To appear in Design,

Automation and Test in Europe

(DATE), 2021

Perception Computing-Aware Controller Synthesis
for Autonomous Systems

Clara Hobbs*, Debayan Roy', Parasara Sridhar Duggirala*, F. Donelson Smith*,
Soheil Samii*, James H. Anderson*, Samarjit Chakraborty*
*University of North Carolina at Chapel Hill, USA, Technical University of Munich, Germany, fGeneral Motors, USA
Email: {cghobbs, psd, smithfd, anderson, samarjit} @cs.unc.edu, debayan.roy @tum.de, soheil.samii@gm.com

Abstract—Feedback control loops are ubiquitous in any au-
tonomous system. The design flow for any controller starts
by determining a control strategy, while abstracting away all
implementation details. However, when designing controllers for
autonomous systems, there is significant computation associated
with the perception modules. For example, this involves vision pro-
cessing using deep neural networks on multicore CPU+accelerator
platforms. Such computation can be organized in many different
ways, with each choice resulting in very different sensor-to-
actuator delays and tradeoffs between cost, delay, and accuracy.
Further, each of these choices requires the control strategy to be
designed accordingly. It is not possible for a control designer
to enumerate and account for all of these choices manually,
or abstract them away as “implementation details” as done in
traditional controller design. In this paper we outline this problem
and discuss how automated controller-synthesis techniques could
help in addressing it.

I. INTRODUCTION

Feedback control loops implement many core functions in
any autonomous system — be it an autonomous vehicle or a
robot. The design flow for all controllers traditionally starts
with determining the control strategy, which involves resolving
choices regarding control laws, sampling periods, and the
values of various controller parameters. This is followed by
implementing the designed controller in software to run on an
embedded platform. This flow results in a clean separation of
concerns, where control designers need not be concerned with
software and implementation architecture details, and instead
communicates with embedded systems engineers via well-
defined interfaces specifying sampling periods and sensor-to-
actuator delays. Similarly, embedded systems engineers imple-
menting the controllers can view them as periodic tasks with
deadlines and focus only on scheduling issues.

However, when designing controllers for autonomous sys-
tems, this design-followed-by-implementation paradigm is
starting to break down. This is because autonomous systems
are invariably equipped with multiple cameras, radars, or
lidars, whose data needs considerable pre-processing before
they can be fed into a controller. The high computation and
communication requirements associated with such sensor data
processing — e.g., vision processing using deep neural networks
— is unlike the processing requirements of traditional simpler
sensors whose readings can be directly used. More importantly,
first there are several vision processing/classification algorithms
to choose from [1], which represent tradeoffs between com-
putation time, accuracy and robustness of the results they

return. Second, there are many different ways in which the
chosen sensor data processing algorithms can be organized
in hardware and software using a combination of multicore
CPUs+accelerator platforms [2]-[4]. Each of these choices
results in very different sensor-to-actuator delays and once
again tradeoffs between cost, delay, and accuracy.

Further, in order to get good performance, each of these
choices of sensor data processing requires the control strategy
to be designed accordingly. It is not possible for a control
designer to enumerate and account for all of these choices
manually. Hence, what is required is an automated synthesis
technique that, given partial specifications of controllers
and the implementation platform, can generate the optimal
controller and its implementation while taking into account
all the sensor data processing choices and their associated
tradeoffs. This paper outlines the challenges involved in
realizing this vision and presents some potential solutions.

Related work: The general problem of accounting for delays in
controller design has been has been widely studied and has led
to the research topic of networked control systems (NCS) [5],
[6]. Work on NCS has primarily considered control applications
whose control signals are sent over a wireless network, where
occasional delays and packet losses can occur. Hence, stochas-
tic settings [7] motivated by wireless communication have been
a major focus. The core problem addressed in NCS research
can be expressed as: how to incorporate the characteristics of a
given network (e.g., statistics on packet losses and delays) in a
controller, to meet specified control objectives? In contrast, the
problem we address is more general: we wish to design both the
network (viz., the perception-computing or the implementation
architecture) and the control algorithms running with it. This
results in a cyber-physical systems design or a co-design
problem [8]-[10]. While techniques from NCS can certainly
be leveraged here, the possibility to additionally design the
“network” opens up new research questions [11].

