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Controller design and their software implementations are usually done in isolated design spaces using
respective COTS design tools. However, this separation of concerns can lead to long debugging and integration
phases. This is because assumptions made about the implementation platform during the design phase ś e.g.,
related to timing ś might not hold in practice, thereby leading to unacceptable control performance. In order
to address this, several control/architecture co-design techniques have been proposed in the literature. However,
their adoption in practice has been hampered by the lack of design flows using commercial tools. To the best
of our knowledge, this is the first paper that implements such a co-designmethod using commercially available
design tools in an automotive setting, with the aim of minimally disrupting existing design flows practiced in
the industry. The goal of such co-design is to jointly determine controller and platform parameters in order
to avoid any design-implementation gap, thereby minimizing implementation time testing and debugging.
Our setting involves distributed implementations of control algorithms on automotive electronic control
units (ECUs) communicating via a FlexRay bus. The co-design and the associated toolchain Co-Flex jointly
determines controller and FlexRay parameters (that impact signal delays) in order to optimize specified design
metrics. Co-Flex seamlessly integrates the modeling and analysis of control systems in MATLAB/Simulink
with platform modeling and configuration in SIMTOOLS/SIMTARGET that is used for configuring FlexRay
bus parameters. It automates the generation of multiple Pareto-optimal design options with respect to the
quality of control and the resource usage, that an engineer can choose from. In this paper, we outline a
step-by-step software development process based on Co-Flex tools for distributed control applications. While
our exposition is automotive specific, this design flow can easily be extended to other domains.
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1 INTRODUCTION

Software-based implementations of controllers are becoming increasingly more common in domains
like avionics, automotive and industrial automation. For example, in the automotive domain, control
functions like steering and braking are gradually moving from traditional mechanical or hydraulics
systems to electronics and software. These applications are typically implemented on a distributed
electrical and electronic (E/E) platform, where a number of electronic control units (ECUs), sensors,
and actuators are connected via communication buses such as Ethernet, FlexRay, and CAN. Hence,
a distributed embedded control application is partitioned into several software tasks mapped on
different ECUs and these tasks communicate via messages sent over the bus. The design of such
applications involves two different phases, viz., controller design and platform design. Controller
design determines the control law, its parameters, and the appropriate sampling period for an
application. Platform design, among other things, computes the task and message schedules.

Conventionally, the platform and the controllers are first designed in isolated design spaces and
then integrated [27, 29]. In this approach, the values of the sampling period and the closed-loop delay
assumed during the controller design might not be satisfied in the actual platform implementation
(i.e., the tasks and/or messages are not schedulable). Similarly, during the platform implementation,
it might be assumed that a small change in the periods (or priorities) of the tasks and/or messages
will not lead to a significant degradation in the quality of control (QoC). Such assumptions might
lead to an error-prone design or long debugging and integration phases. Therefore, to guarantee
the safety of the system, engineers often make more conservative assumptions, resulting in less
efficient designs. However, as the size and the complexity of systems increase, both computation
and communication resources are becoming scarce, making resource-efficient design increasingly
important. To address this problem, there has been work [15, 36, 38, 39] on platform and control
co-design. In contrast to the conventional principle of separation of concerns, co-design approaches
try to integrate the design of platform and controllers in an early design phase and exploit the
characteristics on both sides to arrive at a more efficient design. Typically, the objectives are to
achieve better QoC and minimize resource usage.

Although there is consensus on the advantages of co-design techniques, state of the art co-design
methods are far away from the state of practice [47]. The main reason for this is that tools used for
controller design and those used for platform design are separate and, more importantly, they are
often from different suppliers. Each tool is a product of years of experience in a specific domain.
Tool developers and users mostly have a particular set of expertise. Thus, it is challenging to extend
one tool and incorporate the functionalities of another from a different domain. An integrated tool
flow requires strong collaboration among tool suppliers from different domains [46].

