
Perception Computing-Aware Controller Synthesis

for Autonomous Systems

Clara Hobbs∗, Debayan Roy†, Parasara Sridhar Duggirala∗, F. Donelson Smith∗,

Soheil Samii‡, James H. Anderson∗, Samarjit Chakraborty∗

∗University of North Carolina at Chapel Hill, USA, †Technical University of Munich, Germany, ‡General Motors, USA

Email: {cghobbs, psd, smithfd, anderson, samarjit}@cs.unc.edu, debayan.roy@tum.de, soheil.samii@gm.com

Abstract—Feedback control loops are ubiquitous in any au-
tonomous system. The design flow for any controller starts
by determining a control strategy, while abstracting away all
implementation details. However, when designing controllers for
autonomous systems, there is significant computation associated
with the perception modules. For example, this involves vision pro-
cessing using deep neural networks on multicore CPU+accelerator
platforms. Such computation can be organized in many different
ways, with each choice resulting in very different sensor-to-
actuator delays and tradeoffs between cost, delay, and accuracy.
Further, each of these choices requires the control strategy to be
designed accordingly. It is not possible for a control designer
to enumerate and account for all of these choices manually,
or abstract them away as “implementation details” as done in
traditional controller design. In this paper we outline this problem
and discuss how automated controller-synthesis techniques could
help in addressing it.

I. INTRODUCTION

Feedback control loops implement many core functions in

any autonomous system – be it an autonomous vehicle or a

robot. The design flow for all controllers traditionally starts

with determining the control strategy, which involves resolving

choices regarding control laws, sampling periods, and the

values of various controller parameters. This is followed by

implementing the designed controller in software to run on an

embedded platform. This flow results in a clean separation of

concerns, where control designers need not be concerned with

software and implementation architecture details, and instead

communicates with embedded systems engineers via well-

defined interfaces specifying sampling periods and sensor-to-

actuator delays. Similarly, embedded systems engineers imple-

menting the controllers can view them as periodic tasks with

deadlines and focus only on scheduling issues.

However, when designing controllers for autonomous sys-

tems, this design-followed-by-implementation paradigm is

starting to break down. This is because autonomous systems

are invariably equipped with multiple cameras, radars, or

lidars, whose data needs considerable pre-processing before

they can be fed into a controller. The high computation and

communication requirements associated with such sensor data

processing – e.g., vision processing using deep neural networks

– is unlike the processing requirements of traditional simpler

sensors whose readings can be directly used. More importantly,

first there are several vision processing/classification algorithms

to choose from [1], which represent tradeoffs between com-

putation time, accuracy and robustness of the results they

return. Second, there are many different ways in which the

chosen sensor data processing algorithms can be organized

in hardware and software using a combination of multicore

CPUs+accelerator platforms [2]–[4]. Each of these choices

results in very different sensor-to-actuator delays and once

again tradeoffs between cost, delay, and accuracy.

Further, in order to get good performance, each of these

choices of sensor data processing requires the control strategy

to be designed accordingly. It is not possible for a control

designer to enumerate and account for all of these choices

manually. Hence, what is required is an automated synthesis

technique that, given partial specifications of controllers

and the implementation platform, can generate the optimal

controller and its implementation while taking into account

all the sensor data processing choices and their associated

tradeoffs. This paper outlines the challenges involved in

realizing this vision and presents some potential solutions.

Related work: The general problem of accounting for delays in

controller design has been has been widely studied and has led

to the research topic of networked control systems (NCS) [5],

[6]. Work on NCS has primarily considered control applications

whose control signals are sent over a wireless network, where

occasional delays and packet losses can occur. Hence, stochas-

tic settings [7] motivated by wireless communication have been

a major focus. The core problem addressed in NCS research

can be expressed as: how to incorporate the characteristics of a

given network (e.g., statistics on packet losses and delays) in a

controller, to meet specified control objectives? In contrast, the

problem we address is more general: we wish to design both the

network (viz., the perception-computing or the implementation

architecture) and the control algorithms running with it. This

results in a cyber-physical systems design or a co-design

problem [8]–[10]. While techniques from NCS can certainly

be leveraged here, the possibility to additionally design the

“network” opens up new research questions [11].

