for our DSTM to be
used for the discovery of knowledge patterns for guiding
researchers via user interfaces that feature conversational
agents (or chatbots) as outlined in [36]. Through an interac-
tive interface, DSTM can help the researchers in their com-
mon research activities involving: (i) Intra-domain Knowledge
Pattern Representation that can be directly achieved by DSTM
when used to explore potential tools or datasets in individ-
ual domains to solve a research problem with better per-
formance; (ii) Cross-domain Knowledge Pattern Representation
that involves a topic embedding solution for visualizing
topics from multiple domains in a two-dimensional space
in order to allow researchers to explore close topics and
adapt successful solutions from other domains; and (iii)
Trend Knowledge Pattern Representation that tracks the change
in trends or reveals emerging trends over time, in order to
guide researchers to make intelligent decisions on choosing
the pertinent tools or datasets relevant to solving their
research problem at hand.

4.3.1 Intra-domain Knowledge Pattern Representation

Researchers seek to discover intra-domain knowledge pat-
terns pertaining to tools or datasets from existing solutions
or prior successful experiences in a given scientific domain.
To understand the application of intra-domain knowledge
patterns, we can consider the following example: a research
group has applied a deep learning method to achieve better
performance in bioinformatics tasks such as sequence anal-
ysis and structure prediction. In this context, the knowledge
pattern from their solution can be learned and re-purposed
by other bioinformatics scientists for similar research tasks.
We obtain intra-domain knowledge patterns by training
a DSTM object using a dataset (documents D, tools T,
datasets S) from an individual domain (e.g., bioinformatics
or neuroscience that are an exemplar for the purposes of
our work). Based on this training, we generate the topic
distribution ¢, tool distribution 0, and dataset distribution
A

4.3.2 Cross-domain Knowledge Pattern Representation

Besides exploring existing solutions in their respective do-
mains, researchers in many scientific communities seek to
investigate new solutions by referring to knowledge pat-
terns (such as e.g., methods, tools) from other synergistic
domains. In such scenarios for creation of cross-domain
knowledge representations, our DSTM can be applied for
user guidance. Common approaches for cross-domain rec-
ommendations involve using social information to build
connections from other domains [37], [38], and also using
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transfer learning that makes use of auxiliary data [39]. Our
idea for the DSTM application builds upon these existing
approaches for finding similar topics from different syn-
ergistic domains to help with references to new methods,
tools, and datasets from a cross-domain perspective.

The topics in our model are represented as multinomial
distributions over a fixed vocabulary. The methods to mea-
sure difference or distance between two distributions could
be Kullback-Leibler (KL) divergence or Maximum Mean
Discrepancy (MMD) distance. The output value indicates
the similarity between the two topics. In our work, instead
of only providing a similarity score for users to compare
and rank topics, we provide a novel visualization solution
that embeds topics into a two-dimensional plane for easier
exploration of similar topics in a lower dimensional space.

There have been prior algorithms implemented for topic
embedding purposes. A few implementations directly treat
multinomial distributions as a high dimensional dataset
and then use PCA or t-SNE for mapping all topics onto a
two-dimensional (2D) space. However, such an approach
may not measure the real distance between any two dis-
tributions. Authors in [40] use Jensen-Shannon divergence
to measure the distance between two distributions and
then use multidimensional scaling (also known as Principal
Coordinates Analysis) or t-SNE [34] to project the topics
onto a 2D space. However, Jensen-Shannon divergence is
a scale factor that outputs a value between 0 and 1. If
the two distributions are similar, the value measured by JS
divergence is very close, which makes it hard to differentiate
in a 2D space. On the other hand, if the two distributions are
not overlapped, the value will be always 1 no matter how
different the two distributions are.

In our work, we have investigated an effective way of us-
ing t-SNE [34] for topic embedding via a novel MMD-t-SNE
algorithm that maps topics onto a 2D space. The original
t-SNE uses Euclidean distance to measure distance between
two high-dimensional datasets, which gives equally weights
for each data entry. This approach is suitable for those
datasets (e.g., images, bag-of-words), where each entry is
a real value. However, for multinomial distributions, each
entry is a probability that cannot be equally weighted.

So, we use Maximum Mean Discrepancy (MMD) [41]
to measure the distance between distributions in a high-
dimensional space. More specifically, we replace the Eu-
clidean distance that is used in the original t-SNE algorithm
for measuring pairwise similarities in the high-dimensional
space with the MMD kernel function. Hence, the symmetric
conditional probability between topic 7 and j is defined as,

~ exp(—MMD(, j)*/20?)
Y exp (— MMD(K, 1)* /202)

Dij (10)

where [ denotes 7 or j, because of its symmetry. The Maxi-
mum Mean Discrepancy (MMD) distance between topic dis-
tribution ¢; and ¢; for multinomial distribution is suggested
using the Pearson’s Chi-square statistic test [41]. In order to
make Chi-square distance symmetric, the final MMD(3, j) is
calculated by the average of the two Chi-square ij and X?i
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values as given by,

MMD(i, j) = E[Z (Giv — Pju) n Z (D)o q;y@v) }

2 d)ju

v
(1D
With MMD-t-SNE algorithm, we can project any of the
topics from any number of domains into the same 2D space
in the form of a cross-domain knowledge pattern represen-
tation. For cross-domain recommendation, we simply need
to explore topics from a 2D space to find closely related
topics from other domains for referring research ideas, tools,
as well as datasets. The procedure to obtain a cross-domain
knowledge pattern fundamentally involves training multi-
ple DSTM objects using datasets collected from multiple
domains (for instance, using two domains a and b in our
work). Subsequently, we take the topic distributions ¢,
¢ from the two pre-trained DSTM models. Finally, we
apply our MMD-t-SNE algorithm to embed topics into a
low-dimensional topic representation ¢, which can help
us understand the relationships among topics between two
different domains.

