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Abstract: Microelectronic computers have encountered
challenges in meeting all of today’s demands for informa-
tion processing. Meeting these demands will require the
development of unconventional computers employing
alternative processing models and new device physics.
Neural network models have come to dominate modern
machine learning algorithms, and specialized electronic
hardware has been developed to implement them more
efficiently. A silicon photonic integration industry promises
to bring manufacturing ecosystems normally reserved for
microelectronics to photonics. Photonic devices have
already found simple analog signal processing niches where
electronics cannot provide sufficient bandwidth and
reconfigurability. In order to solve more complex informa-
tion processing problems, they will have to adopt a
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processing model that generalizes and scales. Neuromorphic
photonics aims to map physical models of optoelectronic
systems to abstract models of neural networks. It represents
a new opportunity for machine information processing on
sub-nanosecond timescales, with application to mathe-
matical programming, intelligent radio frequency signal
processing, and real-time control. The strategy of neuro-
morphic engineering is to externalize the risk of developing
computational theory alongside hardware. The strategy of
remaining compatible with silicon photonics externalizes
the risk of platform development. In this perspective article,
we provide a rationale for a neuromorphic photonics pro-
cessor, envisioning its architecture and a compiler. We also
discuss how it can be interfaced with a general purpose
computer, i.e. a CPU, as a coprocessor to target specific
applications. This paper is intended for a wide audience and
provides a roadmap for expanding research in the direction
of transforming neuromorphic photonics into a viable and
useful candidate for accelerating neuromorphic computing.

Keywords: neuromorphic computing; optical neural net-
works; photonic integrated circuits; silicon photonics;
ultrafast information processing.

1 Introduction

Computing today is in many ways the same as it was in the
1960s: digital microelectronics implementing a centralized
processing unit (CPU) architecture. Throughout this time,
their performance improved exponentially according to
what is known as Moore’s law. There have always been
predictions that Moore’s law is ending. Nevertheless, mi-
croelectronics have managed to maintain an exponential
rate of improvement through the development of new
technologies and architectures, such as multi-core archi-
tectures, graphical processing units (GPUs), and field-
programmable gate arrays (FPGAs). Today, there are a
growing number of computational problems that seem well
out of reach, even when extrapolating for microelectronic
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performance advances. Conventional computers are here
to stay; however, recent years have seen a resurgence in
unconventional computing approaches, ranging from
neuromorphic electronics to radio frequency (RF)
photonics.

Photonics does not exhibit the same physical proper-
ties of semiconductor electronics. It is unquestionable that
photonics, specifically fiber optics, is preferable for high-
bandwidth communication over long distances. Motivated
by successes in optical communication in the 1960s and
1980s, some began to ask if optics could be used to process
information’, as opposed to only communicating infor-
mation. These inquiries included fascinating strides in
optical neural networks, but they ultimately proved to be
mistimed. What is different today includes (1) neural net-
works models have come to dominate machine learning—
we know these models are applicable to modern
computing problems, and we know how to program them,
and (2) silicon photonic integration provides an unprece-
dented platform to produce large-scale and low-cost pho-
tonic systems. Neuromorphic silicon photonics aims to
bring the two together and to understand the impacts that
both paradigms can generate on machine information
processing.

This paper: (1) provides a rationale for a silicon neu-
romorphic photonic processor as a complement to digital
microelectronic computing (e.g. as an accelerator for high-
performance computing) or as an alternate platform to
enable new domains of applications (e.g. nonlinear pro-
gramming or wideband radio signal processing); (2) de-
scribes a vision for such a neuromorphic processor and
how it can be interfaced with a general purpose computer;
and (3) discusses a compiler that can be used to program
such a photonic processor. We also summarize recent
analysis comparing analog photonics and analog
electronics.

2 Neural networks in computing

Computational modeling of neural networks has been
motivated by neuroscience—the promise of understanding
cognition and pathology; it has been motivated by

1 By “information processing,” we mean operations whose purpose
involves destroying or discarding informational content, for example
the two-input, one-output AND gate. Contrast with “communication,”
where an information carrier is transported, and “signal processing,”
where the information carrier is enhanced (e.g. amplified, regener-
ated, etc.). In communication and signal processing, the information
content ideally stays the same.
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engineering—the promise of making smarter, more effi-
cient machines. These diverging motivations have yielded
diverging research into systems that attempt to retain a
faithfulness to biological neural networks and systems that
do not. Nevertheless, both schools demand a conscious-
ness of computing hardware performance. Research on the
biology side has become limited by simulation tools for
very large networks. On the artificial side, machine
learning algorithms are taking a growing portion of data
center resources.

Training Google’s state-of-the-art large-scale language
model BERT a single time, for example, takes
5056 GPU-hours, which corresponds to 1438 lbs of CO,
emissions [1]. Compare that to a one-passenger carbon
footprint in a New York to San Francisco flight, 1984 Ibs. It
is important to note that the developmental cost of these
models is not included: tuning a model to a new dataset
may cost dozens of times that much, and developing a new
model from scratch, thousands more [1]. The short-term
trend is even more worrisome. A recent analysis by OpenAl
established that the computational resources required to
train these large machine learning models have been
doubling every 3.4 months since 2012 [2].

Neural network models have solidified as a pillar of
modern machine learning under the alias “deep learning”
[3]. Machine learning is experiencing rapid progress and
skyrocketing demand in applications from autonomous
vehicles to consumer devices to medical imaging analysis.
Learning algorithms related to neural networks date to the
1950s [4], but have only in the past several years become an
indispensable piece of machine learning. This return could
be attributed to: (1) decisive algorithmic innovations [5, 6],
(2) the Internet: an inexhaustible source of millions of
training examples, and (3) new hardware, specifically
graphical processing units (GPUs) [7].

It is increasingly apparent that conventional micro-
electronics are not optimized to implement neural
network models with speed and energy efficiency that are
sufficient for application demands. Artificial neural
network models consist of relatively simple nonlinear
nodes interconnected by a configurable linear network.
This parallel, distributed structure is dissimilar to the
serial nature of conventional computing architectures,
and so unconventional hardware has been investigated.
Unconventional architectures adopting neural network
organizational principles at the hardware level were
conceived of in the 1950s [8], and, like neural algorithms,
have experienced a rapid and recent revival [9-12]. Mod-
ern neuromorphic electronics are used in applications
ranging from battery-sipping audio recognition [13] to
supercomputing resources for neuroscientists [14].
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3 Photonic information processing

The question of what an optical computer is or should be
has inspired intense debate, one could say an identity
crisis. The notion of optical computing is alluring and
prone to hype. An experienced retrospective is found in
Ref. [15] and a recent survey is found in Ref. [16]. Con-
trasting philosophical views of the cast of characters in
1980s optical computing are represented in lay form in
Ref. [17]. From these sources, we can perceive the tanta-
lizing excitement and multifariousness of ideas in optical
computing. Research in past decades (usually referred to as
optical computing) has strongly influenced the research
that has surged in recent years (usually referred to as
photonic information processing). It identified ideas that
work well and also pointed out pitfalls from which to learn.

