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Understanding the characteristics of air traffic delays and disruptions is critical for developing ways to
mitigate their significant economic and environmental impacts. Conventional delay performance metrics
reflect only the magnitude of incurred flight delays at airports; in this work, we show that it is also important
to characterize the spatial distribution of delays across a network of airports. We analyze graph-supported
signals, leveraging techniques from spectral theory and graph signal processing to compute analytical and
simulation-driven bounds for identifying outliers in spatial distribution. We then apply these methods to
the case of airport delay networks, and demonstrate the applicability of our methods by analyzing US
airport delays from 2008 through 2017. We also perform an airline-specific analysis, deriving insights into
the delay dynamics of individual airline sub-networks. Through our analysis, we highlight key differences in
delay dynamics between different types of disruptions, ranging from nor’easters and hurricanes to airport
outages. We also examine delay interactions between airline sub-networks and the system-wide network, and
compile an inventory of outlier days that could guide future aviation operations and research. In doing so, we
demonstrate how our approach can provide operational insights in an air transportation setting. Our analysis
provides a complementary metric to conventional aviation delay benchmarks, and aids airlines, traffic flow

managers, and transportation system planners in quantifying off-nominal system performance.
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1. Introduction
The air transportation system is a complex and highly interconnected infrastructure that is critical
to enabling several aspects of modern society. In the US, airlines operate over 28,000 daily flights,

transporting over 2.4 million passengers and 58,000 tons of cargo per day (Airlines for America
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2018). Civil aviation accounts for 5.1% of the US Gross Domestic Product, and generates $1.6
trillion in revenues (Federal Aviation Administration 2017). The operational characteristics of air
transportation renders it vulnerable to a variety of disruptions. In order to achieve a resilient and
robust system, it is important to understand the impacts of, and recovery from, such disruptions.

The impacts of air traffic disruptions are most often manifested by canceled and delayed flights.
Weather is the primary cause of air transportation disruption, accounting for almost 40% of
incurred delays in 2017 (US Department of Transportation 2018). Low cloud ceilings, high winds,
low visibility, and thunderstorms can significantly reduce the capacity of an airport runway or an
airspace sector. Other causes of disruption include aircraft equipment issues, airport airside and
landside abnormalities such as security threats and fires, as well as air traffic control related issues
such as staffing shortages and strikes. These disruptions vary in their timings, intensities, and
durations; furthermore, due to the highly-interconnected nature of the system, local perturbations
have widespread impacts. In fact, secondary or reactionary delays account for approximately 40%
of the domestic delay minutes in the US during 2018 (Bureau of Transportation Statistics 2018).
Flight delays cost the US economy $32.9 billion annually (Ball et al. 2010), which is approximately
$500 per minute of flight delay. Single instances of large-scale weather disruptions also cause severe
economic and operational impacts: The January 22-24, 2016 winter storm resulted in the cancel-
lation of over 11,000 flights, and an estimated financial losses of over $100 million. Airlines, air
navigation service providers (ANSPs), and infrastructure planners will all benefit from the study

of disruptions and the resultant impact patterns, in order to anticipate and mitigate their effects.

1.1. Problem motivation

Most operational performance benchmarks set by ANSPs and airlines measure, either directly
or indirectly, the magnitude of incurred flight delays. However, there is a second, more subtle,
performance metric: the spatial distribution of delays through the system. Two disruptive events
could result in the same total delay, but affect very different airports spatially, resulting in different
operational impacts. The overarching theme of our work is to identify and analyze days in terms
of both the magnitude and the spatial distribution of delays.

The delays experienced by two airports may not be independent; they could be correlated due to
geographic proximity, traffic volumes, delay propagation, airline schedules, and traffic flow manage-
ment procedures. For example, nor’easter systems typically affect several East Coast hub airports,
resulting in correlated delays. There is consequently the notion of a typical or expected spatial
distribution of delays, reflected by the statistical correlations between delays at different airports.
We illustrate this notion with the example of Boston Logan International (BOS) and New York
LaGuardia (LGA) airports. The delays at these airports are positively correlated, due to the high
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traffic volume between them, as well as their geographic proximity. When either airport experiences
high delays, we expect high delays at the other airport as well. However, high delays at one of the
airports but low delays at the other would be an unexpected occurrence. This unusual behavior
would not be captured by the magnitude of delays alone: BOS and LGA may both experience
average delays of 90 minutes on one day, while on another day, BOS may experience an average
delay of 170 minutes and LGA only 10 minutes. The sum of the delays at the two airports will
be 180 minutes on both days, even though the latter day experiences an unexpected distribution
of delays. The size of the network in terms of the number of nodes (airports) also complicates a
pairwise analysis of spatial delay distributions. The spectral and GSP-based method proposed in
this paper addresses these challenges.

In this paper, the events that cause delays (e.g. extreme weather, airport outages, etc.) are
referred to as off-nominal events or disruptions. The resultant spatial delay distributions can be
either expected or unexpected. An expected spatial delay distribution is consistent with the historical
delay correlations between the airports, whereas an unexpected spatial delay distribution refers to
one that is not. A key objective of this work is to identify days that are unusual in terms of the
magnitude or the spatial distribution of delays. We will formally define these outlier days in scale

and outlier days in distribution in Section 3.

1.2. Problem description
We address three primary questions through the methods and results presented in this paper:

1. Defining and characterizing outliers in graph signals: We develop a mathematical
framework to characterize days with unexpected spatial distributions of delays. Using this frame-
work, we propose an outlier detection theory that identifies such days, using a combination of
analytical and simulation-driven techniques.

2. Operational insights from the outlier analysis: We interpret the results of analyzing
spatial distribution of airport delays from an operational perspective. In particular, we identify
specific airports or groups of airports that contribute to unexpected delay dynamics on a given
day, and observe differences in delay patterns between various types of disruptions.

3. System-wide versus airline-specific dynamics: In addition to a system-wide analysis, we
consider the airline sub-networks and their influence on the whole system. We examine the question
of expected versus unexpected spatial delay distributions from the perspective of individual airlines,

compare these sub-networks, and evaluate the impacts of disruptions on different airlines.

1.3. Literature review

Several previous works have focused on modeling the dynamics of flight delays, using approaches
ranging from queuing theory (Pyrgiotis, Malone, and Odoni 2013), network models (Gopalakrish-
nan, Balakrishnan, and Jordan 2016b,c), discrete event simulators (Ahmadbeygi, Cohn, and Lapp
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2010), and machine learning (Kim et al. 2016). The insights developed by these prior works help
explain the observed correlations between delays at different airports.

Prior efforts have also considered grouping weather phenomena in the US National Airspace
System (NAS) (Sarkis and Talluri 2004, Grabbe, Sridhar, and Mukherjee 2013, Mukherjee, Grabbe,
and Sridhar 2013), clustering similar airport arrival capacity profiles (Liu, Hansen, and Mukherjee
2008, Buxi and Hansen 2013) and traffic management initiatives such as Ground Delay Programs
(GDPs) (Kuhn 2016, Gorripaty et al. 2017, Ren, Kim, and Kuhn 2018), identifying anomalous
aircraft trajectories (Seah, Aligawesa, and Hwang 2010, Li et al. 2015, 2016), and more pertinently,
clustering delay networks (Rebollo and Balakrishnan 2014). However, these previous works have
two key limitations: They examine only particular sub-components of the system such as a specific
airport, a small group of airports, or individual flight trajectories; and they only consider the
magnitude, and not the spatial distribution, of disruptions or delays. As noted in Section 1.1, it is
critical to examine both facets in order to gain a wider operational perspective.

The identification of unexpected spatial delay distributions is related to the broader problem
of outlier detection. A common approach to this problem involves clustering, where data points
that are far away from clusters are labeled as outliers (Hadi 1992). Prior work has considered
k-means (Gan and Ng 2017), hierarchical clustering (Deb and Dey 2017), density-based clustering
(DBSCAN (Abid, Kachouri, and Mahfoudhi 2017)), as well as graph similarity measures (Isufi,
Mahabir, and Leus 2018) to identify outliers as data observations that do not belong to any cluster.
Another approach involves fitting known distributions to the observed data, and using statistical
tests to evaluate if the data point falls at the tails of such distributions (Filzmoser 2004, Rocke and
Woodruff 1996). While the Gaussian (Filzmoser 2004, Pena and Prieto 2001) or Gaussian mixture
model (Lam et al. 2017) assumption is the most common, recent works have even considered black-
box deep neural networks (Kieu, Yang, and Jensen 2018) to empirically identify the tails of the
distributions. Information-theoretic approaches have also been considered to identify structural
outliers (Shekhar, Lu, and Zhang 2002, Eberle and Holder 2007). While these approaches are
successful in detecting outliers, they do not identify outliers based on spatial distributions, they
cannot decouple the detection of outliers based on magnitude versus spatial distribution, and there
may not be an interpretable explanation for why a particular point was classified as an outlier. In
particular, the interpretability of our results is critical to providing implementable insights.

Central to our methods is the GSP framework (Sandryhaila and Moura 2013, 2014a,b, Shuman,
Ricaud, and Vandergheynst 2016, Shuman et al. 2013), which extends the notion of a Fourier
decomposition to a graph setting, and provides a toolkit to analyze signals on graphs. Our focus
on graph-supported signals differentiates our contributions from the large class of prior work that

focuses on the structure of the graph (e.g., Laplacian embeddings from Belkin and Niyogi (2002))
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without any notion of signals supported on such graph structures. Other researchers have applied
graph spectral theory for classification (Ahmed, Dare, and Boudraa 2017), filtering or smoothing
(Shuman, Ricaud, and Vandergheynst 2016), and extending convolutional neural networks for
graphs (Bronstein et al. 2017). Spectral methods have been used to study surface traffic congestion
(Crovella and Kolaczyk 2003, Mohan et al. 2014) as well as air traffic flows in Air Route Traffic
Control Centers (ARTCCs) (Drew and Sheth 2014, 2015). In particular, Drew and Sheth (2014,
2015) note that spectral methods for air traffic flow management often produce results that are
not clearly interpretable; our approach of combining GSP with an outlier detection framework
overcomes this limitation.

The identification of outliers is critical for tasks such as data processing, ensuring data integrity,
data-driven diagnostics, and anomaly detection. While several techniques exist for outlier detection
in multivariate and graphical data sets, they typically focus on data points with deviations in
magnitude, and not unexpected spatial distributions across the nodes of a graph. Finally, outside
of the transportation context, GSP-based signal classification and anomalous signal detection have
been studied using signal spectrum characteristics with no formalized outlier detection theory

(Egilmez and Ortega 2014, Drayer and Routtenberg 2018, Sun et al. 2019).

1.4. Manuscript outline

The remainder of the manuscript is organized as follows. Section 2 outlines the main contributions of
our work. Section 3 presents the main methodological contributions, including our GSP framework
and data-driven approaches for identifying outliers. The analytical expressions for bounds that
demarcate outliers can be found in the appendix (Sections A, B, and C). In Section 4, we apply our
methods to the US system-wide aviation network. We then consider airline-specific sub-networks
and compare them to their system-wide counterpart in Section 5. Section 6 presents concluding

remarks and directions for future work.

2. Contributions of this paper
The major contributions of this work are as follows:

1. We formalize notions of, and develop tools to identify, outliers in graph signals. We show how
the total variation metric can help identify graph-supported signals with an unexpected distribution
across the nodes.

2. The proposed methods leverage GSP to provide interpretable explanations for why certain
data points are classified as outliers in spatial delay distributions. We identify, via eigenvector
modes, specific groups of airports whose delays on a particular day are unexpectedly distributed,

and correlate them with known operational disruptions.
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3. We identify, analyze, and interpret spatial delay patterns across the NAS, with a focus on
specific types of disruptions such as nor’easters, hurricanes, airport outages, and thunderstorms.
We characterize the differences in the impact of various types of disruptions.

4. We examine the spatial delay dynamics of airline sub-networks with different routing strategies
(e.g., hub-and-spoke versus point-to-point), observe their interactions, and compare the impacts of
disruptions on them and the system-wide network.

Our methodology identifies outlier NAS days containing disruptions with unexpected delay
dynamics that could neither have been comprehensively detected using prior methods, nor opera-
tionally interpreted. With this new inventory of outlier NAS days, ANSPs will be able to diversify
airspace scenario playbooks to include these rare but operationally important events. This in turn
provides a more robust set of playbooks, reducing the need for tactical re-planning. Similar benefits
specific to airline sub-networks can be derived from our airline-specific analysis.

The methods proposed in this paper can be applied to a number of networked systems, including
other transportation systems, the Internet-of-Things, power systems, communication networks,
and biological systems. A preliminary version of this work without a formalized outlier detection

framework or airline-specific analysis was published in Li et al. (2019).

3. Methodological framework

In order to present our methodological framework, we first set up standard notations and termi-
nologies from spectral theory and GSP in Sections 3.1 and 3.2. We develop the definitions and
propositions directly related to our outlier detection theory in Section 3.3, with additional the-
oretical analyses in the appendix (Sections A, B, and C). We provide an empirical, data-driven
approach to identifying outliers in Section 3.4 based off of the formal outlier theory.

In the context of transportation systems, our methodology identifies geo-spatial outlier events
(e.g., geographical disruptions, irregular operations, sudden demand-capacity imbalances) by ana-
lyzing large-scale system performance metrics. Specifically, we apply our outlier detection theory
to the air transportation network, using the performance metric of airport delays as the graph
signals. The definitions, propositions, and data-driven outlier identification techniques formalized
in this section form the basis for the analysis of the system-wide and airline-specific delay networks

in Sections 4 and 5, respectively.