4.3.3 Trend Knowledge Pattern Representation

As detailed above, the intra-domain and cross-domain
knowledge pattern representations in our DSTM appli-
cations allow discovery of broadly popular tools and/or
datasets featured in all publications over the last ten years
being considered. However, their use in a visually interac-
tive manner within an interactive user interface requires
a new kind of DSTM application. Our trend knowledge
pattern representation application not only addresses this
issue, but also ensures that the interactive knowledge dis-
covery uses the most current information i.e., the informa-
tion presented to the user tracks the change in trends or
reveals the latest emerging trends in the relevant text corpus.
For example, bioinformatics scientists in the past used to
use the MATLAB SVM toolbox for pattern recognition;
however, these days most scientists choose a deep learning
framework (e.g., Keras, TensorFlow, PyTorch) to accomplish
similar tasks. Our DSTM application can discover such
trend knowledge patterns with an unsupervised learning
approach, and can be adapted within effective visualizations
in user interfaces. Hence, the trend knowledge pattern rep-
resentation can be considered to be complementary to the
intra-domain knowledge pattern. This complementary na-
ture is helpful for incorporating the time-series pattern that
can guide users to select suitable tools/datasets. Otherwise,
users will only consider the average information within
the ten years of data, and miss deriving potential trends
for future research. Moreover, the intra-domain knowledge
pattern is also necessary to obtain overall information and
help in choosing suitable tools/datasets that do not have a
clear trend in change patterns.

Algorithm 2 details our novel algorithm to discover
trend knowledge patterns for selecting suitable tools or
datasets. Our trend pattern analysis does not involve simply
ranking tools or datasets by counting the number of times
they are mentioned in papers for each year. Our goal is to
learn the trend knowledge patterns for tools or datasets in
terms of the particular topics by year using our pre-trained
model.
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Algorithm 2 Trend Knowledge Pattern Representation

Input: D, S, T from particular domain

Output: S,(fs), Tlgi)

1: function TREND(D, S, T)

2: Get a pre-trained DSTM model’s parameters: ¢, 6, A
3 Initialize T,E? =0; Sliis) = 0; and ¢ denotes year;

4: for each docd € D do

5: Set y to publication year of doc d;

6.

7

8

Initialize tool assignment T'A; = 0;
Initialize dataset assignment SA; = 0;
: Initialize topic assignment K A = 0;
9: for each word wg, € d do
10: Sample a topic za, and tool x4, with Eqn. 1;
11: TAz,, +=1LKA., +=1
12: Sample a topic za, and dataset yq, with Eqn. 2;
13: SAy,.+=1L KA., +=1;
14: end for
15: Choose tool id tid = argmax (T Ay);
16: Choose dataset id sid = argmaz(SAs);
17: Choose topic id kid = argmaz (K Ax);
18: Tlgd),tid_F =1
19: Sl(cqvft)i,szd—’— = 1/

20: end for _
21: return S,(JS), T,é:)
22: end function

The core idea of learning the trend knowledge pattern
is to infer the tools/datasets’ topics for each paper using
our pre-trained model. For example, we use a pre-trained
model from an individual scientific domain. Then, we group
papers by year and run an inference algorithm using our
pre-trained model as shown in Algorithm 2 to infer its topics
for each paper. Following this, we can track the changes in
trends or the evolution of the use of tools or datasets for a
particular topic by year.

More specifically, in Algorithm 2, we firstly use a pre-
trained model in an individual domain. Secondly, we ini-
tialize two 3D arrays T,gz) (with dimensions of the number
of ‘;Iears, the number of topics, the number of tools) and
S(zs (with dimensions of the number of years, the number
of topics, the number of tools) to count samples generated
by our inference algorithm. Thirdly, for each paper, we infer
its topic and relevant tools or datasets by assigning them
to particular topics based on our pre-trained model and
then we update relevant 7, ]5? or S ,(Cls) We run these steps for
several iterations to make sure that the model converges.
After completion of the inference procedure, the Té? has
information the times of tool ¢ been assigned to topic k in
year 4; similarly, the S ,(;S) has information the times of dataset
s been assigned to topic k in year :. Finally, we obtain sets
of samples T,g), S ]g? to estimate the trends within tools or
datasets for a particular topic by year.

5 DATASETS

We use three categories of datasets (papers, tools, and
datasets) from two exemplar scientific domains viz., neuro-
science and bioinformatics for understanding the synergistic
relationships among research topics, tools, and datasets.
Table 2 provides a more detailed description of the collected
data for analysis, and the related data pre-processing steps
performed on this collected data are as follows:
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TABLE 2. Description of collected data for analysis from neuroscience and bioinformatics domain communities.

Category Neuroscience

Bioinformatics

Papers We have collected 16,721 latest neuroscience papers
from four reputed journal archives: Frontiers in Computa-
tional Neuroscience, Journal of Computational Neuroscience,
Journal of Neuroscience, and Neuron published from 2009
to 2019. This results in a vocabulary size of V' = 19, 488
unique words joint with bioinformatics text corpus and

a total of 4, 527,987 word tokens.

We collected 10, 681 bioinformatics papers from Journal
of BMC Bioinformatics, Journal of BMC Genomics, Genome
Biology, Nucleic Acids Research, PLOS Computational Bi-
ology published in the recent 10 years between 2009 to
2019. We extracted abstracts for each of the papers. This
resulted in a vocabulary size of V' = 19,488 unique
words with neuroscience text corpus, and a total of
4,527,987 word tokens.

Tools We have collected the commonly used tools in neuro-
science research activities including computation, simu-
lations, databases and visualization, such as MATLAB,
NEURON [5], PyNN [42], ModelDB [43], and new
machine learning frameworks (e.g., TensorFlow, Keras)
may be applied in recent neuroscience research. This
results in a total of 189 tools.

We have collected 219 types of common used tools,
which cover a variety of bioinformatics research works,
including sequencing alignment tools (e.g., FASTA,
BLAST), genome analysis tools (e.g., GATK, Genome-
Tools), quality control tools (e.g., FastQC, RSeQc), work-
flow management tools (e.g., Pegasus), and new ma-
chine learning frameworks (e.g., TensorFlow, Keras).

Datasets described in neuroscience literature are usu-
ally recognized by cell types [44] (i.e., pyramidal, in-
terneuron) or brain regions (i.e., neocortex, retina). We
collected the common dataset types in neuroscience
experiments, which results in a total of 169 different

Datasets

We have collected types of datasets in bioinformatics,
including types of Ribonucleic acid (e.g., rRNA, tRNA,
miRNA), types of sequencing (e.g., Chip-seq, Dap-seq,
RNA-seq). This results in a total of 32 type datasets.
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types of datasets.

o Papers: We collected full papers from well-known jour-
nals in neuroscience and bioinformatics domain com-
munities. We removed any words that occurred in
less than 10 papers that are supposed to be highly
infrequent words, and belonged to the list of “stop
words” that are significantly frequent (e.g., “the”, “a”)
in papers. Each paper was represented as a “bag of
words” in our model.