The control theory research community has also considered
some aspects of network design, such as scheduling sensor
nodes to reduce packet collisions [12], [13]. More recently, the
network design problem is also being studied in a distributed
control setting [14], [15] but with a much more abstract
notion of controller deployment than what we discuss in this
paper, viz., how to organize and schedule perception comput-
ing and what impact it has on control performance? These
questions are also related to [16] on quantifying the model-

samarjit
Typewritten Text
To appear in Design, Automation and Test in Europe (DATE), 2021

implementation semantic gap in controllers, and to [17] on
synthesizing scheduling and controller parameters.

In this paper, we discuss the impact that different options of
scheduling perception computing has on the timing behavior
experienced by the controller. We do not dwell on issues
such as the uncertainty of the results returned by the percep-
tion computing algorithms, although they are also important.
Clearly, the issue of timing analysis falls within the scope
of our discussion, and has been studied in different concrete
settings. Since autonomous vehicles are an important class
of autonomous systems, timing analysis of automotive hard-
ware/software architectures and also controllers is of relevance,
and has been studied in the past [18]-[21]. There has been very
little study on the impact of perception computing on control
performance, as we discuss in this paper. A notable exception
is [22] and our study is in the same direction.

II. PROBLEM FORMULATION

In this paper, we study linear and time-invariant feedback
control systems. The state-space mathematical model of the
dynamic behaviour of such a system in continuous-time can be
represented by the following differential equations:

#(t) = Az(t) + Bu(t),)
y(t) = Cx(t), 2

where the vectors z(t) € R™ 1, y(t) € RP*!, and u(t) €
R™*1! represent the system states, the system output, and the
control input respectively at time instant ¢.! Here, the constant
matrices A € R"*", B ¢ R»™™, and C € RP*" are
respectively the state, the input, and the output matrices. Our
goal here is to formulate the controller design problem where
different control inputs u; are associated with different delays,
because of different sensors they are associated with. The
different sensor processing tasks have different computation
requirements and are scheduled in a certain manner.

Given a continuous-time state-space model as in Eq. (1), we
can solve the first-order differential equation to determine an
expression for the states at time ¢, given by:

t
x(t) = ez(0) +/ A=) Bu(r)dr 3)
0

Denoting t; as the k-th sampling instant, we can also write:

tht1
w(tpr) = AT o (hy) +/ A1) By (r)dr (4)

123

Let us consider u(7) = [u1(7) ua(7) um(T)]T and
B=[B1 B By, where B is a column vector, i.e.,
B; ¢ R™*1, Then, we can rewrite Eq. (4) as follows:

&(trs1) = AT Wa(ty,)
m tht1
i=1 LIt

Now, let us assume that the delay from sensing to the actuation
of u; is d;. Thus, we may write u;(t) = u;[k — 1] for ¢, <

'R represents the set of real numbers.

t < tp+d; and u;(t) = u;[k] for t +d; <t < tp41. Thus,
we rewrite Eq. (5) as follows:

@(trs1) = AT Wa(ty,)

tr+d;
+) { / eA(t’*‘“T)Bde] ujlk — 1]
tk

= ©)
trt1
+ [/ eA“Hl—T)Bde} mi
tr+d
Assuming a constant sampling period h = t;41 — t; and

substituting 7/ =t 1 — 7, we get:

m h*dj ,
z(tper) = eMa(ty) + Z { / eA” Bde’} ujlk —1]
=1 h

+ [— /h O_dj eAT/Bde’] uj[k}]

= [*.» changing integration limits}

m h
eAhiIf(tk:) + Z |:/ eAT’Bde/:| u; [k‘ _ 1]
j=1 h—d;
h—d;
+ [/ A Bjdrl} u; [k]]
0
= Qa(ty) +) {quj [k — 1] + Lo ju; [kﬂ (7
j=1
where,
h ’
o= Ty :/ e Bydr,
h—d;

}l—dj ,
Ty, = / e Bydr'.
0

Or, we can write:

