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The flow in a Hele-Shaw cell with a time-increasing gap poses a unique shrinking interface
problem. When the upper plate of the cell is lifted perpendicularly at a prescribed speed,
the exterior less viscous fluid penetrates the interior more viscous fluid, which generates
complex, time-dependent interfacial patterns through the Saffman–Taylor instability. The
pattern formation process sensitively depends on the lifting speed and is still not fully
understood. For some lifting speeds, such as linear or exponential speed, the instability is
transient and the interface eventually shrinks as a circle. However, linear stability analysis
suggests there exist shape invariant shrinking patterns if the gap b(t) is increased more
rapidly: b(t) = (1 − (7/2)τCt)−2/7, where τ is the surface tension and C is a function of
the interface perturbation mode k. Here, we use a spectrally accurate boundary integral
method together with an efficient time adaptive rescaling scheme, which for the first time
makes it possible to explore the nonlinear limiting dynamical behaviour of a vanishing
interface. When the gap is increased at a constant rate, our numerical results quantitatively
agree with experimental observations (Nase et al., Phys. Fluids, vol. 23, 2011, 123101).
When we use the shape invariant gap b(t), our nonlinear results reveal the existence
of k-fold dominant, one-dimensional, web-like networks, where the fractal dimension is
reduced to almost unity at late times. We conclude by constructing a morphology diagram
for pattern selection that relates the dominant mode k of the vanishing interface and the
control parameter C.
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1. Introduction

Saffman–Taylor instabilities (Saffman & Taylor 1958) occur when a less viscous fluid is
injected into a more viscous fluid confined in a fixed narrow gap between two parallel
plates (Hele-Shaw cell). During injection, the inner less viscous fluid displaces the outer
viscous fluid and the interface separating the two fluids exhibits fingering patterns (Langer
1989; Cummins, Fourtune & Rabaud 1993). Through repeated tip-splitting events, new
fingers develop and the proliferation of fingers leads to dense branching morphologies
as the system is driven out of equilibrium (Chuoke, van Meurs & van der Poel 1959;
McLean & Saffman 1981; Park, Gorell & Homsy 1984; Ben-Jacob et al. 1986; Praud &
Swinney 2005; Li, Lowengrub & Leo 2007). Viscous fingering is considered a paradigm
for a variety of pattern forming phenomena such as bacterial colony growth and snowflake
formation as the physical mechanisms and mathematical structure are similar (Langer
1980, 1989; Ben-Jacob & Garik 1990).
One variant of the conventional Hele-Shaw set-up that provides another way to produce

viscous fingering patterns is the so-called lifting plate problem (Shelley, Tian &Wlodarski
1997; Chen, Chen &Miranda 2005; Tatulchenkov & Cebers 2008; Sinha, Dutta & Tarafdar
2008; Sinha & Tarafdar 2009; Dias & Miranda 2010; Nase, Derks & Lindner 2011). In
the lifting plate problem, the top plate in a Hele-Shaw cell is lifted perpendicularly at a
prescribed speed and the bottom plate remains at rest. This set-up has been used to study
adhesion-related problems such as debonding (Francis & Horn 2001; Derks et al. 2003;
Poivet et al. 2003; Ben Amar & Bonn 2005) and the associated probe tack test (Zosel
1985; Lakrout, Sergot & Creton 1999).
In the lifting plate problem, the gap b(t) between the two plates is increasing in time

but uniform in space. As the plate is lifted, an inner viscous fluid rushes inward between
the two plates and increases in the z-direction to preserve volume. An outer less viscous
fluid (usually air) invades the more viscous fluid and generates fingering patterns. The
patterns are visually similar to those in the classical radial Hele-Shaw problem, but the
driving physics is different in the sense that the flow in this problem is extensional (e.g.
free-surface instabilities seen in McKinley & Sridhar (2002)). Viscous fingering patterns
can also be observed using a Hele-Shaw cell where only one edge of the plate is lifted,
which makes the gap width a function of time and space (Zhang et al. 1998; Dias &
Miranda 2013b).
To characterize pattern formation in the lifting plate problem, the number of fingers

has been studied using experiments and theory using Darcy’s law as an approximation.
Theoretical studies (Ben Amar & Bonn 2005; Lindner, Derks & Shelley 2005; Sinha
et al. 2008; Nase et al. 2011; Dias & Miranda 2013a) show that the number of fingers is
controlled by a dimensionless surface tension. However, experiments using constant rates
of increasing gap widths suggest that the total number of fingers is not only dependent
on the dimensionless surface tension but also on the confinement, or aspect ratio of the
fluid, C0 = R0/b0, where R0 is the initial radius of the liquid and b0 is the initial gap width
(Nase et al. 2011); see also figure 2 in § 3 where experimental data is plotted together with
the results from linear theory and nonlinear simulations. In general, increasing C0 results
in an increased number of fingers. In these studies, the rate of increase in the gap width
over time is limited, e.g. constant rates of increase. Accordingly, the viscous fingering
instability is transient and eventually the interface shrinks as a circle. Interfacial dynamics
in the regime where the gap width increases more rapidly in time, which could lead to
non-circular vanishing limiting shapes, has been much less explored.
In this paper, we investigate regimes in which the gap width increases rapidly in

time. Motivated by linear theory (Dias & Miranda 2010; Zhao et al. 2018), we consider
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gaps of the form bC(t) = (1 − (7/2)τCt)−2/7, where τ is the surface tension and C is
a coefficient. This temporal variation in gap width has also been used to control the
interface in miscible confined flows without surface tension (Chen et al. 2010). Here,
the gap width increases much more rapidly than b(t) ∼ t or even b(t) ∼ et and actually
tends to infinity at a finite time, dictated by the surface tension and the coefficient C. If
C = 2(k2 − 1), with k being the perturbation wavenumber, a k-mode perturbation evolves
self-similarly (e.g. perturbation size relative to underlying shrinking circle is invariant).
Alternatively, if C = 2(3k2 − 1) then mode k is the fastest growing mode. In both cases,
this leads to non-circular vanishing limiting shapes at least at the level of linear theory.
Predictions of the nonlinear dynamics and the emergent interface patterns in the nonlinear
regime are very difficult because of non-locality, strong nonlinearity and rapid evolution.
Consequently, until this work the effect of nonlinearity in this special, shrinking regime
had not yet been explored.
Here, we use a recently developed spectrally accurate boundary integral method with

space–time rescaling (Zhao et al. 2018) that enables the accurate simulation of nonlinear
interface dynamics in the fast shrinking regime for the first time. In particular, the interface
is mapped back to its initial size, and time is rescaled such that the speed of the interface in
the new frame is prescribed and is slower than the dynamics in the original frame. Thus, a
fixed time step in the rescaled frame corresponds to a time step in the original frame that is
adaptively and rapidly decreased in time. Together, these features enable us to accurately
simulate the fully nonlinear dynamics of the interface at extraordinarily small interface
sizes and obtain nonlinear, limiting shapes that have not been previously reported. Other
forms of space–time rescaling are also used to study the behaviour of bubble extinction in
a Hele-Shaw flow (Dallaston & McCue 2013, 2016).
To validate our methods, we compare with experiments from Nase et al. (2011) where

the linear gap b(t) ∼ t is used. Our numerical predictions for the number of fingers are
in quantitative agreement with the experiments when the confinement number C0 is
large. This is in contrast with the results of linear theory, which predict fewer fingers
and provide a better match to the experimental results at smaller C0 (Nase et al. 2011;
Dias & Miranda 2013a). This illustrates the importance of accounting for nonlinear
interactions.
In the special shrinking regime, where b(t) = bC is used, our numerical simulations

reveal the existence of strikingly thin, k-fold dominant, limiting interfacial shapes. This
suggests that these interfaces do not shrink as circles but rather as novel one-dimensional,
web-like networks. Although we do not find evidence of self-similar dynamics in the
nonlinear regime, we do find that there is mode selection. We construct a morphology
diagram for pattern selection that relates the dominant mode k of the vanishing, limiting
interface and the control parameter C.
This paper is organized as follows. In § 2, we present the governing equations, the linear

stability analysis and the boundary method used to simulate the nonlinear system. In § 3,
we present numerical results and in § 4, we give conclusions and discuss future work.
In the appendices, we show that if we slightly modify the dynamics of the gap width
in time (by making it slightly larger than reported in the experiment), then quantitative
agreement between the simulations and experiments can be achieved at small confinement
numbers and surface tensions when the gap width increases linearly in time. Also in
the appendices, we present additional numerical results in the special-shrinking regime.
Finally, in the appendices, we provide a comparison between the nonlinear simulations
and new experiments for shrinking interfaces using a gap width that increases nonlinearly
in time.
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Air

b(t)

r

R
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n θ
Ω

∂Ω

Figure 1. Schematic for the lifting plate Hele-Shaw problem. The region Ω(t) contains oil with viscosity μ.
The region exterior to Ω(t) contains air. Here b(t) is the time dependent gap width. The normal n to the
interface ∂Ω(t) points intoΩ(t). Here R denotes the equivalent radius (radius of a circle with the same enclosed
area).