3.1. Setup and notations

Let us consider a multidimensional real signal x € R¥*!, The N elements of the signal are not
independent if they are observed at interconnected elements of a network. We can model the
networked system as a graph G = (V, E), where V is the set of |[V| = N nodes and E CV x V is the
set of edges. We consider x to be supported on the nodes of G; i.e., there is a mapping f:V — R
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from i € V to the i™ element, x;, of x. There is a weight map w: F — R that assigns a weight w;;
to edge (i,7) € E. These weights can be represented using an adjacency matrix A € SV where

[A];; = w;;. We restrict ourselves to undirected graphs, where w;; =w;; and A= AT.

Suppose we are given a set of M data points, Oy = {xM ... . x® ... x*} where each data
T
point is x®) = (xﬁ’”, ,xE@) € RM*1, The empirical mean of the graph signal at node i is given

by fi; =+ Z o1 :cf-k), and the sample Pearson correlation coefficient r;;0,, on edge (4,7) is

o (o =) (o ““)—ag) 0

o Y (o0 - \/Z Oy

For the remainder of this paper, we set [A];; = w;; = r4j0,,. Our graph can be referred to as

a correlation network, since the edge weights correspond to the correlation between the signals
at two nodes. The signals x are assumed to be realizations of some non-negative random vector
X =(Xy,...,XN)T € Rgoﬂ drawn from some non-negative distribution with well-defined means
= (pt1, ..., uy)" € RV*E and covariance 3 € RV*V ¥ = 0. The correlation matrix C = [p;;] € RV*N

is given by:

E[(Xi — ) (X — p)] '
VEIX: — 1) 2JE[(X; — ;)]
While the value of C for the underlying distribution of the graph signal vectors may not be

(2)

iy

known, it can be estimated from O, since r;;0,, is a consistent estimator of p;;, meaning that
Nljignoo (rmo M) = pi;. Consequently, A and C are interchangeable in this paper (see appendix for the
partial information case where A~ C). Finally, we denote norms by |[/x|| : RY — Rs, and we use

l-norms ||x|| = Zf\[:1|xz| unless otherwise specified.

3.2. Preliminaries and definitions

We define some preliminary concepts from spectral theory that we will use for outlier detection.

Definition 1 (Graph Laplacian) The (combinatorial) graph Laplacian £ with respect to a graph
with adjacency matriz A is £= D — A, where D = [d;;] € RV*¥N is the diagonal degree matriz of

the graph, with d; = Zj\;l Wyj .

The graph Laplacian £ is a real symmetric matrix with a full set of orthogonal eigenvectors. The

normalized eigenvectors are denoted by v; € RV*! i€ {1,..., N}, with v]v; =;;, where

0 otherwise

All the eigenvalues satisfy £v; = \;v;. We sort the eigenvalues such that Ay < Ay <... < Ay. Since the

graph Laplacian has row sums of 0 (Definition 1), v; =1 is the constant eigenvector corresponding
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to the eigenvalue A; = 0. Furthermore, the multiplicity of eigenvalues equal to 0 is the number of
connected components in the underlying graph. Thus, if the correlation network is fully connected,
then 0 =X, < X, <...< Ay, and span ({vy,...,ox}) ZRY*! Any vector x € RV*! can be written

. .. . . N
as a linear combination of {vy,...,ux}; i.e., there exist scalars o; such that x=7%".", o;v;.

Definition 2 (Graph Fourier Transform (GFT)) The Graph Fourier Transform (GFT) of a

graph signal vector x is the set of scalars {ay,...,an} where a; = v]x.

To draw an analogy to the classical Fourier transform, the eigenvectors are equivalent to sinusoids
on graphs, and the eigenvalues correspond to discrete frequencies. The scalar «; € {aq,...,an}
represents the magnitude of contribution of the i** eigenvector of “frequency” );. Similar to the
notion of spectral energies for the classical Fourier transform, larger eigenvalues are associated with

eigenvectors having higher graph spectral energies, as follows.

Definition 3 (Spectral and total energy) The spectral energy of x corresponding the i eigen-

vector is 2, and the total energy of x is given by ||x||> = SN a2

i=1 "1 "

The graph Laplacian can also be used to compute a measure of the “smoothness” of a graph

signal x, called the total variation.

Definition 4 (Total variation (TV)) The total variation (T'V) of a graph signal x with respect

to the graph Laplacian £ is defined as:

1
TV(S, X) = 5 Zwij (l’l — .'L'j)g =xT£x. (4)
i#]
For brevity, we write TV(x), dropping the reference to the graph Laplacian £. When the TV is

computed with respect to the random vector X, we denote it as TV(X).

The total variation provides a metric map TV : RV*N x RV¥*1 R that measures the smoothness
of a graph signal. A low value of TV corresponds to a graph signal that is said to be smooth. The
following proposition helps to interpret the GFT in terms of the TV and signal smoothness:

Proposition 1 Suppose we have a data point x*) € Oy and its GFT {agk),...,ag\’f)}. Then, the
following two statements are equivalent:

(i) TV(x®) = (x#)T ex®

(ii) TV(x®) =37 (agk)>2>\i.
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Proof of Proposition 1. Starting with the definition for the TV of x*), we show that it is equivalent

2
to Zf\il (agk)> it

N

N N
TV (xW) = (x®)"ex® = a0l £ > a0, = > el Nolv, = Y (a§k>>2 Ao (5)
j=1 i=1 i\J

1=1

The last equivalence comes from the fact that v; and v; are orthogonal eigenvectors, i.e. (v;,v;) = J;;.
O

Proposition 1 formalizes the relationship between the GFT, the TV of a graph signal, and the
spectral and total energies of a graph signal. Larger contributions of the eigenvector v; to the GFT
of x (i.e., larger values of ;) result in a higher TV, translating to a less smooth graph signal.
Similarly, the more energetic eigenvectors (i.e., larger values of \;) contribute to a higher TV,
resulting in a less smooth graph signal. Since the eigenvalues are sorted in ascending order with

respect to index i € {1,..., N}, we compare eigenvalue magnitudes using the index i.

3.3. Graph signal outliers

Recall that the edge weights of the correlation matrix are given by r;j0,,. For a pair of nodes
i,j € V connected by an edge with weight 7,0,,, the contribution to the TV is 7;0,, (z; — xj)2.
We consider the following possible scenarios:

Case 1: If the graph signals from i and j are highly correlated (i.e., 7;;0,, — 1), one would then
expect that the graph signal magnitudes change in a similar manner. One would expect both z;
and z; to be large, or both to be small (i.e., z; ~ x;). However, a new observation may, or may
not, conform to the expected behavior.

Case la: When the observed data point is as expected (i.e., it is consistent with historical
trends), its contribution to the TV is small, since the second term in 70,, (z; — :cj)2 is small.

Case 1b: When the observed data point differs significantly from what is expected, its con-
tribution to the TV is not small, since the second term in 7;;0,, (z; — xj)2 is large.

Case 2: If the graph signals from i and j are uncorrelated (i.e. r;0,, — 0), then based on
historical observations, we do not expect specific trends in the graph signal magnitudes. In this
case, regardless of any realized signal magnitudes x; and x;, the contribution to the TV is small,
since the first term of 7;j0,, (z; — xj)z is small.

The above reasoning is valid when the signs of the correlation coefficients are all the same. If only
a small fraction of correlation coefficients have differing signs, a projective affine transformation can
be applied to 7j0,,, and the intuition still holds (see appendix for details). The analysis of networks
with mixed-sign correlation coefficients is a direction for future research. Cases 1 and 2 motivate

the use of TV as a metric for outlier detection in terms of a graph signal’s spatial distribution.
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Since Case 1b is the only case where a high TV may occur, such an occurrence is deemed to be
unexpected given historic observations. The TV metric yields an aggregate representation of the

behavior of x across the entire graph. We now define the notion of a weak outlier in distribution.

Definition 5 An observation x is considered a weak distribution outlier of level k or a weak

outlier in distribution of level k if

TV(x) ¢ [E[TV(X)] - k Var[TV(X)],E[TV(X)]+k\/Var[TV(X)]}, (6)

for some k>0. In other words, an observation is considered to be a weak outlier in distribution if

its TV does not lie within k standard deviations of its expected value.

The quantity TV(X) is a derived random variable with mean E[TV(X)] and variance
Var [TV(X)]. Although the definition of a weak outlier in distribution captures variations with
respect to historical trends, it does not account for TV scaling quadratically with the graph signal’s
magnitude. An observation should not be labeled an outlier in distribution if it has a higher TV
simply due to having a larger magnitude. We therefore designate it a weak outlier in distribution,
and propose an alternative metric that captures outliers in magnitude, or scale. This metric corre-
sponds to a classic definition of outliers in multidimensional data: observations with ||x|| differing

significantly from E[||x]|].

Definition 6 An observation x is considered to be a scale outlier of level k or an outlier in scale

of level k if
x|l ¢ [E[IIXIH — k/ Var{[[ X[]], E[|IX[[] + &/ VaT’[IIXH]} :

for some k> 0. In other words, an observation is considered to be an outlier in scale of level k if

its morm does not lie within k standard deviations of its expected value.

The notion of outliers in scale distinguishes the effects of a graph signal’s magnitude from its
spatial distribution. However, since we know that TV is a quadratic form on x, the definition of
weak outliers in distribution does not eliminate the dependence between TV(x) and its realized
magnitude ||x||. We therefore condition the expectation and variance of TV(X) with respect to
its realized norm ||X|| = ||x|| in order to eliminate this dependence, giving rise to the following

definition of a strong outlier in distribution:

Definition 7 An observation x is considered to be a strong distribution outlier of level k& or a

strong outlier in distribution of level k if TV(x) ¢ [A, B], where

A=E[TVX) | |IX[| = |x[] = k+/ Var[TVX) | [ X]] = [[x]]

B=E[TV(X)| [ X|| =[x/l + kv/ Var [TV(X) | [ X]| = [|x]l],
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for some k> 0. In other words, an observation is considered to be a strong outlier in distribution
if its TV does not lie within k standard deviations of its expected value, conditioned on the realized

norm || X{| = x|

The interpretation of our definitions in the context of airport delays is as follows: outliers in scale
identify days where the sum of all airport delays is higher or lower than expected, whereas outliers
in distribution identify days where the geographical pattern of airport delays are unexpected. To
summarize our various definitions of outliers, Figure 1 presents a graphical description of these
definitions. Note that the sum of all airport delays is precisely the 1-norm of x because all airport
delays over a day are non-negative. This characteristic justifies the equality [|x| = Zf\il x;, and is
a commonality in many transportation networks with non-negative signals (e.g. number of bikes
at a bike share station). Additionally, since strong outliers in distribution captures solely the
geographical spread of airport delays, it will be our metric of choice for the remainder of this paper.
While analytical expressions for strong outliers in distribution remain an open problem, our goal in
the next subsection is to generate empirical bounds for strong outliers in distribution. For brevity,

we relegate our analysis of outliers in scale and weak outliers in distribution to Sections A and B

in the appendix.

E[lIX]IT - 1|< Varf||X]|] E[IIX[] + llc\/Var[IIXII]

| E[TVE) [IXIl = [1xll] + ky/ Var[TVX) [[IXI] = [IxI1]

E[TVEO! IXIl = lIxIl]

TV(x)

............................. frreeeees E[TV(X)] — ky/Var[TV(X)]
[IxIl

Figure 1 Notional representation of bounds that we will derive analytically (outliers in scale and weak outliers

in distribution) and empirically via simulation (strong outliers in distribution).

3.4. Empirical bounds for strong outliers in distribution

Recall that while we would like to analytically evaluate the continuously conditional expecta-
tion and variance of TV(x) as utilized in Definition 7, a closed-form expression for the prob-
ability density function of the conditional derived random variable E[TV(X) | ||X]| = |x|]] and
Var [TV(X) | || X]| = ||x]|] for all || X|| = ||x|| remains elusive. Thus, we present a modified, empirical

version of Definition 7 below:
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Definition 8 (Empirical strong outliers in distribution) An observation x is considered to

be an empirical strong outlier in distribution of level k if TV(x) ¢ {:4\4,@} , where:

A, =R[TVX) | X = |Ix]| €] — ky/ Var[TVIX) | X[ = x] € 1]

B, =E[TV(X) | [ X[l =lIx[l € te] + k\/VW[TV(X) | IX = x|l € e,
for some k>0 and empirical bound interval U, computed via Algorithm 1.

Note that we utilize an interval-based estimation scheme to empirically estimate the mean and
.8

variance using § < oo pre-specified disjoint covers |J,_,U, = [min {||x[|} , max {||x||}] C Rso. We

propose the following simulation-based method in Algorithm 1 that constructs the bounds from

Definition 8. The workflow of Algorithm 1 is depicted in Figure 2.

