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Phase-field model has been applied extensively and successfully for simulating two-phase 
flows with variable density. Several stable numerical methods have been proposed for 
solving such a highly nonlinear and coupled system. The key issue is to design a method 
such that it can preserve the (exact or slightly modified) conservative/dissipative law of 
energy of the fluid system at the discrete level. However, most of the existing energy stable 
numerical methods are restricted to only the first order accuracy in time for two-phase 
flow with different density. The design of a temporally second order accurate numerical 
method for the two-phase flows with variable density still remains challenging. In this 
paper, we develop several second order, robust and accurate numerical schemes for a quasi-
incompressible Navier-Stokes Cahn-Hilliard model of two-phase flows with variable density 
which is thermodynamically consistent and was originally developed in [1] for simulating 
two-phase flows in complex geometries. Especially, numerical schemes proposed in this 
paper can preserve the mass conservation or energy dissipative law. Several numerical 
examples are presented to validate the robustness and accuracy of our numerical schemes.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Several phase field models have been developed and computed for simulating the two phase flows with variable den-
sity and viscosity [2–11]. Some of these models are thermodynamically consistent such that the system equations satisfy 
the conservation laws of mass and energy dissipative/conservative law, which can be used to design the so called energy 
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stable numerical methods that preserve the conservation laws at the spatially discrete level or fully discrete level (both the 
temporally and spatially discrete). However, most of the existing energy stable numerical methods are restricted to only the 
first order accuracy in time [6–8,12–16]. The main difficulty is how to temporally discretize the term ρut in the momentum 
equation, which is consisting of a variable density ρ and velocity u.

In this paper, we present three numerical methods for an existing thermodynamically consistent two phase flows with 
variable density and viscosity. Our numerical methods are mass conservative or energy stable which also achieve second 
order accuracy both temporally and spatially. The first scheme can preserve mass conservative law exactly based on Crank-
Nicholson discretization. The second scheme is energy stable based on recently proposed Lagrange multiplier approach [17]. 
The third energy stable scheme is constructed by rewriting the quasi-incompressible Navier-Stokes Cahn-Hilliard system 
into an equivalent system. Numerical results are implemented to show the convergence rate and energy non-increasing for 
our numerical schemes. Some numerical examples are presented in capturing the interface breakup and collisions smoothly, 
and handling the large density and viscosity ratio. Using numerical schemes proposed, the pinch-off event and rising bubble 
phenomenon can be simulated efficiently which are consistent with experimental results. The reminder of this paper is 
structured as follows. In Section 2, we present the q-NSCH model for two phase flows with variable density and viscosity, 
and show that the model equations satisfy the conservation laws of mass and energy dissipative law. In Section 3, we 
present our numerical methods with second order accuracy, and show that numerical schemes are mass conservative, energy 
stable at the temporally discrete level. In Section 4, we briefly show the implementations of our numerical schemes by using 
a finite difference method on staggered grid. In Section 5, we show the convergence tests of our numerical methods. Several 
numerical examples and corresponding numerical comparisons are presented to validate our numerical schemes. Some 
concluding remarks are given in final Section 6.

2. Quasi-incompressible Navier-Stokes Cahn-Hilliard system

In this paper, we consider the following quasi-incompressible Navier-Stokes Cahn-Hilliard (q-NSCH) model [1] for the 
two-phase fluid flows with variable density and viscosity, which was originally developed for simulating two-phase flows in 
complex geometries. The q-NSCH model is formulated as

ρut + ρu · ∇u + ∇p = ∇ · (ν(c)∇u) + 1

3
∇(ν(c)∇ · u) − σ̃ c∇μ − ρgz, (1)

∇ · u = α∇ · (σ̃M(c)∇μ) + α2∇ · (σ̃M(c)∇p), (2)

ct + ∇ · (uc) = ∇ · (σ̃M(c)∇μ) + α∇ · (σ̃M(c)∇p), (3)

μ = f (c) − ε�c, (4)

where u is the velocity of fluid, p is the pressure, c is the phase variable (c ∈ [0, 1]). In particular, c = 1, 0 represents fluid 
1 and fluid 2 respectively. Moreover, μ is the chemical potential and ε is a small parameter that relates to the thickness 
of the diffuse interface, g is the gravity and z is the unit vector in the vertical direction, and σ̃ is the surface tension that 
can be related to the physical surface tension σ through σ̃ = 6

√
2σ [18]. We introduce the following variable density and 

viscosity for the two-phase flows:

ρ = ρ(c) = ρ1c + ρ2(1 − c), ν = ν(c) = ν1c + ν2(1 − c), (5)

where ρi and νi (for i = 1, 2) are constants that represent the density and viscosity of the ith fluid. The parameter 
α = (ρ2 − ρ1)/ρ2 represents the relative density rate. The nonlinear term F (c) = c2(1 − c)2/4ε is the well-known dou-
ble well potential and f (c) = F ′(c). M(c) = √

c2(1− c)2 + ε is the degenerate mobility. Moreover, we consider the following 
boundary conditions:

u|∂	 = bu, ∇c · n|∂	 = ∇μ · n|∂	 = 0, (6)

where 	 is the computational domain, ∂	 denotes the domain boundary, and n is unit outward normal vector of boundary.

Remark 2.1. Here we briefly show how we define the variable density and the mass-averaged velocity.