3.1 Previous decades

Optical logic based on nonlinear and bistable devices was
proposed in the 1960s [18], but optical devices fail to pro-
vide some fundamental properties required to make logic
gates [19, 20]. In electronic gates, both input and output are
represented by voltage, so the ability of one gate to drive
another is taken for granted. In most nonlinear optical
devices, on the other hand, the output signal must be a
different wavelength than the pump input, meaning that
that gate cannot drive a similar gate. Secondly, electronics
have a consistent reference potential by which to define
logical “0” (0 V) and “1” (1 V), so the ability of one gate to
drive multiple others (i.e. fan-out) is taken for granted.
When signals are represented by optical energy, they
attenuate when splitting, so the definition of logical “1”
changes when signals fan-out [21]. These two barriers stem
from representing information as potential energy
(voltage) versus a conserved energy unit (photons or cur-
rent). This difference favors a non-digital architecture for
light-based processing.

The second choice for optical system reconfiguration
such as switching, is then to rely on electronic—photonic
interactions, which are inherently inefficient given the
three-orders of magnitude dimension difference of the
underlying wave functions. The latter has, however, led
researchers to explore to the fields of nanophotonics and
plasmonics, where the light-matter interactions can be
enhanced. Thus, micrometer-small opto-electronic devices
have been recently demonstrated, however, often with
some tradeoffs in optical signal loss [22].
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Many other approaches avoid a digital computing
paradigm altogether and instead target specialized tasks.
At first, these included Fourier transforms [23] for pattern
recognition, matrix-vector multiplication, and radar [24].
Optical technologies for interconnection have long been
recognized as potential media for artificial optical neural
networks (ONNs), reviewed in Ref. [25]. For the most part,
approaches to ONN interconnection have focused on
spatial multiplexing techniques, including configurable
spatial light modulation [26], matrix grating holograms
[27], and volume holograms [28, 29]. Although they are
dense techniques for all-to-all interconnection, free-space
and holographic devices are difficult to integrate and also
require precise alignment.

Attempts to realize optical computers in previous de-
cades encountered three major barriers. Firstly, many ap-
proaches could not be integrated, making them expensive
and environmentally sensitive. Secondly, the utility of
overspecialized optical “co-processors” was overtaken by
simultaneous performance leaps in microelectronics.
Thirdly, fundamental concepts of what makes a computer
were often neglected. Concepts such as cascadability, fan-
out, fan-in, and metrics are unchanging and taken for
granted in conventional computers; however, they must be
completely reconsidered for unconventional physical
hardware.

3.2 “Optical silicon”

While optical computing has been explored in many forms,
all of these approaches were hindered by a lack of a low-cost
platform. In the 1986 Spectrum issue on optical computing
[17], Tanguay is attributed with the phrase “optical silicon,”
in the sense of a low-cost, manufacturable, and versatile
platform for optics. This term coined the view of many re-
searchers that without such a platform, optical technolo-
gies, especially computers, will always encounter great
difficulty competing with electronics. In 1987 coinciden-
tally, the field acquired an idea that “Maybe ‘optical silicon’
is just that: silicon” [30]. Thirty years later, silicon photonics
has arisen as a billion dollar industry that some believe is
only just beginning to realize its full potential.

Silicon photonic foundry platforms could bring to
photonics the manufacturing economies historically
reserved for microelectronics. Immense resources have
been poured into silicon photonics for two main reasons.
Firstly, silicon photonic device sets can be manufactured
with standard silicon foundries and processing
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capabilities, albeit with some process modifications [31-
33]. Secondly, datacenters now rely on a staggering num-
ber of short reach optical interconnects, and silicon
transceivers are lower cost than their overperforming I11-V
counterparts. Silicon photonic platforms are still in a
nascent period with many potential advantages yet to be
realized [34]; however, it is reasonable to predict robust
and vibrant progress in the field. New foundry lines are
being created, increasing the supply; new and larger
datacenters are being built, increasing the demand for
short reach optical interconnects. Silicon photonics is not
as simple as supply/demand: the growth of the industry
has spawned an entire research ecosystem.

The barriers to conducting silicon photonics research
are continually lowering with the advent of shared wafers,
design tools, prototyping services, open-access libraries,
and educational resources [35]. An important development
in the field is the fabrication-less or “fabless” research
model [36]. In the fabless design process, research groups
outsource the fabrication of their designs to silicon pho-
tonics foundries. The foundries can then produce the chips
at a lower cost by placing multiple designs from different
groups on shared wafers. The fabless design model with
foundry lines specifically tailored to silicon photonics
make state-of-the-art devices and scalability accessible at a
low cost and small volume.

The accessibility of silicon photonics opens the door
for advanced system-level research that is academic and/or
exploratory in nature [37]. The fabless design model
crucially relieves the burden of early-stage research to
demonstrate concrete market demand. For example, inte-
grated RF photonics are anticipated to impact future
wireless operations in the millimeter-wave bands. Because
their exact impact is still uncertain, the crucial early-stage
research in the field depends on the accessibility of the
fabless design model.

Silicon photonics apparently meets the criteria for an
imagined “optical silicon,” which carries the potential to
reinvigorate investigation into advanced photonic infor-
mation processing.

3.3 Contemporary approaches

A scalable model of computing is necessary to make
computers that leverage photonics. A variety of models
have recently gained traction in the field. This article will
focus on the neuromorphic model, but it is worth noting
contemporary approaches to computing with light, namely
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quantum silicon photonics, photonic reservoir computing,
and RF photonics. These approaches take advantage of
various properties of lightwaves, respectively: their quan-
tum coherence in low loss waveguides; their high-speed
dynamics in nonlinear media; and their linearity across a
high dynamic range.