Algorithm 1 Computing empirical bounds for strong outliers in distribution
Input: Observations Oy;; Number of intervals §; Number of trials T’

Output: Uy, V0 € {1,...,0}; E[TV(X)| | X]|| = x| € U] and Var[TV(X)| [ X]|| = x| €] , YU,
Estimate f, f), C from Oy,
A+ C; £+ D-A

for Trial i of 1T do // Draw T graph signal vector realizations

4 x X EN (ﬂ, f))
5 X ¢ max {x,0} // Restrict to non-negative realizations
6 Vix|l,i < Z;V:l x5 Vrvx),i < XTLx
7 end
8 A« mx{v”"”};min{v”x”} // Width of intervals
o Up = [min { Vi } + (€= DA, min (Vi } +(A] , wee {1,..,6}
forA Interval £ of 1:6 do // Empirical interval-conditioned E[TV(X)] and Var [TV (X)]
10 | E[TV(X) | |IX]|=|x]| € U] < Mean{Vrvx),i | s.t. Vixy,i €Ue}
11| Var[TV(X) | |X|| = |[x]| € U]« Var{Vyee.i|i st Vix i €Us b
12 end

It is important to note that we only assume that the underlying distribution for X has a well-
defined mean and (co)variance. Thus, Algorithm 1 can be deployed as long as there are sufficient
observations in Oy, to estimate [, 3, and C reliably. For the remainder of this paper, the phrase
“strong outliers in distribution” refers to the outliers computed via Algorithm 1. We now apply our
methodological framework to examine the dynamics of airport delays, and highlight the importance
of outlier detection in this context. Even though we focus on the air transportation network, these

methods are broadly applicable to the analysis of data from networked systems.
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,F/E[TV(X) LIXI = [Ix]l € Uqg] + kaEr[TV(X) LIXI = [Ix]| € Uq]
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Figure 2 Empirical strong outliers in distribution bound generating process given simulated observations
o .8
(Jx]|, TV(x)) generated from {ﬂ,E,C} partitioned via |J,_,U, = [min {||x||},max{||x]|}] C Rxo.
Om -

This approximates the magenta bounds shown in Figure 1.

4. System-wide analysis

In this section, we analyze delays in the aviation network, aggregated over all airlines, to study the
system as a whole. We detail the data setup and processing in Section 4.1, then examine various
spectral properties in Section 4.2. In Section 4.3, we discuss the projection of airport delays into
a 2-dimensional subspace of total delay (TD) and total variation (TV), and discuss our results in

Section 4.5.

4.1. Data setup and processing

We obtain delay statistics from the FAA Aviation System Performance Metrics (ASPM) database
for the time period 2008 to 2017 (Federal Aviation Administration (FAA) accessed 2018). The
analysis is limited to the busiest 30 airports in the US (FAA Core 30); we then compute the total
delay at each of these airports during each day, defined as 0000Z to 2359Z. The total delay at an
airport (i.e., a node in the graph) is the sum of the arrival and departure delays of all flights at
that airport during the day. Consequently, we obtain 3,653 graph signal vectors (each of dimension
30), one corresponding to each day in the data set. The edge weights of the graph are the sample
Pearson correlation coefficients based on the 10 years of data (Equation (1)). It is worth noting that
all correlations estimated from data are strictly positive, and there is no need for a non-negative
projection as discussed in Section 3. This process results in a graph with 30 nodes, (320) =435 edges,
and 3,653 instances of delay signal vectors on these nodes.

Figure 3 depicts the resultant correlation matrix as a heat map (Figure 3(a)) and as a geograph-
ical map (Figure 3(b)). Two distinct sub-networks demarcating major East Coast and West Coast
airports can be seen in Figure 3(b), in addition to a smaller sub-network for the Midwest airports
(MSP, ORD, MDW, and DTW) as well. Many airport pairs on the East Coast are connected by
edges with high correlation coefficients. In other words, when the delay at one East Coast air-

port (e.g., IAD) is high, then it is likely that the delays at other East Coast airports (e.g., DCA,
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BWI, PHL, etc.) will also be high. These relationships are due to heavy traffic connectivity, geo-
graphic proximity, and a higher likelihood of these airports being impacted by the same disruptions
and traffic management initiatives (TMIs). By contrast, the two Chicago-area airports — O’Hare
(ORD) and Midway (MDW) — are less than 20 miles apart with no commercial air traffic operating
between them, and yet have highly correlated delays due to similar weather and TMI impacts. The
correlations between delays are determined by a combination of geographical proximity, airline

operations, scheduling practices, and traffic flows.
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Figure 3  (a) Heat map displaying the delay correlation between the top 30 airports; (b) Correlations shown with
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4.2. Spectral analysis

We compute the Laplacian £ from the adjacency matrix as per Definition 1, and compute its
eigenvectors (A < --- < A30) and eigenvector modes (v1, - -v3g). These eigenvector modes form the
basis for the space of airport delay signals; the eigenvector modes v; corresponding to higher indices
i are said to be more energetic and have a higher TV (Section 3).

Table 1 presents a qualitative description of all the 30 eigenvector modes and their corresponding
eigenvalues, while Figure 4 provides a visualization of the first and last three eigenvector modes.
The key feature of interest in the modes is the sign of the mode at an airport. For a given eigenvector
mode, airports with the same sign contribute in a similar way to the total delay signal. Airports
with a positive component within the eigenvector mode move in the opposite way to airports
with negative components of the eigenvector modes. For example, the v, mode encodes the delay

dynamics where SFO delays are moving opposite to delays at DEFW, IAH, ATL, PHL, and MIA.
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In other words, if the delay at SFO is high, then the delays at the latter group of airports is low,
and vice versa. Note that the most energetic eigenvector modes — the most unexpected modes
— all involve East Coast airports with differing delay trends. As another example, consider the
eigenvector mode vqg. It captures very energetic and unexpected delay dynamics where EWR
delays are trending opposite to other New York-area airports (JFK, LGA), as well as other major
East Coast airports (BOS, PHL, and IAD). Recalling the relationships between TV and spectral
energy (Definition 3 and Proposition 1) as well as expected versus unexpected graph signal outliers
(Section 3.3), a qualitative, operational interpretation is that eigenvector modes such as vy, v,, and
v are delay dynamics that are more expected, whereas vag, V29, and v3g are rarer, more unexpected

delay dynamics.

Eigenvector
component

1

0.5
(@2,=0

10

-0.5

(€) Ao = 12.27 () Az0 = 12.67

Figure 4 Most (v30,v29,v28) and least (v1,v2,v3) energetic eigenvector modes of the system-wide graph

Laplacian.

As discussed in Section 3, an airport delay graph signal vector for any day can be decomposed
into linear combinations of eigenvector modes v; through wvsy. For each day in 2008 through 2017,
we compute the spectral energy contributions of all 30 eigenvector modes, and plot the average
contributions across the entire 10-year time frame in Figure 5. The first mode vy, which is the
constant mode, accounts for 80% of the energy, and we only plot the energy contribution of the
remaining modes v, through vsy. A higher percentage of spectral energy contribution indicates that
a particular eigenvector mode — and hence, a particular delay pattern — contributes more to the
overall delay dynamics of a typical day in the NAS.

We interpret four eigenvector modes with relatively high spectral energy contributions based on
Figure 5. Eigenvector mode vy (contributing approximately 1.2% of the spectral energy) indicates

that an interesting delay dynamic occurs when the two major New York City airports (JFK and
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v; i Trend 1 Trend 2
vy A1 =0 Constant Constant
V2 A2 =5.04 ATL, MIA, PHL, DFW, TAH SFO
V3 A3z =5.42 HNL DFW, TAH, SFO

ATL, BOS, BWI, CLT,

DCA, DTW, EWR, FLL,

IAD, JFK, LGA, MCO,
MIA, PHL, TPA

ve | Ai=5.67 DFW, IAH, HNL

vs | A5 =6.29 IAH DFW

Vs | e =6.91 DEN, SLC, LAX, PDX, SEA ATL, FLL, MIA, SFO, HNL
vr | A\r=7.65 MIA, LAX, PDX, SEA MSP, DEN

vs | As=7.87 ATL, DTW, MDW, MSP, ORD MIA, DEN, LAX

Vg | Ao =797 PHX, LAS, LAX, SAN MIA, DEN, SEA

V10 | Ao =8.27 ATL, CLT, DEN, LAX, SEA MIA, MDW, MSP, ORD
v | A =8.48 ATL, MIA, MSP, SLC, PDX . ABDC?SJ’F]?{\%G%(?AP’HEL\?VS% A
V12 | A1z =8.71 SLC, LAS, PDX, SAN MSP, DEN, LAX, SEA
V13 | A1z =8.91 MDW, ORD, LAS, SAN MSP, LAX, PDX

vig | A4 =8.95 MDW, ORD, LAX, PDX LGA, MSP, SLC, LAS, SAN, SEA
V15 | Ais = 9.03 LAS, PDX, SAN SLC, LAX

vi | A1 =9.20 PHX, LAS ORD, SLC, SAN

V17 | iz =9.84 PHX BOS, ORD, SLC, LAS, LAX, SAN
vig | A1g =9.89 PHX, ORD MDW

V19 Alg =10.20 FLLﬂ 1\[()07 TPA ]?](]?‘fé’DLCGi: ?\XA}{,7PI?I]E7
V20 | A20 =10.33 | ATL, BOS, DTW, FLL, JFK, LGA CLT

v21 | A21 =10.83 | BOS, CLT, FLL, LGA, MDW, ORD DTW, MCO, TPA

Vaz | A2 =10.85 DCA, LGA, MCO, TPA BOS, CLT, DTW, FLL
Va3 | A2z = 11.01 | BWI, DCA, FLL, IAD, LGA, PHL BOS, MCO, TPA

V22 | Moa = 11.30 BWI, DCA, IAD, MCO, PHL CLT, DIW, LGA, TPA
Va5 | Mos = 11.35 DCA, T1AD, POL, TPA LGA, MCO

Va6 | Mo = 11.57 JFK, EWR, POL DCA, BOS, BWI, IAD, LGA
Va7 | Aoy = 11.71 PHL, MCO DCA, IAD, JFK

V2s | Aas = 12.03 DCA, JFK, PHL TAD

Vo | Moo = 12.27 EWR BOS, IAD, JFK, LGA, PHL
V30 | Aso = 12.67 BWI DCA, EWR, IAD, MCO, PHL

Table 1 Description of eigenvector modes, delay trends (trends 1 and 2 move in opposite directions), and the

airports involved.

« DEN, SLC, LAX, FLL, MCO, TPA JFK, EWR, PHL
PDX, SEA BOS, DCA, EWR, DCA, BOS, BWI,
ATL, FLL, MIA, TAD, JFK, LGA, IAD, LGA
SFO, HNL MIA, PHL

,_
an
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..-._
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Eigenvector mode index 1
Figure 5 Average spectral energy across each system-wide eigenvector mode; eigenvector modes v> through v3g

is shown, with the constant mode v; removed for fair comparisons.
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EWR) along with the close-by PHL have significantly higher or lower delay magnitudes as compared
to the remaining New York airport (LGA) and other major East Coast hubs (DCA, BWI, IAD
and BOS). This disagreement in terms of airport delays not only occurs within a very localized
level (LGA being different from EWR and JFK), but also at a regional level (New York City
and Philadelphia being different from Boston and the Washington DC area). Another mode that
accounts for a little over 1.3% of the average spectral energy is vi9. This mode describes a similar
pattern as w.g, where there are local as well as region-wide disagreements in delay trends. Here,
Florida airports (FLL, MCO, and TPA) have different delay magnitudes in comparison to several
major East Coast airports and MIA, which is geographically close to FLL, MCO, and TPA.

Two other eigenvector modes that contribute around 1.2% of the average spectral energy are vy
and vy;. These modes highlight the need to perform an airline-specific analysis (in addition to the
system-wide studies), since these two modes strongly suggest delay dynamics involving major Delta
Air Lines (DL) hubs. Specifically, we see DL hubs such as LGA, MSP, SLC, and SEA grouped
together in vy, whereas vy; indicate delay dynamics where ATL, MSP, and SLC delays move
opposite to BOS, JFK, LGA, and SEA.

4.3. Evaluation of outliers using total variation and total delay
Recall from Section 3 that TV and TD provide a low-dimensional projection for analyzing multi-
variate graph signals. Figure 6 plots the TV and TD for the airport delay graph signals for each
day in the 2008-2017 data set (3,653 days). The bounds for outliers in scale as well as for the weak
and strong outliers in distribution are computed for level kK =4 and plotted. It is worth noting
that the lower bounds for the outliers in scale and the weak outlier in distribution are negative
and not plotted. This highlights the significant level of conservatism in these bounds in relation to
the thresholds for strong outliers in distribution. The primary factor that makes the weak bounds
conservative is that they are not dependent on the TD, which does not allow them to capture the
increasing variance in the TV for higher values of TD. For further discussions and empirical results
on the gap between the strong and weak bounds, we refer the readers to Gopalakrishnan, Li, and
Balakrishnan (2019). Additionally, the choice of k is important to consider when deploying our
outlier detection methodology. One approach could be to decide on a reasonable value a priori,
as done in other statistical procedures, and continue the analysis. Another approach could be to
choose a k such that small perturbations in k& does not result in large changes in outlier populations.
This could be done through examining a plot of the percentage of outliers versus k, similar to an
elbow plot in cluster analysis.

From Figure 6, we observe that 167 days (4.6 % of days) were classified as strong distribution

outliers, 221 days (6.0% of days) were classified as weak outliers in distribution only, no days
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were classified as outliers in scale only, and 14 days (0.4% of days) were classified as both weak
outliers in distribution as well as outliers in scale. Another observation from Figure 6 is that the
TV typically increases with an increase in TD, since the TV is related to individual airport delays
via a non-negative quadratic polynomial. For all subsequent discussions and results in this paper,
we only examine strong outliers in distribution, as it is the tightest in terms of its bounds.
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Figure 6 TV versus TD for all days in 2008-2017 with level k£ =4 weak and strong outlier bounds demarcated.

