


or via a shared bus system) to the processing nodes. There,

the data needs to be decoded, reassembled and preprocessed.

While those operations are relatively cheap when compared

to the common Deep Neural Networks (DNNs) used in the

next steps, just receiving and decoding a full HD video stream

sent, e.g., over automotive Ethernet can be a significant burden

for a typical embedded Central Processing Unit (CPU) and

is ideally already offloaded to specialized hardware (e.g., to

fixed-function circuitry or FPGAs). The next step is to detect,

localize and classify objects and markers that are relevant

for the control- and higher-level decision making algorithms.

This is the predominant domain of DNNs, which may require

billions of operations to analyze a single frame. Again, this

needs to be offloaded to hardware that is more optimized for

this kind of task than general purpose CPUs, in particular

GPUs or dedicated accelerators for neural networks like Tensor

Processing Units (TPUs). Once the semantic information is

extracted from the video stream, the information can then be

used by the decision logic and control algorithms to compute

the optimal actuator settings to drive the autonomous system

towards its desired state. This information is then sent to the

actuators (potentially over another network) that finally apply

the updated force, valve positions, voltage levels and so on.

B. Fundamentals of Field Programmable Gate Arrays (FPGAs)

FPGAs are a particular kind of re-programmable hardware,

whose functionality is not fixed at chip production time, but can

be configured by the system developer and even changed later

when in the hands of the end customer. They mainly consist of a

large array of programmable logic blocks that usually comprise

SRAM-based Lookup Tables (LUTs), and are connected via an

equally configurable signal interconnect. Together with memory

and I/O elements, this allows the implementation of almost any

digital functionality an Application-specific Integrated Circuit

(ASIC) could be used for, but at a much lower cost compared

to the development and production of a new chip, and with the

ability to later change the functionality without developing a

new chip and replacing components already in the field (e.g.,

in order to support a new compression algorithm). Separate

FPGAs are most commonly used in prototyping stages, or in

products where developing and using a specialized chip is too

expensive or not flexible enough, but a software-based solution

is too slow or inefficient. Additionally, chip vendors like Xilinx

offer heterogeneous solutions that pair classic CPU cores with

an FPGA fabric. While the FPGA part can be used as classic

accelerator similar to GPUs, it can also be used to process

incoming and outgoing data streams on the fly and, e.g., also

handle low-level details of communication protocols without

interrupting the software on the CPUs [2].

Contrary to GPUs, FPGAs and their accompanying develop-

ment tools can offer excellent, cycle-accurate insights into the

behavior of a given design entity, although the level of detail

varies with the abstraction of the used Hardware Description

Language (HDL) and/or simulation model. On the system level

of purely FPGA-based systems, there, usually, is no dynamic

scheduling involved that would affect the execution times in an

unpredictable manner. The challenge for timing analysis resides

more in predicting and balancing chip area against latency of

a particular logic function’s implementation (see Sec. II-B) at

design time. For heterogeneous devices with a CPU subsystem,

however, each shared resource like memory or bus interconnect

complicates the timing analysis, as access latencies no longer

depend on the logic implemented within the FPGA fabric alone.

C. Fundamentals of Graphics Processing Units (GPUs)

Computer-graphics applications require highly parallel com-

putations for scaling in time (low latency) and space (millions

of pixels). GPUs were designed to meet these requirements

and later evolved to become powerful accelerators for use in

graphics-based computer-vision applications. NVIDIA strate-

gically positioned its GPUs to also be ubiquitous general-

purpose parallel computers by introducing the CUDA API and

extensive supporting tool chains. AMD provides an alternative

GPU ecosystem complete with open-source drivers, but it is

not as widely supported in popular computer-vision libraries.