2(thy1) = Pa(ty) + Tru[k — 1] 4+ Toulk] (8)
where,
Iy = [FO,l To,2 Fo,m] , I = [Fl,l T2 Fl,nL}
)
We denote x[k] = x(tx) and write Eq. (8) as follows:
zlk + 1] = ®z[k] + Tyulk — 1] + Toulk]. (10)
Now, we consider an augmented state vector z[k] = L [2 [E] 1]} ,

and rewrite Eq. (10) as follows:

Akt = E Fol} z[k]+[ﬂ ulk] = ®uz[k+ Taulk], (1)

where we denote
e Iy _|To
ofs 8] i)
We define the stabilizing feedback control law as follows:

ulk] = —Kz[k], (13)

where the feedback gain K can be calculated using standard
techniques like pole-placement and linear quadratic regulator
(LQR) design based on ®, and T',.

12)

TABLE I
PERFORMANCE VS DELAYS IN THE CONTROL INPUTS

Second input delay (d2) in ms
0 25 50 75 100 125 150 175 200 225 250
0 18.75 | 18.78 | 18.81 | 18.84 | 18.87 18.9 18.93 | 1896 | 1898 | 19.01 | 19.04
Z’:j 25 19.58 | 19.61 | 19.65 | 19.68 | 19.71 | 19.74 | 19.77 | 19.80 | 19.83 | 19.86 | 19.89
K= 50 | 2045 | 2048 | 20.52 | 20.55 | 20.59 | 20.62 | 20.65 | 20.68 | 20.72 | 20.75 | 20.78
% 75 | 21.35 | 21.39 | 2143 | 2146 | 21.5 | 21.53 | 21.57 | 21.60 | 21.64 | 21.67 | 21.71
[100 | 2229 | 2233 | 22.37 | 2241 | 2245 | 2249 | 22.53 | 22.57 | 22.60 | 22.64 | 22.67
= [125 | 2327 | 2332 | 2336 | 2340 | 2345 | 2349 | 23.53 | 23.57 | 23.61 | 23.64 | 23.68
:; 150 | 243 | 2434 | 2439 | 2444 | 2448 | 2452 | 2457 | 24.61 | 24.65 | 24.69 | 24.74
S | 175 | 2536 | 25.41 | 2546 | 2551 | 25.56 | 25.61 | 25.65 | 257 | 25.74 | 25.79 | 25.83
é 200 | 2647 | 26.53 | 26.58 | 26.63 | 26.68 | 26.73 | 26.78 | 26.83 | 26.88 | 2693 | 26.97
| 225 | 27.63 | 27.69 | 27.74 | 278 | 27.85 | 27.90 | 27.96 | 28.01 | 28.06 | 28.11 | 28.16
250 | 28.83 | 28.89 | 2895 | 29.01 | 29.07 | 29.12 | 29.18 | 29.24 | 29.29 | 2935 | 294

III. A MOTIVATIONAL EXAMPLE

To illustrate the problem, we consider a multiple-input and
multiple-output (MIMO) system for which the continuous-time
plant model is given by:

—0.0558 —0.9968 0.0802 0.0415
4 — | 05980 —0.1150 —0.0318 0 |
= |—3.0500 0.3880 —0.4650 0 |’
0 0.0805 1.0000 0
g — [0-0073 —0.4750 0.1530 O}T, 07[0 10 o}
“l o 0.0077 0.1430 0| ° ~lo 0 0 1|

This system has four states, two inputs and two outputs.

We consider a sampling period h = 0.25s and we vary
the delays d; and ds for the two control inputs respectively
from O to ~ in a step of 0.1h. For a given set of delays
and the sampling period, we compute an infinite horizon
LQR feedback control gain. We assume an initial condition as
z[0]" = [0 0.6109 0 0.6109 0 0]. The cost function is
given by:

J= i (z[k]T Q- 2[k] +ulk)" R u[k]), (14)
where

|
OO OO O
oo oco~,O
[eNeNolt o Nl
OO OOO
[N e NN NN
[N e NNl

This essentially means that the cost is given by:

J= x1[k]? + 2o [k)? 4 z3[k]? + z4[K]?
kz_0< ’ (15)

+0.5u k]2 + 0.5u2[k]2)

Here, we give equal importance to all the system states. Note
that Q(5,5) = Q(6,6) = 0 because z[5] = uy[k — 1] and
z[6] = wg[k — 1] and the cost for the control inputs are
already considered in R. Furthermore, note that we have lower
weights for the control inputs because, in this example, we
want to stabilize the system within a reasonable time (< 10 s)

at the expense of higher control cost (i.e., uy [k]? +uz[k]?). The
choices of @) and R, however, depend on the design objectives.