The control theory research community has also considered

some aspects of network design, such as scheduling sensor

nodes to reduce packet collisions [12], [13]. More recently, the

network design problem is also being studied in a distributed

control setting [14], [15] but with a much more abstract

notion of controller deployment than what we discuss in this

paper, viz., how to organize and schedule perception comput-

ing and what impact it has on control performance? These

questions are also related to [16] on quantifying the model-

samarjit
Typewritten Text
To appear in Design, Automation and Test in Europe (DATE), 2021



implementation semantic gap in controllers, and to [17] on

synthesizing scheduling and controller parameters.

In this paper, we discuss the impact that different options of

scheduling perception computing has on the timing behavior

experienced by the controller. We do not dwell on issues

such as the uncertainty of the results returned by the percep-

tion computing algorithms, although they are also important.

Clearly, the issue of timing analysis falls within the scope

of our discussion, and has been studied in different concrete

settings. Since autonomous vehicles are an important class

of autonomous systems, timing analysis of automotive hard-

ware/software architectures and also controllers is of relevance,

and has been studied in the past [18]–[21]. There has been very

little study on the impact of perception computing on control

performance, as we discuss in this paper. A notable exception

is [22] and our study is in the same direction.

II. PROBLEM FORMULATION

In this paper, we study linear and time-invariant feedback

control systems. The state-space mathematical model of the

dynamic behaviour of such a system in continuous-time can be

represented by the following differential equations:

ẋ(t) = Ax(t) +Bu(t), (1)

y(t) = Cx(t), (2)

where the vectors x(t) ∈ R
n×1, y(t) ∈ R

p×1, and u(t) ∈
R

m×1 represent the system states, the system output, and the

control input respectively at time instant t.1 Here, the constant

matrices A ∈ R
n×n, B ∈ R

n×m, and C ∈ R
p×n are

respectively the state, the input, and the output matrices. Our

goal here is to formulate the controller design problem where

different control inputs uj are associated with different delays,

because of different sensors they are associated with. The

different sensor processing tasks have different computation

requirements and are scheduled in a certain manner.

Given a continuous-time state-space model as in Eq. (1), we

can solve the first-order differential equation to determine an

expression for the states at time t, given by:

x(t) = eAtx(0) +

∫ t

0

eA(t−τ)Bu(τ)dτ (3)

Denoting tk as the k-th sampling instant, we can also write:

x(tk+1) = eA(tk+1−tk)x(tk) +

∫ tk+1

tk

eA(tk+1−τ)Bu(τ)dτ (4)

Let us consider u(τ) =
[

u1(τ) u2(τ) · · · um(τ)
]T

and

B =
[

B1 B2 · · · Bm

]

, where Bj is a column vector, i.e.,

Bj ∈ R
n×1. Then, we can rewrite Eq. (4) as follows:

x(tk+1) = eA(tk+1−tk)x(tk)

+
m
∑

j=1

[
∫ tk+1

tk

eA(tk+1−τ)Bjuj(τ)dτ

]

(5)

Now, let us assume that the delay from sensing to the actuation

of uj is dj . Thus, we may write uj(t) = uj [k − 1] for tk ≤

1
R represents the set of real numbers.

t < tk + dj and uj(t) = uj [k] for tk + dj ≤ t < tk+1. Thus,

we rewrite Eq. (5) as follows:

x(tk+1) = eA(tk+1−tk)x(tk)

+
m
∑

j=1

[

[
∫ tk+dj

tk

eA(tk+1−τ)Bjdτ

]

uj [k − 1]

+

[
∫ tk+1

tk+d

eA(tk+1−τ)Bjdτ

]

uj [k]

]

(6)

Assuming a constant sampling period h = tk+1 − tk and

substituting τ ′ = tk+1 − τ , we get:

x(tk+1) = eAhx(tk) +
m
∑

j=1

[

[

−

∫ h−dj

h

eAτ ′

Bjdτ
′

]

uj [k − 1]

+

[

−

∫ 0

h−dj

eAτ ′

Bjdτ
′

]

uj [k]

]

=
[

∵ changing integration limits
]

eAhx(tk) +
m
∑

j=1

[

[
∫ h

h−dj

eAτ ′

Bjdτ
′

]

uj [k − 1]

+

[
∫ h−dj

0

eAτ ′

Bjdτ
′

]

uj [k]

]

= Φx(tk) +
m
∑

j=1

[

Γ1,juj [k − 1] + Γ0,juj [k]
]

(7)

where,

Φ = eAh, Γ1,j =

∫ h

h−dj

eAτ ′

Bjdτ
′,

Γ0,j =

∫ h−dj

0

eAτ ′

Bjdτ
′.