 Tools: We collected the most commonly used tools of
neuroscience and bioinformatics domains separately in
collaboration with domain experts. This list of tools
covers a wide range of research efforts in computation,
simulations, databases and visualization.

« Datasets: We collected common types of datasets used
in experiments featured in the neuroscience and bioin-
formatics domains.

6 MODEL PERFORMANCE EVALUATION

In this section, we first perform model selection to choose
optimal parameters (such as number of topics, number of it-
erations) based on the two collections of datasets mentioned
in Section 5. Following this, we evaluate the generalization
and information retrieval performance with state-of-the-art
models such as Latent Dirichlet Allocation (LDA) [9] and
Probabilistic Latent Semantic Analysis (PLSA) [45].

6.1 Model Selection

The model we described in Section 4.1 has four hyperpa-
rameters {«, 8,v,n,T}. The {«, 8,7} are hyperparameters
for symmetric Dirichlet prior. They may affect the number of
topics: smaller values are supposed to find more topics from
a text corpus, and larger values tend to collect a relatively
smaller number of topics from a text corpus. Hence, for
processing a large volume of text corpus with wide rang-
ing research problems, we choose smaller values of these
hyperparameters and vice versa. For simplifying the hyper-
parameters tuning in our model, we follow the suggestions

from [17], keeping them constant: o = v = 50/K,3 = 0.1,
respectively. And the hyperparameter n adds prior proba-
bility for choosing tools or datasets for generating a single
word. The hyperparameter is also kept fixed at n = (3, 2).
This because we empirically suppose that tools in each
paper have a higher chance to be selected to generate words.
Hence, keeping the hyperparameters {«, 5,7, n} fixed, we
decide the optimal number for topics and iterations. In
addition, these optimal numbers are decided in terms of
datasets, and our results are obtained based on the collected
bioinformatics and neuroscience datasets.

6.1.1  Number of Topics

We can find the optimal number of topics T" for the model
based on a particular text corpus. Specifically, we need to
compute the likelihood of words give a particular number
of topics P(w|T) for all documents. This involves a step
to integrate out all possible topic assignments z for each
word using Y P(w|z,T). However, we can approximate
the likelihood of words by using the harmonic mean of
P(w|T) when z is sampled from a posterior distribution
P(z|w) [17], [46]. Hence, we get,

P(W|T) ~ {%iP(wm,T)’l}d (12)
=1

As shown in Fig. 3a, the harmonic mean suggests that
the optimal number of topics are near K = 50 for the
bioinformatics dataset collection, and K = 70 for the
neuroscience dataset collection. In most topic models, we
are inclined to choose a smaller number of topics based
on the perplexity metric performance for cases when there
is a similar performance between the two models. Such a
choice in turn helps us to avoid the handling of repeated
or redundant topics. On the other hand, choosing a large
number of topics will consume more computation resources
to reach equilibrium.

ermission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 3: DSTM model selection for choosing optimal number of topics and
number of iterations using harmonic mean based on neuroscience and
bioinformatics dataset collections.

6.1.2 Number of Iterations

In our DSTM, we use the Gibbs sampling as explained
earlier in Section 4.2.1 for inferring latent variables in our
model. The Gibbs sampling starts from a random initializa-
tion and runs over a few iterations to reach its equilibrium
distribution. Hence, it is also important to estimate the
optimal number of iterations for either achieving the best
performance or saving computation time.

Using the optimal number of topics K = 50 and K = 70
for the bioinformatics and neuroscience datasets respec-
tively, we apply Equation 12 to compute the harmonic mean
in terms of the number of iterations. As shown in Fig. 3b,
our DSTM reaches its equilibrium distribution at iteration
50 with the bioinformatics dataset, and at iteration 80 with
the neuroscience dataset.

6.2 Model Evaluation

In this section, we apply our DSTM on large collections
of publications from two exemplar scientific domains: neu-
roscience and bioinformatics. Specifically, we evaluate the
generalization performance of our model with the state-of-
the-art models: Latent Dirichlet Allocation (LDA) [9] and
Probabilistic Latent Semantic Analysis (PLSA) [45]. Next,
we evaluate information retrieval performance and discuss
issues by comparing them with state-of-the-art models.
Following this, we demonstrate the benefits of applying
our model for choosing appropriate tools or datasets for
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the computational and data-intensive research problems
discussed earlier in Section 4.3.

6.2.1

The generalization performance is an important factor to
evaluate how well a probabilistic model predicts a previ-
ously not observed sample based on the model parameters
learned in the training stage. Perplexity is a standard metric
that is widely used in probabilistic or text modeling to mea-
sure the predictive power of a model. A lower perplexity
score indicates better generalization performance of held-
out test datasets. Formally, the perplexity score of a test
document d that contains words w,, and is conditioned
on the known tools tg, datasets sg of the document d and
trained model, is defined as,

Generalization Performance Evaluation

perpleXity(wd|tda Sd, Dtrain) (13)

logP(Wd‘t(h Sd, Dtrain) }
Ny

where P(wg|tq, Sa, Dirain) is the probability of words wy
conditioned on known tools t; or datasets sy in the docu-
ment d, and where the N, is the number of words in the
document d. To compute the overall perplexity score of all
test documents D;..;, we simply average the perplexity over
test documents:

—ewf

perpleXitY(Dtest) (14)

— ZdD:telSt perpleXitY(Wd|td7 Sd, Dtrain)
Dtest
The probability of words w, in the document d with known

tools t; or datasets sq can be obtained by integrating all
latent variables,

d

K T
P(walta,sa) = [ D [% > T Gk, Ok (15)

n=1k=1 t=1
S
1
E L,=1
+ — g (bk,w" /\ks
Sd 1
s=

Where the ¢, 8, A can be estimated through model training
stage using Equations 4, 5, 6, respectively; also, the w4 needs
to be sampled based on the new test documents d. This
equation is similar to Equation 12, but it is computed with
new test documents. Practically, we run the Gibbs sampling
algorithm in Equations 8, 9 with a few iterations to get a
stable estimation for each test document.