As we describe in Sec. III-B, analysis for timing predictabil-

ity of GPUs can be even more difficult than analysis of multi-

core CPUs. The number and complexity of the processing cores

and the multiple levels of execution scheduling in hardware and

device drivers are the primary factors. Unfortunately, NVIDIA

GPUs are effectively black boxes – their inner details are locked

behind restrictive NDAs and incomplete documentation. Timing

analysis of GPUs also depends on how access to the GPU is

arbitrated: this can be via synchronization protocols, a server

or other middleware, or through the use of the existing or

modified GPU drivers. Additionally, as computer-vision algo-

rithms are typically designed for throughput rather than timing

predictability, algorithmic changes are often necessary when

using multicore+GPU platforms for autonomous systems.

II. MULTICORE+FPGA PLATFORMS

A. “Traditional” FPGA Fabric vs. Heterogeneous FPGA-SoCs

In contrast to the earlier Flash-based Complex Programmable

Logic Devices (CPLDs), the majority of current FPGAs relies

on volatile SRAM cells to implement arbitrary digital functions.

During offline design, synthesis and implementation phases, the

system designer describes the desired functionality by means of

HDLs and Intellectual Property (IP) cores. Together with timing

constraints at the level of a single clock cycle, the vendor’s tools

then break the desired overall functionality into relatively small

chunks of combinatorial circuits with – if necessary – single-bit

downstream registers to form a multi-stage processing pipeline.

Each of those subcircuits is then mapped to one Configurable

Logic Block (CLB) within the reconfigurable FPGA fabric that

consists of an architecture-dependent number of (SRAM-based)

LUTs and registers. Each LUT implements one small Boolean

function by mapping its n-bit input signal to a single-bit output,

which, optionally, can be registered. By combining from dozens

up to many thousands of such CLBs, complex digital blocks are

implemented without the financial/temporal overhead of custom

ASICs. The cut-out within Fig. 2 (top right) also shows various

other fabric internals found in today’s FPGA architectures. This

includes not only dedicated memories and multiply-accumulate

(MAC) blocks (which are more area- and energy-efficient than a







GPU core in a SIMD fashion, using built-in CUDA variables

to determine the data for that thread. Warps are combined into

blocks, which are further grouped into grids; to request a kernel

execution, the programmer specifies the layout of threads into

grids and blocks to facilitate binding threads to data. Each

SM is comprised of a number of hardware processing cores,

scheduled by a small number of internal warp schedulers.

A warp scheduler hides execution latency by dispatching a

warp from its ready queue onto 32 of its cores when the

previously executing warp stalls for access to a hardware

resource (execution unit, memory, etc.).

NVIDIA tracing tools. Tools such as NVIDIA’s Visual Profiler

can be used to profile CUDA applications to visualize kernel

executions, copies, and other CUDA operations, and to guide

optimization steps to maximize performance. However, these

tools do not give information necessary for timing analysis

of such workloads (e.g., which SMs execute a given kernel,

context switching between different processes), and their opti-

mization recommendations do not consider interference effects.

B. Timing Analysis for GPU-Using Workloads

One or more GPUs in an autonomous system are typically

shared among multiple vision applications. A fundamental

consequence is that interference from competing demands has a

significant impact on timing behavior. Interference can be both

temporal (which tasks execute when) and spatial (competition

for shared caches, DRAM, and buses). Accounting for GPU

execution time in real-time analysis depends on how competing

demands are arbitrated – by synchronization or scheduling.

Synchronization can be realized through the use of locking

protocols to limit interference by managing access to the GPU.

Scheduling can be realized using default GPU scheduling rules

to determine potential interference; alternatively, middleware

can be used to enable modified scheduling policies.

Multicore+GPU synchronization. Given the complex or even

black-box nature of GPUs, they are often treated as monolithic

devices that must be accessed exclusively. Prior work on real-

time multicore+GPU systems has treated the GPU as a mutual-

exclusion resource (e.g., [11]–[13]). In multi-GPU systems,

identical GPUs can be treated as replicated resources [14].