4.4. Identifying disruptions for further analysis

A central motivation for our usage of GSP is to characterize differing delay patterns that result
from aviation disruptions. To this end, we would like to analyze the subset of days (data points)
in Figure 6 that experiences a particular type of disruption. Such an analysis would determine if
certain types of disruptions are correlated with an unusually large number of outliers. We use two
independent systems of categorizing disruption days and creating subsets for further analysis. The
first categorization is based on external disruptions, whereas the second is based on delays and
cancellations.

In the first categorization of days, we identified four specific disruptions: nor’easters, hurricanes,
airport or airline outages, and thunderstorms. A total of 178 days out of the 10-year period was
labeled with one of the four types of disruptions (see Table 12 in supplementary materials (SM)
for a list of these dates), and the metrics used for identifying days are as follows:

Nor’easters: Nor’easters are large convective systems that typically impact the East Coast and
are associated with heavy rain or snowfall. These disruptions typically occur between September
and April, are well-predicted a few days in advance, and usually result in severe airport and airspace

capacity reductions. We use the Regional Snowfall Index (RSI) metric (Squires et al. 2014), along
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with an estimate of financial damage to identify 60 days in our data set which are affected by
nor’easters (National Weather Service 2019).

Hurricanes: We consider Atlantic hurricanes that primarily impact the southern and southeastern
coastal regions of the US, and the East Coast in rare circumstances. We considered three factors
when selecting our list of 34 hurricane-type days: (1) the Saffir-Simpson hurricane wind scale
(National Oceanic and Atmospheric Administration 2018b), (2) the geographic region of impact
must include the contiguous US (National Oceanic and Atmospheric Administration 2018a), and
(3) the resultant financial costs (Weinkle et al. 2018). Similar to nor’easters, they are well predicted
storm systems, and impact air traffic operations for several consecutive days.

Airline and airport outages: Airline-specific and airport-specific outages typically occur due
to equipment failure, and occasionally due to security-related incidents. Some examples of root
causes include power outages that affect an airport, computer or hardware malfunctions affecting
the flight dispatch system of one airline, and outages that affect third-party global distribution
systems and computer reservation systems. These outages are typically localized to one specific
airline or airport, or possibly a group of airlines using the same service provider. We used online
news sources to identify 49 outage-type days (Yanofsky 2015).

Thunderstorms: Unlike the other three types of disruptions, thunderstorms are quite common,
occur over very localized regions (on the order of a few hundred miles), are rapidly evolving, last
only for a couple of hours, and very difficult to predict. Since there is no standardized way of
locating significant thunderstorm days, we use Ground Delay Programs (GDPs), which is a proce-
dure used to reduce the demand at affected airports, as a proxy of thunderstorm activities. Severe
thunderstorm activity days in summer months are identified using a clustering procedure described
in Gopalakrishnan, Balakrishnan, and Jordan (2016a), then cross-referenced with weather radar
maps to confirm the presence of convective activity (National Oceanic and Atmospheric Admin-
istration 2019). Subsequently, 35 days with severe system-wide disruptions due to thunderstorms
are identified.

In terms of operational performance measures, the amount of flight delay as well as cancellations
are crucial metrics used by airport managers, airlines, as well as ANSPs. This forms the basis
for the second categorization of days. To this end, we use the delay and cancellation clusters to
assign a label indicating the delay and cancellation levels on a day-by-day basis. The clustering
methodology and subsequent mapping into low or high delay and cancellation levels is discussed in
Gopalakrishnan, Balakrishnan, and Jordan (2016a). The four labels that any day can be assigned
to are:

e Low delay; Low cancellation (DLCL): This is the most common type of day (1044 days,

74.7% occurrence) with relatively normal operations throughout the system.
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e Low delay; High cancellation (DLCH): These days (54 days, 3.9% occurrence) are typ-
ically indicative of proactive cancellations by airlines in anticipation of severe disruptions (e.g, a
northeaster snowstorm). The huge reduction in flight volumes provides ample schedule buffer and
results in low delays.

e High delay; Low cancellation (DHCL): Such days (170 days, 12.2% occurrence) may be
indicative of an unplanned or poorly forecasted disruption such as pop-up thunderstorms, giving
airlines little chance to proactively cancel.

e High delay; High cancellation (DHCH): The most severe unplanned disruption typically
leads to significant delays and cancellations. These are the days (130 days, 9.3% occurrence) with
the worst system impact.

Figure 7(a) depicts the 178 days classified as nor’easters, hurricanes, airport outages, or thun-
derstorms. Note that we use the same bounds for outliers in scale, as well as the weak and strong
outliers in distribution as Figure 6, since we are still searching for outliers in the context of the
entire system across the 10-year span. Figure 7(b) presents all the days from January 1, 2014
through October 31, 2017 partitioned into one of the four delay-cancellation groups. Because of
limited availability of the complete cancellation data set used for clustering, we are restricted to a
shorter time span. The coordinates of the centroids for each of the subset of the days is also plotted
to provide a high-level overview. The counts for outliers in all these cases, as well as a discussion

and interpretation of the results is presented in the next subsection.
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Figure 7 TV versus TD plot for a subset of days; (a) 2008-2017 with four disruptions, and (b) 2014-2017 with
four system-wide delay and cancellation conditions. The average value (centroids) for each category is

also shown.
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Category | Outlier counts| %
Nor’easter 17 out of 60 | 28.3%
Hurricane 1 out of 34 2.9%
Thunderstorm 5 out of 35 14.3%
Outage 2 out of 49 4.1%

Table 2 Outliers for the four types of disruptions

4.5. The role of disruption in spatial delay distributions

We present the strong outliers in distribution statistics for the four types of disruptions (nor’easters,
hurricanes, airline- or airport-specific outages, and thunderstorms) in Table 2, and for the delay-
cancellation subsets (low delay with low cancellation, low delay with high cancellation, high delay
with low cancellation, and high delay with high cancellation) in Table 4.

We see a clear distinction in the occurrence of strong distribution outlier days for the four
disruption categories (Table 2). Taken together, the hurricanes and outages-type days only result
in 3 days out of 83 being strong distribution outliers (3.6%). On the other hand, the system-wide
impact of thunderstorms and nor’easters were higher in terms of unexpected spatial distribution
of delays, and a total of 22 days out of 95, or 23.2% were classified as outliers. This is significantly
higher than the outlier counts for hurricane- and outage-type disruptions. Thunderstorms and
nor’easters are thus correlated with higher TV, higher TD, and more outliers, while airport outages
and hurricanes are correlated with a lower occurrence of outliers.

The low TD and low TV characteristics of hurricane days are interesting and surprising, since
hurricanes are extremely disruptive to the air transportation system. These results indicate that
not only are hurricanes correlated with lower delays, but these delays are also distributed in an
expected manner. This is in direct contrast with nor’easters, which are also very disruptive but
result in higher delays, higher TV, and result in more unexpected distributions of delays. One could
argue that cancellations (Bureau of Transportation Statistics 2015), which are not accounted for in
our analysis, may offer an explanation. However, this is not the case. In Table 3, we list the average
cancellation percentages across all days belonging to each of the four disruption categories, includ-
ing the 10-year average, for the entire system as well as the four major airlines. We observe that
hurricanes and nor’easter have comparable system-wide cancellation percentages, but nor’easters
still result in higher delays and TV.

This difference in outlier occurrences may reflect differing operational philosophies when dealing
with irregular operations (IROPS) stemming from each of the four disruption types. Specifically,
hurricanes tend to be well-predicted in terms of its projected trajectory, giving airlines time to
proactively cancel. Hence, we see hurricane-type days not only with low delay, but also expected

distributions of delay. On the other hand, nor’easters may not be associated with airlines canceling
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strategically and efficiently re-positioning aircraft to enable swift recovery, even though nor’easters
may be well-predicted. This results in higher delays, higher TV, and unexpected distribution of
delays. It is also possible that the regions typically affected by these nor’easters, i.e., the Mid-
Atlantic and New England regions, involve highly congested airports within high-traffic density
airspace which are already operating at their capacity limits, further exacerbating the problem.
Our data-driven analysis clearly highlights the current challenges faced by airlines regarding proac-
tive management of these nor’easters, and motivates the need to develop sophisticated tools for
disruption recovery and management.

The more spontaneous nature of airport outages do not give airlines the luxury to proactively
cancel, resulting in outage days having more incurred airport delays than hurricane days. However,
since outages tend to be isolated to one particular airport or airline, its effects on the overall spatial
distribution of airport delays within the entire system is limited, thus resulting in low levels of TV.
Lastly, thunderstorms are geographically local and temporary phenomenon. These characteristics
do not afford airlines a long prediction and planning horizon; thus, airlines typically try to operate
through thunderstorms, preferring to incur moderate delays while avoiding cancellations. This
explains the higher TD values associated with thunderstorms. However, since these events affect
only a small fraction of the traffic at any instant, they do not lead to large-scale changes in the
delay distribution, and hence are correlated with lower occurrences of outliers.

Interestingly, while it seems that nor’easters result in the largest impacts when it comes to the
spatial distribution of airport delays at a system-wide level in comparison to airport outages or

thunderstorms, we will see that this does not hold in the airline-specific analysis (Section 5).

Category T American | Delta | United | Southwest
(AA) | (DL) | (UA) (WN)
Nor’easter 7.9% 8.1% 8.0% |8.2% 5.1%
Hurricane 7.8% 7.3% 57% 19.6% 6.9%
Outage 2.3% 3.1% 2.5% | 1.4% 2.2%
Thunderstorm 2.9% 3.1% 2.0% |[1.9% 1.4%
10-year average | 1.6% 1.8% 1.0% [1.4% 1.1%

Table 3 Percentage of flights canceled across the entire system as well as for each of the four airlines under

different disruption categories.

We also observe an insightful relationship that links flight cancellations with strong outliers in
distribution. From Table 4, it is apparent that high levels of cancellation, irrespective of whether it
is associated with high or low delays, is correlated with higher outlier counts. Out of the 1,214 days
with low flight cancellation levels, only 1.5% were outliers; but when the cancellations are high,

almost 22% of the days are outliers. A possible explanation is that when flights are not cancelled,
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Category Outlier counts| %
Low delay, low cancellation (DLCL) | 12 out of 1044 | 1.2%
Low delay, high cancellation (DLCH) 12 out of 54 | 22.2%
High delay, low cancellation (DHCL) 6 out of 170 3.5%
High delay, high cancellation (DHCH) | 33 out of 130 | 25.4%

Table 4  Outliers for the delay-cancellation categories

they typically propagate delays based on their route structure and connectivity, and spread the
delays across the system. While this increases the system-wide delay, it is more homogeneous, and
hence decreases the TV. On the other hand, cancellations isolate parts of the network and prevent
the propagation of delays. This results in significantly lower delays downstream in the schedule,
since the cancelled aircraft cannot complete those routes. Although we caution that further work is
required to ascertain the causal direction of this relationship between cancellations and high TV,
this motivates the usage of flight cancellations as a control action to guide system-wide recovery
towards more expected spatial delay distributions, if such a state is desired.

Note that our cancellation-based analysis is a proxy for various latent operational factors that
could have resulted in or exacerbated an unexpected spatial delay distribution. These include local-
ized disruptions such as pop-up thunderstorms and outages that do not have widespread system
impacts, traffic management initiatives with an unexpected scope of coverage, or even sudden
demand surges (e.g. additional scheduled flights for certain sporting events) or temporal shifts (e.g.
unscheduled aircraft maintenance). One important way to further this analysis is to examine the
situation from the perspective of individual airline sub-networks. Hence, in Section 5, we present
the spectral analysis, outlier identification, and disruption impact assessment individually for four
major US carrier. We also analyze the complex relationship between the system as a whole in

comparison to the individual sub-networks of these carriers.

5. Airline-specific analysis
Several results in the previous section hint at the necessity to zoom in at an airline-specific level.
First, some of the eigenvector modes focus on hub airports for specific airlines indicating a deeper,
airline-specific effect. Second, disruptions such as thunderstorms or nor’easters tend to affect specific
geographies, consequently impacting some airlines more than others. Finally, even though airlines
may be affected individually, the system-wide view aggregates these variations and does not capture
the subtleties and nuances of airline operations.

We detail the data setup in Section 5.1, the analysis of the spectral modes in Section 5.2, the
identification of outliers using TV versus TD plots in Section 5.3.1, and the comparisons between

system-wide versus airline-specific in Section 5.3.2.
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5.1. Data setup and processing

Since ASPM does not provide airline-specific breakdowns of airport delays, we use publicly avail-
able on-time performance data retrieved from the Bureau of Transportation Statistics (BTS) for
the time frame of January 1, 2008 through December 31, 2017 (Bureau of Transportation Statistics
2015). The data pre-processing involves filtering for flights arriving at, or departing from our Core
30 airport list, aggregating delays over the day, adjusting for multiple time zones, and eliminat-
ing canceled and diverted flights. Finally, we restrict our study to four airlines that all together
account for approximately 79% of departed seats for all domestic US traffic (Bureau of Transporta-
tion Statistics 2019): American Airlines (AA), Delta Air Lines (DL), United Airlines (UA), and
Southwest Airlines (WN).