In our experiments, we compared the generalization
performance of our DSTM with the LDA and PLSA for both
dataset collections (i.e., neuroscience and bioinformatics)
shown in Table 2. In both cases and in both the models, we
held out 20% of the same data for testing the generalization
performance and used 80% of the same data for training.

Fig. 4 shows that the perplexity scores of DSTM are
significantly higher than the LDA, PLSA perplexity scores
in both cases initially. We note that this has been caused
by overfitting issues when the number of topics are rela-
tively small. However, after increasing the number of topics,
the DSTM quickly achieves similar generalization perfor-
mance with LDA and PLSA after topic (K = 50). Especially,
the neuroscience dataset achieves better performance after
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Fig. 4: Perplexity comparison with LDA, PLSA models on different
dataset collections and for different number of topics.

topic (K = 70) as shown in Fig. 4a. Additionally, in
both cases, the LDA and PLSA models’ perplexity scores
change slightly with the different number of topics, and the
difference between the maximum and minimum scores are
indistinguishable.

The above evaluation results provide the insights of an
interesting phenomenon where the LDA, PLSA models have
overall better generalization performance for the most num-
ber of topics; whereas, our DSTM has better performance
within a range of the particular number of topics (that in
turn depends upon the diversity of the number of tools or
datasets). The reason for this phenomenon is that the LDA,
PLSA have a random generative process for producing each
word. However, our DSTM generates words based on the
occurrence of tools or datasets within each document to
guide our model to find particular topics. From Fig. 4, we
can also find that the neuroscience dataset achieves better
performance than the bioinformatics dataset. The reason is
that the number of tools and datasets in the neuroscience
dataset are larger than the number in the bioinformatics
dataset.

In order to analyze the impact of the size of datasets
(e.g., tools, datasets) on the generalization performance in
our DSTM, we re-construct our training data with bioinfor-
matics publications using different sizes of tools/datasets.
More specifically, we train multiple DSTM variants by ran-
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domly selecting subsets of tools/datasets from the full sets
measured with different ratios (i.e., 20%, 40%, ..., 100%)
while keeping other parameters the same as in the previous
experiments. Subsequently, we use the same testing datasets
to test each model’s generalization performance using a
perplexity score. As shown in Table 3, we can conclude
that the perplexity score can be improved by increasing the
size of tools/datasets in the training data. This evaluation
result presents the evidence for why the neuroscience pub-
lication datasets can achieve better performance than the
bioinformatics publication datasets, and also indicates how
our DSTM performance can be improved depending on the
characteristics of the datasets being considered.

In summary, our DSTM’s performance is dependent on
the availability of auxiliary datasets (e.g., tools/datasets in
our work) for model training. In essence, our DSTM has
good generalization performance in comparison to state-of-
the-art models (i.e., LDA, PLSA) for finding highly specific
topics within a domain. Hence, our DSTM is more suitable
for domain scientists in finding particular resources (such
as tools or datasets) as part of their knowledge discovery to
solve research problems at hand.

TABLE 3. Perplexity comparison with our DSTM models on
bioinformatics dataset. We have trained five DSTM models
with the different ratios of tools/datasets, and tested them
with same test datasets.

Ratio 20% 40% 60% 80% 100%

Perplexity 13977.93 984235 8483.45 8217.74 7801.58

6.2.2 Topic Coherence Performance Evaluation

The perplexity metric cannot directly reflect the quality of
topics generated by the models. Hence, we also evaluate
the topic’s coherence scores by using a number of standard
metrics such as NPMI, UCI and UMass. Both NPMI and UCI
are measured by point-wise mutual information (PMI) of
the top n words of the topics generated by topic models;
whereas, the UMass is calculated by smoothed conditional
probability between top words pairs [47]. Note that a higher
coherence score implies better performance. Further, we
have evaluated the coherence performance of our DSTM
with state-of-the-art PLSA and LDA models using both
bioinformatics and neuroscience datasets. In this context,
we extract the top 5 and top 10 words from each topic
for computing the coherence score. Table 4 shows that
our DSTM achieves slightly better performance than the
state-of-the-art models in almost all metrics and scenarios,
which are benefited by incorporating extra information (i.e.,
tools/datasets) for generating consistent topics. Therefore,
the performance of our coherence score further proves that
our DSTM can generate good quality topics in comparison
with the state-of-the-art models.

6.2.3
In this section, we compare the information retrieval per-
formance of our DSTM with LDA and PLSA models. In-
formation retrieval performance is used to evaluate - “how
relevant is the retrieved document d that satisfies the user’s

Information Retrieval Performance Evaluation
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TABLE 4. Coherence score comparison (the higher the better) using bioinformatics and neuroscience datasets. We evaluate
our DSTM coherence performance with the PLSA and LDA model, and the coherence scores are computed using top-K

words.
Bioinformatics Neuroscience
Topic Model Top@5 Top@10 Top@5 Top@10
NPMI UCI UMass NPMI ucCt UMass NPMI UCI UMass NPMI UCI UMass
PLSA -0.209 -5.186 -1.313 -0.215 -5.540 -1.393 -0.211 -5.533 -1.455 -0.220 -5.792 -1.642
LDA -0.199 -5.051 -1.291 -0.214 -5.464 -1.313 -0.214 -5.423 -1.441 -0.228 -5.845 -1.583
DSTM -0.189 -4.030 -1.116 -0.207 -4.778 -1.233 -0.209 -4.779 -1.381 -0.223 -5.246 -1.582

TABLE 5. Information retrieval performance comparison of Precision (P), Recall (R), and NDCG (N) for top-K retrievals in

both Bioinformatics and Neuroscience domain.

Evaluation Metrics

Domain Topic Model

P@3 P@ P@l0 R@ R@ R@0 N@ N@ Ne@l0

PLSA 0.029 0.017 0.026 0.004 0004 0.013 0243 0229 0241

Bioinformatics LDA 0.043 0.026 0017 0.007 0.007 0.009 0222 0226 0231
DSTM 0.043 0.043 0.039 0.007 0.011 0.020 0.247 0.263  0.254

PLSA 0.029 0.017 0.026 0.004 0004 0.013 0243 0229 0241

Neuroscience LDA 0.043 0.026 0.017 0.007 0.007 0.009 0222 0226 0231
DSTM 0.043 0.043 0.039 0.007 0.011 0.020 0.247 0.263  0.254

query ¢”. Mathematically, we need to estimate the condi-
tional probability P(q|d).