Multicore+GPU scheduling. On NVIDIA GPUs, kernels sub-

mitted to the GPU from different address spaces are multi-

programmed, i.e., all resources are given to one kernel at a

time, switching between the processes’ kernels in a time-sliced

manner. Thus, true concurrency between processes is disabled

by default; to enable concurrency between multiple address

spaces, NVIDIA’s Multi-Process Server (MPS) must be used.2

For GPU kernels submitted from a single address space

(or multiple address spaces if MPS is enabled), a hierarchical

queue structure can be used to model the NVIDIA driver

scheduling mechanisms; Amert et al. provided rules to describe

the scheduling of GPU operations [15], specifying block-

level scheduling behavior. Their benchmark suite is available

online [16], and can be used to trace block-level scheduling

2MPS is only available for discrete GPUs.

behavior on NVIDIA GPUs. Sañudo et al. provided additional

details on how individual blocks are mapped to SMs [17].

Middleware or driver-level changes can be used to intercept

and reorder GPU operations. For example, Kato et al. presented

TimeGraph [18], a non-preemptive fixed-priority scheduler that

relies on modifications to the open-source Nouveau driver

for NVIDIA GPUs (their work considered only graphical

workloads, as the Nouveau driver does not support CUDA).

Extending to general-purpose computations, Capodieci et al.

demonstrated a real-time scheduler for graphical and CUDA-

using tasks [19]. They implemented a software scheduler mod-

ule within the NVIDIA Drive-PX2 driver, enabling preemptive

earliest-deadline first (EDF) scheduling on the Drive-PX2 em-

bedded platform.

In addition to allowing multiple processes to use a GPU con-

currently, MPS also enables partitioning of the EE. However, it

does not allow for partitioning of the memory hierarchy, which

can lead to conservative estimation of spatial interference. To

enable partitioning of both cache and DRAM for discrete

NVIDIA GPUs, Jain et al. developed micro-benchmarking

experiments to reverse engineer the NVIDIA GPU memory hi-

erarchy [20]. Their page coloring technique enabled “fractional

GPUs” with improved isolation between processes.

Response-time and WCET analysis for GPUs. The schedul-

ing rules of NVIDIA GPUs can be directly used to determine

response-time bounds for GPU-using workloads. Yang et al.

provided response-time analysis [21] that depends on the maxi-

mum thread requirement of any block in the system, the number

of blocks per kernel, and the number of SMs comprising the

GPU’s EE, among other parameters.

Considering WCET analysis of individual kernels, Heo et al.

provided a WCET analysis for each layer of a DNN [22]. Their

model considers both processor contention (based on eligibility

of individual warps) and memory contention. Given the closed-

source nature of NVIDIA’s cuDNN library, Heo et al. used

NVIDIA’s profiling tools to measure counters (e.g., cycle and

memory instruction counts) needed to estimate parameters for

their model. They used their WCET analysis to modify an

existing DNN pipeline, as described below.

C. Using GPUs in Vision Applications

Care must be taken when using NVIDIA GPUs in safety-

critical applications, such as vision processing in autonomous

systems. NVIDIA documentation is vague (and sometimes self

contradicting), particularly around sources of implicit blocking

delays on the GPU and even the host CPU. Such pitfalls

were explored by Yang et al. [23], and include blocking on

the CPU if any GPU-memory frees occur concurrently with

the submission of GPU operations (contrary to the expected

behavior based on the documentation).

Many popular computer-vision frameworks have support for

NVIDIA GPUs, including PyTorch and TensorFlow for deep

learning and OpenCV for general computer-vision processing.

However, such frameworks are designed for throughput rather

than predictability. Furthermore, in automotive systems, hard-

ware resources are constrained by size, weight, and power. As a

result, algorithmic changes can be necessary to enable running



vision applications as real-time tasks and maximally utilizing

multicore+GPU platforms.