3.3.1 Quantum silicon photonics

Silicon photonic systems have been proposed for quantum
processing models, including quantum simulation and
quantum computing [38, 39]. A universal quantum
computing approach based on implanted donor qubits
coupled through configurable silicon photonic circuits was
proposed in Ref. [40]. The proposal has already shown
favorable quantum computing potential compared to the
handful of established quantum computing proposals.
Silicon and silicon nitride platforms have attracted interest
as high-density platforms for squeezed light sources [41,
42] for continuous-variable quantum computing [43] and
boson sampling. In most of these approaches, silicon
(nitride) photonics is used as a strategy to externalize
platform development to foundries in a way similar to the
neuromorphic contemporaries discussed below. In fact,
the programmable nanophotonic processor developed for
quantum transport simulations in Ref. [44] was the same
chip studied in the context of deep learning in Ref. [45] and
the basis for a quantum optical neural network [46].
Technological needs also overlap: for example, the need to
control resonator wavelengths and large systems of con-
figurable elements.

3.3.2 Photonic reservoir computing

Photonic reservoir computing (PRC) techniques that take
inspiration from certain brain properties (e.g. analog,
distributed) have received substantial recent attention
from the photonics community [47-50]. These techniques
are a hardware implementation of the broader reservoir
computing concept based on recurrent neural networks.
Reservoir techniques rely on supervised learning to discern
a desired behavior from a large number of complex dy-
namics, instead of relying on establishing an isomorphism
with a model. Neuromorphic and reservoir approaches
differ fundamentally and possess complementary advan-
tages. Both derive a broad repertoire of behaviors (often
referred to as complexity) from a large number of physical
degrees-of-freedom coupled through nonlinear interaction
parameters. In a reservoir computer, the interaction
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parameters do not need to be configurable, observable, or
even repeatable from system-to-system.? Reservoirs thus
possess a desireable ability to harness complexity from
physical processes that are difficult to model and control,
such as coupled amplifiers [51], coupled nonlinear MRRs
[52], time-delayed dynamics in fibers [49], and fixed inter-
ferometric circuits [48]. Furthermore, reservoirs do not
need to be fully modeled and do not require significant
hardware to control the state of the reservoir. On the other
hand, neuromorphic hardware has a burden of establish-
ing an isomorphic mapping to an artificial neural network.
In return, the neuromorphic system can leverage existing
machine learning algorithms, map training results be-
tween simulation and hardware, and guarantee particular
behaviors. Photonic reservoir computers can of course be
simulated and leverage training algorithms borrowed from
the reservoir computing community; however, they have
no corresponding a-priori guarantee that a particular
hardware instance will reproduce a simulated behavior or
that training will be able to converge to this behavior.

3.3.3 RF photonics

Radio frequency (RF) front-ends must improve drastically
to handle new millimeter-wave bands and advanced multi-
antenna approaches. They have encountered limitations of
RF electronics, analog-to-digital converters (ADCs), and
digital signal processors (DSP) [53, 54]. RF photonics
appear to have potential to rise to these challenges, offer-
ing improvements for programmable filtering [55], time
delays [56-59], interference suppression [60, 61], and
waveform generation [62, 63]. They can also reap consid-
erable performance advantages by moving simple pro-
cessing tasks from DSP into the analog subsystem [62, 64—
66] which is capable of processing information at high
speed and low latency. However, the main drawback of
analog systems is bit resolution, and work has shown that
the break-even bit-density between analog versus digital
systems is about 6—7 bits [67] RF photonic circuits that can

2 We acknowledge some divergent opinions in drawing this contrast
between neuromorphic photonics and photonic reservoir computing.
A reviewer of the manuscript pointed out that some researchers
consider PRC as neuromorphic because it is also inspired by the bio-
logical nervous system. This article uses neuromorphic in the sense
that a mathematical isomorphism between hardware and neural
network is necessary in its approach to a computational task at hand.
Reservoir computing, in general, does not require a concrete estab-
lishment of isomorphism but instead relies on some amount of hard-
ware training. In this way, we have here chosen to base the distinction
on the practical implications for computing, rather than relationship
to biological principles.
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be transcribed from fiber to silicon are likely to reap the
economic benefits of silicon photonic integration. In a
distinct vein, large-scale programmable processors are
surpassing the complexity and flexibility of processors that
could be considered in fiber [68-70]. There are only so
many tasks that linear models can perform. By introducing
nonlinear elements, a much broader and more complex
repertoire of information processing tasks can be
considered.

4 Neuromorphic photonics

Neuromorphic photonics is the idea to create photonic
devices and circuits whose governing equations are
isomorphic to the equations describing a neural model. As
mentioned in Section 2, there are two diverging motiva-
tions for the study of neuromorphic computing: one,
biologically-driven, to understand cognition; and another,
engineering-driven, to enhance computing. The prevalent
motivation in neuromorphic photonics is the latter. Thus,
the degree of neuromorphism present in photonic systems
is only useful insofar as it helps with computing tasks. The
hardware’s adherence to neural models unlocks a wealth
of metrics [71], algorithms [72, 73], tools [74, 75], and
benchmarks [76] developed specifically for neural net-
works. A diversity of research in neuromorphic photonics
are covered in the textbook “Neuromorphic Photonics”
[77], which includes results and discussion on: applica-
tions of neuromorphic photonics (Chp. 1); background on
silicon photonics for neuromorphic photonics processor
(Chp. 3); advanced topics in silicon network implementa-
tions, topologies, function, and robustness (Chps. 8 and
11); and learning (Chp. 12). In addition, summaries of recent
research in the field are presented in an encyclopedia
article [78] and tutorial [79].

Neuromorphic can pertain to individual lasers and a
single spiking neuron [80]. Interest in integrated lasers that
are isomorphic to spiking neurons has flourished over the
past seven years [81]. Experimental work in the field has so
far focused on isolated neurons [82-87] and feedforward
chains [88-91]. Reference [77] considers how to make
cascadable neurons out of some of these non-cascadable or
partially cascadable spiking lasers. Spiking neuromorphic
light sources have also been implemented with super-
conducting electronics and all-silicon light emitting diodes
[92]. Photonic isomorphism can also refer to photonic cir-
cuits and entire neural networks.

Neuromorphic silicon photonics adheres not just to a
neural network model, but also to the industrial foundry
platforms available today, thereby enabling their near-
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term construction. An architecture for integrated photonic
neural networks was first proposed in 2014 [93] and
demonstrated in 2017 [94]. In this broadcast-and-weight
architecture, each neuron is assigned a wavelength to carry
its output signal. These signals are multiplexed and
broadcast to all other neurons where each is weighted by
the transmission through a tunable microring resonator
[95]. The weighted signals are detected, and the resulting
electronic signal modulates the amplitude of that neuron’s
wavelength. The nonlinear transfer function of the neurons
is derived from the electro-optic modulation effect. It
should be noted that researchers have also showed theo-
retically [96] and experimentally [97] all-optical nonlinear
activation function using electromagnetically induced
transparency (EIT).