We take an arbitrary material volume V in 	, where the two fluids are labeled by i = 1, 2 and fill the volumes V i

separately (V = V1 ∪ V2). We then introduce the volume fraction ci for the ith fluid such that ci = Vi/V . Further, we 
assume that the two fluids can mix along the interfacial region and the volume of the single fluid does not change after 
mixing. Then, within the material volume V , ci satisfy the condition c1 + c2 = 1. Let M = M1 + M2 be the total mass 
of the mixture, and Mi be the mass of the ith fluid in the volume. We now introduce the local volume-averaged mass 
density taken over the sufficient small volume V for each fluid ρ̃i = Mi/V , and the actual local mass density for each fluid 
ρi = Mi/Vi . It should be noted that for incompressible components, ρi are assumed to be uniform constants. Having in 
2
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mind the definition of volume fraction ci , we obtain the relation between the volume-averaged mass densities and the local 
mass densities,

ci = ρ̃i

ρi
and

ρ̃1

ρ1
+ ρ̃2

ρ2
= 1. (7)

We then define the volume-averaged mass density for the mixture as

ρ = M

V
= M1 + M2

V
= ρ̃1 + ρ̃2 = c1ρ1 + c2ρ2. (8)

By using c1 as the phase variable c = c1 and c2 = 1 − c, the variable density then reads

ρ = cρ1 + (1− c)ρ2. (9)

Now we suppose that the two fluids move with different velocities u i(x, t) for i = 1, 2. The equation of mass balance for 
each fluid within the material volume V can then be written in the form (Lowengrub & Truskinovsky 1998; Boyer 2002; 
Abels et al. 2012):

∂ρ̃i

∂t
+ ∇ · (ρ̃iui) = 0. (10)

We then introduce the mass-averaged velocity for the mixture as

ρu = ρ̃1u1 + ρ̃2u2. (11)

Substituting the density (8) and mass-averaged velocity (11) into (10), we obtain the mass balance for the mixture of two 
fluids,

ρt + ∇ · (ρu) = 0. (12)

We then show how we obtain the quasi-incompressibility from the mass conservation. Substituting Eq. (9) into Eq. (12), we 
obtain

ρt + ρ∇ · u + u · ∇ρ

=(ρ1 − ρ2)ct +
(
ρ1c + ρ2(1 − φ)

)
∇ · u + (ρ1 − ρ2)u · ∇c

=(ρ1 − ρ2)

(
ct + ∇ · (cu)

)
+ ρ2∇ · u = 0, (13)

which can be rewritten as

(ρ1 − ρ2)

(
ct + ∇ · (cu)

)
= −ρ2∇ · u,

ct + ∇ · (cu) = ρ2 − ρ2

ρ2
∇ · u, (14)

such that

α∇ · u = ct + ∇ · (cu). (15)

Where the velocity field is not divergence free along the interfacial region, and is termed as the quasi-incompressibility.
Before we demonstrate our numerical schemes, we show the following conservation laws of mass and energy dissipative 

law for q-NSCH system (1)-(4).

Theorem 2.1. The quasi-incompressible Navier-Stokes Cahn-Hilliard (q-NSCH) system equations (1)-(4) satisfies the following mass 
conservation law,

ρt + ∇ · (ρu) = 0. (16)

Proof. Multiplying α on both sides for Eq. (3), we obtain

αct + α∇ · (uc) = α∇ · (σ̃M(c)∇μ) + α2∇ · (σ̃M(c)∇p). (17)

Substituting the right-hand side of Eq. (17) by Eq. (2), we obtain
3
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αct + α∇ · (uc) = ∇ · u. (18)

Noticing the definition α = (ρ2 − ρ1)/ρ2, we derive from Eq. (18)

(ρ2 − ρ1)ct + (ρ2 − ρ1)∇ · (uc) = ρ2∇ · u. (19)

We then rewrite Eq. (19) as

(ρ2 − ρ1)ct + (ρ2 − ρ1)(c∇ · u + u · ∇c) = ρ2∇ · u. (20)

By using the definition of variable density ρ = ρ(c) = ρ1c + ρ2(1 − c), we obtain

ρt = (ρ1 − ρ2)ct, ∇ρ = (ρ1 − ρ2)∇c. (21)

Combing Eqs. (20) and (21), we obtain the desired mass conservation law (16). �
Theorem 2.2. The q-NSCH system equations (1)-(4) satisfy the following energy dissipative law:

d

dt

∫
	

(
1

2
ρu2 + σ̃ ε

2
|∇c|2 + σ̃ F (c)

)
dx = − ν(c)‖∇u‖2 − 1

3
ν(c)‖∇ · u‖2 (22)

− σ̃M(c)‖∇μ + α∇p‖2.

Proof. Taking inner product of Eqs. (1) and (16) with u, adding them together and applying the integration by parts together 
with homogeneous Dirichlet boundary condition, we derive,∫

	

(
1

2
ρ(u2)t + 1

2
ρu · ∇(u2) + 1

2
ρtu

2 + 1

2
∇ · (ρu)u2

)
dx

= −(u,∇p) − ν(c)‖∇u‖2 − 1

3
ν(c)‖∇ · u‖2 − (cu,∇μ) −

∫
	

ρgz · u dx.
(23)

With the help of the following identity and integration by parts∫
	

(
1

2
ρu · ∇(u2) + 1

2
∇ · (ρu)u2

)
dx = 0, (24)

Eq. (23) can be simplified to

d

dt

∫
	

1

2
ρu2 dx = − (u,∇p) − ν(c)‖∇u‖2 − 1

3
ν(c)‖∇ · u‖2 − (cu,∇μ) −

∫
	

ρgz · u dx. (25)

By using the mass conservation (16), we obtain∫
	

ρgz · u dx =
∫
	

ρgu · ∇z · dx = −
∫
	

∇ · (ρu)gz dx =
∫
	

ρt gz dx. (26)

Such that we can rewrite Eq. (25) as

d

dt

∫
	

(
1

2
ρu2 + ρgz

)
dx = − (u,∇p) − ν(c)‖∇u‖2 − 1

3
ν(c)‖∇ · u‖2 − (cu,∇μ). (27)

Taking inner product of Eq. (2) with p and applying the integration by parts, we obtain

(∇ · u, p) = −(u,∇p) = −(ασ̃M(c)∇μ,∇p) − (α2σ̃M(c)∇p,∇p). (28)

Taking inner product of Eq. (3) with μ and applying the integration by parts, we obtain

(ct ,μ) + (∇ · (uc),μ) = −(σ̃M(c)∇μ,∇μ) − (ασ̃M(c)∇p,∇μ). (29)

Taking inner product of Eq. (4) with ct and applying the integration by parts, we obtain

d

dt

∫ (
σ̃ ε

2
|∇c|2 + σ̃ F (c)

)
dx = (ct,μ). (30)
	

4
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Combing Eqs. (27)-(30), we obtain the following energy dissipative law:

d

dt

∫
	

(
1

2
ρu2 + ρgz + σ̃ ε

2
|∇c|2 + σ̃ F (c)

)
dx = − ν(c)‖∇u‖2 − 1

3
ν(c)‖∇ · u‖2

− σ̃M(c)‖∇μ + α∇p‖2. � (31)

3. Numerical methods

In this section, we construct three robust, second order numerical schemes for q-NSCH system equations (1)-(4). The 
goals of these schemes are preserving the conservation laws of mass and energy dissipative law at the temporal discrete 
level.