For all combinations of delay values d; and d- associated
with the two control inputs, we tabulate the LQR cost in Table I.
Let us assume that the computation of the first control input
uy takes 25ms while the computation of the second input
ug takes 175ms. If both inputs are computed by the same
processor, we can implement the controller in three ways: (i) uq
is computed first and applied with a delay of 25 ms and then
ug is calculated and applied at 200 ms, (ii) ug is computed first
and applied with a delay of 175ms and then wu; is calculated
and applied at 200 ms, and (iii) u; and uo are applied at the
same time at 200 ms after they are both computed. Evolution of
the system states and the control inputs for the three cases are
shown in Figures 1, 2, and 3 respectively. From Table 1, we
can see that the LQR costs for the three cases (highlighted
in red) are 19.83, 26.83, and 26.88 respectively. Thus, the
performances obtained in case (ii) and case (iii) are 35.30 %
and 35.65% worse compared to case (i). This shows how
the scheduling of perception computing tasks, and hence the
delays associated with the different control inputs, can lead to
significantly different performance.

IV. MOVING TO LARGER PROBLEMS

For real-world control systems with larger numbers of inputs
and sensors, the naive brute-force approach seen in Sec. III
quickly becomes unwieldy. Consider a system with n control
inputs, each requiring a known computation time. Assuming the
control inputs are all computed on a single processor, and each
control input is applied as soon as it is computed, it would be
necessary to compute the LQR cost of n! different controllers
to find the schedule that gives the best performance. In this
section, we examine heuristics to address this intractability,
followed by a case study to evaluate them.

A. Heuristics for Perception Computing-Aware Controllers

We will now propose several heuristics designed to efficiently
determine an order in which to apply the control inputs of an
MIMO system that yields a low LQR cost. The inputs available
for use in these heuristics include the plant model A, B, and C,
the cost matrices () and R, the sampling period A, and the

—State 1
—State 2
—State 3
—State 4

System states

Time [s]

(a) System response.

—Control input 1
—Control input 2

Control inputs

Time [s]

(b) Control inputs

Fig. 1. Input 1 applied at 25 ms and input 2 applied at 200 ms

" —State 1/ |
—State 2
é 05 7State 3 B
c —State 4
o
& 0
0.5 4
0 1 2 3 4 5 6 7 8 9 10
Time [s]

(a) System response.

Fig. 2.

—State 1 1

—State 2 i

8 —State 3 1

@ —State 4 1

£ i
g
3

0.6 | I I I I I I | | B

0 1 2 3 4 5 6 7 8 9 10

Time [s]

(a) System response.

3l i
" —Control input 1
3 %[—Control input 2| |
e
=)
o
(@]
0 —_
_1 L L L L L L L L L L]
0 1 2 3 4 5 6 7 8 9 10
Time [s]

(b) Control inputs

Input 1 applied at 200 ms and input 2 applied at 175 ms

3 ST T S W O
—Control input 1
2,0 —Control input 2| |
2
s
£ 1 1
o
(&)
0 e
_1 L I Il Il Il I Il ! Il Il]
0 1 2 3 4 5 6 7 8 9 10
Time [s]

(b) Control inputs

Fig. 3. Both control inputs applied together at 200 ms

computation time required for each control input. Our first and
simplest heuristic under consideration is shown in Alg. 1, which
we discuss next.