2. Governing equations

We consider a radial Hele-Shaw cell with a time-dependent gap b̃(t̃), see figure 1 for a
schematic. The upper plate is lifted uniformly in space while the lower plate is stationary.
The domain Ω̃(t̃) denotes the region containing the viscous fluid (e.g. oil) and ∂Ω̃(t̃)
denotes its interface. A less viscous fluid (e.g. air) is contained in the exterior of Ω̃(t̃).
Here, the tildes denote dimensional variables. The non-dimensional system, which we
analyse and solve numerically, is given below.

2.1. Governing equations
Following previous studies (Ben Amar & Bonn 2005; Lindner et al. 2005; Sinha et al.
2008; Nase et al. 2011; Dias & Miranda 2013a), we assume that the motion of the
fluid is governed by Darcy’s law, which is a two-dimensional approximation of the
Navier–Stokes system obtained by averaging the equations over the narrow gap between
the plates. Following Lamb (1932), He & Belmonte (2011) and Anjos, Dias & Miranda
(2017), the two-dimensional approximation holds when E = b̃(t̃)/R̃(t̃) � 1 and Reynolds

number Re = (ρb̃(t̃) ˙̃b(t̃))/12μ � 1, where R̃ is the equivalent radius of the fluid drop,
˙̃b(t̃) = db̃(t̃)/dt̃ is the lifting speed of the upper plate, ρ is the density of the fluid and μ is
the viscosity of the fluid. The equations are

ũ = − b̃2(t̃)
12μ

∇̃P̃ in Ω̃(t̃), (2.1)

where ũ is the velocity and P̃ is the pressure.
From volume conservation, we obtain the gap-averaged incompressibility condition as

∇̃ · ũ = −
˙̃b(t̃)
b̃(t̃)

in Ω̃(t̃). (2.2)

The pressure jump [P̃] across the interface is given by the Laplace–Young condition,
which is the product of surface tension σ and the curvature K (Park & Homsy 1984;
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Nonlinear limiting dynamics of a shrinking interface

Dias & Miranda 2013a; Anjos & Miranda 2014), as follows:

[P̃] = P̃|∂Ω+ − P̃|∂Ω− = σK on ∂Ω̃(t̃), (2.3)

where the +/− superscripts denote the limit from the exterior and interior of Ω ,
respectively. We approximate the curvature as K = κ̃ + (2/b̃(t̃)) cos(θc), where κ̃ denotes
the curvature of the planar interfacial curve and θc represents the contact angle measured
between the plates and the curved meniscus. The second term accounts for the curvature
across the gap width, which is associated with the interface profile in the z-direction.
When b̃(t̃) increases, this term decreases indicating that surface tension effects across the
gap become weaker. However, κ̃ increases since the interface shrinks. Even though the
second term varies with time, it is uniform in space if we assume θc is a constant. Thus
it can be absorbed in the pressure as a redefined pressure. We use this redefined pressure
in the rest of this paper. The scaled normal derivative (1/μ)(∂P̃/∂n) is continuous across
∂Ω and the normal velocity of the interface is thus

Ṽ = − b̃2(t̃)
12μ

∂P̃
∂n

on ∂Ω̃(t̃), (2.4)

where n is the unit normal vector pointing into Ω̃(t̃).
We non-dimensionalize the system using a characteristic length L0, time T = b̃0/

˙̃b0
and pressure P0 = (12μL20)/(Tb̃

2
0), where L0 is a characteristic size of the initial fluid

domain Ω(0), and b̃0 and ˙̃b0 are the initial values of b̃ and ˙̃b. Further, we define
the non-dimensional modified pressure as P = P̃/P0 − (ḃ(t)/4b3(t))|x|2, where b(t) =
b̃(t̃)/b0, t = t̃/T , ḃ(t) = db/dt and x = x̃/L0. Then, the non-dimensional version of
(2.1)–(2.4) becomes

∇2P = 0 in Ω, (2.5)

[P] = τκ − ḃ(t)
4b3(t)

|x|2 on ∂Ω, (2.6)

V = −b2(t)
∂P
∂n

+ ḃ(t)
2b(t)

x · n on ∂Ω, (2.7)

where τ = σ b̃30/(12μ
˙̃b0L30) is a non-dimensional surface tension. Taking L0 to be the

equivalent radius of Ω(0), e.g. the radius of a circle with the same enclosed area, the
non-dimensional volume of the fluid isπ since the initial non-dimensional gap is b(0) = 1.

2.2. Linear theory
In this section, we briefly review the linear stability analysis in Shelley et al. (1997) and
Zhao et al. (2018). We consider the interface to be a slightly perturbed circle,

r(α, t) = R(t) + εδ(t) cos(kα), (2.8)

where ε � 1, the perturbation mode k ≥ 2 is an integer, α ∈ [0, 2π] is the polar angle
and δ(t) is the amplitude of the perturbation. The shape factor (δ/R)(t) = δ(t)/R(t) can be
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used to characterize the size of the perturbation relative to the underlying circle (Mullins
& Sekerka 1963). Then, it can be shown that the shape factor evolves according to(

δ

R

)−1 d
dt

(
δ

R

)
= ḃk

2b
− τ

b2(k3 − k)
R3 . (2.9)

Using the relationship R(t) = 1/
√
b(t), which arises from volume conservation at the level

of linear theory, the shape factor grows only when

ḃ(t) > 2τ(k2 − 1)b9/2(t). (2.10)

This indicates that the band of modes satisfying |k| <
√
ḃb−9/2/2τ + 1 are unstable and

the interface can develop fingering patterns. Note that in the special cases that ḃ = 1, or
even ḃ = b, all modes |k| > 1 become stable in the long time limit. This occurs because
ḃb−9/2 → 0 as t → ∞. On the other hand, if we consider much faster rates of gap increase,

b(t) = (
1 − 7

2τCt
)−2/7

, (2.11)

where C is a constant, then the band of unstable modes is fixed in time and depends on C
where |k| <

√
C/2 + 1. Note this gap tends to infinity at the finite time TC = 2/(7τC).

We find the fastest growing mode kmax by setting

d
dk

[(
δ

R

)−1 d
dt

(
δ

R

)]
= 0 (2.12)

and solving for kmax. The maximum perturbation mode k∗ has the largest magnitude
relative to its initial value. We get k∗ by solving

d
dk

((
δ

R

)−1

0
·
(

δ

R

))
= 0, (2.13)

where
δ

R
(t) =

(
δ

R

)
0
bk/2(t) exp

(
τ(k − k3)

∫ t

0
b7/2(s) ds

)
(2.14)

and (δ/R)0 is the initial perturbation. Thus, mode k∗ is given by

k∗ =
√√√√√ ln b(t)

6τ
∫ t

0
b7/2(s) ds

+ 1
3
. (2.15)

When (δ/R)0 is independent of k, then k∗ corresponds to the mode with the largest
amplitude. When (δ/R)0 depends on k, such as the exponential decay in (3.1), the mode
with largest amplitude can be determined by solving (d/dk)(δ/R) = 0. Referring to this
mode as k̃∗, we obtain

k̃∗ =
√√√√√ ln b(t) − 2β

6τ
∫ t

0
b7/2(s) ds

+ 1
3
, (2.16)

where β is the decay rate of initial perturbation with respect to k. Comparing the
predictions from kmax, k∗ and k̃∗ with experimental observations for the number of fingers,
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Nonlinear limiting dynamics of a shrinking interface

we find that at early times the number of fingers predicted from k∗ is more consistent with
the experimental results. This suggests that the largest initial perturbation modes have
nearly uniform magnitudes. At later times, both k∗ and k̃∗ behave similarly, decay in time
and are more consistent with experimental results than kmax.
Note that because the growth rate of the shape factor depends on time, k∗ need not be

equal to kmax. Further, these have been used to estimate the number of fingers (Nase et al.
2011; Dias & Miranda 2013a).
When the special gap dynamics in (2.11) is used, the fastest growing mode kmax can

be prescribed by taking C = 2(3k2max − 1). Under this gap dynamics, the mode kmax will
remain the fastest growing at all times so that kmax = k∗ and the shape factor is

δ(t)
R(t)

= δ(0)
R(0)

b(t)k
3
max/(3k

2
max−1) = δ(0)

R(0)
R(t)−(2k3max/(3k

2
max−1)), (2.17)

which diverges as t → TC. Alternatively, if C = 2(k̄2 − 1), then the shape factor of mode k̄
does not change in time. In other words, under linear theory, a k̄-mode perturbation of the
interface would evolve self-similarly. Both of these conditions suggest that in the special
gap regime, there may be mode selection and that perturbations may persist (and even
grow) as the fluid domain and interface shrinks.