3.1. Scheme 1: mass conservative scheme

ρn+ 1
2 ut̄ + ρn+ 1

2 un+ 1
2 · ∇un+ 1

2 + ∇pn+ 1
2 = ∇ · (ν(cn+ 1

2 )∇un+ 1
2 )

+ 1

3
∇(ν(cn+ 1

2 )∇ · un+ 1
2 ) − σ̃ cn+ 1

2 ∇μn+ 1
2 − ρn+ 1

2 gz, (32)

∇ · un+ 1
2 = α∇ · (σ̃M(cn+ 1

2 )∇μn+ 1
2 ) + α2∇ · (σ̃M(cn+ 1

2 )∇pn+ 1
2 ), (33)

ct̄ + ∇ · (un+ 1
2 cn+ 1

2 ) = ∇ · (σ̃M(cn+ 1
2 )∇μn+ 1

2 )

+ α∇ · (σ̃M(cn+ 1
2 )∇pn+ 1

2 ), (34)

μn+ 1
2 = f (cn+1, cn) − ε�cn+ 1

2 , (35)

with the following boundary conditions

un+1 = bu, n · ∇cn+1 = n · ∇μn+1 = 0 on ∂	. (36)

Here

f (cn+1, cn) = 1

4

(
cn+1 + cn − 1

)(
(cn+1)2 + (cn)2 − cn+1 − cn

)
= 1

4
cn+1

(
(cn+1)2 + (cn)2 − cn+1 − cn

)
, (37)

∗n+ 1
2 = 1

2
(∗n+1 + ∗n) (∗ : p, c, μ), (38)

∗t̄ = ∗n+1 − ∗n
δt

, (39)

f (cn+1, cn) is a second order approximation of f (c) = 1
2 (c2 − c)(2c − 1). We would like to mention that there are also some 

second order approximations for nonlinear term f (c) developed for Cahn-Hilliard type equations in [17,19]. The boundary 
condition (6) is considered. Below we prove that the second order approximation of mass conservation law is achieved in 
time discrete level for scheme 1.

Theorem 3.1. The nonlinear scheme (32)-(35) satisfies the following discrete mass conservation law:

ρt̄ + ∇ · (ρn+ 1
2 un+ 1

2 ) = 0. (40)

Proof. Multiplying Eq. (33) by 1/α on both sides, we obtain

1

α
∇ · un+ 1

2 = ∇ · (σ̃M(cn+ 1
2 )∇μn+ 1

2 ) + α∇ · (σ̃M(cn+ 1
2 )∇pn+ 1

2 ). (41)

Substituting the right-hand side of Eq. (34) by Eq. (41), we obtain

ct̄ + ∇ · (un+ 1
2 cn+ 1

2 ) = 1

α
∇ · un+ 1

2 . (42)

Multiplying ρ1 − ρ2 on both sides of Eq. (42), we obtain

(ρ1 − ρ2)ct̄ + (ρ1 − ρ2)(c
n+ 1

2 ∇ · un+ 1
2 + un+ 1

2 · ∇cn+ 1
2 ) = ρ2∇ · un+ 1

2 . (43)
5



Z. Guo, Q. Cheng, P. Lin et al. Journal of Computational Physics 448 (2022) 110727
Such that

(ρ1 − ρ2)ct̄ + (
(ρ1 − ρ2)c

n+ 1
2 − ρ2

)∇ · un+ 1
2 + (ρ1 − ρ2)u

n+ 1
2 · ∇cn+ 1

2 = 0. (44)

With the help of the variable density ρ = ρ(c) = ρ1c + ρ2(1 − c), and the following identities,

ρt̄ = (ρ1 − ρ2)ct̄, (45)

∇ρn+ 1
2 = (ρ1 − ρ2)∇cn+ 1

2 , (46)

ρn+ 1
2 = ρ1c

n+ 1
2 + ρ2(1− cn+ 1

2 ). (47)

We derive the discrete mass conservation law (40) from Eq. (44). �
3.2. Scheme 2: a Lagrange multiplier approach

In this subsection we introduce a Lagrange multiplier approach [17] to construct another second order, mass conservative 
and energy stable scheme for q-NSCH model:

ρn+ 1
2 ut̄ + ξn+ 1

2 ρn+ 1
2 un+ 1

2 · ∇un+ 1
2 + ∇pn+ 1

2 = ∇ · (ν(cn+ 1
2 )∇un+ 1

2 )

+ 1

3
∇(ν(cn+ 1

2 )∇ · un+ 1
2 ) − σ̃ cn+ 1

2 ∇μn+ 1
2 − ρn+ 1

2 gz, (48)

(ξn+ 1
2 ρn+ 1

2 un+ 1
2 · ∇un+ 1

2 ,un+ 1
2 ) = (ρt̄,

(un+1)2 + (un)2

2
), (49)

∇ · un+ 1
2 = α∇ · (σ̃M(cn+ 1

2 )∇μn+ 1
2 ) + α2∇ · (σ̃M(cn+ 1

2 )∇pn+ 1
2 ), (50)

ct̄ + ∇ · (un+ 1
2 cn+ 1

2 ) = ∇ · (σ̃M(cn+ 1
2 )∇μn+ 1

2 ) + α∇ · (σ̃M(cn+ 1
2 )∇pn+ 1

2 ), (51)

μn+ 1
2 = f (cn+1, cn) − ε�cn+ 1

2 , (52)

with the boundary conditions (36). Here ξ is a Lagrange multiplier that enforces the energy stability, f (cn+1, cn) is given in 
(37).