Since lasers are not yet widely available on silicon,
modulator-class neurons were a final step to complete
compatibility with silicon foundry platforms. In the au-
thors’ recent work in refs. [94, 98-100], neurons are
implemented by modulators that exploit the nonlinearity
of the electro-optic transfer function. Specifically, Tait et al.
[98] demonstrated a modulator neuron with a silicon
microring resonator (MRR) with embedded PN modulator.
George et al. [100] proposed quantum well absorption
modulator-based electro-optic neuron, and Amin et al. [99]
proposed an indium tin oxide (ITO)-based electro-
absorption modulator for photonic neural activation
function. Two important figures of merit for these
modulator-class neurons are the energy per bit and the
capacitance of the link. In an O-E-O link, the lower the
switching voltage, the lower the required transimpedance
for it to work. Coupled to a low capacitance, this yields a
low CV* switching energy and a low RC switching delay.
Using photonic crystals in Indium Phosphide, Nozaki et al.
[101] neared fundamental limits in classical optics with a
41 aJ/bit & 1.64 fF O—E-O link.

Modulators do not exhibit spiking dynamics, so this
move represents a critical departure from the earlier work
on spiking, a departure further discussed in [98, Sec. IVB].
The current wave of neuromorphic electronics, in their
majority, encapsulate neural spikes in asynchronous, time-
multiplexed digital packets, emulating very large spiking
neural networks with modest interconnects. In photonics,
it is more practical to target modest-sized, but fast net-
works, with direct spatial or wavelength-multiplexed in-
terconnects. Whether in continuous-time or in spikes,
information can be carried in the analog domain with low
crosstalk, low dispersion, and without capacitive loading
of the interconnect line.

Other neuromorphic photonic networks in silicon were
proposed in 2017. A fully integrated superconducting
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optoelectronic network was proposed in Ref. [102] to offer
unmatched energy efficiency. Communication is accom-
plished with single photons detected by superconducting
nanowires. Superconducting electronics offer means to
process [103] and amplify [104] the single-photon signal so
that it can then drive an all-silicon light emitting diode
[105]. While based on an exotic superconducting platform,
this approach accomplishes fan-in using incoherent opti-
cal power detection in a way reminiscent of and possibly
compatible with the broadcast-and-weight protocol. A
programmable nanophotonic processor was studied in the
context of deep learning in Ref. [45]. Weights are config-
ured by the transmission through a coherent mesh of
Mach-Zehnder interferometers. Training might be ach-
ieved by sending light through the mesh in the opposite
direction [106]. Coherent optical interconnects exhibit a
sensitivity to optical phase that must be re-synchronized
after each layer. All-optical nonlinear devices for counter-
acting signal-dependent phase shifts induced by nonlinear
materials are yet to be proposed, although a mesh-
compatible, partially electronic, neuron was recently pro-
posed in Ref. [107].

Neuromorphic photonics complements neuromorphic
electronics in terms of application domains. Its advantages
stem from bandwidth and energy efficiency, yet they will
likely never compete with the low system power and large
scale of neuromorphic electronics. None-withstanding,
both offer commensurate power reductions compared to
state-of-the-art conventional computers based on multiple
cores, GPUs, and FPGAs.

At increased scale, neuromorphic photonic systems
could be applied to currently unaddressable computational
areas in scientific computing and RF signal processing. A
key benefit of neuromorphic engineering is that existing
algorithms can be leveraged. A subset of neural networks,
Hopfield networks [108], have been used extensively in
mathematical programming and optimization problems
[72]. The ubiquity of differential equation problems in sci-
entific computing has motivated the development of analog
electronic neural emulators [109]. Predictive control algo-
rithms were mapped to neuromorphic photonics in simu-
lation by Ferreira de Lima et al. [79].

Of these potential application areas, the most imme-
diate needs for real-time bandwidth lie in RF problems, in
particular, commercial telecommunications, spectrum
monitoring, and microwave metrology operations. Digital
signal processors based on high-performance semi-
conductors are unable to handle increasingly complex
access strategies (e.g. opportunistic) in increasingly broad
bands (e.g. millimeter wave). Neural algorithms have been
developed for real-time RF signal processing, including
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spectral mining [110], spread spectrum channel estimation
[111], and arrayed antenna control [112]. There is insistent
demand to implement these tasks at wider bandwidths
using less power than possible with RF electronics. As of
now, RF-relevant information processing tasks of principal
component analysis [113, 114] and blind source separation
[115] have been demonstrated in silicon photonic weight
banks.

Beyond merely improving current machine learning
calculations, neuromorphic photonics could enable as-of-
yet unforeseen applications in sub-nanosecond domains,
for example, measurement and control for ultrafast phys-
ical phenomena. For example, Gordon [116] investigated
potentials of deep neural networks to classify microwave
qubit states based on observations of nanosecond tran-
sients. Developing that direction will call for the close
involvement of experts in experimental physics. Applica-
tion developers can apply new computer technology only if
they can rely on the fact that a propositional computer will
adhere to a model. That ability to investigate future ap-
plications of scaled-up networks illustrates the power of
model adherence - the neuromorphic idea.

5 Neuromorphic processor
architecture

Recently, in our tutorial, Ref. [79], we proposed a vision for
a neuromorphic processor. We discussed how such a
neuromorphic chip could potentially be interfaced with a
general-purpose computer, i.e. a CPU, as a coprocessor to
target specific applications. Broadly speaking, there are
two levels of complexity associated with co-integrating a
general-purpose electronic processor with an application-
specific optical processor. Firstly, a CPU processes a series
of computation instructions in an undecided amount of
time and is not guaranteed to be completed. Neural net-
works, on the other hand, can process data in parallel and
in a deterministic amount of time. CPUs have a concept of a
‘fixed’ instruction set on top of which computer software
can be developed. However, a neuromorphic processor
would require a hardware description language (HDL)
because it describes the intended behavior of a hardware in
real-time. Secondly, seamlessly interfacing a photonic in-
tegrated circuit with an electronic integrated circuit will
take several advances in science and technology including
on-chip lasers and amplifiers, co-integration of CMOS with
silicon photonics, system packaging, high-bandwidth
digital-to-analog converters (DAC) and analog-to-digital
converters (ADCs).
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We first discuss the need for a high-level processor
specification that users can interface with, and then detail
the architecture components required to build a neuro-
morphic photonic processor.