For each of the four airlines, we have a corresponding unique non-negative correlation matrix
that serves as the airline-specific adjacency matrix; for brevity, these airline-specific correlation
heat maps are presented in Figures 11 and 12 in SM. Some of these four airlines do not serve all
30 airports during the time frame of our analysis; hence the graphs for WN had 24 nodes (no
operations in ORD, MIA, JFK, DFW, TAH, and HNL), AA and UA have 29 nodes each (no AA
or UA operations at MDW), while DL services all 30 airports. Thus, in our ordered indices i for
eigenvector modes v; and eigenvalues \;, the highest ¢ for AA, DL, UA, and WN will be 29, 30,
29, and 24, respectively.

In AA’s network, we see a fairly uniform distribution of strong correlations mostly focused on
their East Coast hubs (e.g. CLT, DCA, LGA) as well as their hub at DFW. In contrast, the DL
network reflects a much strong presence of airport delay correlations in the East Coast, and is more
similar to that for the system-wide network. UA’s network highlights correlations in the West Coast
and Midwest, centered around SFO, DEN, and ORD. There are also noticeable airport pairs that
have zero correlations, indicating little or non-existent UA operations between that specific airport
pair (e.g. ATL and JFK). Finally, WN has a few airport pairs with high correlations (e.g. TPA-
MCO, DCA-ATL), and no airports with a significant number of high correlation edges incident on
them (except PHX and a few west coast cities to a mild extent). This emphasizes the intrinsically
different network structure, routing strategies, and tail assignment by WN compared to the other

three airlines.

5.2. Spectral analysis

We plot geographically the most energetic and the second most energetic eigenvector modes for
each airline in Figure 8. Note that comparing eigenvalues across airlines is not meaningful as they
originate from different graphs Laplacians, but within a particular airline, the eigenvalues retain

the same interpretation of graph “frequencies” as discussed in Section 3.
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Figure 8  Most (Amax) and second most (Amax—1) energetic eigenvector modes for AA, DL, UA and WN.

At the airline-specific level, we see interesting patterns emerge within the top two highest-energy
eigenvector modes that are not captured at the system-wide scale. For AA, DL, and UA, the most
energetic eigenvector mode depicts a spatial distribution of delay where delays at the corresponding
airline’s largest hub (see Table 8 in SM for annotated table of airline hubs) are not in-sync with
delays at other major hubs for that airline’s sub-network. Additionally, while the eigenvectors for
AA, UA, and WN target their hubs or focus cities, the two most energetic modes for DL involve only
ATL and other geographically proximate Florida airports. This highlights the significant density
of hub operations at ATL by DL, and the relatively small network presence of other DL hubs in
comparison to ATL.

In Figure 9, we plot the distribution of spectral energy across each airline’s eigenvector modes.
Similar to the system-wide case, the constant eigenvector mode (v;) accounts for a large portion of
the average spectral energy (61.1%, 59.4%, 58.1%, and 66.1% for AA, DL, UA, and WN, respec-
tively); we do not show this constant mode in order to highlight the subtleties of the other modes.
The network legacy carriers (AA, DL, and UA) are similar to each other in the sense that their top
eigenvector mode contributes significantly to the spectral energy. In other words, for these carriers,
delays at their largest hubs move opposite to other airports sufficiently frequently so that vg.,
contributes to a high percentage of spectral energy. This is in contrast to WN which appears to
loosely follow a power law decay in energy across higher modes, and has higher contributions from
less-energetic modes such as vy, vs,v4, and vs.

For the three network legacy carriers, there are also some lower-energy modes that contain a
high percentage of spectral energy. In particular, these include vg for AA, vg for DL, and vy, for
UA. For these three eigenvector modes, they typically involve one or two airports that are hubs
for the specific airline, but also many other airports that tend to be hubs for other network legacy
carriers. Interestingly, we will see in Section 5.3.2 that these lower-energy modes play a dominant

role on days when some airline sub-networks are outliers, but others are not.
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Figure 9 Average spectral energy across each eigenvector mode for all four airlines. v; is removed for all airlines.

5.3. Total variation and total delay

We analyze delay signals and graph Laplacians that are airline-specific to highlight the differences
between delay dynamics, spatial delay distributions, and response to disruptions by individual
airlines. Specifically, we identify the airline-specific outlier counts for each disruption (Section 5.3.1),
and interpret the relationships between the airline-specific versus system-wide analysis (Section

5.3.2). For the disruption analysis, we consider the same set of 178 days from Section 4.4.

5.3.1. Discussion of airline-specific outliers We first compute airline-specific strong dis-
tribution outlier bounds; the TV versus TD plots with bounds for each airline can be found in the
SM. The empirical strong outlier bounds for AA, UA, and WN are similar, with DL exhibiting
significantly wider bounds. We consistently see that airline- or airport-specific outages and thun-
derstorms have greater effects on the spatial delay distribution of the airline sub-networks than
the system-wide network. Furthermore, while nor’easters had the greatest effect on system-wide

spatial delay distributions, their effect at the airline sub-network level is diminished. While AA,
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UA, and WN disruption centroids were within the empirical strong outlier bounds, the DL cen-
troids for thunderstorms and outages are outside the bounds. This indicates that even an “average”
thunderstorm or outage event typically results in unexpected spatial delay distributions in DL’s
sub-network.

Airline-specific outlier statistics are compiled in Table 5, along with corresponding system-wide
outlier statistics. Summary percentages we quote in this discussion can be computed straightfor-
wardly from Table 5 by conditioning on the appropriate airline. We observe that disruptions affect
airline sub-networks quite differently compared to the system-wide network. For example, an aver-
age of 39% of thunderstorm-type days were strong outliers in distribution for one of the three
network legacy carriers, with DL having over half (51.4%) of its thunderstorm-type days classified
as outliers, whereas only 14.3% of thunderstorm-type disruption days were classified as outliers in
the system-wide analysis. The strong hub-and-spoke nature of these airline operations along with
their routing strategies may contribute to the significant operational impact of transient disrup-
tions such as pop-up thunderstorms. On the other hand, the more point-to-point nature of WN

may explain why only 8.6% of their thunderstorm-type days are classified as outlier in distribution.

(Sys tem?zzsgoo?; tier %) Airline | Outlier counts | %
AA 7 out of 60 11.7%
Nor’easter DL 9 out of 60 15.0%
(28.3%) UA |10 ouwt of 60 | 16.7%
WN 8 out of 60 13.3%
AA 0 out of 34 0.0%
Hurricane DL 1 out of 34 2.9%
(2.9%) UA 0 out of 34 0.0%
WN 2 out of 34 5.9%
AA 5 out of 49 10.2%
Outage DL 9 out of 49 18.4%
(4.1%) UA 10 out of 49 20.4%
WN 7 out of 49 14.3%
AA 10 out of 35 28.6%
Thunderstorm DL 18 out of 35 51.4%
(14.3%) UA 13 out of 35 37.1%
WN 3 out of 35 8.6%
AA 292 out of 3,653 | 8.0%
10-year span DL 301 out of 3,653 | 8.2%
(4.5%) UA 288 out of 3,653 | 7.9%
WN 355 out of 3,653 | 9.7%

Table 5 Outlier counts and percentages for each type of disruption and specific airline.

There are also differences in the spatial delay patterns caused by nor’easters at a system-wide

level versus an airline-specific level. On an airline-specific level, we see that an average of 14% of
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nor’easter-type days are classified as an outlier for at least one of the airline, compared to over
28% for the system-wide analysis. At the system-wide level, nor’easters often cause unexpected
spatial delay distributions owing to their propensity to impact the highly correlated East Coast and
Mid-Atlantic region. However, unlike the system-wide case, the eigenvector modes with the highest
spectral energies for airlines (Figure 8) tend to be more geographically diverse. In particular, rather
than concentrating on the FEast Coast, these energetic eigenvector modes tend to correspond to
AA, DL, and UA’s largest hubs, which are geographically spread out. Furthermore, as discussed
in Figure 9, these high energy eigenvector modes also tend to be frequently triggered.

Finally, outages result in lower system-wide outlier occurrences (4.1%) in comparison to airline-
specific outliers (average of 15.8% of the days). This is because outage events typically involve only
one specific airport or airline that experiences most of the disruptions, with little diffusion to the
system-wide network. In general, spatial delay distributions within airline sub-networks are more
easily perturbed than system-wide spatial delay distributions; this can be seen in the 10-year span
outlier statistics, where 4.6% of all 3,653 days were outliers in the system-wide analysis, but outlier

percentages varied between 7.9% (for UA) and 9.7% (for WN) when analyzing individual airlines.

5.3.2. System-wide versus airline-specific outliers In this discussion, we connect the
system-wide outlier results from Section 4.3 with airline-specific outlier results. For each day in the
10-year data set, we assign five labels that indicate whether or not the system-wide network and
each airline’s sub-network was classified as a strong distribution outlier. This information can be
represented in the form of a tuple (System-wide, AA, DL, UA, WN), where each entry flags a “x”
if the corresponding network is an outlier. For example, the tuple (x, , , , ) represents a
day where the system-wide network was a strong outlier, but no airline-specific sub-networks were
outliers. In our 10-year time frame, all 2° = 32 possible combinations had at least one day labeled
as such; we list the tuple statistics in Table 6.

Some of the day-types from Table 6 have interesting operational implications. The first day-
type of interest denotes the case where only one airline’s sub-network has unexpected spatial
delay distributions, but no other airline’s sub-network or the system-wide network is exhibiting
unexpected spatial delay distributions. We see a total of 164 such days for WN, 131 for DL, 103
for AA, and 84 for UA, totaling 482 days out of 3,653 (13.2%). This particular subset of days may
be of interest for airlines, as they represent spatial delay distributions that were likely triggered
by, and remain confined, to their own sub-network.

Another day-type of interest is when exactly one airline’s sub-network is exhibiting unexpected
spatial delay distributions and the entire system is an outlier in distribution as well. These days

can quantify system resilience, since the unexpected delay distributions were not quarantined to
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System | AA | DL | UA | WN 8“““” %
ounts
2817 | 77.1%
X 164 | 4.5%
X 131 3.6%
X 103 | 2.8%
X 84| 2.3%
X X 37| 1.0%
X X 29| 0.8%
X 23| 0.6%
X X 19| 0.5%
X X 16 | 0.4%
X X 15| 0.4%
X X 15| 0.4%
X X X X X 15| 0.4%
X X X 14| 0.4%
X X X 14| 0.4%
X X 13| 0.4%
X X X X 13| 0.4%
X X X X 13| 0.4%
X X X 121 0.3%
X X 11| 0.3%
X X X 10| 0.3%
X X 10| 0.3%
X X X 10| 0.3%
X X X 9| 0.3%
X X X X 9| 0.3%
X X % 9| 0.3%
X X X 8 0.2%
X X X X 8| 0.2%
X X 71 0.2%
X X X 6| 0.2%
X X X 5 0.1%
X X X X 41 0.1%

Table 6 Counts of the number of days belonging to each of the 32 tuple types.

the sub-network of one airline. On the other hand, days where the system is not an outlier, but
only one particular airline is, are are also worth analyzing. As mentioned in Section 5.2, there is a
pattern of certain low-energy eigenvector modes being triggered for non-outlier airlines during days
when other airlines might be exhibiting unexpected spatial delay distributions. This is highlighted
in Figure 10, where we plot the average spectral energy distribution for days where the system is
an outlier and exactly one of the four airlines is an outlier. We note that when AA, DL, and UA
are not outliers, there is a noticeable increase in the occurrence of eigenvector modes vg for AA,
vg for DL, and v;; for UA. Furthermore, all three aforementioned modes for AA, DL, and UA are

triggered when WN is an outlier. The activation of these low-energy eigenvector modes indicate
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interactions between airline sub-networks occurring at shared hub airports. Specifically, unexpected

spatial delay distributions in one airline sub-network partially impact other airline sub-networks

as well.
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We discuss a few case studies to illustrate the utility of our spectral analysis. Consider June
2, 2017, a day which was an outlier for AA and the entire system. A slow moving thunderstorm
over DFW impacted operations out of the airport and caused delays. Since DFW is a major and
influential AA hub, it is expected that delays at DFW would result in delays at other AA hubs.
However, on this day, in spite of high delays and cancellations at DEW for AA, it did not spread to
other airports. Thus, it was classified as an outlier for both AA and the system, but not for other
airlines. Another example is September 11, 2017, where DL and the entire system were outliers. On
this day, Hurricane Irma made landfall in the US southeast, resulting in the closure of all Florida
airports as well as heavy flight delays and cancellations out of ATL. This resulted in a situation
where ATL had high delays, but the Florida airports (MIA, MCO, TPA) had no delays due to
airport closures. Given the historically strong correlations between ATL and the Florida airports,
this was an extremely unusual distribution of delay, and thus classified as an outlier for DL. To
add to the unexpected quality of this day, delays did not spread to other DL hubs such as MSP.

We emphasize the need to examine sub-network interactions, as we showed in Table 6 that the
system-wide network is not simply a sum of the four airline sub-networks. This is further evident
from the observation that there are 9 days in which the system is not an outlier but each of the four
major carriers are, and 23 days in which the system is an outlier but none of the airlines are. This
observation motivates future analysis to understand sub-network interactions and their emergent
properties. Finally, the inventory of days belonging to each of the 32 tuple types from Table 6 can
be found in Tables 10 and 11 in the SM.