Theorem 3.2. Scheme 2 (48)-(52) satisfies the discrete mass conservation law (40).

Proof. Following Theorem 3.1, we can show that Scheme 2 also satisfies the property of mass conservation. �
Remark 3.1. Equation (49) is a second order approximation of the following equality

(
1

2
ρt,u

2) = (
1

2
ρu,∇u2) = (ρu · ∇u,u), (53)

where we use mass conservative law ρt + ∇ · (ρu) = 0. Observed from (53), in continue case, Lagrange multiplier ξ is equal 
to 1.

Theorem 3.3. Scheme 2 (48)-(52) satisfies the following discrete energy dissipative law:

Et̄ ≤ −σ̃M(cn+ 1
2 )‖∇μn+ 1

2 + α∇pn+ 1
2 ‖2

− ν(cn+ 1
2 )‖∇un+1‖2 − 1

3
ν(cn+ 1

2 )‖∇ · un+1‖2,
(54)

where

En =
∫
	

(
1

2
ρn|un|2 + σ̃ ε

2
|∇cn|2 + σ̃ F (cn)

)
dx (55)

is the total energy of the discrete system.

Proof. Taking the inner produce of Eqs. (48) and (40) with un+ 1
2 , and adding them together we obtain

1

2
ρn+ 1

2 |u|2t̄ + (ξn+ 1
2 ρn+ 1

2 un+ 1
2 · ∇un+ 1

2 ,un+ 1
2 ) = −un+ 1

2 · ∇pn+ 1
2

− ν(cn+ 1
2 )|∇un+ 1

2 |2 − 1

3
ν(cn+ 1

2 )|∇ · un+ 1
2 |2 − σ̃ cn+ 1

2 ∇μn+ 1
2 · un+ 1

2 − ρn+ 1
2 gz · un+ 1

2 . (56)
6
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Applying the following identity and the discrete mass conservation (40),∫
	

ρn+ 1
2 gz · un+ 1

2 dx =
∫
	

ρn+ 1
2 gun+ 1

2 · ∇z dx = −
∫
	

gz∇ ·
(
ρn+ 1

2 un+ 1
2

)
dx

=
∫
	

ρt̄ gz dx, (57)

and using equation (49), we obtain

1

2
ρn+ 1

2 |u|2t̄ + 1

2
ρt̄

|un+1|2 + |un|2
2

+ ρt̄ gz

= −un+ 1
2 · ∇pn+ 1

2 − ν(cn+ 1
2 )|∇un+ 1

2 |2

− 1

3
ν(cn+ 1

2 )|∇ · un+ 1
2 |2 − σ̃ cn+ 1

2 ∇μn+ 1
2 · un+ 1

2 . (58)

With the help of the following identity:

1

2
ρn+ 1

2 |u|2t̄ + 1

2
ρt̄

|un+1|2 + |un|2
2

= 1

2�t
ρn+1|un+1|2 − 1

2�t
ρn|un|2, (59)

we can rewrite Eq. (58) as

1

2
(ρ|u|2)t̄ + ρt̄ gz = − un+ 1

2 · ∇pn+ 1
2 − ν(cn+ 1

2 )|∇un+ 1
2 |2

− 1

3
ν(cn+ 1

2 )|∇ · un+ 1
2 |2 − σ̃ cn+ 1

2 ∇μn+ 1
2 · un+ 1

2 . (60)

Taking the inner product of Eq. (50) with pn+ 1
2 , we obtain(

∇ · un+ 1
2

)
pn+ 1

2 = − ασ̃M(cn+ 1
2 )

(
∇μn+ 1

2 · ∇pn+ 1
2

)
− α2σ̃M(cn+ 1

2 )|∇pn+ 1
2 |2. (61)

Taking the inner product of Eq. (51) with μn+ 1
2 , we obtain

ct̄μ
n+ 1

2 − cn+ 1
2 ∇μn+ 1

2 · un+ 1
2 = − σ̃M(cn+ 1

2 )|∇μn+ 1
2 |2

− ασ̃M(cn+ 1
2 )∇pn+ 1

2 · ∇μn+ 1
2 . (62)

Taking the inner product of Eq. (52) with ct̄ , we obtain

μn+ 1
2 ct̄ = σ̃ Ft̄(c) + σ̃ ε

2
|∇c|2t̄ . (63)

Combine Eqs. (60)-(63), we obtain the energy stability of our numerical method:

Et̄ = − ν(c)n+ 1
2 |∇un+ 1

2 |2 − 1

3
ν(c)n+ 1

2 |∇ · un+ 1
2 |2

− M(c)n+ 1
2 |∇μn+ 1

2 + α∇pn+ 1
2 |2 ≤ 0. � (64)

3.3. Scheme 3: reformulated form

In this subsection, we construct the third robust, second order numerical scheme for q-NSCH model, which preserves 
the conservation laws of mass and energy at the temporal discrete level. Before we show the scheme, we first reformulate 
the model equations (1)-(4): multiplying the mass conservation (16) by u/2 and adding it to the momentum equation (1), 
we obtain

ρut + ρu · ∇u + 1

2
(ρt + ∇ · (ρu))u + ∇p =∇ · (ν(c)∇u) + 1

3
∇(ν(c)∇ · u)

− σ̃ c∇μ − ρgz. (65)

We then rewrite the above as
7
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√
ρ(

√
ρu)t + ρu · ∇u + 1

2
∇ · (ρu)u + ∇p =∇ · (ν(c)∇u) + 1

3
∇(ν(c)∇ · u)

− σ̃ c∇μ − ρgz. (66)

The reformulated system equations then read as:

√
ρ(

√
ρu)t + ρu · ∇u + 1

2
∇ · (ρu)u + ∇p = ∇ · (ν(c)∇u) + 1

3
∇(ν(c)∇ · u)

− σ̃ c∇μ − ρgz, (67)

∇ · u = α∇ · (σ̃M(c)∇μ) + α2∇ · (σ̃M(c)∇p), (68)

ct + ∇ · (uc) = ∇ · (σ̃M(c)∇μ) + α∇ · (σ̃M(c)∇p), (69)

μ = f (c) − ε�c. (70)