TABLE 6. Samples of query sentences collected from bioin-
formatics and neuroscience experts for information retrieval
performance evaluation purposes.

Bioinformatics Neuroscience

DNA sequence analysis Computational neuroscience
Auditory perception

Neural mechanisms of atten-
tion and memory

Neural mechanisms of decision
making

Neural circuits for vision

Comparative genomics
Analysis of gene expression

Genome annotation

Sequence alignment analysis

To construct the query datasets, we obtain guidance from
the domain experts in bioinformatics and neuroscience on
common research topics they use to search and query from
literature archives as shown in Table 6, where we list a
sample of 5 query sentences (out of the total of 23 and 32
query sentences we used) from each domain, respectively.
To construct the retrieval datasets, we randomly select 1000
papers from our datasets mentioned in Table 2 for each
domain.

Given that we do not have the ground truth labels for
indicating the relevance score between each query set and
each retrieval set, we leverage the standard information
retrieval method Okapi BM25 [48] to compute the relevance
scores as our ground truth. For each query set, the predicted
relevance scores are computed by the probabilistic scores
P(q|d), and then we can evaluate the performance for each
query with the ground truth in terms of precision, recall, and
normalized discounted cumulative gain (NDCG) metrics.

To estimate P(q|d), we approximately compute the prob-
ability of query words w, given tools or datasets in retrieval
documents P(wg|tq,s4), which can be computed using
Equation 15. This can be understood by knowing whether

the topics of tools or datasets are a fit for the query words
or not. For example, the tool TensorFlow is not a good
fit for a query sentence that the user inputs as “Bayesian
statistical inference”, however it is a good fit for a query
sentence such as “gene expression inference using deep
learning”. On the other hand, in the LDA, PLSA models,
the P(g|d) is estimated by directly considering topics of
retrieval documents and query words w, given the topics
represented by Ele P(w,|k)P(k|d).

Table 5 presents the information retrieval performance
of DSTM in comparison with the PLSA and LDA models.
We have evaluated the information retrieval performance in
terms of Precision (P), Recall (R) and NDCG (N) at K in
{3, 5, 10}. The results shows that our DSTM outperforms
other models in all metrics for both bioinformatics and neu-
roscience domains, and thus has significantly better benefits
in retrieving domain-specific topics.

TABLE 7. Clustering performance evaluation using
Calinski-Harabaz Index (CHI) and Silhouette Coefficient
metrics; in both cases, a higher score indicates better perfor-
mance and each score is calculated by averaging the scores
from 10 tests.

MMD-t-SNE t-SNE
Epochs
CHI Silhouette CHI Silhouette
10 123.713 -0.115 123.965 -0.125
20 594.904 0.115 578.965 0.090
30 1637.887 0.395 1366.184 0.399
40 2039.281 0.406 1536.376 0.407
50 2349.961 0.492 1934.680 0.473

6.2.4 MMD-t-SNE Performance Evaluation

In this section, we evaluate our MMD-t-SNE algorithm
detailed in Section 4.3.2. Our MMD-t-SNE extends the t-
SNE [34] algorithm. Our design is suited for visualizing
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Fig. 5: Performance evaluation of our MMD-t-SNE with t-SNE algorithm using the MNIST dataset. The Figures (a)-(c) are generated by the t-SNE
algorithm; and Figures (d)-(e) are generated by our MMD-t-SNE algorithm.

complex distributions such as (categorical, multinomial dis-
tributions) in a low dimension space, and we replace the
Euclidean distance kernel with the MMD kernel.

We use MNIST [49] as our baseline dataset to compare
the performance between our MMD-t-SNE algorithm with
the t-SNE algorithm. Given that the MNIST datasets are
digit numbers with labels 0 to 9, we are able to observe the
correctness of the algorithms in a straightforward manner.
In order to simplify the MNIST, we replace the grayscale
(0-255) representation with a binary (0, 1) representation.
The reason we use a binary representation is that we only
compute the probability of non-white area at a certain pixel.
Hence, the dataset with/without grayscale will be the same
for the purposes of our algorithm related data transforma-
tion. There are 784 pixels in each image, and the value of
each pixel will be 1 if its grayscale is larger than 1, otherwise
it is set to 0. Following this, we aggregate 8 pixels into 1
pixel by counting the values within 8 pixels for simulating
the probability of having values in those areas. Finally, we
can calculate the probability of having values for each pixel
based on the image label. After these transformations, each
image will be represented as a multinomial distribution with
98 entries.

We compare the t-SNE algorithm with our MMD-t-SNE
algorithm using this transformed MNIST dataset. In Fig. 5,
the upper figures Fig. 5(a), Fig. 5(b), and Fig. 5(c) are gener-
ated for the t-SNE algorithm with different epochs; and the
lower figures Fig. 5(d), Fig. 5(e), and Fig. 5(f) are generated
for the MMD-t-SNE algorithm with same epochs as the
t-SNE algorithm. We can clearly observe that our MMD-
t-SNE algorithm exhibits relatively better performance in
differentiating these datasets with multinomial distribution
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representations.

In addition to the visualization evaluation, we also eval-
uate their performances with quantitative metrics. Specif-
ically, we use two unsupervised learning based metrics
to measure the quality of clustering performance: Calinski-
Harabaz Index (CHI) [50] and Silhouette Coefficient [51]. The
score computed by Calinski-Harabaz Index indicates a ratio of
the sum of between-clusters dispersion and of within-cluster
dispersion for all clusters. In this context, dispersion is de-
fined as the sum of distances squared, and the higher score
indicates that the clusters are dense and well separated.
Similarly, the Silhouette Coefficient considers intra-cluster
distance and nearest inter-cluster distance, which generates
a score between -1 (the worst) and 1 (the best); the values
near 0 indicate overlapping clusters and the negative values
normally indicate that a sample has been assigned to the
wrong cluster.

We compare the performance with different epochs for
evaluation of the algorithms’ effectiveness. Each epoch is
run 10 times to get the average values of CHI score and Sil-
houette Coefficient score respectively, because both MMD-
t-SNE and t-SNE algorithms have randomization process
in the initialization. As shown in Table 7, in the earlier
epochs, their performance results are roughly similar. How-
ever, our MMD-t-SNE algorithm achieves distinctly better
performance than the t-SNE algorithm from 20 epochs and
beyond.