2.3. Numerical method
Because of the strong nonlinearity and non-locality of the lifting plate equations,
numerical methods are needed to characterize the nonlinear dynamics. However, the
simulations are very challenging because of severe time and space step restrictions
introduced by the rapid evolution and shrinking of the interface. To overcome these
numerical issues, we have developed a rescaled boundary integral scheme (Zhao et al.
2018); the method is briefly described here. The idea is to map the original time and space
(x, t) into new coordinates (x̄, t̄) such that the interface can evolve at an arbitrary speed in
the new rescaled frame (see also Li et al. 2007; Zhao et al. 2016, 2017). Introduce a new
frame (x̄, t̄) such that

x = R̄(t̄)x̄(t̄, α), (2.18)

t̄ =
∫ t

0

1
ρ(t′)

dt′, (2.19)

where the space scaling R̄(t̄) captures the size of the interface, x̄ is the position vector of
the scaled interface and α parameterizes the interface. The space scaling function maps the
interface to its original size and the time scaling function ρ(t) = ρ̄(t̄) maps the original
time t to the new time t̄, which has to be positive and continuous. If ρ(t) < 1, then the
evolution in the rescaled frame is slower than that in the original frame. Using mass
conversation and requiring the area enclosed by the interface to be fixed in the new frame,
we obtain the normal velocity in the new frame

V̄ = ρ̄

R̄
V(t). (2.20)

Representing the pressure P as a double layer potential, with dipole density γ̄ , (2.5) and
(2.6) can be written as the following Fredholm integral equation of the second kind:

γ̄ (x̄) + 1
π

∫
∂Ω̄(t̄)

γ̄ (x̄′)
[
∂ ln |x̄ − x̄′|

∂n(x̄′)
+ R̄(t̄)

]
ds̄(x̄′) = 2τ κ̄ − ḃ(t(t̄))

2b3(t(t̄))
R̄3|x̄|2. (2.21)
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Once γ̄ is determined, the normal velocity in the new frame V̄ can be computed as

V̄(x̄) = −b2(t(t̄))ρ̄
2πR̄3

∫
∂Ω̄

γ̄s̄
(x̄′ − x̄)⊥ · n(s̄)

|x̄′ − x̄|2 ds̄′, (2.22)

where x̄⊥ = (x̄2, −x̄1) and the interface evolution in the scaled frame is

dx̄(t̄, α)

dt̄
· n = V̄(t̄, α). (2.23)

Here, we take the time scaling ρ(t) ∝ 1/ḃ so that in the rescaled frame, the gap increases
linearly in time, e.g. b(t̄) = 1 + ct̄, where c is a constant. Using a spectrally accurate
discretization method in space, a second-order accurate semi-implicit scheme in time
and the generalized minimum residual scheme (known as GMRES) (Saad & Schultz
1986) to solve the Fredholm integral equation of the second kind, the method enables
us to accurately compute the dynamics to far longer times than could previously be
accomplished. Further details of the numerical method, including convergence studies,
can be found in Zhao et al. (2018).

3. Numerical results

3.1. Comparison between linear theory, nonlinear simulations and experiments
We first compare the experimental results obtained in Nase et al. (2011) with the results of
linear theory (Dias & Miranda 2013a; Zhao et al. 2018) and nonlinear simulations. In the
experiments, a drop of viscous fluid, surrounded by air, was placed in a Hele-Shaw cell and
the upper plate was pulled upward at a constant rate of increase, e.g. the non-dimensional
gap width b(t) = 1 + t, where t is the non-dimensional time. High resolution images
were used to precisely determine the number of fingers over time. By varying the initial
drop radius, the initial plate spacing, the rate of gap increase, and the viscosity, they
systematically investigated how the number of fingers depends on the non-dimensional
surface tension and confinement number (see Nase et al. (2011) for details).
The results from two sets of experiments are shown in figure 2. In figure 2(a,b) the

number of fingers is shown as a function of the non-dimensional time for different
confinement numbers C0, as labelled. The non-dimensional surface tensions are τ =
3 × 10−5 (figure 2a) and τ = 9.6 × 10−6 (figure 2b). The solid and dotted curves denote
the number of fingers estimated from k∗ and kmax, respectively, obtained from linear
theory. The stars denote the results from nonlinear simulations. The number of fingers in
the simulations are calculated in exactly the same way as in Nase et al. (2011) (e.g. number
of air fingers penetrating the viscous fluid; see appendix A, figure 8). Characteristic
drop morphologies using τ = 9.6 × 10−6 are shown (at the non-dimensional times
t = 1, 2, 3) in figure 2(c–h) from simulations (c–e) and experiments ( f–h) with
C0 = 120. The agreement between the experimental and simulation morphologies is
striking. In our simulation, the interface eventually evolves into a circle, see figure 3
for the morphologies of the interface. Although the final gap width is approximately
16 times the initial gap width, Darcy approximation is valid (E � 1) throughout the
evolution.
Linear theory is not able to fully describe the dynamics of the interface. But linear

theory should give an insight into the dynamics. At early stages, when the perturbation is
small, linear theory agrees well with nonlinear simulations. At long times, linear theory
predicts that all modes vanish. In the experiments shown in Nase et al. (2011), where
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Figure 2. Comparison between linear theory, numerical simulations and experiments from Nase et al. (2011)
where the gap width is increased linearly in time. The numbers of fingers over time are shown in panels (a,b)
predicted by linear theory (kmax dotted curves; k∗ solid curves), numerical simulations (magenta stars) and
experiments with different confinement numbers C0, ranging from 30 to 120 as labelled. The dashed lines are
exponential fits to the numerical simulations. In panel (a) the non-dimensional surface tension is τ = 3 × 10−5

while in panel (b) τ = 9.6 × 10−6. In panels (c–h), the simulated interfacial morphologies (c–e) and those
from experiments ( f–h), with τ = 9.6 × 10−6, are shown at the dimensionless times t = 1, 2, and 3. There
is an excellent agreement between the numerical simulations and experiments. Experimental results reprinted
with permission.

the gap width increases linearly in time, the experiments demonstrate that the droplets
vanish as a circle (see figures 3 and 4 in Nase et al. (2011)), which is consistent with linear
theory. In these figures, the confinement number C0 = 60 while we choose to present the
experimental observations with confinement number C0 = 120 (figure 6 in Nase et al.
(2011)) as figure 2(c–h). The droplet with confinement number C0 = 120 also vanishes as
a circle although dynamics at late times are not presented in Nase et al. (2011).
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Figure 3. The simulated interfacial morphologies with τ = 9.6 × 10−6 are shown at the dimensionless times
t = 0 (blue) ,1 (red), 12 (black) and 16 (green).