Yang et al. [24] considered various parallelism and pipelining

approaches for a convolutional neural network (CNN) object-

detection application, including merging images from multiple

camera sources into a single composite image. To enable real-

time deadlines to be met for DNNs, Heo et al. modified a DNN-

based object-detection system to be able to choose between

different pre-configured network paths [22]. The different paths

are chosen at runtime based on their WCET analysis for each

layer of the network and timing requirements.

D. Open Issues

A key open issue with multicore+GPU platforms is the

exploration of AMD GPUs. Due to the open-source nature of

the AMD software stack, real-time scheduling at the driver level

could enable better predictability than is available for NVIDIA

GPUs. However, AMD GPUs are not currently as widely

supported as NVIDIA GPUs by popular vision frameworks.

Thus far, most scheduling-based approaches have focused

on middleware, negating much of the potential for concurrent

execution; Capodieci et al. [19] explored scheduling changes

within the open-source drivers available only for NVIDIA’s

embedded platforms such as the Drive-PX2, and details and

source code were not made available due to non-disclosure

agreements. For both AMD and NVIDIA GPUs, more work is

needed to evaluate GPU driver implementations with different

real-time scheduling policies for GPU kernels.

IV. CONCLUDING REMARKS

Both FPGAs and GPUs enable the acceleration of general-

purpose computations used in vision applications by means of

the parallelism offered by their architectures. However, fully

capturing the timing behavior of FPGA- and GPU-enabled

systems remains a complex endeavor. While latency analysis of

a hand-written FPGA design entity is often relatively straight-

forward, the challenges lie in estimating resource requirements

and temporal behavior before design completion, the integration

of closed-source IP cores, and hard-to-predict shared resources.

In terms of GPUs, NVIDIA currently leads the market, but

their devices and software stack target throughput rather than

predictability, and their tools do not elucidate key details needed

for full timing analysis. GPUs from AMD present a promising

alternative, but are not as widely adopted by vision frameworks.

For systems comprised of both FPGAs and GPUs in addition

to multicore CPUs, analysis such as that of Yang et al. [21]

enables response times to be computed for acyclic processing

graphs in which different graph nodes (computations) execute

on different processor types. Such analysis could enable system

designers to choose between implementing algorithm compo-

nents on the CPU, FPGA, GPU, or other accelerators. However,

the problem of accurately analyzing timing behavior – be it

mathematically or via tracing – for real-life heterogeneous

architectures and general application models, still remains a

largely open problem that needs to be addressed for better

design and verification of autonomous systems.

ACKNOWLEDGEMENTS

This work was supported by the NSF award #2038960.

REFERENCES

[1] M. Balszun, M. Geier, and S. Chakraborty, “Predictable vision for
autonomous systems,” in 23rd IEEE International Symposium on Real-

Time Distributed Computing (ISORC), 2020.
[2] M. Geier, F. Pitzl, and S. Chakraborty, “GigE vision data acquisition for

visual servoing using SG/DMA proxying,” in 14th ACM/IEEE Symposium

on Embedded Systems For Real-time Multimedia (ESTIMedia), 2016.
[3] Xilinx Inc., “All Programmable SoCs and MPSoCs,” https://www.xilinx.

com/products/silicon-devices/soc.html.
[4] Intel Corporation, “Intel SoC FPGAs Programmable Devices,” https://

www.intel.com/content/www/us/en/products/programmable/soc.html.
[5] R. Wilhelm et al., “The worst-case execution-time problem – overview

of methods and survey of tools,” ACM Transactions on Embedded

Computing Systems (TECS), vol. 7, no. 3, pp. 36:1–36:53, May 2008.
[6] D. D. Borrione, L. V. Pierre, and A. M. Salem, “Formal verification of

vhdl descriptions in the prevail environment,” IEEE Design & Test of

Computers (D&T), vol. 9, no. 2, pp. 42–56, Jun. 1992.
[7] C. Kern and M. R. Greenstreet, “Formal verification in hardware design:

A survey,” ACM Transactions on Design Automation of Electronic Sys-

tems (TODAES), vol. 4, no. 2, pp. 123–193, Apr. 1999.
[8] D. Shah, E. Hung, C. Wolf, S. Bazanski, D. Gisselquist, and M. Mi-

lanovic, “Yosys+nextpnr: An open source framework from verilog to bit-
stream for commercial FPGAs,” in 27th IEEE Annual International Sym-

posium on Field-Programmable Custom Computing Machines (FCCM),
2019.