5.1 Processor firmware specifications

As highlighted in Section 4, there has been much work on
photonic neural networks with different approaches (all-
optical, optoelectronic etc.) in different platforms (silicon,
[II-V, heterogeneous integration). This is called the phys-
ical implementation (or layer) of the neural network. An
abstraction above this layer is the behavioral layer which
describes how information is encoded, transformed, and
decoded as it flows along a network, and how the network
should learn new behavior from new information.

New hardware development must be accompanied
with software specification. HDLs describe circuits in a way
that a computer can understand and simulate. This is
useful in making the hardware (i.e. the physical layer)
agnostic to the behavioral layer. Consequently, this makes
programming or executing a task straightforward. For
example, suppose that a particular neural network that
executes an inference task can be implemented using an
artificial or a spiking neural network. Both of these net-
works require different coding schemes, but could be used
to accomplish the same task with different efficiencies and
speed. It is obvious that these coding schemes require
different hardware, but they also require different control
algorithms and network configuration. That is why it is
important to be able to express the function of the neuro-
morphic circuit without fixing the hardware.

This abstraction is necessary to allow integrated pho-
tonics professionals to be able to build neuromorphic
processors to spec. It also allows them to simulate speed
and power consumption before sending a chip layout for
manufacture—these metrics depend not only on the per-
formance of individual photonic devices inside a chip, but
also more importantly on system tradeoff choices.

5.2 Architecture components

In all of the many existing physical implementations of
photonic neural networks, every photonic device must be
carefully started up and maintained while the processor is
active. In particular, these devices are sensitive to tem-
perature fluctuations and mechanical stress to a much
higher degree than electronic devices. As a result, labora-
tory tests of these devices generally occur in temperature
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controlled and stationary environments. As soon as they go
out of these, their operation can be disrupted. But the
relationship between performance and environmental
variables are well understood by the integrated photonics
community. Research devoted to this problem aims at
either making devices that are more robust to environ-
mental stress, or providing circuits that actively regulate
their performance. Consequently, a neuromorphic pho-
tonic processor must be organized such that the processor
core is accompanied by dedicated hardware responsible
for this regulation, as well as other circuits dedicated to
interfacing with the real world (Figure 1). Thus, there are
two kinds of signals flowing through the processor: high-
speed, analog; and low-speed, digital. The analog signals
flow through the processor core, which performs a real-
time neuromorphic computation, while the digital signals
are intended for configuration and control of the core
processor, which can happen at lower speeds.

5.2.1 Processor core

The processor core contains a reconfigurable photonic
neural network, capable of taking an array of high-
bandwidth optical inputs, computing a nonlinear, multi-
variate transformation, and producing optical outputs in
real time. This core is a photonic integrated circuit (PIC)
fabricated on a silicon photonics platform, for example.

A “photonic neuron” is by definition a device that can
weight multiple optical signals, sum them together, and
compute a nonlinear function based on the sum, in addi-
tion to having the ability to be networked together [79] in a
scalable way. As we discussed in Section 4, a possible
interconnection scheme is based on wavelength-division
multiplexing (WDM), where all inputs to each neural layers
lie in a single waveguide, separated by wavelength. This
compensates for the relatively large size of photonic com-
ponents relative to electronic transistors.

To get a sense of how dense it is, we estimated how
many MAC operations® a neuromorphic photonic processor
core can perform pear area. Suppose that a single broad-
cast waveguide loop contains 30 independent WDM
channels, which can be accessed by any neuron connected
to it (Sec. 4 [94, 98]). The number of MACs is proportional to
how many total weights there are on chip, divided by its
area. Implementing this architecture in silicon photonic
foundries yield around 10° weights/mm’, considering a
metal routing overhead of 200%. At a conservative 1 GHz
signal bandwidth, this corresponds to a 10 TMAC/s/mm,

3 Multiply-accumulate operations. See footnote 9.
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processing density with =30 fJ/MAC efﬁciency.“ As a
comparison (cf. Section 7), digital electronic neuromorphic
architectures are in the 0.5 TMAC/mm’—pJ/MAC range [86].

A fair comparison between electronic versus photonic
performance metrics, however, can only be done after
tallying the aggregate size and power consumption of the
full processor architecture, not just the MAC computation
efficiency in the processor core. This is especially true if the
relevant data stream is not analog, because there are
involved costs in digital-to-analog conversion. The pro-
cessor PIC can have internal or external laser sources,
depending on the manufacture platform, and electrical or
optical I/O, which incur extra costs in generating this
continuous wave light source. It also needs thermal man-
agement and isolation from other heat-sourcing circuits,
which could negatively affect the normal operation of the
chip. One way or another it needs to be controlled by an

Conf. LAN, USB, GPIB

Neuromorphic Processor

GPIO

Reconfiguration Circuit
[FPGA] [CPU] [RAM]

D)
—

Waveform hr
Generator =

® C&C Microcontroller

AR

Neuromorphic
Processor
Core 0O09

Optical Monitor

i —— optical H./— analoan digital |—‘

Figure 1: Simplified schematics of a neuromorphic processor.
Thanks to integrated laser sources and photodetectors, it can input
and output RF signals directly as an option to optically-modulated
signals. The waveform generator allows for programming arbitrary
stimulus that can be used as part of a machine learning task. The
abbreviations are explained in “Reconfiguration Circuit” (Section
5.2). Reproduced from [79].

4 The efficiency value was estimated by the authors by dividing a
typical silicon photonic modulator’s switching energy (1 pJ/bit) by the
number of maximum weights per neuron (30 MAC/bitperiod) in the
latest generation of our silicon photonic neuromorphic chip. This
number only takes into account the dynamic power consumption of
neuron circuit, ignoring sources of static power, including weight-
locking and laser pump inefficiencies. Table 2 compares these metrics
for many technologies at their limit.
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electronic circuit, which we refer to here as a Command &
Control circuit.

5.2.2 Command & control circuit

As mentioned, the Command & Control circuit, imple-
mented in a standard electronic platform, corrects the
fabrication variations, regulates the PIC against thermal
fluctuations, and protects it against over-voltage damage.
In other words, it ensures that the processor core is well
calibrated and run at peak performance at all times.