6. Concluding remarks
In this work, we presented methods to analyze the spatial distribution of signals in networks, and
applied these techniques to study airport delays in the US. Specifically, we formalized and defined
notions of outliers in graph signals, then leveraged GSP to analytically as well as empirically iden-
tify these outliers. Outlier detection and spectral analysis were used to characterize and compare
airport delays at a system-wide and airline-specific level in the US NAS. Our methods enable
the automatic identification of outliers, providing airlines and ANSPs an inventory of days with
unexpected delay distributions for further performance analysis. Such an inventory is essential for
developing playbooks that will mitigate the element of surprise for controllers and flow managers
due to unexpected delay distributions. Furthermore, we emphasize the contextual interpretability
of outliers via the eigenvector modes. Our work presents the first network-wide spectral analysis of
air traffic delays, outlier detection based on the spatial distribution of delays, and a quantification
of the impacts of various disruptions on the system and airlines.

Our novel spectral-based approach for analyzing airport delays, as well as our outlier identifica-

tion framework lead to several interesting future research directions, including applications of GSP
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and spectral methods to the comparative analysis of different aviation systems, and the further

development of the theoretical foundations of outlier detection for networked signals.
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Appendix.

We organize the appendix as follows: we present the bounds for outliers in scale (Section A), followed
by the bounds for weak outliers in distribution (Section B). Finally, we present a discussion on evaluating
bounds for weak outliers in distribution where only partial information about the correlation coefficients (i.e.,
the weights associated with the edges of the graphs) is known, and derive analytical bounds for outliers in
such a setting (Section C). These theoretical analyses and analytical expressions offer two critical advantages
over simulations: Firstly, they allow for a parametric study (e.g. with respect to the mean and covariance
parameters) to understand how outlier bounds behave with respect to the underlying probability distribution.

Secondly, there may be an insufficient number of data observations in O,; to reliably estimate the bounds.
A. Bounds for outliers in scale

Our simplification of the 1-norm along with the consideration of only non-negative signals gives || X|| =

Zi.vzl X;. The expectation and variance of || X]| are:

E[IX][[]= [ZX] Z [Xi]:ZMn (7)

i=1

Var [||X]|] = Var

N
ZX‘| :ZVar[XZ]-i-Zp”UZU], (8)

i=1 i£j
where o, and o; are the standard deviations of X; and X, respectively. We can also write Var [||X]|] in terms
of the covariance matrix 3 as Var[||X]|] =17X1.

B. Bounds for weak outliers in distribution

Since the TV is a random variable that is a function of X, we can write the expression for its mean explicitly

E[TV(X [ > {pu(Xi—X;) ] Z{pu X +E[X?] -2E[X:X)])}. (9)
i#£j 1#]
Using E [ X, X,] = pip; + pijoio; (from (2)) and E[X?] = p? + 07, (9) simplifies to
EITVX)] = 5 3 {00 [0~ m)? + (57 +07 ~2p,000,)]}. (10)
i

We can examine a few special cases for the parameters in (10):

1. If the signals are not correlated, i.e., p;; =0,Vi,5 € V, then the TV is zero.

2. If the signals are perfectly correlated, i.e., p;; =1,Vi,j € V, the expectation of the TV is determined by
possible differences in the mean and variance of graph signals at adjacent nodes. Specifically, we have that
E[TV(x)] = £, L — 13)° + (0 — 0,)%).

3. If the mean for all nodal signals are identical, i.e., p;, = p;,Vvi,j € V, the expectation of
the TV is quadratic in the differences of the variances. Specifically, we have that E[TV(X)] =
3 2ig Pis [0F + 07 = 2piy0005] .

4. If the mean, variance, and pairwise correlation coeflicient for all nodal signals are identical, i.e., p; = p;,
o,=0; =0, and p;; = p,Vi,j €V, then the expectation of the TV is quadratic in the number of nodes N,
the correlation coefficient p, and the variance o. Specifically, we have that

X)) =3 {po?(1 - p)} = N(N ~1)po*(1 — p). (1)

7]
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We now outline the process for computing the variance of the TV for a random graph signal vector X.
Although we explicitly derive an analytical expression for Var [TV(X)], we only symbolically evaluate it when

needed since the number of terms is extremely large. We rewrite Var [TV(X)] as:
Var [TV(X)] =E [TV(X)?] -E[TV(X)]. (12)

We have already essentially derived the expression for the second term, since from (10) we have that
2
E[TV(X)” =1 (Zi;ﬁj {pij [(i = p;)* + (07 + 02 — 2p;;0,0,)] }) . The first term representing the expecta-

tion of the square of the TV can be expanded and rewritten as:

(Z{%X - X)) }>2- (13)

i#]

E [TV(X)

%\»—‘

Expanding (13) further will produce terms that depend on products of correlated random variables.
Specifically, the expansion will introduce terms of the form E[X}], E[X}X,], E [X2X?], E[X?X,X,] and
E[X,;X;X,X,,] for nodes i,7,I,m € V. If X is a multivariate Gaussian random variable X = (X;,...,Xy)T €
RY*! where X Z;iv‘i./\/(u, ¥) with mean g = (g, ..., un)" € R¥*! and covariance ¥ € R¥*N 3= 0, then (13)

can be analytically evaluated through Proposition 2:

Proposition 2 (Isserlis (1918) and Kan (2008)) Suppose X = (X1,...,Xn)" ~N(u,X), where ¥ is an

N x N positive semi-definite matriz. For non-negative integers s; to sy, we have

[fe]- 5o £ @) () Em) w

=1 v1=0 vny=0 r=0
where s=8;+---+sy and h= (371/1, ,STNfI/N)T.
Proof of Proposition 2. See Kan (2008). |

As we have previously mentioned, due to the large number of terms present in the full expansion of (13), we
do not attempt to analytically simplify it further, but emphasize that it can be symbolically evaluated using
Proposition 2. On the other hand, for our subsequent analyses, we can numerically evaluate Var [TV(X)]
precisely using the analytical expression in (14).

Since we do not have a simplified analytical form for the variance of the TV, it is challenging to make
qualitative comments on how the variance of the TV changes with parameters like ¥ and p. However, one

sufficient condition for the TV to be equal to zero is as follows:

Proposition 3 IfE[TV(X)] =0 and p;; >0, ¥i,j (or p;; <0, Vi,j), then Var| TV(X)]=0.

Proof of Proposition 8. Since we have that p;; > 0, we have that TV(X) > 0 (or if all p;; <0, then TV(X) <0).
Then, E[TV(X)] =0 = TV(X) = 0. Hence, Var[TV(X)] =0. O
Note that E[TV(X)] =0 is not a necessary condition for the variance of the TV to be 0. Consider the
following example: suppose p;; =1, j1; # p1;, and 07 = 07,4, j € V. Then, we have that in general E[TV(X)] =
iy, (1 — ;)% # 0. However, since we have perfect correlation with differing means, X; — X; will always

be constant Vi,j € V, and thus Var[TV(X)] =0.
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C. Bounds for weak outliers in distribution: Partial information case

In Section B, we analyzed the expectation and variance of the TV of a graph signal x assuming that we
had perfect information regarding the strength of the nodal signal correlations p;;. However, in reality it
is possible that we do not know the exact value of p;;, but we do know bounds v;; and ¢;; such that
0<v;; <p;; <e€; <1, for all nodes i,j € V. This partial information case regarding correlations can happen
in a variety of scenarios; we will describe a few such scenarios. First, due to privacy concerns, nodes in many
physical systems act as independent agents that withhold information from other agents. Thus, each node
may only report the mean and variance of its own signal. In this case, the inter-dependencies and correlations
can only be partially estimated. Another example of the partial information case occurs when we do not know
the underlying Gaussian distribution of the signal, implying that p;; is an unknown parameter. Similar to the
first example, statistical testing may only provide confidence intervals or bounds on pairwise correlations.
Lastly, a small data set, i.e. small M for Oy, would result in a gap between the sample correlation and the
true correlation. This gap may be significant depending on M. In this scenario, it may be preferable to use
the bounds on p;; rather than an incorrect estimate to identify outliers.

For the rest of this derivation, we assume that the observations are drawn from a multivariate Gaussian dis-
tribution with a fixed mean vector g € RV*! and covariance matrix 3 € SQOXN (or equivalently the correlation
matrix C), but the precise value of p;; is unknown. Due to the uncertainty in p;;, we can only provide bounds
on the values of E[TV(X)] and Var[TV(X)]. One could propose that given bounds p,; € (v;;,€;;) C [0,1], we
could use simulation to estimate E[TV(X)] and @[TV(X)]. However, we note that such an approach is
computationally intractable in general for the two reasons: first, the number of intervals over which we need
to simulate and evaluate the TV is exponentially large. Specifically, discretizing p;; € (v, €;;) € [0,1] into N,
intervals for each edge leads to NX*(N=1) evaluations of E[TV(X)] and Var[TV(X)]. A counterpoint may
be that a more coarse discretization scheme might suffice, or a gradient-based optimization may be able to
guide the exploration of this complex space, or considering just the extreme values of the bounds may suffice.
This brings us to our second point: the non-monotonic behavior of E[TV(X)] and Var[TV(X)] as a function
of pi; € (vi;,€:5) C[0,1]. We provide a small-scale example in Gopalakrishnan, Li, and Balakrishnan (2019)
that highlights the non-monotonicity in p;; of E[TV(X)] and Var[TV(X)]. This behavior is apparent even in
a relatively simple graph with 5 nodes.

Given the various difficulties with evaluating E[TV(X)] and Var[TV(X)] in the case of partial information
regarding p,;, the tight analytical bounds we present in Propositions 4 and 5 for E[TV(X)] and Var[TV(X)],
respectively, offer an alternative to the computationally prohibitive exploration of the search space p;; €
(v, €5) C [0,1] with no reliance on estimation intervals and discretizations. Specifically, our two propositions
quantify the change in E[TV(X)] (Proposition 4) and Var[TV(X)] (Proposition 5) due to the uncertainty in
Pij-

For the propositions we construct in this section, we need all the correlation coefficients to have the same
sign, i.e. all p;; > 0 or all p;; <0, Vi, 5 € V. However, this is not a restrictive assumption; see the discussion in

Gopalakrishnan, Li, and Balakrishnan (2019). We can now redefine the TV for an unobserved X ~ N (p, %)
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with respect to the Laplacian £ € S¥*¥ constructed using O,;. Observe that TV(X) is a derived random
variable,
=5 2 (o, (X X)) (13
i3
However, in the case where the correlations are only known within some interval, i.e 0 <v;; < p;; <¢€;; <1,
we have that:

ZO’ +Zl/”0'0 < Var [||X]|] = Var
7]

ZX‘| <Zo +Z€jJ¢Uj- (16)

i£J
With these analytical expressions for E [||X]|] and Var[||X]|], or analytical bounds for Var [||X]|] in the case

of partially-known correlations, we can substitute E [||X||] = Y-~ s along with either Var [|X[|] = 1751 +
> iz P00y or Var[[|X][] € (Zi\le 02+ 3L VigOi0), Y iy O+ D eijcriaj) into Definition 6, transform-

ing this definition to one that can be used to detect outliers in scale.

Proposition 4 Suppose that 0 < v;; < pj]- < e <1 for all unique pairs of nodes i,j € V. Then, we can
evaluate scalars 01 and 02, with §2 > 0, such that max {0,d;} <E[TV(X)] < 0.

Proof of Proposition 4. See Gopalakrishnan, Li, and Balakrishnan (2019). |

Proposition 5 Suppose 0 <v;; < pz; <¢g;; <1 for all unique pairs of nodes i,j € V. Then, we can evaluate

scalars 63 and 04, with 64 >0, such that max {0,063} < Var[TV(X)] < d,.

Proof of Proposition 5. See Gopalakrishnan, Li, and Balakrishnan (2019). |
Using these two propositions, we can modify Definition 5 for weak outliers in distribution of level k to

include these more conservative bounds:

Definition 9 (Partial information case of Definition 5) An observation x containing bounded partial
information regarding all pairwise correlations, i.e. py; € (Vij,€5) C [0,1],Vi,5 € V, is considered a weak

distribution outlier of level k or a weak outlier in distribution of level k if

TV(x) ¢ [max{o,él —k\/&}, 62—|—kz\/a] , for some k> 0. (17)
where 01, 02, 03, and d4 are as defined in Propositions 4 and 5.

The modified Definition 9 of weak outliers in distribution also shows how such bounds can be implemented in
practice to detect weak outliers in distribution. We make some final remarks related to a well-known spectral
bound (Rayleigh quotient) as well as the generalizability of our bounds to other underlying distributions.

Denote Apax as the largest eigenvalue of £. Then:
TV(x) = X7 < A X112 < Asnae 1] (18)

While the Rayleigh quotient is indeed a valid upper bound for the TV of all data observations in Oy, it is
loose and does not provide further refinements on the various bounds we propose. Finally, these bounds only
require the underlying distribution to have a finite expectation and variance; there is no explicit dependence

on the underlying distribution being Gaussian.
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D. Airline-specific correlation maps
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Figure 11 Heat maps of the delay correlations between the top 30 airports for AA and DL.
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Figure 12 Heat maps of the delay correlations between the top 3

airports for UA and W
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E. Outlier bounds for each airline
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Figure 13 AA sub-network: TV versus TD for all days in 2008-2017 with level kK =4 weak and strong outlier
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bounds demarcated.
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F. Airline-specific TV versus TD plots of disruptions
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Figure 17 TV versus total delay plot for American Airlines (AA) during 2008-2017 with specific disruptions and

their average values annotated.