To produce the nonlinear simulation results, we took the initial shape of the drop to be
a slightly perturbed circle,

r(α, 0) = 1 + ε

kN∑
k=kmin

e−βk(ak cos(kα) + bk sin(kα)), (3.1)

where each k, ak and bk are chosen randomly from a uniform distribution in the interval
(−1, 1) and α parameterizes the interface. Varying ε, β and kN allows us to vary the
amplitude of the perturbation and its modal content. Here, we took ε = 0.05, β = 0.2,
kmin = 2, and kN is varied between 40 and 100. Since b(t) ∼ t, we do not need to rescale
time to slow down the evolution and take t̄ = t. We use N= 4096 mesh points along the
interface, the time step �t̄ = 1 × 10−4 and the surface tension τ = 9.6 × 10−6 and 3 ×
10−5.
As can be seen in figure 2, the number of fingers decreases in time and the drop

eventually shrinks as a circle. The experimental results depend on both the confinement
number C0 and the non-dimensional surface tension τ . At larger surface tensions
(figure 2a), the effect of C0 is more pronounced at later times while at small surface
tensions (figure 2b), C0 more significantly influences the early stages of the evolution.
Generally, the larger C0 is the more fingers that are observed.
The number of fingers predicted using kmax significantly underpredicts the experimental

(and simulation) results while the k∗ predictions agree better with the experimental data at
small C0. The numerical simulations predict more fingers than either linear estimate, and
agree best with experimental data at large C0. This illustrates the importance of accounting
for nonlinear interactions. Indeed, in Zhao et al. (2018), it was shown that linear theory
underpredicts the amplitudes of growing modes in the lifting plate problem.
For both surface tensions, the numerical simulations, and experimental data with large

C0, predict a biphasic, exponential decay of the number of fingers over time; rapid decay at
early times (e.g. ≈ e−0.75t in figure 2b) and slower decay over late times (e.g. ≈ e−0.26t in
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Nonlinear limiting dynamics of a shrinking interface

figure 2b). The experimental data with smallC0 seem to predict a single rate of exponential
decay (see appendix A, figure 9), consistent with the experimental results obtained in Ben
Amar & Bonn (2005).
It is still not yet well understood why the confinement number influences the number of

fingers. Note that the thickness h of the wetting layer on the plates scales as h ∼ O(Ca2/3)
whereCa = μṼ/σ is the Capillary number (Park &Homsy 1984; Park et al. 1984; Jackson
et al. 2015). Estimating Ṽ ∼ (ḃ0/b0)R0 = ḃ0C0 from (2.2) and the definition of C0, we
obtain Ca ∼ ḃ0C0. In the experiments in Nase et al. (2011), the confinement number and
lifting rate are changed such that the non-dimensional surface tension τ = σ b̃30/(12μ

˙̃b0R3
0)

is fixed. This implies that ḃ0 ∼ C−3
0 and therefore Ca ∼ C−2

0 . Thus, the wetting layer
thickness h ∼ C−4/3

0 increases as the confinement number decreases. As a simple test
of this, we modified the lifting speed to reflect the fact that more fluid may be left on
the plates when the confinement number is decreased, e.g. the lifting speed of the upper
plate is increased to reflect the more rapid loss of fluid to the wetting layer. The results are
shown in figure 10 in appendix A and indicate that with this modification, the nonlinear
simulations are better able to fit experiments with smaller confinement numbers. Although,
our approach for incorporating wetting effects in the model is ad-hoc, the results correlate
with observed experimental trends. To more accurately account for wetting effects, we
may follow the analysis in Park & Homsy (1984), Dias & Miranda (2013a) and Anjos
& Miranda (2014), where the Laplace–Young condition can be extended to account for
wetting effects. This is beyond the scope of this paper and is not the subject of current
research.
When wetting effects, as well as viscous stresses, are incorporated in the modified

Laplace–Young condition, the range of agreement between linear predictions, using the
maximum perturbation wavenumber k∗, and experiments can be extended to somewhat
larger C0. However, there is still disagreement between the two at large C0 with weakly
nonlinear theory underpredicting the number of fingers, see Dias & Miranda (2013a). It is
very likely that nonlinear effects also play a key role and the development of a numerical
method to accurately account for nonlinearity, viscous stresses, wetting effects and fluid
motion in three dimensions is a subject for future work.

3.2. Limiting dynamics in the special gap regime
We next study the interfacial dynamics in the special gap regime using b(t) = (1 −
(7/2)τCt)−2/7, which diverges at the finite time TC = 2/(7τC). Recall that in this regime,
according to linear theory (e.g. see § 2.2), the fastest growing mode kmax and C are
related by kmax = √

(1 + C/2)/3. Further, kmax = k∗, the maximum perturbation mode,
and the shape factor δ/R ∝ R−2k3max/(3∗k2max−1), which monotonically increases over time,
and diverges at t = TC. Because of the very rapid dynamics, an infinitesimally small time
step would be required as t → TC if the time were not rescaled. This would make it
virtually impossible to simulate the drop dynamics in the original frame. Consequently,
we rescale time to slow down the evolution and take ρ(t) = c/ḃ(t) so that in the new time
scale t̄ we have b(t̄) = 1 + ct̄. This makes it possible to study the limiting dynamics in the
special gap regime.

3.2.1. Examples of drop dynamics
In figure 4, we present results using C = 52 and surface tension τ = 1 × 10−4, which
makes kmax = k∗ = 3. Note that we reverse the orientation of the horizontal axis
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Figure 4. Simulations of drop dynamics in the special gap regime with bC(t) = (1 − (7/2)τCt)−2/7 with
C = 52 so that the fastest growing linear mode is kmax = 3. Here τ = 1 × 10−4. We reverse the orientation
of the horizontal axis to reflect the fact that the radius R decreases with time t. (a) The nonlinear shape
perturbations for different initial drop shapes are plotted as functions of the equivalent drop radii, as labelled
(see text for details). The drop shapes near the vanishing time TC = 2/(7τC) ≈ 54.9 are shown as insets. (b)
The dynamics of the drop with modes 3, 5 and 6 near the vanishing time. (c) The drop perimeters as a function
of the effective drop radii as they vanish, together with linear fits near the vanishing time (slopes as labelled).
The perimeters tend to a finite number as the drops vanish. (d) The fractal dimensions of the drops are shown as
a function of the effective drop radii, together with drop morphologies (insets) at various stages of the evolution.
These suggest that the limiting shapes have one-dimensional web-like morphologies.

to reflect the fact that the radius R decreases with time t. That is R decreases
from 1 as t increases from 0. We use three different initial drop shapes (see
insets in figure 4a with R = 1): r(α, 0) = 1 + 0.02(cos(3α) + cos(5α) + cos(6α))

(blue); r(α, 0) = 1 + 0.02(cos(3α) + sin(7α) + cos(15α) + sin(25α)) (magenta); and
r(α, 0) = 1 + 0.02(sin(6α) + cos(15α) + sin(25α)) (red). Note that in the latter case,
mode k = 3 is not present initially. Here, we take c = 1/2, and use the time step �t̄ =
1 × 10−4 and N = 8192 points along the interface. Using the temporal rescaling (Zhao
et al. 2018), we are able to dramatically reduce the equivalent original time step �t while
the rescaled time step �t̄ is fixed. As a consequence, the equivalent original time step
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Figure 5. Asymptotic behaviours of the drops from figure 4. (a) The nonlinear shape perturbations exhibit a
biphasic power-law dependence on the effective drop radii and eventually diverge as R−1 for R → 0. (b) The
maximum curvature of the drop also diverges as R−1 for R → 0. (c) The minimum neck width of the filaments
tends to zero as R2 for R → 0.