Or, we can write:

x(tk+1) = Φx(tk) + Γ1u[k − 1] + Γ0u[k] (8)

where,

Γ0 =
[

Γ0,1 Γ0,2 · · · Γ0,m

]

, Γ1 =
[

Γ1,1 Γ1,2 · · · Γ1,m

]

(9)

We denote x[k] = x(tk) and write Eq. (8) as follows:

x[k + 1] = Φx[k] + Γ1u[k − 1] + Γ0u[k]. (10)

Now, we consider an augmented state vector z[k] =

[

x[k]
u[k − 1]

]

,

and rewrite Eq. (10) as follows:

z[k+1] =

[

Φ Γ1

0 0

]

z[k]+

[

Γ0

I

]

u[k] = Φaz[k]+Γau[k], (11)

where we denote

Φa =

[

Φ Γ1

0 0

]

; Γa =

[

Γ0

I

]

. (12)

We define the stabilizing feedback control law as follows:

u[k] = −Kz[k], (13)

where the feedback gain K can be calculated using standard

techniques like pole-placement and linear quadratic regulator

(LQR) design based on Φa and Γa.



TABLE I
PERFORMANCE VS DELAYS IN THE CONTROL INPUTS

Second input delay (d2) in ms

0 25 50 75 100 125 150 175 200 225 250
F

ir
st

in
p

u
t

d
el

ay
(d

1
)

in
m
s

0 18.75 18.78 18.81 18.84 18.87 18.9 18.93 18.96 18.98 19.01 19.04

25 19.58 19.61 19.65 19.68 19.71 19.74 19.77 19.80 19.83 19.86 19.89

50 20.45 20.48 20.52 20.55 20.59 20.62 20.65 20.68 20.72 20.75 20.78

75 21.35 21.39 21.43 21.46 21.5 21.53 21.57 21.60 21.64 21.67 21.71

100 22.29 22.33 22.37 22.41 22.45 22.49 22.53 22.57 22.60 22.64 22.67

125 23.27 23.32 23.36 23.40 23.45 23.49 23.53 23.57 23.61 23.64 23.68

150 24.3 24.34 24.39 24.44 24.48 24.52 24.57 24.61 24.65 24.69 24.74

175 25.36 25.41 25.46 25.51 25.56 25.61 25.65 25.7 25.74 25.79 25.83

200 26.47 26.53 26.58 26.63 26.68 26.73 26.78 26.83 26.88 26.93 26.97

225 27.63 27.69 27.74 27.8 27.85 27.90 27.96 28.01 28.06 28.11 28.16

250 28.83 28.89 28.95 29.01 29.07 29.12 29.18 29.24 29.29 29.35 29.4

III. A MOTIVATIONAL EXAMPLE

To illustrate the problem, we consider a multiple-input and

multiple-output (MIMO) system for which the continuous-time

plant model is given by:

A =

⎡

⎢

⎣

−0.0558 −0.9968 0.0802 0.0415
0.5980 −0.1150 −0.0318 0
−3.0500 0.3880 −0.4650 0

0 0.0805 1.0000 0

⎤

⎥

⎦
;

B =

[

0.0073 −0.4750 0.1530 0
0 0.0077 0.1430 0

]T

; C =

[

0 1 0 0
0 0 0 1

]

.

This system has four states, two inputs and two outputs.

We consider a sampling period h = 0.25 s and we vary

the delays d1 and d2 for the two control inputs respectively

from 0 to h in a step of 0.1h. For a given set of delays

and the sampling period, we compute an infinite horizon

LQR feedback control gain. We assume an initial condition as

z[0]T =
[

0 0.6109 0 0.6109 0 0
]

. The cost function is

given by:

J =
∞
∑

k=0

(

z[k]T ·Q · z[k] + u[k]T ·R · u[k]
)

, (14)

where

Q =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

; R =

[

0.5 0
0 0.5

]

This essentially means that the cost is given by:

J =

∞
∑

k=0

(

x1[k]
2 + x2[k]

2 + x3[k]
2 + x4[k]

2

+ 0.5u1[k]
2 + 0.5u2[k]

2
)

(15)

Here, we give equal importance to all the system states. Note

that Q(5, 5) = Q(6, 6) = 0 because z[5] = u1[k − 1] and

z[6] = u2[k − 1] and the cost for the control inputs are

already considered in R. Furthermore, note that we have lower

weights for the control inputs because, in this example, we

want to stabilize the system within a reasonable time (≤ 10 s)

at the expense of higher control cost (i.e., u1[k]
2+u2[k]

2). The

choices of Q and R, however, depend on the design objectives.