6.2.5 Performance Results Discussion

Based on the performance evaluation results, we note that
our DSTM achieves its optimal performance when it uses
a suitable number of topics given a particular dataset. For
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example, the bioinformatics dataset uses the number of top-
ics K = 50; and the neuroscience dataset uses the number
of topics K = 70. Following this, the number of iterations
will gradually converge after 30 iterations. We can thereafter
use the harmonic mean shown in Equation 12 to search the
optimal parameters. In addition, the generalization perfor-
mance can be improved by increasing the size of datasets
(i.e., the number of tools/datasets) to train the DSTM. We
have demonstrated that the neuroscience dataset achieves
better performance than any of the state-of-the-art mod-
els, however, the bioinformatics dataset has slightly worse
performance than the state-of-the-art models. This slightly
worse performance is due to the fact that the bioinformatics
dataset has fewer data points corresponding to the number
of tools/datasets than the neuroscience dataset.

We have evaluated our above observation by training
DSTM with different sizes of tools/datasets, and have per-
formed testing with the same datasets. Our experimental
results show that the generalization performance can be
improved by adding more tools/datasets to train the DSTM.
Our coherence score shows that our DSTM can generate
good quality topics in comparison with state-of-the-art mod-
els. We remark that the generation of good quality topics
benefits by the addition of tools/datasets categories into
our DSTM and can lead to more specific topics. Finally, our
DSTM did not achieve better information retrieval perfor-
mance than the state-of-the-art models because our DSTM
does not have document parameters to measure the prob-
ability that a document is comprised of particular words.
Therefore, based on our experimental results we conclude
that our DSTM is not suitable for information retrieval from
documents.

7 APPLICATION DEMONSTRATION

In this section, we demonstrate the knowledge patterns
discovery enabled by our model for exemplar scientific do-
mains. Our demonstrations use the DSTM constructed with
appropriate parameters based on the discussion provided in
Section 6.1. Our demonstration experiments use full datasets
for both neuroscience and bioinformatics cases and feature
three types of patterns relating to the applications outlined
in Section 4.3 for helping researchers to choose appropriate
tools or datasets for a particular research topic: (i) Intra-
domain Knowledge Pattern Demonstration presents the overall
patterns for choosing tools or dataset within a specific scien-
tific domain; (ii) Cross-domain Knowledge Pattern Demonstra-
tion shows the patterns for helping researchers to investigate
new approaches, tools, or datasets by referring to solutions
from other synergistic domains; (iii) Trend Knowledge Pattern
Demonstration presents the evolution of tools/datasets for
particular topics over time, which helps researchers to make
guided decisions based on the past successes and the latest
emerging trends.

7.1 Intra-domain Knowledge Pattern Application

To obtain intra-domain knowledge patterns, we can follow
the method mentioned in Section 4.3.1 to train a neu-
roscience model and a bioinformatics model with neuro-
science and bioinformatics dataset collections, respectively.
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7.1.1  Exemplar Neuroscience Domain Dataset Discussion

Table 8 illustrates 4 samples of topics from 70 topics learned
by DSTM for the neuroscience dataset. These samples are
extracted from a single chain at the 80" iteration of the
Gibbs sampler. Each sub-table in Table 8 shows the top
10 words that are most likely to be generated conditioned
on that topic; the top 4 most likely tools to be used for
the topic; the top 4 most likely types of datasets that have
come from the topic. Note that we have provided the topic
heading annotation to each topic for demonstration in the
sub-tables. The first sample Topic 13 “Sensory & Anatomical
Signals” involves intra-/extra-cellular recordings, LFP, EEG,
etc. that use popular tools such as MATLAB, EEGLAB,
Klusters with commonly used datasets such as vertical
and horizontal. The second sample Topic 18 is related to
“Circuit Analysis” that determines circuit connections using
datasets that include excitatory/inhibitory type with pos-
sible neuromodulation, and standard tools for topological
analysis, including SPM. The third sample Topic 27 “Struc-
tural Morphology” focuses on the cellular and circuit mor-
phology including 3-D orientation and coursing of axons
along tracts. The fourth sample Topic 38 describes research
about the “Neuron Model” that features single neuron models
focusing on the role of channels in cellular excitability and
the variety of response patterns such as tonic spiking and
bursting, using several new tools popular in the past decade
including NEURON, GENESIS, and XPPAut that are hosted
in databases such as ModelDB. These knowledge patterns
were confirmed to be valid and helpful by neuroscience
experts, which demonstrates that our DSTM effectively cap-
tures the salient domain knowledge patterns.

7.1.2 Exemplar Bioinformatics Domain Dataset Discussion

Table 9 shows 4 samples topics out of 50 topics for the
bioinformatics dataset that are extracted from a single chain
at the 50" iteration of the Gibbs sampler. Each sub-table in
Table 9 shows the top 10 words that are most likely to be
generated based on that topic; the top 4 most likely tools to
be used for the topic; the top 4 most likely types of datasets
that are commonly used in or related the topic. Here also,
we have provided the topic heading annotation to each topic
for demonstration in the sub-tables. The first sample Topic 9
falls under the research topic of “Next-Generation Sequencing
Analysis”, for which the most popular tools being used are
BWA, Bowtie, or BLAST, and the dataset types commonly
used /related for this topic are wgs (“Whole Genome Shot-
gun”), rnaseq (“RNA sequencing”), etc. The second sample
Topic 10 is related to “Protein Sequence & Structure Modeling”,
for which popular tools such as rfam, psipred are accurately
captured by our model, types of datasets such as ENCODE,
mirna (“microRNA”) are also commonly used for this topic.
The third sample Topic 12 describes the research area of
“Metabolic Analysis”, and tools such as COBRA, MATLAB,
and datasets e.g., metabolomics are highly selected for this
research. The fourth sample Topic 44 represents the “Pattern
Recognition” research area in bioinformatics (such as gene
expression, protein structure prediction). These knowledge
patterns were also confirmed to be valid and helpful by
bioinformatics experts, which demonstrates that our DSTM
once again effectively captures the salient domain knowl-
edge patterns.
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TABLE 8. 4 sample topics (out of 70 topics in total) extracted for the neuroscience publications from 2009 to 2019. Each
topic is associated with 10 most likely words, 4 most likely tools and datasets that have the highest probability conditioned

on that topic.