Attempting to determine a good ordering of the control
inputs, Alg. 1 makes use of the open-loop gain of the discrete-
time system. The gain can be computed as G = C,(I —
®,)"'T', using the augmented state-space model given in
Eq. (12). The gain from each of the system’s control inputs u;
to system output y; is given by G ;. Intuitively, a control input
whose gain values have a larger magnitude has a greater effect
on the state of the system, so it would likely be preferable
to apply the inputs in order of descending absolute gains.
Unfortunately, this sorting is not possible to do directly, since

the gains of each control input are in general not totally
ordered (e.g., for output y;, G1,1 > Gy 2, but for output ya,
G211 < Ga). Therefore, for a system with m inputs and p
outputs, we compute a combined gain G; for each input u; as

p
Gi=> G,
=1

These combined gain values can be sorted directly, giving an
order with which to apply the control inputs.

(16)

While Alg. 1 does succeed in creating an order with which
to apply the control inputs, its choice is oblivious to the LQR
cost matrices () and R. To address this limitation, we propose a
second heuristic, given in Alg. 2. This heuristic modifies Alg. 1

Algorithm 1: A simple heuristic for ordering control
inputs by open-loop gain

Algorithm 3: Iterative heuristic for ordering control
inputs by closed-loop gain

Data: Matrices A, B, C, sampling period h
Result: Order to apply control inputs
1 Compute augmented discrete-time plant model ®,, Iy, C,
assuming period h and zero delay;
2 G=Co(l - ®,) T
3 for j =1 to m do
4 ‘ Gj=371, G?,j;
5 end
6 schedule = (inputs by descending G; values);
7 return schedule;

Algorithm 2: A heuristic for ordering control inputs by
closed-loop gain

Data: Matrices A, B, C, Q, R, sampling period h
Result: Order to apply control inputs
1 Compute augmented discrete-time plant model ®,, I'y, C,
assuming period h and zero delay;
Compute feedback gain matrix K with LQR;
G =Cu(I — (Py —T.K)) 'Ty;
for j =1 to m do
‘ G; = ?:1 Gzzyj;
end
schedule = (inputs by descending G values);
return schedule,

o B U

by computing feedback control gains using LQR. Since initially
no ordering of the control inputs is known, it is assumed that the
control inputs are applied with zero delay when computing this
controller. Once the feedback control gain matrix K is known,
we compute the gain of the resulting closed-loop system, and
order the inputs as before. Because the controller in this closed-
loop system is designed using LQR, the cost matrices are thus
incorporated in the schedule.

Alg. 2 addresses the limitation of ignoring the LQR cost
function present in Alg. 1 by computing a feedback gain
matrix using LQR. It is however still limited, in that it orders
the control inputs without considering the computation time
required for each input. To help address this issue, we further
propose Alg. 3, an iterative version of Alg. 2. The first iteration
creates a controller assuming zero delay and scheduling the
control inputs based on closed-loop gain, as before. Each
subsequent iteration creates an augmented plant model using
the delays calculated in the prior iteration. A controller is then
computed using LQR, and a new schedule is created using the
gain of the new closed-loop system. This iteration generally
continues until two consecutive iterations result in the same
schedule. However, we leave it as future work to determine if
this will always occur, so in order to guarantee termination the
loop also ends after n! iterations.

B. Case Study

To evaluate these heuristics, we consider the following
MIMO system, with five states, four inputs, and four outputs:

—0.0558 —0.9968 0.0802 0.0415 1.302
0.5980 —0.1150 —0.0318 0 0.153

A= [-3.0500 0.3880 —0.4650 0 —0.649] ;
0 0.0805 1.0000 0 0
1.0325 0.1032 0.326 —0.0681 0.126

Data: Matrices A, B, C, Q, R, input computation time
Ci,-..,Cm, sampling period h
Result: Order to apply control inputs, schedule
1 schedule = ();
2 di,...,dm =0,...,0;
3t=0;
4 repeat
5 last_schedule = schedule;
6 Compute augmented discrete-time plant model ®,, I'q,
C, assuming period h and delays di, ..., dm;
7 Compute feedback gain matrix K with LQR;
8 G=Co(I—(Pa—ToK)) 'Ty;

9 for j =1 to m do
10 | G, =371 Gl
11 end

12 schedule = (inputs by descending G; values);
13 for j =1 to m do

14 ‘ d; = Zle Cschedule[i] s

15 end

16 t=t+1;