We now show Scheme 3 for the reformulated system Eqs. (67)-(70):

√
ρ
n+ 1

2 (
√

ρu)t̄ + ρn+ 1
2 un+ 1

2 · ∇ūn+ 1
2 + ∇pn+ 1

2 + 1

2
∇ · (ρn+ 1

2 un+ 1
2 )ūn+ 1

2

= ∇ · (ν(cn+ 1
2 )∇ūn+ 1

2 ) + 1

3
∇(ν(cn+ 1

2 )∇ · ūn+ 1
2 ) − σ̃ cn+ 1

2 ∇μn+ 1
2 − ρn+ 1

2 gz, (71)

∇ · ūn+ 1
2 = α∇ · (σ̃M(cn+ 1

2 )∇μn+ 1
2 ) + α2∇ · (σ̃M(cn+ 1

2 )∇pn+ 1
2 ), (72)

ct̄ + ∇ · (ūn+ 1
2 cn+ 1

2 ) = ∇ · (σ̃M(cn+ 1
2 )∇μn+ 1

2 )

+ α∇ · (σ̃M(cn+ 1
2 )∇pn+ 1

2 ), (73)

μn+ 1
2 = f (cn+1, cn) − ε�cn+ 1

2 , (74)

with the boundary conditions (36). Here we define

√
ρ
n+ 1

2 =
√

ρn+1 + √
ρn

2
, (75)

(
√

ρu)t̄ =
√

ρn+1un+1 − √
ρnun

δt
, (76)

ūn+ 1
2 =

√
ρn+1un+1 + √

ρnun√
ρn+1 + √

ρn
. (77)

Moreover, f (cn+1, cn) is given in (37). We would like to mention that there are also some second order approximations for 
nonlinear term f (c) are developed for Cahn-Hilliard type equations in [17,19]. The boundary condition (6) is considered. 
Below we prove that the second order approximation of mass conservation law is achieved in time discrete level.

Theorem 3.4. The nonlinear scheme (71)-(74) satisfies the following discrete mass conservation law:

ρt̄ + ∇ · (ρn+ 1
2 ūn+ 1

2 ) = 0. (78)

Proof. Multiplying Eq. (72) by 1/α on both side, we obtain

1

α
∇ · ūn+ 1

2 = ∇ · (σ̃M(cn+ 1
2 )∇μn+ 1

2 ) + α∇ · (σ̃M(cn+ 1
2 )∇pn+ 1

2 ). (79)

Substituting the right-hand side of Eq. (73) by Eq. (79), we obtain

ct̄ + ∇ · (ūn+ 1
2 cn+ 1

2 ) = 1

α
∇ · ūn+ 1

2 . (80)

Multiplying ρ1 − ρ2 on both sides of Eq. (80), we obtain

(ρ1 − ρ2)ct̄ + (ρ1 − ρ2)(c
n+ 1

2 ∇ · ūn+ 1
2 + ūn+ 1

2 · ∇cn+ 1
2 ) = ρ2∇ · ūn+ 1

2 . (81)

Such that

(ρ1 − ρ2)ct̄ + (
(ρ1 − ρ2)c

n+ 1
2 − ρ2

)∇ · ūn+ 1
2 + (ρ1 − ρ2)ū

n+ 1
2 · ∇cn+ 1

2 = 0. (82)

With the help of the variable density ρ = ρ(c) = ρ1c + ρ2(1 − c), and the following identities,
8
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ρt̄ = (ρ1 − ρ2)ct̄, (83)

∇ρn+ 1
2 = (ρ1 − ρ2)∇cn+ 1

2 , (84)

ρn+ 1
2 = ρ1c

n+ 1
2 + ρ2(1− cn+ 1

2 ), (85)

we derive the discrete mass conservation law (78) from Eq. (82). �
Theorem 3.5. The nonlinear scheme (71)-(74) satisfies the following discrete energy conservation law:

Et̄ = − σ̃M(cn+ 1
2 )‖∇μn+ 1

2 + α∇pn+ 1
2 ‖2

− ν(cn+ 1
2 )‖∇ūn+ 1

2 ‖2 − 1

3
ν(cn+ 1

2 )‖∇ · ūn+ 1
2 ‖2 ≤ 0,

(86)

where

En =
∫
	

(
1

2
ρn|un|2 + ρngz + σ̃ ε

2
|∇cn|2 + σ̃ F (cn)

)
dx (87)

is the total energy of the discrete system.

Proof. Taking the inner produce of Eqs. (71) with ūn+ 1
2 , and adding them together we obtain

1

2

(
ρ|u|2

)
t̄
= − ν(cn+ 1

2 )|∇ūn+ 1
2 |2 − 1

3
ν(cn+ 1

2 )|∇ · ūn+ 1
2 |2

− ūn+ 1
2 · ∇pn+ 1

2 − σ̃ cn+ 1
2 ∇μn+ 1

2 · ūn+ 1
2

− ρn+ 1
2 gz · ūn+ 1

2 , (88)

where we have applied the following identity with B.C. (36):∫
	

(
ρn+ 1

2 un+ 1
2 · ∇ūn+ 1

2 · ūn+ 1
2 + 1

2
∇ · (ρn+ 1

2 un+ 1
2 )ūn+ 1

2 · ūn+ 1
2

)
dx

=
∫
	

1

2
∇ ·

(
ρn+ 1

2 un+ 1
2 |ūn+ 1

2 |2
)
dx = 0. (89)

Applying the following identity and the discrete mass conservation (78),∫
	

ρn+ 1
2 gz · ūn+ 1

2 dx =
∫
	

ρn+ 1
2 gūn+ 1

2 · ∇z dx

= −
∫
	

gz∇ ·
(
ρn+ 1

2 ūn+ 1
2

)
dx =

∫
	

ρt̄ gz dx, (90)

we rewrite Eq. (88) as(
1

2
ρ|u|2 + ρgz

)
t̄
= − ūn+ 1

2 · ∇pn+ 1
2 − σ̃ cn+ 1

2 ∇μn+ 1
2 · ūn+ 1

2

− ν(cn+ 1
2 )|ūn+ 1

2 |2 − 1

3
ν(cn+ 1

2 )|∇ · ūn+ 1
2 |2. (91)