Topic 13 Topic 18 Topic 27 Topic 38

Sensory & Circuit Structural Neuron

Anatomical Signals Analysis Morphology Model
Word Prob. Word Prob. Word Prob. Word Prob.
signals .0320 circuit .0543 axon .0524 neurons .0328
stimulus 0299 circuits 0362 axons .0464 channels 0323
single 0181 sensory 0214 axonal .0407 neuron .0255
phase 0174 changes .0187 cells .0198 somatic .0220
movement .0155 input .0147 myelin .0137 bursting .0162
sensory .0149 circuitry .0112 nerve .0122 network .0162
recording .0147 connections  .0108 growth .0109 bursts .0155
response .0140 stimuli .0106 cell .0081 model .0154
timing .0107 results 0104 channels .0068 channel 0153
Tool Prob. Tool Prob. Tool Prob. Tool Prob.
MATLAB .3550 MATLAB 1147 Neo 2521 NEURON 2520
EEGLAB .1480 SPSS 1077 ansys .0657 XPPAut 1037
Klusters .0693 Topological .0411 GENESIS .0257 ModelDB 0762
opengl 0476 SPM .0270 Caret .0257 GENESIS .0547
Dataset Prob. Dataset Prob. Dataset Prob. Dataset Prob.
vertical .2555 circuit .6181 axon .6568 somatic .3782
horizontal 2477 excitatory 1576 myelinated ~ .1865 bursting .3252
modulated  .1741 cholinergic .0390 cone .0350 excitatory  .0365
dorsal .0637 inhibitory .0296 ganglion .0206 pyloric .0318

TABLE 9. 4 sample topics (out of 50 topics in total) extracted for the bioinformatics publications from 2009 to 2019. Each
topic is associated with 10 most likely words, 4 most likely tools and datasets that have the highest probability conditioned

on that topic.
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Topic 4 Topic 10 Topic 12 Topic 44
Next-Generation Protein Sequence Metabolic Pattern

Sequencing Analysis & Structure Modeling Analysis Recognition
Word Prob. Word Prob. Word Prob. Word Prob.
sequencing  .0484 structure .0610 metabolic .0818 learning .0349
reads .0411 sequence .0368 flux .0315 neural .0316
read .0230 structures .0353 reactions .0255 features .0220
reference 0174 secondary .0307 metabolites 0204 image .0195
sequence .0141 structural .0248 network .0152 images .0178
mapping .0141 sequences .0212 analysis .0146 based .0124
assembly 0141 prediction .0160 different 0109 performance  .0113
short .0141 method .0132 fluxes .0108 predict .0111
high .0141 alignment .0126 metabolomics .0097 training .0106
Tool Prob. Tool Prob. Tool Prob. Tool Prob.
BWA 2147 rfam .1486 COBRA .3689 MATLAB 7481
Bowtie 1393 psipred 1215 MATLAB .3318 Keras .0668
BLAST 1382 BLAST 1196 cplex .1059 TensorFlow .0437
Samtools .1028 pfam .0915 BLAST .0625 Theano .0423
Dataset Prob. Dataset Prob. Dataset Prob. Dataset Prob.
wgs 3441 ENCODE .2940 metabolomics 9074 mrna 2412
rnaseq 1753 mirna .1468 mrna .0274 tega .1637
ENCODE .0972 Hi-C 1269 wgs .0208 rnaseq 1162
wes 0646 mrna .0980 mtdna 0154 dnaseseq .0810

7.2 Cross-domain Knowledge Pattern Application

To discover cross-domain knowledge patterns, we apply the
MMD-t-SNE algorithm described in Section 4.3.2 to train a
neuroscience model and a bioinformatics model with rele-
vant dataset collections mentioned in Table 2, respectively.
We embed the topics in a 2D space to generate a low di-
mensional topics representation vector . Subsequently, we
can easily plot this information into a 2D space and observe
the cross-domain knowledge patterns. Due to the plot size
limitations, we note that we had to crop some exemplars of
cross-domain patterns from the original embedding plot for
demonstration.

As shown in Fig. 6, we list three cross-domain patterns
extracted from the original plot. In each sub-figure, the node

denotes a topic learned by our model that is either from the
neuroscience domain (“shaded” node) or from the bioin-
formatics domain (“unshaded” node). Fig. 6(a) illustrates
that researchers from both neuroscience and bioinformatics
domains aim to understand the relationship between vision
and brain. We can see from the plot that these types of
research efforts are very mature in the neuroscience do-
main but rare in the bioinformatics domain. Neuroscience
researchers try to understand this problem from different
aspects (e.g., responses, attention, motion, spatial, and dif-
ferent cell regions) compared with the single aspect perspec-
tive in the bioinformatics domain. Hence, bioinformatics
researchers can learn notably from the neuroscience domain
about synergistic research ideas, tools, and datasets.
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Fig. 6: Exemplars of cross-domain knowledge patterns recognized by our model. Each node denotes a topic learned by our model that is either
from neuroscience domain (“shaded” node) or bioinformatics domain (“unshaded” node); and each topic is annotated by the top 5 most likely words.

TABLE 10. Description of the exemplars of cross-domain knowledge patterns shown in Fig. 6

Tools For Sharing Datasets For Sharing

Figure No. Description . — . _ — .
Neuroscience Bioinformatics Neuroscience Bioinformatics
Fig. 6(a) This figure presents the cross-domain top- ~MATLAB, MATLAB horizontal, mrna, rnaseq
ics about understanding the relationship be-  Fieldtrip, vertical,
tween vision and brain, which are a mature EEGLAB, retina,
area in neuroscience, but a rare area in bioin- Talairach, modulated,
formatics FreeSurfer excitatory,
inhibitory,
circuit
Fig. 6(b) This figure shows the cross-domain topics  graphpad, MATLAB, dendritic, mrna, mirna
about discovering the effects of protein struc- ~ MATLAB Gromacs axon,
tures on brain stimulation. Neuroscience re- tyrosine,
searchers attempt to understand this problem gabaergic,
from different approaches (such as signaling, microglia,
gene expression, cell regions or types). Bioin- astrocytes
formatics researchers also try to understand
this problem from the signal activation aspect.
Fig. 6(c) This figure illustrates the cross-domain topics Helmholtz, MATLAB, vertical, mirna,
the cross-domain topics about neuron stimu-  klustakwik Taverna, excitatory, mtdna,
lation DARIO, horizontal metabolomics,
glasso, rnaseq, tcga,
Mikado ENCODE
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We also observe from Fig. 6(b) that there is an over-
lapping research topic in two domains for understanding
the effects of protein structure on brain stimulation. Neu-
roscience researchers attempt to understand this problem
using approaches such as signaling, gene expression, cell
regions or types. Bioinformatics researchers also try to
understand this problem from the aspect of signal acti-
vation. Hence, cross-domain knowledge recommendation
can be fostered by mutually sharing resources and find-
ings across the two synergistic domains. Specifically, cross-
domain knowledge sharing can notably improve the under-
standing of the neuron simulation shown in Fig. 6(c).