For all combinations of delay values d1 and d2 associated

with the two control inputs, we tabulate the LQR cost in Table I.

Let us assume that the computation of the first control input

u1 takes 25ms while the computation of the second input

u2 takes 175ms. If both inputs are computed by the same

processor, we can implement the controller in three ways: (i) u1

is computed first and applied with a delay of 25ms and then

u2 is calculated and applied at 200ms, (ii) u2 is computed first

and applied with a delay of 175ms and then u1 is calculated

and applied at 200ms, and (iii) u1 and u2 are applied at the

same time at 200ms after they are both computed. Evolution of

the system states and the control inputs for the three cases are

shown in Figures 1, 2, and 3 respectively. From Table 1, we

can see that the LQR costs for the three cases (highlighted

in red) are 19.83, 26.83, and 26.88 respectively. Thus, the

performances obtained in case (ii) and case (iii) are 35.30%
and 35.65% worse compared to case (i). This shows how

the scheduling of perception computing tasks, and hence the

delays associated with the different control inputs, can lead to

significantly different performance.

IV. MOVING TO LARGER PROBLEMS

For real-world control systems with larger numbers of inputs

and sensors, the naı̈ve brute-force approach seen in Sec. III

quickly becomes unwieldy. Consider a system with n control

inputs, each requiring a known computation time. Assuming the

control inputs are all computed on a single processor, and each

control input is applied as soon as it is computed, it would be

necessary to compute the LQR cost of n! different controllers

to find the schedule that gives the best performance. In this

section, we examine heuristics to address this intractability,

followed by a case study to evaluate them.

A. Heuristics for Perception Computing-Aware Controllers

We will now propose several heuristics designed to efficiently

determine an order in which to apply the control inputs of an

MIMO system that yields a low LQR cost. The inputs available

for use in these heuristics include the plant model A, B, and C,

the cost matrices Q and R, the sampling period h, and the



0 1 2 3 4 5 6 7 8 9 10
 Time [s]

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Sy
st

em
 s

ta
te

s

State 1
State 2
State 3
State 4

(a) System response.

0 1 2 3 4 5 6 7 8 9 10
 Time [s]

-1

0

1

2

3

C
on

tro
l i

np
ut

s

Control input 1
Control input 2

(b) Control inputs

Fig. 1. Input 1 applied at 25ms and input 2 applied at 200ms

0 1 2 3 4 5 6 7 8 9 10
 Time [s]

-0.5

0

0.5

1

Sy
st

em
 s

ta
te

s

State 1
State 2
State 3
State 4

(a) System response.

0 1 2 3 4 5 6 7 8 9 10
 Time [s]

-1

0

1

2

3

C
on

tro
l i

np
ut

s Control input 1
Control input 2

(b) Control inputs

Fig. 2. Input 1 applied at 200ms and input 2 applied at 175ms

0 1 2 3 4 5 6 7 8 9 10
 Time [s]

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Sy
st

em
 s

ta
te

s

State 1
State 2
State 3
State 4

(a) System response.

0 1 2 3 4 5 6 7 8 9 10
 Time [s]

-1

0

1

2

3

C
on

tro
l i

np
ut

s

Control input 1
Control input 2

(b) Control inputs

Fig. 3. Both control inputs applied together at 200ms

computation time required for each control input. Our first and

simplest heuristic under consideration is shown in Alg. 1, which

we discuss next.

Attempting to determine a good ordering of the control

inputs, Alg. 1 makes use of the open-loop gain of the discrete-

time system. The gain can be computed as G = Ca(I −
Φa)

−1Γa using the augmented state-space model given in

Eq. (12). The gain from each of the system’s control inputs uj

to system output yi is given by Gi,j . Intuitively, a control input

whose gain values have a larger magnitude has a greater effect

on the state of the system, so it would likely be preferable

to apply the inputs in order of descending absolute gains.