17 until /ast_schedule == schedule v t == n/!;

return schedule;

[
o

0.0073 0 0.5 0.23

—0.4750 0.0077 0.105 0.86 8 (1) (1) 8 8
B=|01530 01430 0 —0.12|;C=
00 0 1 0
0 0 0073 002 SO
02020 00192 0 0.4

The four control inputs ui, ug, us, and uy are assumed
to require computation times of 0.025s, 0.025s, 0.050s,
and 0.125s, respectively. Similar to the example in Sec. III,
we consider a sampling period h = 0.25s, and an initial condi-
tion z[0]T = [0 0.6109 0 0.6109 0 0 O O O}. The
cost function is of the form in Eq. (14), where

Q=diag(l 1 1 1 1 0 0 0 0);
R=diag (0.5 05 0.5 0.5),

giving equal weight to all system states, and lower weight to
the control inputs to stabilize the system in a shorter time.

Using this problem setup, we ran Algs. 1, 2, and 3 to create
schedules of the control inputs, and computed the correspond-
ing LQR cost. Additionally, we ran a brute-force search to find
the LQR cost resulting from all 24 orderings of the control
inputs. The results are presented in Table II; the schedules
produced by our heuristics are labeled, along with the best and
worst schedules overall.

For this particular set of parameters, determining a schedule
using the closed-loop gain with zero delay as in Alg. 2 gave
an LQR cost 2.46 % higher than using the open-loop gain in
Alg. 1. However, by iterating over the schedules using Alg. 3,
we were able to find a schedule with 9.42 % better performance
than the one found by Alg. 1. Unfortunately, this is still 14.12 %
higher than the LQR cost resulting from the optimal schedule,
as determined using a brute-force search.

A visualization of the design space of the different schedules
is shown in Fig. 4. Each node in the directed graph is a
schedule of the control inputs. Each node has one outgoing edge

TABLE I

SCHEDULES AND CORRESPONDING LQR CoOSTS

— is still a relatively open problem that could be studied in
conjunction with designing the associated controllers, leading
to new avenues in cyber-physical systems design.

Schedule LQR Cost Schedule LQR Cost
1234 10.123 3124 10.230
1243 11.039 3142 10.247

Best 1324 9.946 3214 10.457
1342 9.965 3241 11.542
1423 11.071 Alg. 3 3412 11.351
1432 10.903 3421 11.554
2134 10.383 4123 12.794
2143 11.380 Alg. 1 4132 12.532
2314 10.675 4213 13.122
2341 11.829 Worst 4231 13.438
2413 13.089 Alg. 2 4312 12.840
2431 13.408 4321 13.118

®2143
25
Y
2
04132
1.5
®1324
@ 123% ©4213
Y ©2431 . B
O s @4123 &
05 =
A ©4231 o
®2341 ©21392413 01243 0 g
©4321
osazi A2 s
Y “ ®1432
o3 18342 e3214 A
032492314 ®1423 15

Fig. 4. All orders of the four control inputs, with edges showing the next

schedule indicated by closed-loop gain for each.

indicating the next schedule that our iterative heuristic would
try, based on the closed-loop gain of the system. Thus, self-
loops indicate schedules where the iteration in Alg. 3 would
terminate. The edges are colored to indicate the change in LQR
cost between the two controllers. Several observations can be
made from this graph. First, ordering the control inputs by
closed-loop gain does not necessarily lead to a single “best”
schedule: depending on the initial schedule chosen, iteration
could lead to the schedule 34 1 2 or 1 4 3 2. It can also be seen
that the next iteration step does not always give a lower LQR
cost. A greedy iteration that stops if the next schedule produces
a higher LQR cost may not give better results than Alg. 3
though, since later transitions may give further performance
improvements. In the future, we would like to design heuristics
that are able to overcome these limitations of gain-based input
scheduling to produce better control performance.

V. CONCLUDING REMARKS

The goal of this paper was to initiate a study on how
different choices of perception computing and their imple-
mentation might impact control performance in autonomous
systems. As outlined in [1]-[4] there are many different choices
of perception (e.g., vision) processing algorithms and their
implementations in modern autonomous systems. How to best
choose and implement them — given their large design space

ACKNOWLEDGEMENTS

This work was supported by the NSF award #2038960.
D. Roy was supported by the Chair for CPS in Production
Engineering at TUM and the AvH Foundation.