7.3 Trend Knowledge Pattern Application

We apply Algorithm 2 to obtain trend the knowledge
pattern for each topic. Fig. 7 illustrates two examples of
trend knowledge patterns in the bioinformatics domain.
In Fig. 7(a), we can clearly see that the tools trend pat-
tern for Topic 4 (“Next-Generation Sequencing Analysis”): the
Maq [52] used to be the most popular tool for sequence

analysis. However, in recent years, tools such as BWA [53],
Samtools [54], and Bowtie [55] have become increasingly
popular. Fig. 7(b) clearly captures the history of deep learn-
ing research in bioinformatics for pattern recognition. As
we can see from the plot, MATLAB almost dominated this
area before 2015, for which SVM toolboxes in MATLAB
were commonly used. From 2015 to 2016, scientists started
to use deep learning methods for pattern recognition, for
which tools such as Keras, Caffe [56], Theano were used
for deep learning research. In 2016, we can see observe that
TensorFlow started to be used for deep learning, which can
be also be validated by the fact that Google released the
first TensorFlow version on November 9, 2015. After 2017,
Theano has become less popular, because MILA stopped
supporting Theano. Consequently, TensorFlow and Keras
have emerged as the most popular tools in bioinformatics
for deep learning; and MATLAB lost its dominating position
in pattern recognition.

Fig. 8 illustrates two exemplars of trends in knowledge
patterns in neuroscience. In Fig. 8(a), we can observe trends
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Fig. 8: Exemplars of trend knowledge patterns captured by DSTM for the neuroscience domain.

as captured by our model in the reports of usage of datasets
related to circuit analysis research i.e., the circuit is the most
popular in usage of datasets in the last ten years. Other
datasets such as those related to modulation, inhibition, and
pyramidal cells are also used by researchers with a slightly
increasing trend that has now saturated in recent times.
The second neuroscience example shows the trend patterns
in the usage of neuron models in Fig. 8(b). Among the
numerous neuronal modeling packages, NEURON seems
to be the most popular in the last ten years. Other popular
packages are XPPAut and GENESIS as captured by our
model. The same plot also shows that the model database
repositories for code using these tools are the ModelDB and
NeuronDB.

Another major benefit in using trend knowledge patterns
can be seen in cases where we can combine it with the
intra-domain knowledge pattern discussed in Section 7.1.2
pertaining to the results in Table 9. We can see that MATLAB
is the traditional tool that is highly used in this area over
the last ten years as captured by our model. Our model also
captures trends in the use of new deep learning tools such
as Keras, TensorFlow that are increasing at a dramatic pace
in recent years, but with lower probability in the past years
comparison with MATLAB. This intra-domain knowledge

pattern result might mislead researchers to select MATLAB
for pattern recognition research. However, by combining the
trend knowledge pattern with the intra-domain knowledge
pattern, researchers can have better guidance to select the
latest trending tools to suit their research problems.

8 CONCLUSION AND FUTURE WORK

In this paper, we presented a novel “domain-specific topic
model” (DSTM) for discovering latent knowledge patterns
among research topics, tools, and datasets for computational
and data-intensive scientific communities. Our DSTM is a
generative model whose design incorporates as little, or
any amount of domain knowledge while exploring highly-
specific topic patterns within a given domain. DSTM can
shorten the time to knowledge discovery and help scien-
tists/researchers to adapt prior domain knowledge when
pursuing multi-disciplinary investigations. Similar to the
popular LDA method in prior works, DSTM uses a com-
pletely randomly generative process to generate words
based on reference tools or datasets. Using large collec-
tions of two different text corpus from neuroscience and
bioinformatics domains (includes more than 25,000 papers
over the ten years from reputed journal archives), our
evaluation experiments with quantitative perplexity scores
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and qualitative domain expert feedback show that our
DSTM has better generalization performance for revealing
highly specific latent topics within a domain. We have also
shown that the information retrieval performance results
for DSTM outperform other state-of-the-art methods such
as LDA and PLSA in retrieving domain-specific topics.
We proposed three exemplar applications of DSTM with
concrete algorithms for Intra-domain, Cross-domain, and Trend
knowledge patterns discovery from large datasets obtained
from scientific publication archives. We showed how DSTM
can be relevant for researchers seeking to make intelligent
decisions using knowledge discovery for developing solu-
tions to multi-disciplinary research problems using state-of-
the-art best practices for tools and datasets.

Possible future directions for this work include building
visualization/drill-down interfaces to browse the knowl-
edge patterns among research topics, tools and datasets.
Such interfaces can further foster an efficient query to obtain
appropriate resources (e.g., tools, and datasets) for cutting-
edge research investigations in many other disciplines (e.g.,
material science, business analytics). Our DSTM extensions
can be developed and integrated within a recommendation
system with an online learning feature to recommend ap-
propriately distributed computing resource configurations
to domain scientists based on their real-time workflow
requirements. One can also compare our inference algorithm
and other inference algorithms such as variational EM to im-
prove the inference performance in terms of computational
issues. Further, DSTM can be extended to be used within
conversational agents (i.e., chatbots) to help users of science
gateways to discover latent knowledge patterns among
research topics, tools, and datasets in an interactive man-
ner [36]. Moreover, future work could explore deep learning
methods such as e.g., doc2vec and BERT for documents
vectorization and latent topic representation to potentially
improve the performance of DSTM. Particularly, deep learn-
ing based methods are suitable if one can solve issues of
inference and interpretability with neural networks towards
building a deep learning based domain-specific topic model
for knowledge discovery in scientific communities.
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