�t satisfies �t = (R9/2τC)�t̄. When R decreases from 1 to 2 × 10−4 as in figure 4, �t
decreases from 9.6 × 10−3 to 4.9 × 10−36. Such wide ranges of time steps are handled
seamlessly using our rescaling approach.
The nonlinear shape factor δ/R is plotted in figure 4(a) as a function of the effective

radius R(t) in the original frame. Here, the nonlinear shape factor is calculated by
δ/R = maxα ||x̄(α, t)|/R̄ − 1|, where x̄ is the position vector measured from the centroid
of the shape to the interface, R̄ =

√
Ā/π is the effective radius of the drop in the rescaled

frame and Ā is the constant area enclosed by the interface. Unlike the predictions of linear
theory, the dynamics of the nonlinear shape factors are non-monotone due to nonlinear
interactions among the modes, and the shape factors even decrease at early times (larger
R). In particular, when mode 3 is not present initially (red curve) the shape factor decreases
until the drop becomes quite small (R ≈ 0.1). However, as R continues to decrease,
eventually mode 3 starts to dominate and the shape factor grows rapidly. The shape
perturbations grow throughout the dynamics (see also figure 5a below), which suggests
that unlike the case for an expanding bubble (Li et al. 2007, 2009; Zhao et al. 2016), the
evolution does not become self-similar as the drop vanishes.
The insets in figure 4(a) show the initial drop morphologies (R = 1, top) and the final

drop morphologies (R as labelled, bottom) in the rescaled frame (the full dynamics can
be found in appendix B figure 11) . Generally, the final morphologies are seen to have a
3-fold symmetric, one-dimensional, web-like network structure although the shapes are
somewhat different as the drops vanish. The late time (small R) evolution in the original
frame is plotted in figure 4(b), which shows the morphologies of the drop with initial
condition containing modes 3, 5 and 6 (blue drop in figure 4a). The drop dynamics in
the rescaled frame can be found in appendix B (figure 12a). As the drop shrinks, we
observe that the tips of the three fingers retract while the long filaments connecting the
tips become thinner and tend to a finite length, as seen in the inset. The drop dynamics and
morphologies when mode 3 is present initially (blue, magenta) are quite similar while in
the third case (red) the shape has a less well-developed network structure because it takes
some time for nonlinear interactions to generate mode 3 and then for mode 3 to dominate
the shape. This is why the dominance of mode 3 emerges at much smaller R than in the
other cases (e.g. when the drop is approximately 1/500 of its initial size).
As seen in figure 4(c), the interface perimeter P ≈ P0 + aR as R tends to 0, where a is

a constant and P0 is a finite number. The slope a depends on the symmetry of the limiting
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shape (a is a decreasing function of kmax) and the limiting perimeter P0 depends on the
initial shape; see figure 12(b) in appendix B for fits of the interface perimeter for other
values of kmax. To test whether the limiting shapes are truly one-dimensional, we calculate
the fractal dimension of the shapes. The fractal dimension D0 can be approximated by a
box counting algorithm: cover the pattern with a grid of square boxes of size ζ and define
N(ζ ) to be the total number of boxes of size ζ to cover the whole pattern (Praud & Swinney
2005), such that

D0 = lim
ζ→0

− logN(ζ )

log ζ
. (3.2)

Figure 4(d) shows the fractal dimensions of the shapes as a function of effective drop
radius. At early times, the drops remain compact especially for the case with initial modes
6, 15 and 25, which needs a long time for nonlinear interactions to create mode 3. Later
there exists a transition as the fractal dimension decreases from approximately 2 down to
approximately 1 as the drop vanishes. All together these results strongly suggest that the
limiting shape is not a circle and but instead has a web-like network structure. Although
the drop morphologies look similar to patterns of random fractals generated using a
large unscreened angle threshold (Kaufman, Melroy & Dimino 1989), the mechanism is
different. In Kaufman et al. (1989), only the tip region is active, but in our case the whole
interface is dynamic.
In figure 5 we analyse the properties of the limiting shapes in the original frame as

the drop vanishes. In figure 5(a), the nonlinear shape factor is seen to diverge as R
tends to 0. Interestingly, when R is not so small, δ/R ∼ R−2, which is consistent with
the predictions of linear theory (e.g. see (2.17) with kmax = 3). However, as R decreases,
nonlinear interactions increasingly dominate the evolution and the shape factor diverges
more slowly, δ/R ∼ R−1. This is due to the curvature of the drop tips, which diverges
as κ∗ ∼ R−1 as seen in figure 5(b). The curvature in the scaled frame κ̄∗, on the other
hand, is bounded and tends to a finite limit as R → 0, see figure 12(c) in appendix B.
The time dependence of the width w of the neck region, shown within the boxed region
in figure 4(b), is plotted in figure 5(c), which suggests the scaling w ∼ R2. This can be
explained as follows. Let L be the length of the neck region. Then, approximating the
filament (neck region and drop tip) as a rectangle with a semicircular tip with radius
κ−1∗ , the total area of the drop πR2 ∝∼ Lw + πκ−2∗ . Since L tends to a finite constant as
R → 0, this suggests w ∼ R2. Further, taking the same approximation of the filament, the
perimeter P ∝∼ 2L + 2πκ−1∗ ∼ P0 + aR as suggested in figure 4(c).
Another interesting point is the possibility of drop topological changes. In Shelley

et al. (1997), the authors have found theoretically that there exists droplet fission under
an exponential gap when surface tension is not present. Using the same condition, we have
investigated drop fission in a previous paper (Zhao et al. 2018). High resolution simulations
indicated the droplet with surface tension τ = 10−4 investigated in Shelley et al. (1997)
does not fission but rather shrinks as a circle. We found the same phenomenon (shrinkage
to a circle) using an even smaller surface tension (2 × 10−5). It is possible, however, other
factors (even smaller surface tension, faster speed, initial set-up and three-dimensional
effects) may contribute to fission. Using our special lifting strategy we do not find fission
so far.

3.2.2. Mode selection and morphology diagram
Next, we investigate how the limiting shapes are selected by the parameter C using
the special gap dynamics bC(t) = (1 − (7/2)τCt)−2/7. We consider the dynamics using
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Figure 6. A morphology diagram that relates the dominant mode of the limiting shapes (number of fingers)
to the constant C using the special gap dynamics bC(t) = (1 − (7/2)τCt)−2/7, with τ = 1 × 10−4 and C is
varied from 52 to 1000. According to linear theory, the fastest growing mode kmax (solid curve) varies from
3 to 12. The dots represent nonlinear numerical simulations using the same initial data (see text for details).
The results suggest that the dominant mode of the limiting shapes are selected by C. Linear theory provides a
good approximation of the dominant modes, but nonlinear interactions dictate where transitions from k-fold to
(k + 1)-fold dominant limiting shapes occur.

different initial shapes given by a perturbed circle with the initial radius r(α, 0) = 1 +
2.5 × 10−3 ∑60

k=30 exp(−0.2k)(ak cos(kα) + bk sin(kα)). The coefficients ak and bk are
randomly selected using a uniform distribution in the interval [−1, 1]. We generate two
such initial shapes and we use the same initial shape for all C, which we vary from 52
to 1000. According to linear theory, the fastest growing modes correspondingly ranges
from kmax = 3 to 12. By considering initial shapes with these high modes, we guarantee
that all the initial modes are decreasing (e.g. only modes |k| <

√
C/2 + 1 are growing)

and that the fastest growing mode is only generated by nonlinear interactions. The result
is a morphology diagram given in figure 6, which shows that the dominant mode of the
limiting shape (e.g. number of fingers) is an increasing, piecewise constant function of
C where there are sharp transitions from k-fold to (k + 1)-fold dominant limiting shapes.
While the morphologies of the limiting shapes are not identical, the dominant mode is
solely determined by the constant C. For reference, we also plot the maximum growing
mode kmax (solid curve). Although linear theory provides a good approximation of the
dominant mode of the limiting shape, nonlinear interactions are critical for determining
where the transitions from k-fold to (k + 1)-fold dominant limiting shapes occur. Further,
the range of C for which the limiting shape is dominated by a particular mode k is an
increasing function of C.
In appendix C, we present cases where the initial condition contains modes that grow.

In these cases, the dominant mode of the limiting shape can be dependent on the initial
condition as well as C (see figure 13). However, if the initial shape contains kmax with
magnitude comparable to the other initially growing modes, then the dominant mode of
the limiting shape is still given by kmax, e.g. the limiting shape is still solely selected by C
(see figure 14).
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Figure 7. The angles between pairs of fingers for drop morphologies from the morphology diagram (figure 6)
are plotted as a function of the symmetry mode k. The green curve indicates the angle 360/k. Several
characteristic drop morphologies at k = 3, 5, 8 and 10 are shown as insets, where the smallest and largest
angles between fingers are marked in the corresponding inset. The blue morphologies show cases when some
angles deviate most from 360/k and the red morphologies show cases when all angles are close to 360/k.

We have also investigated the angles between the thin fingers. In figure 7, we show
the angles between pairs of fingers for drop morphologies from the morphology diagram
(figure 6) as a function of symmetry mode k. Several characteristic drop morphologies
are shown as insets, where the smallest and largest angles between pairs of fingers are
marked. For each symmetry mode k, the average of angles is close to 360/k (green curve)
although fingers do not seem to intersect at one common point when k is large. Note
there are some cases in which some angles deviate significantly from the average (blue
morphologies), which reflects the importance of nonlinearities. These happen when the
interface conditions are close to transitions from k to k + 1 mode symmetries. The red
morphologies show cases when all angles are close to its average.