(1]

[2]

(3]

[4]

[3]

(6]
(71

(8]
[91

[10]

[11]

[12]

[13]
[14]
[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

REFERENCES

J. Janai et al., “Computer vision for autonomous vehicles: Problems,
datasets and state of the art,” Found. Trends Comput. Graph. Vis., vol. 12,
no. 1-3, pp. 1-308, 2020.

M. Yang et al., “Re-thinking CNN frameworks for time-sensitive
autonomous-driving applications: Addressing an industrial challenge,” in
IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS), 2019.

M. Balszun, M. Geier, and S. Chakraborty, “Predictable vision for
autonomous systems,” in 23rd IEEE International Symposium on Real-
Time Distributed Computing (ISORC), 2020.

M. Geier et al., “Debugging FPGA-accelerated real-time systems,” in
IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS), 2020.

J. P. Hespanha, P. Naghshtabrizi, and Y. Xu, “A survey of recent results
in networked control systems,” Proceedings of the IEEE, vol. 95, no. 1,
pp. 138-162, 2007.

M. B. G. Cloosterman et al., “Controller synthesis for networked control
systems,” Automatica, vol. 46, no. 10, pp. 1584-1594, 2010.

J. P. Hespanha, “Modeling and analysis of networked control systems
using stochastic hybrid systems,” Annual Reviews in Control, vol. 38,
no. 2, pp. 155-170, 2014.

S. Chakraborty et al., “Automotive cyber-physical systems: A tutorial
introduction,” IEEE Design & Test, vol. 33, no. 4, pp. 92-108, 2016.
D. Goswami et al., “Challenges in automotive cyber-physical systems
design,” in International Conference on Embedded Computer Systems:
Architectures, Modeling, and Simulation (SAMOS), 2012.

M. Broy et al., “Cross-layer analysis, testing and verification of auto-
motive control software,” in 11th International Conference on Embedded
Software (EMSOFT), 2011.

R. Schneider et al., “Multi-layered scheduling of mixed-criticality cyber-
physical systems,” J. Syst. Archit., vol. 59, no. 10-D, pp. 1215-1230,
2013.

E. Garone, B. Sinopoli, and A. Casavola, “LQG control over lossy tcp-
like networks with probabilistic packet acknowledgements,” in 47th IEEE
Conference on Decision and Control (CDC), 2008.

L. Shi et al., “Sensor scheduling over a packet-delaying network,”
Automatica, vol. 47, no. 5, pp. 1089-1092, 2011.

S. Tseng and J. Anderson, “Deployment architectures for cyber-physical
control systems,” in American Control Conference (ACC), 2020.

J. Anderson et al., “System level synthesis,” Annu. Rev. Control., vol. 47,
pp. 364-393, 2019.

T. Nghiem, G. J. Pappas, R. Alur, and A. Girard, “Time-triggered
implementations of dynamic controllers,” ACM TECS, vol. 11, no. S2,
pp- 58:1-58:24, 2012.

M. A. Khatib, A. Girard, and T. Dang, “Scheduling of embedded
controllers under timing contracts,” in HSCC, 2017.

M. Lukasiewycz et al., “System architecture and software design for
electric vehicles,” in Design Automation Conference (DAC), 2013.

A. Masrur et al., “VM-based real-time services for automotive control
applications,” in /6th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA), 2010.

D. Goswami, R. Schneider, and S. Chakraborty, “Relaxing signal delay
constraints in distributed embedded controllers,” IEEE Trans. Contr. Sys.
Techn., vol. 22, no. 6, pp. 2337-2345, 2014.

L. Zhang et al., “Timing challenges in automotive software architectures,”
in 36th International Conference on Software Engineering (ICSE), 2014.
E. P. van Horssen, D. Antunes, and M. Heemels, “Switched LQG control
for linear systems with multiple sensing methods,” Autom., vol. 103, pp.
217-229, 2019.