[9] M. Geier, T. Burghart, M. Hackl, and S. Chakraborty, “In situ latency
monitoring for heterogeneous real-time systems,” in 32nd International

Conference on VLSI Design and 18th International Conference on Em-

bedded Systems (VLSID), 2019.
[10] NVIDIA, “CUDA toolkit documentation v11.1.1,” Online at http://docs.

nvidia.com/cuda/.
[11] S. Kato, K. Lakshmanan, A. Kumar, M. Kelkar, Y. Ishikawa, and

R. Rajkumar, “RGEM: A responsive GPGPU execution model for runtime
engines,” in 32nd IEEE Real-Time Systems Symposium (RTSS), 2011.

[12] U. Verner, A. Mendelson, and A. Schuster, “Scheduling periodic real-time
communication in multi-GPU systems,” in 23rd International Conference

on Computer Communication and Networks (ICCCN), 2014.
[13] G. Elliott, B. Ward, and J. Anderson, “GPUSync: A framework for real-

time GPU management,” in 34th IEEE Real-Time Systems Symposium

(RTSS), 2013.
[14] C. Nemitz et al., “Multiprocessor real-time locking protocols for repli-

cated resources,” in 28th Euromicro Conference on Real-Time Systems

(ECRTS), 2016.
[15] T. Amert et al., “GPU scheduling on the NVIDIA TX2: Hidden details

revealed,” in 38th IEEE Real-Time Systems Symposium (RTSS), 2017.
[16] N. Otterness, “Cuda scheduling viewer,” https://github.com/yalue/cuda

scheduling examiner mirror, 2020 (accessed 29 November 2020).
[17] I. S. Olmedo, N. Capodieci, J. L. Martinez, A. Marongiu, and

M. Bertogna, “Dissecting the CUDA scheduling hierarchy: a performance
and predictability perspective,” in 26th IEEE Real-Time and Embedded

Technology and Applications Symposium (RTAS), 2020.
[18] S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa, “TimeGraph:

GPU scheduling for real-time multi-tasking environments,” in USENIX

Annual Technical Conference, 2011.
[19] N. Capodieci, R. Cavicchioli, M. Bertogna, and A. Paramakuru,

“Deadline-based scheduling for GPU with preemption support,” in 39th

IEEE Real-Time Systems Symposium (RTSS), 2018.
[20] S. Jain, I. Baek, S. Wang, and R. Rajkumar, “Fractional GPUs: Software-

based compute and memory bandwidth reservation for GPUs,” in 25th

IEEE Real-Time and Embedded Technology and Applications Symposium

(RTAS), 2019.
[21] M. Yang et al., “Making OpenVX really ‘real time’,” in 39th IEEE Real-

Time Systems Symposium (RTSS), 2018.
[22] S. Heo, S. Cho, Y. Kim, and H. Kim, “Real-time object detection system

with multi-path neural networks,” in 26th IEEE Real-Time and Embedded

Technology and Applications Symposium (RTAS), 2020.
[23] M. Yang et al., “Avoiding pitfalls when using NVIDIA GPUs for real-

time tasks in autonomous systems,” in 30th Euromicro Conference on

Real-Time Systems (ECRTS), 2018.
[24] ——, “Re-thinking CNN frameworks for time-sensitive autonomous-

driving applications: Addressing an industrial challenge,” in 25th IEEE

Real-Time and Embedded Technology and Applications Symposium

(RTAS), 2019.