Unfortunately, this sorting is not possible to do directly, since

the gains of each control input are in general not totally

ordered (e.g., for output y1, G1,1 > G1,2, but for output y2,

G2,1 < G2,2). Therefore, for a system with m inputs and p

outputs, we compute a combined gain Gj for each input uj as

Gj =

p
∑

i=1

G2
i,j . (16)

These combined gain values can be sorted directly, giving an

order with which to apply the control inputs.

While Alg. 1 does succeed in creating an order with which

to apply the control inputs, its choice is oblivious to the LQR

cost matrices Q and R. To address this limitation, we propose a

second heuristic, given in Alg. 2. This heuristic modifies Alg. 1



Algorithm 1: A simple heuristic for ordering control

inputs by open-loop gain

Data: Matrices A, B, C, sampling period h
Result: Order to apply control inputs

1 Compute augmented discrete-time plant model Φa, Γa, Ca

assuming period h and zero delay;

2 G = Ca(I − Φa)
−1Γa;

3 for j = 1 to m do

4 Gj =
∑p

i=1 G
2
i,j ;

5 end
6 schedule = 〈inputs by descending Gj values〉;
7 return schedule;

Algorithm 2: A heuristic for ordering control inputs by

closed-loop gain

Data: Matrices A, B, C, Q, R, sampling period h
Result: Order to apply control inputs

1 Compute augmented discrete-time plant model Φa, Γa, Ca

assuming period h and zero delay;
2 Compute feedback gain matrix K with LQR;

3 G = Ca(I − (Φa − ΓaK))−1Γa;
4 for j = 1 to m do

5 Gj =
∑p

i=1 G
2
i,j ;

6 end
7 schedule = 〈inputs by descending Gj values〉;
8 return schedule;

by computing feedback control gains using LQR. Since initially

no ordering of the control inputs is known, it is assumed that the

control inputs are applied with zero delay when computing this

controller. Once the feedback control gain matrix K is known,

we compute the gain of the resulting closed-loop system, and

order the inputs as before. Because the controller in this closed-

loop system is designed using LQR, the cost matrices are thus

incorporated in the schedule.

Alg. 2 addresses the limitation of ignoring the LQR cost

function present in Alg. 1 by computing a feedback gain

matrix using LQR. It is however still limited, in that it orders

the control inputs without considering the computation time

required for each input. To help address this issue, we further

propose Alg. 3, an iterative version of Alg. 2. The first iteration

creates a controller assuming zero delay and scheduling the

control inputs based on closed-loop gain, as before. Each

subsequent iteration creates an augmented plant model using

the delays calculated in the prior iteration. A controller is then

computed using LQR, and a new schedule is created using the

gain of the new closed-loop system. This iteration generally

continues until two consecutive iterations result in the same

schedule. However, we leave it as future work to determine if

this will always occur, so in order to guarantee termination the

loop also ends after n! iterations.

B. Case Study

To evaluate these heuristics, we consider the following

MIMO system, with five states, four inputs, and four outputs:

A =











−0.0558 −0.9968 0.0802 0.0415 1.302

0.5980 −0.1150 −0.0318 0 0.153

−3.0500 0.3880 −0.4650 0 −0.649

0 0.0805 1.0000 0 0

1.0325 0.1032 0.326 −0.0681 0.126











;

Algorithm 3: Iterative heuristic for ordering control

inputs by closed-loop gain

Data: Matrices A, B, C, Q, R, input computation time
c1, . . . , cm, sampling period h

Result: Order to apply control inputs, schedule

1 schedule = 〈〉;
2 d1, . . . , dm = 0, . . . , 0;
3 t = 0;
4 repeat
5 last schedule = schedule;
6 Compute augmented discrete-time plant model Φa, Γa,

Ca assuming period h and delays d1, . . . , dm;
7 Compute feedback gain matrix K with LQR;

8 G = Ca(I − (Φa − ΓaK))−1Γa;
9 for j = 1 to m do

10 Gj =
∑p

i=1 G
2
i,j ;

11 end
12 schedule = 〈inputs by descending Gj values〉;
13 for j = 1 to m do

14 dj =
∑j

i=1 cschedule[i];
15 end
16 t = t+ 1;
17 until last schedule == schedule ∨ t == n!;
18 return schedule;

B =











0.0073 0 0.5 0.23

−0.4750 0.0077 0.105 0.86

0.1530 0.1430 0 −0.12

0 0 0.073 0.02

0.2020 0.0192 0 0.4











; C =







0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1







The four control inputs u1, u2, u3, and u4 are assumed

to require computation times of 0.025 s, 0.025 s, 0.050 s,
and 0.125 s, respectively. Similar to the example in Sec. III,

we consider a sampling period h = 0.25 s, and an initial condi-

tion z[0]T =
[

0 0.6109 0 0.6109 0 0 0 0 0
]

. The

cost function is of the form in Eq. (14), where

Q = diag
(

1 1 1 1 1 0 0 0 0
)

;

R = diag
(

0.5 0.5 0.5 0.5
)

,

giving equal weight to all system states, and lower weight to

the control inputs to stabilize the system in a shorter time.