)
16
« E|TD| £ do
wens BITV] £ da
14 = ETVITD] £44
» Outage
a Naor'easter
-_:4: ]_ 2 & Thunderstorm
o Hurricane
E e (et AL centrobd
] lﬂ s MNor‘easter centrodad
E o Thuomderstorm centrodd
G s Hurmmicane centroid
= B :
e
~ 6
=
S 4 .
&
“ I
0 iﬁ
0 G o 10 12 14
Total Delay (min) =101

Figure 18 TV versus total delay plot for Delta Air Lines (DL) during 2008-2017 with specific disruptions and

their average values annotated.
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G.

Supplementary tables

IATA Code Airport Name ARTCC (Center)
ATL Hartsfield-Jackson Atlanta International Airport ZTL (Atlanta)
BOS Boston General E(.lward Lawrence Logan ZBW (Boston)

International Airport
Baltimore/Washington International .
BWI Thurg/ood Maligshall Airport ZDC (Washington)
CLT Charlotte Douglas International Airport ZTL (Atlanta)
DCA Ronald Reagan Washington National Airport ZDC (Washington)
DEN Denver International Airport ZDV (Denver)
DFW Dallas/Fort Worth International Airport ZFW (Fort Worth)
DTW Detroit Metropolitan Wayne County Airport ZOB (Cleveland)
EWR Newark Liberty International Airport ZNY (New York)
Fort Lauderdale-Hollywood .
FLL International Airp}:)rt ZMA (Miai)
Honolulu Daniel K. Inouye
HNL International Airport ' ZHN (Honolulu)
IAD Washington Dulles International Airport ZDC (Washington)
Houston George Bush
IAH International gAiI‘pOI‘t ZHU (Houston)
JFK Nevif York J.ohn F. .Kennedy ZNY (New York)
nternational Airport
LAS Las Vegas McCarran International Airport ZLA (Los Angeles)
LAX Los Angeles International Airport ZLA (Los Angeles)
LGA New York LaGuardia Airport ZNY (New York)
MCO Orlando International Airport ZJX (Jacksonville)
MDW Chicago Midway International Airport ZAU (Chicago)
MIA Miami International Airport ZMA (Miami)
MSP Minneapolis-Saint Paul International Airport ZMP (Minneapolis)
ORD Chicago O’Hare International Airport ZAU (Chicago)
PDX Portland International Airport ZSE (Seattle)
PHL Philadelphia International Airport ZNY (New York)
PHX Phoenix Sky Harbor International Airport ZAB (Albuquerque)
SAN San Diego International Airport ZLA (Los Angeles)
SEA Seattle-Tacoma International Airport ZSE (Seattle)
SFO San Francisco International Airport ZOA (Oakland)
SLC Salt Lake City International Airport ZLC (Salt Lake City)
TPA Tampa International Airport ZJX (Jacksonville)
Table 7: TATA three-letter code and corresponding full airport

name; the ARTCC that each airport is located within is also listed.
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Airline AA, DL, UA Hubs and WN Operating Bases/Focus Cities
American CLT, DCA, DFW, JFK*, LAX** LGA*, MIA, ORD*, PHL, PHX*

Airlines (AA)

Delta ATL*, BOS, DTW, JFK*, LAX** LGA* MSP, SEA, SLC
Air Lines (DL)

United

* ok *
Airlines (UA) DEN* EWR, TAD, TAH, LAX**, ORD*, SFO, (GUM)

Southwest ATL®, BWI, DEN¥, FLL, LAS, LAX™, MCO, MDW, PHX¥, SAN, TPA,
Airlines (WN) (AUS), (BNA), (DAL), (HOU), (OAK), (SJC), (SMF), (STL)

Table 8 List of airline hubs, operating bases, and focus cities. Boldface denotes an airline’s largest hub,

operating base, or focus city by number of departing seats in 2017. (*) and (**) denotes an airport that is shared
as a hub, operating base, or focus city between 2 or 3+ airlines, respectively. Airport codes in parenthesis are

airline-specific hubs, but not part of the Core 30, and thus are not included in our analysis nor defined in Table 7.



Li, Gopalakrishnan, Pantoja, Balakrishnan: Spectral Approaches for Analyzing Aviation Disruptions
Article submitted to Transportation Science; manuscript no. TS-2019-0414.R1 (Accepted, September 2020)

47

Event Date 15t 228 g 4T GE Total Delay | Total Variation
(x10%*min) (x10%min?)
Hurricane | 10/28/12 | 1 (83%) - - - - 1.51 13.58
10/29/12 | 1 (77%) | 2 (3%) - - - 0.89 7.02
10/30/12 | 1 (77%) | 16 (4%) - - - 1.11 12.39
10/31/12 | 1 (86%) - - - - 1.24 7.90
11/1/12 | 1 (87%) - - - - 1.45 10.40
Hurricane | 8/24/17 |1 (87%) - - - - 1.63 10.79
8/25/17 | 1 (88%) - - - - 1.63 9.32
8/26/17 |1 (58%) | 4 (18%) | 3 (12%) - - 1.39 28.29
8/27/17 | 1 (T4%) | 3 (9%) - - - 1.59 18.86
8/28/17 | 1 (78%) | 14 (6%) - - - 1.65 23.57
8/29/17 |1 (91%) - - - - 1.50 7.74
8/30/17 | 1 (91%) - - - - 1.26 4.43
Hurricane | 9/9/17 |1 (85%) - - - - 1.06 6.18
9/10/17 |1 (77%) | 19 (6%) - - - 0.96 8.26
9/11/17 | 1 (47%) | 10 (17%) | 11 (15%) | 8 (7%) - 1.44 62.74
9/12/17 | 1 (89%) - - - - 1.39 7.78
NAS-wide | 1/2/14 | 1 (68%) | 18 (3%) | 14 (7%) = - 133 254.26
1/3/14 | 1 (71%) | 26 (9%) - - - 1.62 276.30
NAS-wide | 1/5/14 | 1 (78%) | 26 (3%) = = - 158 171.69
1/6/14 | 1 (79%) | 14 (3%) - - - 3.87 111.53
NAS-wide | 6/17/15 | 1 (67%) | 4 (16%) - - - 2.20 1734
Nor’easter | 2/25/10 | 1 (69%) | 6 (5%) | 24 (4%) | 4 (4%) - 2.29 71.36
2/26/10 | 1 (60%) | 26 (9%) | 6 (6%) |29 (5%) | 11 (5%) 2.89 180.21
2/27/10 |1 (87%) - - - - 1.69 12.45
Nor’easter | 1/30/11 | 1 (87%) - - - - 1.14 5.77
1/31/11 | 1 (74%) | 7 (9%) - - 1.64 26.59
2/1/11 |1 (11%) | 5 (9%) - - - 2.83 77.64
2/2/11 |1 (72%) | 29 (4%) | 19 (3%) | 26 (2%) - 2.25 61.21
2/3/11 | 1 (82%) - - - - 1.85 19.08
Nor’easter | 2/7/13 |1 (80%) - - - 1.59 18.35
2/8/13 | 1 (86%) - - - - 1.73 14.88
2/9/13 | 1 (65%) | 26 (12%) | 29 (9%) - - 1.50 43.41
2/10/13 | 1 (75%) | 10 (5%) - - - 1.64 25.52
2/11/13 | 1 (72%) | 6 (5%) | 19 (4%) - - 2.13 53.19
Nor’easter | 2/11/14 | 1 (89%) - - - - 1.63 10.34
2/12/14 | 1 (76%) | 11 (75%) - - - 2.32 45.86
2/13/14 | 1 (70%) | 6 (5%) | 11 (4%) | 4 (4%) - 3.48 151.25
2/14/14 | 1 (86%) - - - - 2.82 37.67
Nor’easter | 1/26/15 | 1 (74%) | 4 (4%) 6 (4%) - - 1.94 37.12
1/27/15 | 1 (83%) - - - - 1.18 10.19
1/28/15 | 1 (84%) - - - - 1.28 9.25
1/29/15 | 1 (89%) - - - - 1.50 8.96
1/30/15 | 1 (79%) | 19 (4%) - - - 2.05 36.56
Nor’easter | 1/21/16 | 1 (90%) - - - - 1.72 8.89
1/22/16 | 1 (30%) - - - 2.37 38.14
1/23/16 |1 (58%) | 23 (24%) - - - 1.61 65.48
1/24/16 | 1 (56%) | 26 (10%) | 29 (7%) | 27 (5%) | 6 (3%) 1.85 92.61
1/25/16 | 1 (68%) | 29 (14%) - - - 1.79 53.75
Outage | 11/15/12 | 1 (93%) = = = 1.55 5.68
Outage | 9/26/14 |1 (73%) | 14 (12%) 2.33 60.16
Outage | 9/17/15 | 1 (80%) - - - - 173 20.79
Outage | 7/20/16 | 1 (84%) - - - - 2.05 26.13
7/21/16 |1 (77%) | 14 (7%) - - - 2.74 62.78
Outage | 8/8/16 | 1 (70%) | 11 (14%) - - = 2.72 88.89
8/9/16 | 1 (87%) - - - - 2.23 21.41
Outage | 1/22/17 | 1 (79%) | 10 (5%) - - - 3.09 69.63
Outage | 12/17/17 | 1 (65%) | 11 (14%) | 10 (13%) - - 1.64 10.85
Table 9 Different off-nominal events; columns “1%*” through “5'"” contain the highest-contributing

eigenvectors and their energy contribution, in descending order (table modified and adapted from Li et al. (2019)).
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Day-type Dates

1/2/08  12/25/08 8/21/09 7/12/10 4/16/11 12/25/11 11/30/12 8/1/15
1/3/08  12/27/08 8/22/09 8/5/10  4/26/11 12/26/11 12/17/12 8/13/15
1/12/08 1/5/09  10/19/09 8/12/10 5/11/11 12/29/11 12/26/12 9/4/15
1/21/08 1/7/09  10/30/09 9/8/10  7/8/11  12/30/11 1/31/13 10/28/15
2/1/08  1/28/09 11/19/09 9/27/10 7/11/11 1/8/12  8/3/13  11/19/15
2/24/08 2/1/09  11/25/09 10/4/10 7/13/11 1/22/12 8/18/13 1/31/16
2/26/08 2/2/09  12/5/09 10/5/10 7/14/11 1/23/12 10/27/13 3/29/16
3/7/08  2/6/09  12/7/09 10/17/10 7/15/11 3/14/12 11/21/13 6/30/16
5/20/08 2/10/09 12/10/09 10/26/10 7/25/11 3/16/12 1/18/14 7/20/16
6/4/08  2/16/09 12/21/09 11/19/10 8/7/11  5/29/12 2/7/14  7/22/16
0,0,0,0,1 |6/10/08 3/22/09 1/22/10 11/22/10 8/15/11 6/1/12  4/30/14 9/29/16
6/22/08 3/26/09 2/8/10  12/21/10 8/18/11 7/1/12  5/21/14 10/16/16
7/8/08  4/9/09  3/11/10 1/2/11  8/21/11 8/12/12 8/3/14  1/5/17
7/10/08 4/14/09 3/30/10 1/8/11  8/25/11 8/22/12 9/27/14 2/1/17
7/21/08 5/1/09  4/25/10 2/5/11  8/28/11 8/26/12 10/23/14 5/11/17
9/23/08 5/4/09  5/26/10 2/17/11 9/6/11  8/31/12 11/19/14 9/8/17
11/13/08 5/26/09 6/11/10 2/18/11 9/11/11 9/8/12  11/25/14 9/18/17
11/18/08 5/27/09 6/15/10 2/19/11 10/13/11 9/10/12 12/30/14

11/22/08 6/3/09  6/18/10 2/25/11 10/19/11 9/18/12 6/2/15

12/10/08 8/2/09  6/24/10 3/23/11 11/22/11 11/20/12 7/13/15

12/15/08 8/19/09 7/6/10  4/13/11 12/21/11 11/21/12 7/18/15

1/16/08 7/30/12 12/17/13 3/21/15 5/10/16 2/12/17 12/9/17

1/19/08 8/9/12  1/7/14  3/27/15 5/28/16 3/2/17  12/13/17
2/17/08 10/22/12 1/28/14 4/6/15  6/21/16 3/10/17 12/17/17
2/27/08 12/24/12 1/30/14 5/26/15 6/24/16 3/24/17 12/23/17
7/31/08 1/13/13 3/26/14 6/9/15  7/2/16  3/28/17 12/25/17
2/7/09  1/24/13  4/7/14  6/24/15  7/18/16 4/3/17