4. Conclusions

In this paper, we have investigated the fully nonlinear dynamics of viscous drops in
Hele-Shaw cells when the upper plate is lifted perpendicularly at a prescribed rate. This
action reduces the size of drops in the midplane between the plates and increases the
extent of the drops in the z-direction to preserve volume. As air rushes in, this generates
a Saffman–Taylor instability and the drops deform as they shrink. Linear theory predicts
that the instability may be transient, if the lifting rate is sufficiently small, or may persist
if the rate is sufficiently large. To simulate the nonlinear dynamics of the drops, we
used a very efficient, highly accurate boundary integral method that involves space and
time rescaling to track the shrinking of the drops in the midplane using the Hele-Shaw
approximation (Zhao et al. 2018). By rescaling time to slow down the rapid evolution of
the drops and rescaling space to maintain constant-volume drops in the simulation frame,
we can overcome the severe constraints on the time steps and spatial grid sizes that would
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be encountered in the original frame of reference. This enabled us to study the limiting
dynamics as the drops vanish over a wide range of lifting rates.
We compared the nonlinear simulation results with linear theory and with previously

performed experiments with two different surface tensions when the gap is increased
linearly in time. Comparisons with a new experiment using a gap width that increases
nonlinearly in time are presented in appendix E (figures 16–18). In these cases, the
instability is transient and the drops eventually shrink like circles.
When the gap grows linearly in time, we found that nonlinear interactions increase

perturbations more rapidly than predicted by linear theory. The nonlinear simulations tend
to agree best with experiments at large confinement numbers (C0 = R0/b0, where R0 is
the initial radius of the liquid and b0 is the initial gap) and predict a biphasic exponential
decay of the number of fingers over time consistent with experiments. At small C0, the
nonlinear simulations overpredict the number of fingers. We suggested that this might
be due to an increase in the wetting layer thickness, which scales as h ∼ C−4/3

0 as the
confinement number decreases. By increasing the speed of the lifting plate, to mimic
the more rapid loss of fluid to the wetting layer, we found better agreement between
the simulations and experiments. Of course, in addition to wetting, other effects such as
viscous stresses, inertial forces and three-dimensionality could also play an important role
in the drop dynamics.
We also studied the limiting dynamics of drops when the gap is lifted very fast: bC(t) =

(1 − (7/2)τCt)−2/7, where τ is the non-dimensional surface tension and C is a constant.
According to linear theory, this gap, which diverges at the finite time TC = 2/(7τC),
ensures that mode k = √

(1 + C/2)/3 is the fastest growing mode along the interface at
any time. By rescaling in both time and space, we are now able to study the nonlinear
limiting shapes as the drops vanish in this regime.
Consistent with linear theory, nonlinear simulations predict that the instability is

transient when the gap b(t) satisfies ḃ(t)/b(t)9/2 → 0 as t increases, even if the gap
b(t) diverges at a finite time. For example, in appendix D, we show that using the
gap b(t) = (1 − 3τCt)−1/3, which diverges at T∗ = 1/(3τC) even faster than bC(t), the
interface undergoes a transient instability but ultimately vanishes like a circle since
ḃ(t)/b(t)9/2 ∼ (T∗ − t)1/6 as t → T∗ (see figure 15). However, when the gap bC(t) is used,
perturbations may continually grow and the drop morphologies may acquire a striking,
one-dimensional web-like shape as the drops shrink. To our knowledge, this limiting
behaviour has not been reported previously.
We characterized the limiting drop shapes by generating a morphology diagram that

relates the number of fingers to C, independent of initial conditions within a class of
interface shapes that contains only high mode interface perturbations so that the most
unstable mode is generated solely by nonlinear interactions. While linear theory provides
a good approximation of the dominant modes, nonlinear interactions determine where
transitions (in C) from k-fold to k + 1-fold dominant limiting shapes occur. We also
described the behaviour of the system when low mode perturbations are present initially.
A natural question is whether the one-dimensional, web-like shapes we have discovered

here when the upper plate is lifted very rapidly are actually achievable in an experiment.
Depending on the initial conditions, our simulations suggest that the web-like shapes can
be observed when the radius decreases from its initial value by approximately a factor of
7–10 (figure 14). This corresponds to an increase in gap width by a factor of approximately
50–100. If the initial gap b0 = 50 μm, this corresponds to a final gap thickness of
approximately b ∼ 2.5–5 mm. Assuming that the gap width increases by a factor of 100,
the corresponding time over which this would occur is T ∼ (0.29/Cτ)T , where T is a
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characteristic time scale given by T ∼ (12μ/σ)C2
0R0τ where μ and σ are the dimensional

viscosity and surface tension, respectively, and C0 = R0/b0 is the confinement number
with R0 being the initial drop radius. This gives T ∼ (0.29/C)(12μ/σ)C2

0R0. Using the
values of the viscosity and surface tension from Nase et al. (2011) to be μ = 10 Pa s
and σ = 0.02 N m−1, respectively, and the initial radius R0 = 1.5 mm, we obtain T ∼
2349C−1 s since C0 = R0/b0 = 30. Finally, taking C = 2(3k2 − 1) we obtain T = Tk ∼
1200/(3k2 − 1) s. So as the dominant mode k of the limiting shape increases, the time over
which the plate needs to be lifted decreases as k−2. For example, for 3-mode dominant
limiting shapes we obtain T3 ∼ 46 s while for 4-mode and 5-mode dominant shapes we
obtain T4 ∼ 25 s and T5 ∼ 16 s, respectively. The two-dimensional approximation fails
when b̃(t̃)/R̃(t̃) ∼ O(1) and we estimate the corresponding time T D ∼ (1 − C−7/3

0 )T . For
C0 = 30, T D is 0.01 s earlier than T . This suggests that it should be possible to access
this regime experimentally, at least for limiting shapes dominated by low modes.
Once experiments in the special gap regime are performed, agreement between theory

and experimental results may also require accounting for the effects of flow in three
dimensions (Ben Amar & Bonn 2005), wetting effects (Park & Homsy 1984; Park et al.
1984; Dias & Miranda 2013a) and inertia effects (Chevalier et al. 2006; He & Belmonte
2011; Anjos et al. 2017), which were neglected in our Hele-Shaw formulation. These will
be considered in future work.
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Appendix A. Modified lifting speed of experiments in Nase et al. (2011)

In the manuscript, we compared our simulation results, linear theory and experimental
results from Nase et al. (2011). In the experiments, the bottom plate of a Hele-Shaw cell
is fixed and the top plate is lifted uniformly at a constant speed. A less viscous fluid (air)
penetrates a more viscous fluid (silicone oil), forming fingering patterns on the interface.
High resolution, high contrast images are used to calculate the number of fingers (Nase
et al. 2011). The fingertip is described as the innermost part of an air finger and the finger
base is the outer end of a finger (see figure 8). The finger amplitude is the distance between
the tip and base of a finger. In Nase et al. (2011), the authors systematically investigate the
influence of different parameters on the dynamics of the drop evolution, including how the
number of fingers varies as a function of time. To do this, the initial drop size, the initial
gap spacing and the lifting speed are varied. The number of fingers not only depends on
the non-dimensional surface tension τ but also on the confinement number C0 = R0/b0,
the aspect ratio of the fluid. When the surface tension is large, the effect of C0 is more
pronounced at later times while at small surface tensions, C0 has a larger effect at early
times, see Nase et al. (2011) for further details.
To extract the number of fingers over time from the experiments, we use the

data presented in figure 10(c,e) in Nase et al. (2011) and use the web application
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Figure 8. A schematic of an interface and definition of the finger tip, finger base and finger amplitude,
following Nase et al. (2011). See text for details.