Using this problem setup, we ran Algs. 1, 2, and 3 to create

schedules of the control inputs, and computed the correspond-

ing LQR cost. Additionally, we ran a brute-force search to find

the LQR cost resulting from all 24 orderings of the control

inputs. The results are presented in Table II; the schedules

produced by our heuristics are labeled, along with the best and

worst schedules overall.

For this particular set of parameters, determining a schedule

using the closed-loop gain with zero delay as in Alg. 2 gave

an LQR cost 2.46% higher than using the open-loop gain in

Alg. 1. However, by iterating over the schedules using Alg. 3,

we were able to find a schedule with 9.42% better performance

than the one found by Alg. 1. Unfortunately, this is still 14.12%
higher than the LQR cost resulting from the optimal schedule,

as determined using a brute-force search.

A visualization of the design space of the different schedules

is shown in Fig. 4. Each node in the directed graph is a

schedule of the control inputs. Each node has one outgoing edge



TABLE II
SCHEDULES AND CORRESPONDING LQR COSTS

Schedule LQR Cost Schedule LQR Cost

1 2 3 4 10.123 3 1 2 4 10.230

1 2 4 3 11.039 3 1 4 2 10.247

Best 1 3 2 4 9.946 3 2 1 4 10.457

1 3 4 2 9.965 3 2 4 1 11.542

1 4 2 3 11.071 Alg. 3 3 4 1 2 11.351

1 4 3 2 10.903 3 4 2 1 11.554

2 1 3 4 10.383 4 1 2 3 12.794

2 1 4 3 11.380 Alg. 1 4 1 3 2 12.532

2 3 1 4 10.675 4 2 1 3 13.122

2 3 4 1 11.829 Worst 4 2 3 1 13.438

2 4 1 3 13.089 Alg. 2 4 3 1 2 12.840

2 4 3 1 13.408 4 3 2 1 13.118

4 3 2 1 

3 4 1 2 

4 3 1 2 

4 2 3 1 

4 2 1 3 

4 1 3 2 

4 1 2 3 

3 4 2 1 

3 2 4 1 

3 2 1 4 3 1 4 2 3 1 2 4 

2 4 3 1 

2 4 1 3 2 3 4 1 

2 3 1 4 

2 1 4 3 

2 1 3 4 

1 4 3 2 

1 4 2 3 

1 3 4 2 

1 3 2 4 

1 2 4 3 

1 2 3 4 

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

C
ha

ng
e 

in
 L

Q
R

 c
os

t

Fig. 4. All orders of the four control inputs, with edges showing the next
schedule indicated by closed-loop gain for each.

indicating the next schedule that our iterative heuristic would

try, based on the closed-loop gain of the system. Thus, self-

loops indicate schedules where the iteration in Alg. 3 would

terminate. The edges are colored to indicate the change in LQR

cost between the two controllers. Several observations can be

made from this graph. First, ordering the control inputs by

closed-loop gain does not necessarily lead to a single “best”

schedule: depending on the initial schedule chosen, iteration

could lead to the schedule 3 4 1 2 or 1 4 3 2. It can also be seen

that the next iteration step does not always give a lower LQR

cost. A greedy iteration that stops if the next schedule produces

a higher LQR cost may not give better results than Alg. 3

though, since later transitions may give further performance

improvements. In the future, we would like to design heuristics

that are able to overcome these limitations of gain-based input

scheduling to produce better control performance.

V. CONCLUDING REMARKS

The goal of this paper was to initiate a study on how

different choices of perception computing and their imple-

mentation might impact control performance in autonomous

systems. As outlined in [1]–[4] there are many different choices

of perception (e.g., vision) processing algorithms and their

implementations in modern autonomous systems. How to best

choose and implement them – given their large design space

– is still a relatively open problem that could be studied in

conjunction with designing the associated controllers, leading

to new avenues in cyber-physical systems design.