Taking the inner product of Eq. (72) with pn+ 1
2 , we obtain(

∇ · ūn+ 1
2

)
pn+ 1

2 = − ασ̃M(cn+ 1
2 )

(
∇μn+ 1

2 · ∇pn+ 1
2

)
− α2σ̃M(cn+ 1

2 )|∇pn+ 1
2 |2. (92)

Taking the inner product of Eq. (73) with μn+ 1
2 , we obtain

ct̄μ
n+ 1

2 − cn+ 1
2 ∇μn+ 1

2 · ūn+ 1
2 = − σ̃M(cn+ 1

2 )|∇μn+ 1
2 |2

− ασ̃M(cn+ 1
2 )∇pn+ 1

2 · ∇μn+ 1
2 . (93)
9
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Taking the inner product of Eq. (74) with ct̄ , we obtain

μn+ 1
2 ct̄ =

(
σ̃ F (c) + εσ̃

2
|∇c|2

)
t̄
. (94)

Combine Eqs. (91)-(94), we obtain the energy stability of our numerical method, Eq. (86). �
Remark 3.2. For constant density model, the unique solvability could be established with the help of Browder-Minty lemma 
and the monotonicity analysis, by using semi-implicit approximation to the fluid convective term. Meanwhile, for the vari-
able density system, an evolutionary equation for the variable of u2 is needed to construct structure-preserving schemes, 
and such an effort leads to a numerical system involved with a fully implicit treatment for the fluid convective term. 
As a result, the unique solvability analysis could hardly be theoretically justified. On the other hand, extensive numerical 
experiments have indicated no trouble for the numerical solution, provided that the time step size is sufficiently small.

Remark 3.3. Although we consider only time-discretization schemes, since the stability proofs are all based on variational 
formulations with the same space for trial and test functions, we can combine these semi-discrete schemes with any con-
sistent Galerkin type approximations or some special finite difference discretization [20] in space to construct fully discrete 
energy stable schemes.

Remark 3.4. Due to the limitation of unique solvability for highly nonlinear scheme (32)-(35) which also results in big diffi-
culty in making convergence analysis. We will discuss this issue in the future work. Some related works about Cahn-Hilliard-
Navier-Stokes or Cahn-Hilliard-Helw-Shaw systems are established in [21–23].

4. Implementations

All the numerical schemes are discretized spatially by using a finite difference scheme on staggered grid, and is com-
puted by using a block structured adaptive FAS multigrid (BSAM2.0 [18]) numerical package. Here we briefly show some 
basic definitions and notations for the finite difference discretization on a staggered grid. We refer [12] for details of the 
implementations. In two dimensional, let 	 = (0, Lx) × (0, L y), with Lx = m1 × h and L y = m2 × h, where m1 and m2 are 
positive integers and h > 0 is the spatial step size. For simplicity we assume that Lx = L y . Consider the following four sets

Em1 = {xi+ 1
2
|i = 0, ...,m1}, (95)

Em̄1 = {xi+ 1
2
|i = −1, ...,m1 + 1}, (96)

Cm1 = {xi |i = 1, ...,m1}, (97)

Cm̄1 = {xi |i = 0, ...,m1 + 1}, (98)

where xi+ 1
2

= i ×h and xi = (i − 1
2 ) ×h. Here Em1 and Em̄1 are called uniform partition of [0, Lx] of size m1, and its elements 

are called edge-centered points. The two points belonging to Em̄1/Em1 are called ghost points. The elements of Cm̄1 and Cm1

are called cell-centered points. Again, the two points belonging to Cm̄1/Cm1 are called ghost points. Analogously, the sets 
Emi and Em̄2 contain the edge-centered points, and Cm2 and Cm̄2 contain the cell-centered points of the interval [0, L y]. We 
then define the following functions spaces:

Cm1×m2 = {φ : Cm1 × Cm2 → R}, (99)

Eew
m1×m2

= {u : Em1 × Cm2 → R}, (100)

Ensm1×m2
= {v : Cm1 × Em2 → R}, (101)

for cell-centered functions, east–west edge-centered functions and north–south edge-centered functions respectively. In this 
paper, the cell-centered functions are the phase variable φ, chemical potential μ, and pressure p, the east–west edge-
centered function is the x-component of the velocity, u, and the north–south edge-centered function is the y-component of 
the velocity, v .

Here, we briefly show the implementations of Scheme 1. As Scheme 1, Eqs. (32)-(35), is a highly nonlinear sys-
tem, we employ Newton’s method to linearize the whole system. To solve the Navier-Stokes equations (32) and 
(33), we use the Vanker smoother by treating them as a system of five unknowns on a staggered grid, namely 
(ui− 1

2 , j, ui+ 1
2 , j, vi, j− 1

2
, vi, j+ 1

2
, pi, j) on each staggered grid. Together with Eqs. (34) and (35), we obtain (ui− 1

2 , j, ui+ 1
2 , j,

vi, j− 1
2
, vi, j+ 1

2
, pi, j, ci, j, μi, j) simultaneously for each staggered grid. Note that this implementation can be extended to 

three dimensional straightforwardly.
10
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Table 1
The L2 errors of the velocities u, v and phase field variable c in a rising drop example in 
Sec. 5.1, see text for details.

δt erroru k errorv k errorc k

5.0× 10−3 6.53× 10−5 — 6.34× 10−5 — 7.32× 10−4 —
2.5× 10−3 1.98× 10−5 1.72 2.03× 10−5 1.64 2.13× 10−4 1.78
1.25× 10−4 5.30× 10−6 1.90 5.60× 10−6 1.86 5.59× 10−5 1.93
6.25× 10−4 1.35× 10−6 1.98 1.42× 10−6 1.99 1.39× 10−5 2.01

5. Numerical results

Although three numerical schemes are developed here, we use Scheme 1 for most of the simulations. As Schemes 1 and 
2 are very similar, we then compare the Schemes 2 and 3 through section 5.2.