WebPlotDigitizer (https://automeris.io/WebPlotDigitizer/) to extract the data points.
In particular, after choosing the scale of the plot, we are able to get the position of each
data point on the plots where the number of fingers is usually a decimal close to an integer.
Since the number of fingers is an integer, we round to the nearest integer. As pointed out
in Nase et al. (2011) the number of fingers depends on both the surface tension and the
confinement number. At small confinement numbers C0 (see figure 9a,b), the number of
fingers shows a single rate of exponential decay over time, consistent with the experimental
results in Ben Amar & Bonn (2005). At large confinement numbers C0 (see figure 9c,d),
the number of fingers seems to have a biphasic exponential decay in time, similar to our
simulation results.
In our simulations, we calculate the number of air fingers in exactly the same way as

Nase et al. (2011). We have found that our simulation results agree very well with the
experimental observations at large confinement numbers C0 and predict more fingers than
the experimental data at small confinement numbers C0. It is still not well understood how
the confinement number influences the behaviour of the drop. One possibility might be the
volume loss of the drop fluid as the fluid is stuck to the plate. Consequently, the effective
shrinking speed of the fluid in experiments might be faster than the constant speed we
assumed in our simulations.
To test this hypothesis, we analyse the dependence of the wetting layer thickness on the

confinement number. The thickness of the wetting layer on the plate h is proportional to
Ca2/3, where Ca = μṼ/σ is the capillary number (Park & Homsy 1984; Park et al. 1984;
Jackson et al. 2015). Using Ṽ ∼ ˙̃b0C0, we obtain Ca ∼ (μ

˙̃b0/σ)C0. In the experiments
(Nase et al. 2011), the confinement number and lifting rate are changed such that the
non-dimensional surface tension τ = σ b̃30/(12μ

˙̃b0R3
0) is fixed. This gives Ca ∼ C−2

0 and
therefore h ∼ C−4/3

0 . This implies that the wetting layer gets thicker as the confinement
number C0 decreases. That is, more fluid is stuck on the plate and the fluid has a faster
effective shrinking speed as the confinement number C0 decreases.
To investigate the increase in wetting layer thickness due to C0, we make a correction to

our lifting speed in the simulations and consider b(t) = 1 + ((1 + 3e0t)/(1 + 3t))t, where
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Figure 9. The number of fingers in drops with different confinement number C0 from the experiments in Nase
et al. (2011) with surface tension τ = 3 × 10−5. At small C0 the number of fingers follows a single rate of
exponential decay in time while the data at large C0 suggests that there is a biphasic exponential decay in the
number of fingers over time. (a) C0 = 30, (b) C0 = 40, (c) C0 = 54.5, (d) C0 = 120.

e0 is a constant accounting the speed change. This correction is ad-hoc and a simple way to
account for the additional volume loss of drop fluid to the wetting layer. Future work should
account for the boundary layer dynamics directly. Note that e0 = 1 corresponds to the
original formulation (linear rate of gap increase). However, the larger e0 is, the more fluid
is left on the plates and the faster effective shrinking speed is. We take different e0 = 1, 1.1,
1.3, 1.5 and 1.7 and perform simulations using this lifting speed. The results are shown in
figure 10(a,b). The morphologies of the interface using e0 = 1.2 (figure 10a) and e0 = 1.7
(figure 10b) are shown as insets. At early times, the number of fingers is insensitive to the
choice of e0. At later times, the number of fingers decreases as e0 increases. By treating
e0 as a fitting parameter, our simulations can fit the experimental data for all confinement
numbers C0 using the modified gap dynamics.
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Figure 10. Comparisons between the experimental data from Nase et al. (2011) (with surface tension τ =
3 × 10−5; shown also in figure 9) and simulations using the modified gap b(t) = 1 + ((1 + 3e0t)/(1 + 3t))t to
account for the volume loss of the fluid drop due to changes in the wetting layer thickness due to confinement
(see text for details). Increasing the thickness corresponds to increases in e0 as more fluid is stuck to plates. (a)
Results at large confinement numbers C0 with e0 as labelled. The interface morphologies, with e0 = 1.2, are
shown at different times in the insets. (b) Results at small C0 with e0 as labelled. The interface morphologies,
with e0 = 1.7, are shown at different times in the insets. As e0 increases, the number of fingers decreases.
Treating e0 as a fitting parameter, the simulations can fit the experimental data over the whole range of
confinement numbers considered.

Appendix B. Examples of dynamics dominated by mode 3

In figure 11, we exhibit the interfacial dynamics in the rescaled frame under a special
gap bC = (1 − (7/2)τCt)−2/7 with C = 52 and non-dimensional surface tension τ =
1 × 10−4. With these parameters, the linear fastest growing mode is 3. We take
three different initial shapes: r(α, 0) = 1 + 0.02(cos(3α) + cos(5α) + cos(6α)) (blue);
r(α, 0) = 1 + 0.02(cos(3α) + sin(7α) + cos(15α) + sin(25α)) (magenta); r(α, 0) = 1 +
0.02(sin(6α) + cos(15α) + sin(25α)) (red). All three cases show that after a period
of transient morphological changes, the drop morphologies eventually acquire a 3-fold
symmetric, one-dimensional, web-like network structure as they vanish. Since mode 3 is
not initially present in the third case (red), it takes some time for nonlinear interactions to
generate mode 3 and for mode 3 to dominate the shape. As a result, a longer time has to
pass for the corresponding (red) drop morphologies to acquire 3-fold dominant shapes and
as a result the drop is much smaller than the others when this occurs.
In the main manuscript, we have shown the length of the neck region tends to be finite.

Consequently, the lengths of the long filaments in the rescaled frame increase as the drop
sizes decrease. In figure 12(a), we show the drop dynamics in the rescaled frame from
the initial shape r(α, 0) = 1 + 0.02(cos(3α) + cos(5α) + cos(6α)) and the special gap
bC = (1 − (7/2)τCt)−2/7 with C = 52, where mode 3 grows fastest linearly. As the drop
shrinks, the interface tends to form a bud at the far end and a smooth fingertip at the
inner end, connected by a long filament. The inset, which focuses on the boxed region,
shows that the filaments get thinner and longer as the size of the drop decreases. We
also find the perimeter of the interface P decreases linearly in R to a finite length as R
decreases. As the gap width is changed to select other symmetry modes of the limiting
shapes, the corresponding interface perimeters still decrease linearly in R but with different
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Figure 11. The drop dynamics in the rescaled frame under the special gap bC = (1 − (7/2)τCt)−2/7

with C = 52, where mode 3 grows fastest according to linear theory. Here we take the non-dimensional
surface tension τ = 1 × 10−4. (a–d) The evolution under the initial condition r(α, 0) = 1 + 0.02(cos(3α) +
cos(5α) + cos(6α)). (e–h) The evolution under the initial condition r(α, 0) = 1 + 0.02(cos(3α) + sin(7α) +
cos(15α) + sin(25α)). (i–l) The evolution under the initial condition r(α, 0) = 1 + 0.02(sin(6α) +
cos(15α) + sin(25α)). In all cases, the limiting shape tends to a 3-fold symmetric, one-dimensional web-like
structure.

slopes (figure 12b). The slopes decrease as the symmetry of the interface increases. In this
case, the initial condition for each interface is r(α, 0) = 1 + 0.02 cos(kα) where k = 3,
4, 5, 6 and 7. The corresponding (special) gap dynamics are bC = (1 − (7/2)τCt)−2/7

with C = 2(3k2 − 1). As expected, the morphology of each drop is dominated by mode
k. Comparing the slope of the 3 mode symmetry here and the slopes in figure 3(c) in the
main manuscript, we find that the slopes are close and differences are likely due to the
initial condition, which is different.
In figure 12(c,d) we show the maximum (minimum) curvature at the far end (the inner

end) in the rescaled frame for the drop interfaces shown in figure 11. We fit the curvatures
as a power function of R (solid line), which indicates the curvatures tend to a finite number
as R → 0. While the minimum curvature at the inner end may not be the same for different
initial conditions, the maximum curvature at the far end tends to approach the same limit
κ̄∗ ≈ 5.8. This suggests that the buds at the far end may acquire a universal shape that is
independent of the initial conditions. From figures 3(b) and 4(a) in the main manuscript,
we see that the length of the filaments approaches a finite number. Approximating the
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Figure 12. Details of the drop morphologies. We reverse the orientation of the horizontal axis to reflect the
fact that the radius R decreases with time t. (a) The drop dynamics in the rescaled frame near the vanishing
time corresponding to figure 3(b) in the main text, which shows the drop morphologies in the original frame.
The inset shows a blow-up of the neck region in the boxed region. (b) The relation between the perimeter of
the interface P and the effective radius R for different symmetric limiting shapes (see text for details) using the
special gap bC = (1 − (7/2)τCt)−2/7, where τ = 1 × 10−4, C = 2(3k2 − 1) and k varies as 3, 4, 5, 6 and 7.
(c) The maximum curvature of the far end in the rescaled frame with respect to R. (d) The minimum curvature
of the inner end in the rescaled frame with respect to R.

filaments as a rectangle with a circular tip with radius κ̄∗/R, the perimeter P ∼ P0 + aR,
where a is a constant related to κ̄∗ and P0 is a finite number depending on the initial shape.
This explains why the perimeter decreases as a linear function of R, as seen in figure 12(b).