ACKNOWLEDGEMENTS

This work was supported by the NSF award #2038960.
D. Roy was supported by the Chair for CPS in Production
Engineering at TUM and the AvH Foundation.

REFERENCES

[1] J. Janai et al., “Computer vision for autonomous vehicles: Problems,

datasets and state of the art,” Found. Trends Comput. Graph. Vis., vol. 12,

no. 1-3, pp. 1–308, 2020.

[2] M. Yang et al., “Re-thinking CNN frameworks for time-sensitive

autonomous-driving applications: Addressing an industrial challenge,” in

IEEE Real-Time and Embedded Technology and Applications Symposium

(RTAS), 2019.

[3] M. Balszun, M. Geier, and S. Chakraborty, “Predictable vision for

autonomous systems,” in 23rd IEEE International Symposium on Real-

Time Distributed Computing (ISORC), 2020.

[4] M. Geier et al., “Debugging FPGA-accelerated real-time systems,” in

IEEE Real-Time and Embedded Technology and Applications Symposium

(RTAS), 2020.

[5] J. P. Hespanha, P. Naghshtabrizi, and Y. Xu, “A survey of recent results

in networked control systems,” Proceedings of the IEEE, vol. 95, no. 1,

pp. 138–162, 2007.

[6] M. B. G. Cloosterman et al., “Controller synthesis for networked control

systems,” Automatica, vol. 46, no. 10, pp. 1584–1594, 2010.

[7] J. P. Hespanha, “Modeling and analysis of networked control systems

using stochastic hybrid systems,” Annual Reviews in Control, vol. 38,

no. 2, pp. 155–170, 2014.

[8] S. Chakraborty et al., “Automotive cyber-physical systems: A tutorial

introduction,” IEEE Design & Test, vol. 33, no. 4, pp. 92–108, 2016.

[9] D. Goswami et al., “Challenges in automotive cyber-physical systems

design,” in International Conference on Embedded Computer Systems:

Architectures, Modeling, and Simulation (SAMOS), 2012.

[10] M. Broy et al., “Cross-layer analysis, testing and verification of auto-

motive control software,” in 11th International Conference on Embedded

Software (EMSOFT), 2011.

[11] R. Schneider et al., “Multi-layered scheduling of mixed-criticality cyber-

physical systems,” J. Syst. Archit., vol. 59, no. 10-D, pp. 1215–1230,

2013.

[12] E. Garone, B. Sinopoli, and A. Casavola, “LQG control over lossy tcp-

like networks with probabilistic packet acknowledgements,” in 47th IEEE

Conference on Decision and Control (CDC), 2008.

[13] L. Shi et al., “Sensor scheduling over a packet-delaying network,”

Automatica, vol. 47, no. 5, pp. 1089–1092, 2011.

[14] S. Tseng and J. Anderson, “Deployment architectures for cyber-physical

control systems,” in American Control Conference (ACC), 2020.

[15] J. Anderson et al., “System level synthesis,” Annu. Rev. Control., vol. 47,

pp. 364–393, 2019.

[16] T. Nghiem, G. J. Pappas, R. Alur, and A. Girard, “Time-triggered

implementations of dynamic controllers,” ACM TECS, vol. 11, no. S2,

pp. 58:1–58:24, 2012.

[17] M. A. Khatib, A. Girard, and T. Dang, “Scheduling of embedded

controllers under timing contracts,” in HSCC, 2017.

[18] M. Lukasiewycz et al., “System architecture and software design for

electric vehicles,” in Design Automation Conference (DAC), 2013.

[19] A. Masrur et al., “VM-based real-time services for automotive control

applications,” in 16th IEEE International Conference on Embedded and

Real-Time Computing Systems and Applications (RTCSA), 2010.

[20] D. Goswami, R. Schneider, and S. Chakraborty, “Relaxing signal delay

constraints in distributed embedded controllers,” IEEE Trans. Contr. Sys.

Techn., vol. 22, no. 6, pp. 2337–2345, 2014.

[21] L. Zhang et al., “Timing challenges in automotive software architectures,”

in 36th International Conference on Software Engineering (ICSE), 2014.

[22] E. P. van Horssen, D. Antunes, and M. Heemels, “Switched LQG control

for linear systems with multiple sensing methods,” Autom., vol. 103, pp.

217–229, 2019.