Its main function is to translate a weight matrix, digi-
tally loaded to its running memory, into a set of analog
control signals responsible for locking the microring
weight mechanisms in the PIC. It does that by synthesizing
information from external laser parameters such as wave-
length, and local optical power monitors and temperature
sensors embedded on the chip. This control scheme, usu-
ally based on locally heating silicon waveguides, has been
thoroughly demonstrated in silicon photonics [117, 118].
This technique has been perfected to perform principal
component analysis [119] and independent component
analysis [114], which rely in precise multivariate weighting
of high-bandwidth analog signals. It is worth noting that
current research on phase-change materials can enable
photonic non-volatile memory, which will simplify these
weight setting mechanisms significantly [120]. They would
effectively reduce the static power consumption of weight
locking to a negligible amount compared to heater
approaches.

This micro-controller has a very high analog DC I/0
count to control each and every weight unit in the PIC, and
a high-throughput digital interface with a reconfiguration
circuit. Circuits based on this design should be able to
reprogram about 10,000 wt per millisecond. The reconfi-
guration circuit is the highest-level sub-processor of the
neuromorphic processor, and it is the low-bandwidth
interface to the host computer and the real world.

5.2.3 Reconfiguration circuit — interfacing with the real
world

To illustrate the function of each circuit, take for example
the Model Predictive Control (MPC) task, introduced in
Ref. [79]. In the MPC task, the controller must solve a
quadratic optimization problem at each time step. This
problem can be mapped to a recurrent neural network,
whose steady-state solution corresponds to the solution of
the optimization problem, and whose weights correspond
to the control law. The neural network can be implemented
by a neuromorphic processor. The processor core is doing
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the real-time computations in the analog domain, without
the need for high-speed analog-digital-analog conversion.
It acts as the controller in the system. However, its transfer
function cannot be insulated from the “plant”, because
different control rules might be in place depending on the
conditions of the plant, such as temperature conditions,
time-of-day, humidity or even human-made policy
decisions.

The reconfiguration circuit (Figure 1) is used to regu-
late the high-speed controller based on input data from the
plant’s sensors. It receives instructions from a CPU, live-
data from the environment and the state of the command
and control (C&C) circuit and makes decisions about how
the network is to be configured in real-time. The entire
processor must be designed to account for that, gathering
as much information as possible from the environment and
from onboard sensors. As a result, it is crucial to maintain a
high-bandwidth communication link with a computer
motherboard, represented as GPIO in Figure 1. It is best
implemented with a combination of interconnected FPGA,
CPU, and RAM modules®.

The reconfiguration circuit marks the boundary be-
tween the photonic engineers and the digital hardware
programmers. Therefore, it must be the one that receives
the instructions (synthesized and assembled from an HDL
program) and takes care of not only configuring the core
processor but also handling training, online learning, and
digital and analog interconnects. It is at this stage that one
could envision a neuromorphic compiler for this novel
photonic hardware, capable of translating a neural
network-compatible task to a program that runs on the
processor, breaking down how to configure neuron biases,
weight matrices, optical power levels, amplification gain,
radio-frequency filtering, learning rules etc.

6 Envisioning a photonic compiler

One of the major challenges in neuromorphic photonic
design flow is the lack of sufficient tools between the high-
level and low-level abstractions. While it took decades for
digital electronics to gradually bridge the abstraction gaps,
photonics and more specifically neuromorphic photonics
can adopt many of such experiences and methodologies.
Neuromorphic computers are divergent from their con-
ventional von Neumann counter-parts in three major ways.

5 Plant as defined in control theory.

6 FPGA: Field-programmable gate array. CPU: Central processing
unit. RAM: Random-access memory. GPIO: General-Purpose Input/
Output. These are common modules in modern digital hardware.
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First, the co-localized processor and memory scheme,
which brings the memory and processor closer together. A
byproduct of this is that the programs move closer to pro-
cessors. Second, inspired by the human brain, processing
elements in neuromorphic computers are inherently het-
erogeneous. This heterogeneity elevates various function-
alities while preserving locality. Third, programming
through learning, rather than explicit algorithms, is an
important differentiating factor from conventional pro-
gramming paradigms and lead to robust systems, or
possibly even improved performance [121].

Our perspective is that a design flow for neuromorphic
processors, and neuromorphic photonics in particular,
should be cognizant of hardware, even from early specifi-
cation stages. This can be achieved by including accurate
behavioral models into the training and initial inference
tests. Figure 2 shows an envisioned design flow for neu-
romorphic photonics. Particular to neuromorphic systems,
top layers accommodate for steps necessary to translate an
application statement into a neural network graph with a

Application Specifications

v
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Figure 2: Envisioned design flow for neuromorphic photonics
system design. At the top of the design flow stack, neuromorphic-
specific steps account for accurate translation of application
statement into trained set of weights.
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trained set of weights. In this section, we briefly review
some of the reported design and simulation methodologies
and tools in photonics and how they fit within the design
flow of neuromorphic photonics. Table 1 compares various
photonic simulation tools in terms of their level of
abstraction and whether they provide neuromorphic
design support. Then, we review examples of recent efforts
that aim to simulate modern photonic neural networks.

Traditionally, electromagnetic simulation workflows
are used to design and optimize nanophotonic devices by
methods such as finite difference time domain (FDTD) or
beam propagation method (BPM), which simulate the
propagation of the electromagnetic wave in a particular
geometry. While FDTD and similar methods can be opti-
mized and efficient for simulating single devices or circuits
with few components, they are not scalable for large cir-
cuits or system-level designs. Some of the more recent ef-
forts are focused on creating a facilitated design
environment for photonic components from behavioral
device specifications. These specifications are commonly
laid out through a scripting language such as SKILLS,
AMPLE, TCL, or Python. This helps to not only shorten the
design time, but also standardize the design process [122—
124].

At the circuit level, photonic platforms allow for more
complex functionalities that would not be feasible to
directly expand from device level approaches. Hence, some
of the more coarse-grain features need to be abstracted
away into aggregate and behavioral representations in the
form of input-output relations. The majority of the current
photonic circuit design tools enable designers to sche-
matically connect photonic building blocks and translate
them into photonic circuits (e.g. Lumerical [122]). Caphe
[127] creates a closed simulation loop that generates circuit-
level models from electromagnetic simulation and refines
those models based on actual measurements from taped
out circuits. These tools commonly offer parameterized
modules with attached layouts and API-like interfaces to
automate some parts of the process, without providing full
customization capabilities. In neuromorphic computing,
processing units are inherently heterogeneous and hier-
archical. This highlights the necessity of circuit design,
simulation, and layout tools that enable hierarchical flows
equipped with a comprehensive library of basic neuro-
morphic processing circuits.