5.1. Convergence test

In this subsection, we test the convergence rate of Scheme 1 (32)-(35) through a rising drop example, where we assume 
that there is a light fluid drop placed inside a heavy fluid. With the effect of gravity, the drop will rise. The computational 
domain is set to be 	 = [0, 1]2, where the light drop of radius 0.2 is centered initially at (x = 0.5, y = 0.3). We impose 
the no-slip boundary conditions for velocity u, and no-flux boundary conditions for c and μ. Moreover, we set all the 
parameters to be

μ1 = 1, μ2 = 3, ρ1 = 1, ρ2 = 3, σ = 0.1, g = 1 and ε = 0.01. (102)

Note that, we use the following units: μ (kg/ms), ρ (kg/m3), g (m/s2), σ (kg/s2). for all the computations in §5.
The initial condition for the phase variable is given as

c(x, y,0) = 1

2

(
1− tanh

(√
(x− 0.5)2 + (y − 0.3)2 − 0.2

2
√
2ε

))
. (103)

In the convergence test, we fix the mesh size as 1024 × 1024 and set the initial time step as δt = 0.01. We then refine the 
time step by 2 and collect the solutions of phase variable φ and velocity u at t = 1. We finally calculate the L2-norm errors 
and the convergence rate, where the errors are calculated as the difference between the solution of coarse time step and 
that of the adjacent finner time step. It is observed from Table 1 that our numerical method is second-order convergence in 
time for both variables.

To further validate our numerical solver, we consider a numerical test that was originally computed in [24]. In particular, 
we assume that there is a square domain 	 = [0, 1]2, in which a circle of radius r = 0.15, initially centered at (0.5, 0.75) is 
deformed under a solenoidal velocity field:

u(x, y, t) = − sin2(πx) sin(2π y) cos(πt/T ), (104)

v(x, y, t) = sin2(π y) sin(2πx) cos(πt/T ). (105)

By doing this, the flow field reverses in time such that any fluid body returns to its initial position at time T , allowing the 
error to be quantified as:

Err =
∫
	

|cn1 − cn2|dx. (106)

Convergence studies are performed for three different values of T on fixed uniform grids. Again Scheme 1 is considered 
in this section. Fig. 1 shows the reconstructed interfaces for the three values of T . Quantitative error measurements and 
convergence rates are shown in Table 2. Here we fixed the value of ε = 0.01, and refine the mesh size n and time step �t
together. The convergence rates show that our numerical method is second order accurate, even when T is large, for which 
large complex topological change has occurred (see Fig. 2), indicating that our method is remarkably resilient for interface 
capturing.

In Fig. 3, we show the evolution of the circular fluid body in the single vortex flow field Eqs. (104) and (105) without 
multiplying the cosing functions. It is seen that the fluid body is spun into a thinning filament, which compares very well 
with those results obtained using other methods, for example [25,24,26,27]. Theoretically, the filament spirals toward the 
vortex center, and becomes thinner and thinner continuously. Here we set ε = 0.005, which stands for a thinner interface. 
Fig. 2 shows that the thin filament breaks into small pieces beginning at its tail after long time evolution. This is because 
the grid resolution has become low relative to the thinning filament when the thickness of the filament is equal to or 
less than the grid size. Because the interface is represented by a single line segment in each interfacial grid cell, any 
11
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Table 2
L1 error norms, convergence rates and time averaged mass errors 
for the time-reversed, single vortex test. See text for details.
T n L1 error order Mass error

0.5 256 1.757× 10−3 < 10−14

0.5 512 4.567× 10−4 1.86 < 10−14

0.5 1024 1.142× 10−4 2.00 < 10−14

2.0 256 5.053× 10−3 < 10−14

2.0 512 1.400× 10−3 1.85 < 10−14

2.0 1024 3.465× 10−4 2.00 < 10−14

8.0 256 1.732× 10−2 < 10−14

8.0 512 4.651× 10−3 1.90 < 10−14

8.0 1024 1.131× 10−3 2.01 < 10−14

Fig. 1. The reconstructed interfaces of an initially circular fluid body in a single vortex flow at t=T.

Fig. 2. The interface at t = 4 of an initially circular fluid body in a single vortex flow with velocity field defined in Eqs. (104) and (105) with T=8.

Fig. 3. Evolution of an initially circular fluid body in a single vortex flow with velocity field defined in Eqs. (104) and (105) without multiplying the cosing 
functions.

two interfaces merge automatically whenever they come into the same cell, resulting in an nonphysical ‘pinch-off’. Once the 
pinch-off occurs, the linear segment approximation of an interface immediately flattens the high curvature region, effectively 
applying numerical surface tension.
12
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Fig. 4. Bubble shapes at time t = 3 for different ε . Left: Scheme 2, Right: Scheme 3.

5.2. Rising bubble

Here we test our numerical Schemes 2 and 3 by calculating an example with an air bubble rising in the water [28,29]. 
The computational domain is [0, 1] × [0, 2]. Four grid sizes, namely 64 × 128, 128 × 256, 256 × 512 and 512 × 1024 are 
used for different values of ε =(0.01, 0.005, 0.0025, 0.00125) respectively. On all the domain boundaries, no-slip boundary 
conditions are imposed for u, and no-flux boundary conditions are imposed for c and μ. The air bubble is of radius r = 0.25
with center located at (0.5, 0.5) initially. The corresponding initial condition for phase variable is given as

c = 1

2

(
1+ tanh

(√
(x− 0.5)2 + (y − 0.5)2 − r

2
√
2ε

))
. (107)

We set all the parameters to be

ρ1 = 1, ρ2 = 1000, μ1 = 0.1, μ2 = 10, g = 0.98, σ = 1.96. (108)

Fig. 4 shows the bubble shapes at time (t = 3) with different values of ε obtained by using Schemes 2 and 3. The bubble 
shapes differ clearly for different values of ε but seem to converge. The break off can be observed for certain values of 
ε(= 0.005, 0.01). However, it remains unclear if break off really should occur for this setting [28,29]. In particular, another 
diffuse interface model is calculated in [29], where no break-off is observed when the ε is small enough. It is clearly not 
sufficient to only look at the bubble shapes, therefore we use the previously defined benchmark quantities, namely the 
center mass and rising velocity, and plot them over time in Figs. 5 and 6. All the quantities seem to converge. Furthermore, 
we show the free energy dissipation in Fig. 7, where, again, for all the values of ε the energy dissipates and the curves 
seem to converge. As we mentioned in Remark 2.1, the quasi-incompressibility is derived from the mass conservation and 
it is thus to ensure the mass conservation of the mixture and the single component. We then checked the mass evolution 
of the single components 

∫
	

ρ1φ
n dx and the mixture 

∫
	

ρn dx, and it has been confirmed that all the masses have been 
conserved upto 10−14 during the computations.