Appendix C. Active lower modes under the special gap dynamics bC(t) =
(1 − (7/2)τCt)−2/7

As we have shown in the manuscript, the dominant mode of the morphology is
solely determined by the control parameter C if the initial shape only contains
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Figure 13. The drop morphologies using the special gap bC(t) = (1 − (7/2)τCt)−2/7 with C = 484, which
makes mode 9 the fastest growing mode from linear theory. When the initial shape does not contain lower
unstable (active) modes (e.g. modes 30–60), the interface develops a 9-fold dominant shape (a–d). When there
exist lower active modes, the interfaces develop a 13-fold shape (when modes 13–60 are present in the initial
condition) and a 5-fold shape (when modes 5–60 are contained in the initial condition). See text for details.

high modes,

r(α, 0) = 1 + ε

kN∑
k=kmin

e−βk(ak cos(kα) + bk sin(kα)), (C 1)

where ε = 2.5 × 10−3, β = 0.2, kmin = 30, kmax = 60, and ak and bk are uniformly
distributed in (−1, 1). All these high modes are stable and tend to vanish. However, lower
modes are created by nonlinear interactions and depending on C, a particular mode kmax
will have the fastest growth rate and will finally dominate the morphology of drop. This
is still true if lower modes are present in the initial condition. These modes may be active
in the sense that they may grow due to the Saffman–Taylor instability. In figure 13, we
report the results with lower modes present in the initial condition. Using the gap as
bC(t) = (1 − (7/2)τCt)−2/7, where C = 484, linear theory suggests mode 9 grows fastest
and our simulations show a 9-fold shape if the initial shape only contains modes 30 to
60 (first row). If the initial conditions contain low modes, the results can be different. For
example, simulations show that a 13-fold shape emerges when modes from 13 to 60 are
present initially (figure 13e–h) and a 5-fold shape emerges when the initial data contains
modes from 5 to 60 (figure 13i–l). The reason is these low modes are active all the time and
their initial perturbations are much larger than the perturbation of mode 9 because of the
form of the initial condition in (C 1). For instance, in the second row the initial magnitude
of mode 13 is approximately 1.857 × 10−4 while mode 9 does not appear in the initial
shape. For the third row the initial magnitude of mode 5 is approximately 9.19 × 10−4,
which is approximately twice the magnitude of mode 9 initially. Even though mode 9
grows faster than all the other modes, there is not enough time for mode 9 to dominate the
shape. To demonstrate this, we add mode 9 to these initial shapes such that mode 9 has the
same magnitude as that of the smallest mode. Figure 14 shows that in this case, mode 9 is
selected and morphologies tend to a 9-fold dominant shape.
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Figure 14. The drop morphologies using the special gap bC(t) = (1 − (7/2)τCt)−2/7 with C = 484 (mode 9
is the fastest linearly growing mode) but with initial conditions that are the same as in figures 13(e–h) and
13(i–l) except that in each case, mode 9 has been added into the initial condition with the same magnitude as
modes 13 (a–d) and 5 (e–h), respectively. In both cases the morphologies are dominated by mode 9 as the drop
shrinks.
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Figure 15. The relative perturbation magnitude of drop interfaces, as a function of R, using the gap bD(t) =
(1 − 3τDt)−1/3 with D as labelled. Insets show the drop interfaces with D = 100 and τ = 1 × 10−4. In all
cases, the drop shrinks like a circle after a transient instability. We reverse the orientation of the horizontal axis
to reflect the fact that the radius R decreases with time t.

Appendix D. Other choices of gap dynamics

According to linear theory (given in the main text), the critical gap width is determined
by the relation that ḃ(t)/b(t)9/2 is a constant in time (see (2.10)). Therefore, if
ḃ(t)/b(t)9/2 → 0 as time increases, the drop should eventually shrink like a circle, even if
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(a) (b) (c)

Figure 16. Image processing in the manual lifting plate experiment. (a) Top view of the drop in the Hele-Shaw
cell (the scale bar is 5 m). (b) The fluid domain after applying thresholding in IMAGEJ. (c) The contour of the
air–oil contact line extracted in MATLAB.
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Figure 17. The drop areas and gap widths for experiments with nonlinear dynamics of the gap width. (a) The
drop areas (*), the fitted area (solid line) and the computed A′ (dashed line) in dimensional time t̃. (b) The
gap widths reconstructed from the area A(t̃) as b(t̃) = (b0A(0)/A(t̃)) exp(e1(A(t̃) − A(0))) under different e1
as labelled. See text for details.

the gap width blows up at a finite time. For example, ḃ(t)/b(t)9/2 → 0 when b(t) = 1 + t,
b(t) = et or even bD(t) = (1 − 3τDt)−1/3, for anyD. In the latter case, the rate of blow up
is actually larger than that for the special gap bC(t). To confirm this behaviour, we perform
nonlinear simulations using bD(t) for different choices of D. The results are shown in
figure 15. We observe that for each case considered, the drop eventually shrinks like a
circle after a transient instability, which confirms the predictions of linear theory. The
initial condition for each simulation is r(α, 0) = 1 + 0.02(cos(3α) + cos(5α) + cos(6α))

and the drop morphologies using D = 100 are shown as insets.

Appendix E. Comparison with experimental data under a nonlinear gap width

We next compare the simulation results with an experiment in which the gap is increased
nonlinearly in time. In the experiment, a thin layer of Canola oil is confined between
two parallel plates. We use clear acrylic plates 12 in. × 12 in. × 1/2 in. with an initial
gap b0 = 100 μm. The upper plate is lifted at two diagonal corners manually. The
Canola oil purchased from Great Value has viscosity μ = 65 cP and surface tension
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Figure 18. Morphologies of the drops with nonlinear gap dynamics from experiments (a–c) and simulations
with different compensation parameters e1 = 0 (black; d– f ), e1 = 0.012 (magenta; g–i), and e1 = 0.019 (blue;
j–l) at the dimensional times t̃ = 0.233 (a,d,g,j), 0.3 (b,e,h,k) and 0.366 (c, f,i,l).

σ = 31.3 mN m−1. We use video images to capture the air–oil interface. The contour of
the air–oil contact line is found by using IMAGEJ and MATLAB (see figure 16). However,
since the plate is lifted by hand, the gap width may not be uniform in space. Nevertheless,
we will assume the gap is spatially uniform in our simulations.
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Because the upper plate is lifted manually, the time-dependent gap is unknown and
nonlinear, but we are able to reconstruct the gap width from the area enclosed by the
contact line A(t̃), where t̃ is the dimensional time. We find the area of the oil A(t̃),
fits the data using a smooth spline in MATLAB, and compute A′(t̃) using the spline
(see figure 17a). Since there is fluid leftover on the plate due to a thick wetting layer,
we assume that the rate of volume loss of the drop fluid is proportional to the area
change

1
Vol

dVol

dt̃
= e1A′(t̃), (E 1)

where Vol is the volume of the drop and e1 is a positive constant. The gap is then given as

b(t̃) = b0A(0)
A(t̃)

exp(e1(A(t̃) − A(0))). (E 2)

We have constructed the gap width with different parameters e1 in figure 17(b), where
increasing e1 decreases the gap width.
Taking the time scale to be T = −(A(0)/A′(0)) = 0.3243, the non-dimensional time is

t = t̃/T . At early times, the oil–air interface is nearly a circle, as figure 16(c). We find the
initial equivalent radius of the interface is R0 = 2.349 cm and the non-dimensional surface
tension is τ = (σb20/12μR

3
0)T = 1.0273 × 10−5. The experimental results are shown in

figure 18(a–c) and simulations using different values of e1 are shown in figure 18(d–l).
In both the experiments and simulations, there is a transient instability as fingers are
generated and grow towards the centre of the drop at early times before eventually decaying
away at later times. Generally, there is good agreement between the simulations and
experiments.
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