With the success of artificial neural networks (ANNs)
over the past decade, academia and industry have further
introduced novel conceptual neural network architectures
and applying them to existing problems. However, the bulk
of these efforts are undertaken with digital electronic
hardware being the primary computing platform with
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precise digital number representations and safeguarding
mechanisms such as error detection and error correction.
Even mixed-signal neuromorphic platforms of interest with
analog cores [133, 134] in large part rely on offline training
with algorithms and methods with high bit-precision rep-
resentations and computationally near-ideal transfer
functions. It should be noted that the assumption behind
using trained weights for inference is that the inference
hardware should retain the integrity of connections,
weights, and their dynamics in the case of spiking neural
networks.

Currently, at the top level neuromorphic processing
software stack, neural network platforms such as Tensor-
flow and Pytorch carry out the translation of application-
level specifications to computational graphs and their
corresponding trained weights. However, these weights are
trained without knowledge of the inference hardware. In
digital electronics, this disparity is usually manifested
when the bit-resolution of the inference hardware is
different from that of the trained weights [135]. In analog
neuromorphic circuits and photonics in particular, by
mapping arithmetic functions to non-ideal transfer func-
tions of the photonic components, the integrity of trained
weights is challenged. In addition, unlike digital circuits,
even small amounts of noise can skew numerical repre-
sentations. Having said that, we envision a high-level
hardware-aware layer in the photonic neuromorphic soft-
ware stack, which can natively simulate and execute an
artificial neural network. One effective approach to realize
such layer is to conduct training and inference by including
behavioral models of photonic components early on in the
neural network selection and training process.

The two more established neuromorphic photonic
networking architectures (coherent and broadcast-and-
weight interconnects, Section 7) have inspired a few
photonic-aware simulation tools. In Ref. [107], a machine
learning and photonic simulation framework based on the
unitary matrix multiplications compatible with coherent
Mach-Zehnder meshes [45] (Neurophox’). In Ref. [131], the
authors introduced a simulator tool to investigate the
prediction accuracy of a convolutional neural network
(CNN) executed on a broadcast-and-weight architecture.
Behavioral models of photonic components were used to
perform the CNN operations including the convolution. In
Ref. [132] a similar photonic neural network design meth-
odology is proposed (Photonflow®). The idea behind this

7 Project https://github.com/solgaardlab/
neurophox.
8 Project in development at:

photonflow.

in development at:

https://github.com/openhpclgw/
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methodology is to extend existing and familiar neural
network tools, i.e. Tensorflow, with behavioral and per-
formance models of photonic components.

The advantage of the latter approach, as opposed to
building a fully home-grown tool is three fold. First, the
familiar interface allows the large group of users to benefit
from extended models with minimal effort. Secondly,
many of their auxiliary computational modules such as
optimizers can be adopted to simulate photonic circuits,
not limited to neural networks, within the same framework.
For instance, in Ref. [129] the neural network framework,
PyTorch, is leveraged for time and frequency simulation
and optimization of photonic circuits. Lastly, this approach
enables designers to preserve many of the low level soft-
ware capabilities available in commonly adopted neural
network tools such as distributed processing and device
placement on a variety of backend processors such as
CPUs, GPUs, and TPUs. Figure 3 depicts how Tensorflow
toolkit hierarchy with libraries is extended by photonic
models. As an example, it can be seen that the base
multiply operation can be extended to incorporate behav-
ioral models of photodiodes, MRR weights, and modula-
tors. In addition, noise as in the analog circuits can be
modeled and simulated in neural networks via this
approach.

7 Discussion on photonic and
electronic approaches

There are currently two major bottlenecks in the energy
efficiency of artificial intelligence accelerators: data
movement, and the performance of multiply-accumulate
(MAC) operations®, or matrix multiplications. Light is an
established communication medium, and has traditionally

9 The multiply-accumulate (MAC) operation calculates the product of
two numbers and adds the result to an accumulator. For a given
accumulation variable a and modified state a’, the operation takes the
following form: a’ « a + (w x x). MACs are constituents of a number
of linear mathematical operations, including dot products, matrix
multiplication, function evaluation, Fourier transforms, and convo-
lutions. MACs have traditionally characterized the performance signal
processing (DSP) applications [136, 137], but have become increas-
ingly prominent in modern HPC. MACs constitute the largest bottle-
neck in a variety of computing problems. For example, linear systems
that can be cast in terms of matrix-vector multiplication operations
can be represented as MACs. In many benchmarking tables for Al
hardware, TOPs (Tera-operations per second) are used instead of
MACs. Its precise definition is manufacturer specific, but a rough
conversion of 1 TOPs = 2 TMAC/s can be used (since one MAC involves
two operations).
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Table 1: Comparison of various photonic tools versus their scope.

Tool Scope
Device Circuit System Neural
simulation modelling simulation network®
Lumerical [122] v v X X
OmniSim [125] v X X X
Synopsys [126] v/ v X X
Caphe [127] v v X X
VPIphotonics v v X X
[128]
PhotonTorch X v X X
[129]
QNET [130] X v X X
Neurophox” X X v v
[107]
DEAP CNN X X v v
[131]
PhotonFlow® X X v v
[132]

* Neural Network column indicates whether the tool can natively
design and simulate a modern neural network.

® Footnote: neurophox.

¢ Footnote: photonflow.
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Figure 3: Software illustration of the extended tensorflow toolkit to
handle WDM-based photonic systems.

been used to address data movement on a larger scale. As
photonic links are scaled smaller and some of their prac-
tical problems addressed, photonic devices have the po-
tential to address both of these bottlenecks on-chip
simultaneously. Such photonic systems have been pro-
posed in various configurations to accelerate neural
network operations (see [45, 94, 138]). However, their main
advantage comes from addressing MAC operations
directly. Here, we will look at the advantages of a simple
matrix vector multiplication (MVM) unit made of integrated
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photonic components, in which inputs and outputs are
encoded as light signals, and analog matrix multiplica-
tions are performed using a passive optical array.