5.3. Three dimensional two-bubble merger problem

In our last example, the merger of two spherical bubbles is simulated coaxially and obliquely in the domain of [0, 0.04] ×
[0, 0.04] ×[0, 0.08] m3 with a uniform grid 128 ×128 ×256. We set time step as δt = 10−3. The initial bubbles have a radius 
of 0.005 m. On all the domain boundaries, no-slip boundary conditions are imposed for u , and no-flux boundary conditions 
are imposed for c and μ. The upper bubble is centered at positions [0.02, 0.02, 0.025], and the lower bubble is centered at 
[0.02, 0.02, 0.015] and [0.028, 0.02, 0.015] respectively for the coaxial and the oblique coalescence experiments. We set all 
the parameters as follows:

ε = 0.005, g = 9.8, ρ = 1, ρ2 = 1000, μ1 = 3.23× 10−3, μ2 = 3.23× 10−1,

R = 0.005, σ = 0.0153. (109)

Such that the non-dimensional parameters with the Morton number of Mo = gμ4
2�ρ/ρ2

2σ
3 = 30, and the Eövtös number 

of Eö= g�ρR2/σ = 16. Scheme 1 is employed for the simulation in this section. The numerical results are shown in Fig. 8, 
13
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Fig. 5. Center of mass over time. Left: Scheme 2, Right: Scheme 3.

Fig. 6. Rising velocity over time. Left: Scheme 2, Right: Scheme 3.

Fig. 7. Free energy over time. Left: Scheme 2, Right: Scheme 3.

where we can observe good agreement with the experimental observation in [30] and the numerical results in [31]. The 
deformation and acceleration of the lower bubble in z-direction can be seen when the lower bubble enters into the wake 
region of upper bubble. The reason for this observation is that the drag force on lower bubble becomes smaller than the 
upper bubble before the coalescence the two bubbles.

5.4. Rayleigh-Taylor instability in 3D

Our next test is the Rayleigh-Taylor instability (RTI) which would occur for any perturbation along the interface between 
a heavy fluid (c = 0 for fluid 2) on top of a light fluid (c = 1 for fluid 1). The instability is characterized by the non-
dimensional parameter Atwood ratio, that At = (ρ2 −ρ1)/(ρ2 +ρ1). Here we test our code in 3 dimensional with the initial 
interface being located in a cuboid domain [0, L] × [0, L] × [0, 4L] at z̃(x, y, z) = 2L + 0.05L (cos(2πx/L) + cos(2π y/L)), 
which represents a planar interface superimposed by a perturbation with amplitude 0.1L. Here we set L = 1 and

c = 1

2

(
1− tanh

(
z − z̃

2
√
2ε

))
. (110)
14
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Fig. 8. Comparison between the experimental observations from [30] and numerical predictions for coaxial and oblique coalescence of two bubbles: Mo =
30, Eö = 16. The experimental results are taken at every 0.03 second.

Fig. 9. Evolution of the interface with the Atwood number of 0.5. The interface is viewed from the heavy fluid side.

We set all the parameters as

ρ1 = 1, ρ2 = 3, At = 0.5, ν1 = ν2 = 0.001, g = 9.8, σ = 0, ε = 0.005. (111)

Periodic boundary conditions are imposed on the left, right, front and back boundaries for u , c and μ. At the top and bottom 
boundaries, we impose the no-slip boundary condition for u, and no-flux boundary conditions for c and μ. A uniform grid 
[128 × 128 × 512] is used, and we set time step to be δt = 10−3. Scheme 1 is employed for the simulation in this section.

The evolution of the interface are shown in Fig. 9. During the early stages, the interface grows nearly symmetrically up 
and down and remains rather simple. But, as time goes by, it becomes more complicated and spikes of the heavy fluid first 
form near the middle of the four sides of the computational domain. The roll-up at the edge of the spike starts at a later 
time. At t = 0.75, these roll-ups are stretched into two extra layers of the heavy fluid folded upward. This two-layer roll-up 
phenomenon is a unique feature of the three-dimensional RTI, where the similar results are obtained in [32].

6. Conclusion

We develop in this paper three new second order accurate numerical methods to solve two-phase flow using the quasi-
incompressible NSCH system with a variable density. Through several numerical examples, we also demonstrate that our 
numerical methods can capture the interface breakup and collisions smoothly even with a large density and viscosity ratio. 
Simulations also confirm that the discrete energy functional is non-increasing, as predicted by our theory. Moreover, the 
pinch-off event is smoothly captured by numerical schemes. In the case of the rising bubble, we show that numerical 
results which are consistent with the experimental results.

Scheme 1 only enjoys the property of mass conservation. While Scheme 2 and Scheme 3 have properties of mass con-
servative and energy decreasing in discrete level. We have performed numerical simulations using three schemes proposed 
above and validate the effectiveness and accuracy in numerical part. For a mild density ratio, Scheme 1 is recommended to 
use due to its simplicity which is constructed based on the original form of quasi-incompressible NSCH system. While, we 
15
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recommend Scheme 2 and Scheme 3 to solve the quasi-incompressible NSCH system with larger density ratio in which an 
extremely small time step must be used for Scheme 1. In future work, we will perform extensive studies of the two-phase 
problems with more complicated interface dynamics, e.g., moving contact line problems, where the fluid/fluid interface 
interacts with solid wall, and the dynamics of interface with Marangoni effects, where surface tension gradients are in-
duced by in-homogeneous temperature distributions or surfactants that can be absorbed at the liquid/gas or liquid/liquid 
interfaces.
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