6/30/09 1/30/13 5/27/14 7/21/15 7/26/16 4/7/17

11/3/09 2/11/13  6/10/14 9/10/15 8/9/16  4/8/17

11/27/09 2/26/13 6/14/14 10/24/15 8/10/16 4/9/17

1/16/10  3/13/13  7/27/14 10/29/15 8/11/16 4/15/17

0,0,1,0,0 |[2/23/10 3/18/13 9/23/14 10/30/15 8/14/16 4/20/17

2/24/10 5/17/13  9/30/14 12/24/15 9/19/16 5/6/17

7/13/10 5/26/13 10/14/14 1/6/16  11/15/16 5/21/17

7/23/10 6/5/13  10/22/14 1/7/16  11/16/16 5/22/17

5/26/11 6/8/13  1/6/15  1/9/16  12/14/16 6/3/17

6/15/11 6/13/13 2/3/15  2/4/16  1/8/17  7/11/17

11/25/11 6/28/13 2/9/15  3/1/16  1/9/17  7/14/17

12/22/11 7/17/13 2/16/15 3/4/16  1/14/17 7/17/17

4/9/12  10/18/13 2/20/15 3/10/16 1/21/17 10/12/17

6/16/12 11/1/13 3/1/15  3/24/16 1/29/17 10/29/17

7/15/12  12/11/13 3/15/15 4/17/16 2/10/17 12/6/17

1/22/08 6/12/10 5/22/12 5/12/14 7/31/15

3/21/08 9/15/10 5/30/12 6/9/14  10/23/15
3/27/08 9/28/10 6/6/12  6/19/14 3/8/16

4/8/08  10/23/10 6/21/12 7/14/14 4/7/16

4/10/08 1/17/11 8/16/12 8/6/14  4/29/16
6/19/08 2/20/11 4/9/13  8/17/14 5/26/16
7/2/08  4/8/11  4/16/13 9/5/14  5/31/16
10/24/08 4/19/11 5/2/13  10/2/14 6/12/16
12/12/08 4/20/11 5/3/13  10/30/14 6/18/16
1/14/09 5/1/11  6/17/13 12/16/14 6/23/16
5/2/09  5/14/11 8/13/13 12/20/14 7/29/16
6/5/09  5/23/11 9/5/13  12/28/14 7/30/16
6/6/09  9/16/11 9/20/13 12/31/14 9/14/16
6/12/09 9/18/11 10/22/13 1/17/15 10/21/16
7/27/09 1/28/12 12/21/13 2/26/15 1/15/17
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Day-type Dates
01000 |10/23/00 1/20/12 2/2/14 22715 4/2/17
i 12/24/09 2/10/12 2/8/14  4/24/15 4/17/17
12/26/09 3/31/12 3/31/14 4/26/15 6/27/17
1/25/10  4/3/12  4/1/14  4/28/15 9/7/17
2/19/10 4/10/12 4/3/14  5/25/15
3/20/10 5/11/12 4/15/14  6/23/15
2/23/08 11/2/10 6/25/13 6/16/15 7/23/16 5/7/17
9/21/08 11/3/10 7/10/13 6/18/15 9/6/16 5/20/17
1/2/09 5/18/11 7/29/13 7/8/15 10/25/16 5/31/17
1/8/09 6/10/11 9/12/13 8/20/15 10/28/16 6/13/17
2/11/09 6/17/11 10/4/13 10/31/15 11/2/16 6/14/17
2/13/09 6/18/11 7/3/14  11/10/15 11/17/16 6/17/17
00010 |6/24/09 8/1/11  8/9/14  11/11/15 12/15/16 7/20/17
b 10/1/09 12/9/11  9/26/14 12/30/15 1/10/17 7/21/17
1/4/10  7/13/12  12/2/14 2/11/16 2/2/17  7/28/17
3/23/10 8/5/12  12/5/14 4/3/16  2/8/17  8/7/17
5/27/10 9/4/12 1/5/15 5/25/16  3/3/17 8/22/17
8/24/10 12/29/12 1/9/15  6/2/16  4/4/17  9/16/17
9/5/10 5/22/13  2/6/15 6/16/16  4/13/17 10/23/17
10/15/10 6/23/13 4/16/15 7/8/16  4/23/17 12/15/17
1/5/08 6/16/08 10/2/09 11/20/10 7/19/12 11/23/13 8/15/15 8/4/17
1/25/08 12/11/08 10/15/09 5/16/11 8/10/12 2/28/14 4/2/16  11/26/17
0,0,0,1,1 |2/6/08  12/16/08 11/7/09 5/19/11 10/11/12 5/13/14 10/14/16
5/9/08  2/17/09 7/4/10  6/11/11 12/21/12 11/30/14 2/20/17
5/16/08 3/29/09 8/23/10 1/20/12 6/24/13 12/3/14 8/3/17
1/29/08  4/28/08 2/22/09 6/11/09 4/11/10 9/30/10 3/18/11 12/4/14
01001 |2/4/08 12/1/08 2/23/09 10/13/09 4/26/10 10/24/10 3/24/11
b 2/18/08  12/17/08 4/15/09 12/11/09 5/14/10 12/17/10 4/28/11
3/19/08 12/26/08 5/22/09 1/18/10 7/29/10 12/20/10 12/10/12
6/14/08 1/18/09 1/30/10 5/8/10 7/28/12  2/1/15
1.0.0.0.0 6/15/08 2/26/09 2/10/10 7/19/10 1/27/13 1/16/16
b 8/2/08  3/2/09  2/11/10 1/10/11 2/9/13  1/24/16
10/25/08 4/13/09 2/26/10 9/29/11  2/17/14
7/6/13  10/31/14 2/19/16 3/31/17 5/1/17  7/24/17 10/19/17
0,0,1,1,0 |11/17/13 12/18/15 8/13/16 4/24/17 7/10/17 8/18/17
2/15/14  1/22/16 3/22/17 4/25/17 7/13/17 10/9/17
01010 |1/4/086/6/08  3/11/09 4/25/11 3/12/14 6/8/15  12/27/15 12/8/16
B 3/20/08 1/15/09 12/8/09 5/6/12 4/9/15 6/17/15 8/12/16 5/3/17

Table 10: Inventory of days belonging to the top 9 most frequently occur-
ring day-type tuples (excluding the no-outlier case).
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Day-type | 0,1,1,0,0 | 1,0,1,0,0 | 1,1,1,1,1 | 0,1,0,1,1 | 0,1,1,1,0 | 0,0,1,0,1 | 1,1,0,1,1 | 1,1,1,1,0 | 0,0,1,1,1

6/26/09 | 3/1/09 | 12/19/08 | 1/27/08 | 6/22/09 | 7/29/09 | 2/12/08 |8/15/08 | 11/22/13
12/12/10 | 1/24/10 | 12/20/08 | 2/3/08 | 11/10/11 | 3/12/10 |8/4/08 | 7/2/09 |1/4/14

11/29/11 | 2/25/10 |12/21/08 | 5/2/08 | 7/18/12 |3/24/13 |9/26/08 |12/28/10 |12/21/15
12/23/12 | 8/19/11 | 4/3/09 | 11/2/08 |7/26/12 |12/9/14 |11/6/08 |2/3/14 |12/29/15
5/23/13 | 11/7/12 |9/11/09 |11/9/08 |4/10/13 |12/10/14 | 11/14/08 | 2/21/15 |1/5/16

6/13/14 | 9/2/13 | 3/31/11 |2/15/09 |9/19/13 |12/19/14 |12/23/08 | 11/21/15 | 2/16/16
10/13/14 | 12/19/13 | 3/8/13 | 3/8/09 |5/18/15 |2/8/15 |6/19/09 |12/28/15 |3/11/16
Dates 11/10/14 | 1/21/14 |4/17/13 |1/21/10 |7/31/16 | 12/23/15 | 12/20/09 |2/5/16 | 1/22/17
2/22/15 | 1/29/14 |6/18/14 |5/17/11 |8/20/16 |4/9/16 |3/15/10 |4/4/16 |2/3/17

11/18/15 | 5/16/14 |3/23/15 |6/9/11 | 12/18/16 | 11/21/16 | 6/23/10 |7/1/16 |2/17/17
7/28/16 | 7/2/14 | 12/15/15 | 4/18/13 | 12/21/16 | 12/23/16 | 10/1/10 | 7/12/17 |6/7/17

8/19/16 |2/2/16 |12/17/16 | 6/26/13 |3/14/17 |3/30/17 |5/25/11 |8/2/17 |10/13/17
12/11/16 | 8/8/16 | 4/5/17 | 12/15/14 | 6/19/17 |5/24/17 |1/2/14 | 10/14/17
5/5/17 | 2/9/17 | 4/6/17 | 12/14/15 | 10/24/17
12/8/17 | 9/11/17 | 6/6/17

Day-type | 1,0,0,1,0 | 1,0,0,1,1 | 1,1,0,0,0 | 1,1,1,0,0 | 0,1,1,0,1 | 0,1,1,1,1 | 1,0,1,1,0 | 1,1,0,1,0 | 1,1,1,0,1

8/11/08 | 5/12/08 | 1/11/08 | 7/24/08 | 4/4/08 | 12/18/08 | 2/13/14 | 6/8/08 | 3/8/08

9/9/08 | 7/23/08 |3/18/08 |8/14/08 |3/23/13 |6/22/12 |8/25/14 |1/10/09 |7/27/08
4/18/09 | 10/28/08 | 5/27/08 | 9/21/09 |2/21/14 |2/24/16 |4/20/15 |2/12/09 |8/10/08
5/9/10 | 12/22/08 | 6/18/08 | 3/14/10 |3/29/14 |7/21/16 |6/15/15 |12/1/10 |12/24/08
12/27/10 | 1/19/09 | 4/6/09 | 6/25/12 |5/8/14 | 10/24/16 | 2/15/16 |5/29/11 |2/16/10
Dates 1/19/12 | 9/7/11 | 4/20/09 |8/8/14 |3/26/16 |11/22/16 | 4/18/16 |12/8/13 |1/6/14

1/8/15 | 11/12/12 | 1/3/10 |2/2/15 | 9/30/16 |12/16/16 | 7/25/16 |1/23/16 |5/31/15
1/25/16 |6/30/14 |1/26/11 |3/5/15 |12/22/16 | 5/25/17 |9/21/16 |5/27/16 |5/4/16

12/4/16 | 2/14/16 |12/25/12 | 5/10/15 |3/6/17 | 12/14/17 | 1/7/17
2/25/17 | 11/3/17 | 6/2/17 | 12/25/16
7/7/17

Day-type | 1,0,0,0,1 | 1,1,0,0,1 | 1,0,1,0,1 | 1,0,1,1,1

2/22/08 | 1/31/08 | 7/13/08 | 2/3/09
11/13/09 | 2/13/08 |8/22/10 |1/3/14
1/18/11 | 11/30/08 | 10/27/10 | 1/5/14
Dates 1/27/11 | 4/17/09 |6/1/15 | 2/6/17
8/14/11 |6/9/09 | 2/13/17
10/29/11 | 3/13/10
1/1/14

Table 11 Inventory of days belonging to the day-type tuples not captured in Table 10.

Disruption Dates

9/28/17 9/8/17  8/21/17 4/3/17  3/20/17 2/22/17 2/8/17  1/29/17 1/22/17
12/17/17 1/2/17  11/4/16 10/13/16 8/8/16  8/9/16  7/24/16 7/20/16 7/21/16
5/26/16 3/17/16 2/9/16  12/2/15 10/29/15 10/11/15 9/17/15 8/15/15 7/8/15

7/2/15  4/28/15 3/30/15 8/26/08 11/19/09 7/2/09  1/4/10  6/17/11 6/18/11
5/21/11 3/26/11 7/5/11  8/28/12 2/21/12 4/16/13 6/21/13 8/6/13  9/13/13
9/26/14 9/27/14 11/24/14 4/9/08

Outage

2/25/10 2/26/10 2/27/10 1/30/11 1/31/11 2/1/11  2/2/11  2/3/11  2/7/13
2/8/13  2/9/13  2/10/13 2/11/13 2/11/14 2/12/14 2/13/14 2/14/14 1/26/15
1/27/15 1/28/15 1/29/15 1/30/15 1/21/16 1/22/16 1/23/16 1/24/16 1/25/16
Nor’easter 11/12/09 11/13/09 11/14/09 12/16/09 12/17/09 12/18/09 12/19/09 12/20/09 3/12/10
3/13/10 3/14/10 3/15/10 3/16/10 12/26/10 12/27/10 12/28/10 1/11/11 1/12/11
1/13/11 10/28/11 10/29/11 10/30/11 11/8/12 11/9/12 12/26/12 12/27/12 3/5/13
3/6/13  3/7/13  3/8/13  2/7/17  2/8/17  2/9/17

6/23/14 6/24/14 5/15/15 5/16/15 8/7/14  8/8/14  8/9/14  7/6/16  6/24/15
8/20/16 7/12/17 6/18/14 6/19/14 5/12/14 4/9/15  5/20/17 5/21/17 6/3/17
6/4/17  10/14/14 4/7/17  4/8/17  4/30/17 6/13/14 6/19/17 7/13/17 7/14/17
8/18/17 8/20/15 5/25/17 6/1/15  6/14/17 6/14/15 6/15/15 6/25/14

Thunderstorm

10/28/12 10/29/12 10/30/12 10/31/12 11/1/12 8/24/17 8/25/17 8/26/17 8/27/17
8/28/17 8/29/17 8/30/17 9/9/17  9/10/17 9/11/17 9/12/17 9/12/08 9/13/08
9/14/08 9/15/08 10/6/16 10/7/16 10/8/16 10/9/16 8/25/11 8/26/11 8/27/11
8/28/11 8/29/11 8/31/08 9/1/08  9/2/08  9/3/08  9/4/08

Hurricane

Table 12 List of 178 disruption days used in the system-wide and airline-specific analysis.
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