Possible instantiations of photonic MVMs are shown in
Figure 4. Power or phase can be used to encode informa-
tion, while wavelength or phase selectivity can be used to
program the network into a desired configuration. Wave-
length division multiplexing (WDM) can further increasing
the compute density of the approach. Classic examples
include arrays of resonator weight banks [94, 95, 139] or
Mach-Zehnder interferometers [45]. The most important
metrics are energy efficiency (energy/MAC), throughput per
unit area i.e. compute density (MACs/s/mm’), speed (MVM/
s), and latency (s), where both speed and latency are
measured across an entire matrix-vector (MVM) operation.
In CMOS, MVM operations are typically instantiated using
systolic arrays [140] or SIMD units [141], although there are
some other architectures that use aspects of both [142].
Digital systems are limited by the use of many transistors to
represent simple operations and require machinery to co-
ordinate the data movement involved in both weights and
activations. Table 2 provides a comparison between
already demonstrated digital and analog electronic
implementations, and recently proposed photonic ap-
proaches including a possible future platform with sub-
wavelength photonics. Note: the compute densities for the
digital system include the overall architecture (core and
periphery) while for the rest of the architectures the density
is computed with respect to the core(s) only based on
available literature. Also, the numbers for the photonic
architectures are optimistic and based on extrapolating the
observed performance metrics for a handful of neurons.
Attaining these values requires solving a number of prac-
tical problems which are possible to address in the short
term. These are discussed below.

The largest bottleneck in efficient photonic MVM op-
erations is the use of heaters for coarse tuning. Typically,
the thermo-optic coefficient (dn/dT) is the strongest effect
in most materials of interest (i.e., silicon), leading to heavy
use of heaters in almost any tunable passive photonic
system. There are several ways these can be eradicated, via
the use of post-fabrication trimming [147, 148] or devices
with an enhanced electro-optic coefficient or carrier
depletion/injection (dn/dT, da/dT) such that heaters are
not as necessary [149, 150]. The second largest problem is
fabrication variation, which can result in parameter drifts
for devices in an array. Resonators, for example, are highly
sensitive to such variation, particularly across a wafer. This
can also be remedied by enhancing the electro-optic coef-
ficient of devices and some other tricks (see [151, 152] for
resonators). Third, the signal-to-noise ratio of the output
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Figure 4: Schematics for incoherent (top) [93, 139] and coherent (bottom) [45] implementations of tunable photonic multiply-accumulate
operations. (a) Incoherent approaches can directly perform dot products on optically multiplexed signals. However, they rely on detectors and
O/E conversion for summation. (b) The ability to multiplex allows for network flexibility, which can enable larger-scale networks with minimal
waveguide usage. (c) Coherent approaches can apply a unitary rotation to incoming lightwaves. This unit can perform a tunable 2 x 2 unitary
rotation denoted by U. (d) Example of scaling the system to perform a matrix operation in a feedforward topology, using a U unit at each
crossing together with singular value decomposition. Reproduced from Ref. [143].

Table 2: Comparison of various photonic hardware approaches with a well-known deep learning accelerator during mean operating condi-

tions. Adapted from [143].

Technology Energy/MAC Compute density Vector size  Precision  Latency/speed’
Google TPU (digital) [140] 0.43 pJ/MAC® 580 GMACs/s/mm’ 256 8 bits 2 us/1.42 ns
Flash (Analog Sim.) [144, 145] 7 f)/MAC 18 TMACs/s/mm’ 100 5 bits 15ns

Coherent Mach-Zehnder interferometer mesh [45] 30 f)/MAC 0.56 TMACs/s/mm’ 100 8 bits <100 ps

Hybrid laser NN [80, 86] 0.22 pJ/MAC 4.5 TMACs/s/mm’ 56 5.1+ bits <100 ps

Silicon photonic broadcast-and-weight NN [98, 146] 2.1 f)/MAC 50 TMACs/s/mm* 148 5.1+ bits <100 ps

Sub-A nanophotonics (prediction) [143] 30.6 aJ/MAC 5 PMAC/s/mm’ 300 5.1+ bits <50 ps

*Latency is defined as the time between a single matrix multiplication operation at the given vector size. Note: density is computed with respect

to the core(s) only (except for the Google TPU).

®total power consumption of the chip including the core and periphery. For a fair comparison between the rest of the entries, which only include
the core(s), this number would be two orders of magnitude smaller (better) i.e. around 10 fJ/MAC.

must be optimized by reducing the intrinsic loss of pho-
tonic components together with the noise on the receiver.
There are a variety of technologies that can address this—
for example, lasers can be coupled on-chip with <1 dB of
loss [153], photonic devices in state-of-the-art silicon
foundries can be designed with low scattering [154], while
detectors such as avalanche photodiodes [155], can reduce
the relative contribution of thermal noise to the signal at
the receiver.

Photonic arrays ultimately have very similar limits to
analog electronic crossbar arrays, as analyzed in Ref. [143]:
single-digit aJ/ MAC efficiencies, and 100 s of PMACs/s/
mm’ compute densities. However, photonic MVMs garner
an advantage for larger MVM units, both in the size of the
matrix and in the physical footprint of the core. Generally
speaking, optimized photonic systems tend to perform
worse than their electrical counterparts for smaller arrays
(where intra-chip distances are approximately below
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100 pm), but perform better for larger arrays (above
100 pm) [143].

In that sense, photonic MVM arrays have a similar
profile to photonic communication channels, with better
performance over larger distances. However, photonic
systems tend to have worse signal-to-noise ratios, as a
result of several factors: (1) photonic channels are ulti-
mately shot noise limited, which is more than an order of
magnitude greater than the thermal noise limits on re-
sistors [143], and (2) to achieve similar compute densities to
electronics, photonic MVMs must run faster to compensate
for their larger device sizes, and noise is speed dependent.
That being said, there are some architectural options to
reduce this issue—for example, optical unitary operations
[45] can conserve the variance of the input and output
signals. This is in contrast to other approaches such as
resistive crossbar arrays where the strength of the signal
detected is proportional to VN given by the standard de-
viation of the signal resulting from an N x N matrix oper-
ation (assuming independent inputs). [156].

Although photonic arrays exhibit some fundamental
advantages over analog electronics (particularly for large
matrix sizes or large physical sizes), a more important
question is whether or not photonics arrays are practical.
Thankfully, the transceiver industry has created a silicon
photonic ecosystem fully compatible with high volume
manufacturing (HVM). Compared to CMOS chips, pho-
tonics has costlier packaging, largely because light gen-
eration cannot be done easily in silicon—in fact, the cost of
a production photonic chip is dominated by packaging. In
addition, the tools required for the design and testing of
large-scale photonic systems (>10k components) are still in
early development—analog photonic systems must
grapple with the challenge of addressing yield, variability,
precision, and tunability. Nonetheless, the total cost to
produce a photonic chip package at high volume is dipping
below one hundred dollars, and it is expected that the trend
will continue [157]. The orders of magnitude advantages
offered by photonics, and its potential for HVM scalability,
makes it a viable inroad for the breakneck performance and
innovation required by artificial intelligence algorithms in
the years to come.
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