In this context, we consider, as an example, FlexRay-based ECU (electronic control unit) networks
from the automotive domain and studied the implementation of controllers on such a platform.
We propose a toolchain that enables the development of FlexRay-based systems. This toolchain
consists of MATLAB/Simulink for the modeling, design, and analysis of control systems, and
SIMTOOLS/SIMTARGET toolboxes [4, 41, 42] for platform modeling and configuration. We first
studied the conventional design flow of automotive embedded controllers using such a toolchain.
In this work, we then integrated these tools to support a control/platform co-design scheme [36]. In
other words, we propose an integrated toolchain to addresses the challenges faced when extending
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Proposed design flow: To address the shortcomings of the conventional flow, in this paper
we introduce a toolbox Co-Flex based on MATLAB/Simuink and SIMTOOLS/SIMTARGET. Co-
Flex will assist software developers by bridging the gap between the aforementioned COTS tools,
automating most of the manual steps, while offering more design freedom. Towards reducing
manual intervention, Co-Flex offers (i) template blocks that can be conveniently used to model
automotive control applications through easy parametrization, and (ii) specific tools that automate
the flow between different design phases, e.g., specification extraction from template models,
configuration of the control models with the obtained values of control parameters, and synthesizing
the implementation model with correct platform parameters (i.e., the task and message schedules).
In addition, Co-Flex employs a co-design technique for simultaneously synthesizing the control and
the platform parameters by accounting for different trade-offs between QoC and resource usage,
thereby offering more design choices.
With Co-Flex, the first two phases in the conventional design flow can be replaced by a spec-

ification modeling phase and a design and implementation phase, as shown in Fig. 1. This is
done to reduce the manual effort in the design and implementation phases of a conventional
flow. In the specification modeling phase, Co-Flex: Model blocksets can be used together with
Simulink/SIMTOOLS/SIMTARGET to develop a template software model that is configured accord-
ing to a design specification, i.e., controlled plant models, architecture model, and performance
requirements. Subsequently, the design and implementation phase is composed of five stages, as
shown in Fig. 1.

In the first stage, i.e., Specification Extraction, the Co-Flex: Parse tool can be used to automatically
extract the specification from the template model. Stages 2 and 3, called Prospective Control Design

and Co-Optimization respectively, implement the co-design technique in [36]. Such a partition
is necessary to reduce the problem complexity by dividing the whole design space into smaller
subspaces while considering all feasible regions in the design space. Here, the partitioning is
possible because in a FlexRay-based distributed implementation, only a set of predetermined
sampling periods are allowed for a control application. Moreover, only the sampling period and
not the control gains influences the choice of platform parameters. Thus, in the prospective control
design stage, the Co-Flex: Control tool is invoked for each application that synthesizes an optimal
controller at each possible sampling period. This is done by using a pole placement controller design
method and exploring the design space of possible pole values using an exhaustive search with a
certain granularity. By designing the prospective controllers first, we avoid unnecessary schedule
synthesis for sub-optimal or unstable controllers. In the co-optimization stage, the Co-Flex: Opti
tool formulates a bi-objective optimization problem according to the extracted specification and the
obtained prospective controllers from Stages 1 and 2 respectively. It employs a hybrid optimization
technique to generate sets of feasible design parameters, where each set represents a Pareto point
reflecting the trade-off between the objectives of QoC and resource usage. Here, the resource usage
can only take a finite number of discrete values. Exploiting this fact, the bi-objective optimization
problem is transformed into a finite series of single-objective optimization problems, where in
each problem, the QoC needs to be optimized for a given resource usage. To solve each problem, a
nested two-layer technique is used. This technique exploits the fact that only the choice of sampling
periods will influence the QoC and, thus, solves the optimization problem in two nested layers. The
outer layer finds the set of sampling periods that optimizes the QoC, whereas the inner layer finds
a corresponding set of feasible task and message schedules. In both layers, linear programming
problems are solved. It is to be noted here that the co-design uses standard techniques, i.e., the pole
placement for controller design and linear programming for time-triggered scheduling, however,
the main novelty lies in determining the glue between these techniques.
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Subsequently, the developer can select a parameter set corresponding to a Pareto point on
the Pareto front according to existing design requirements. Based on the developer’s choice, in
the Parameter Writeback stage, Co-Flex: Writeback tool can automatically interpret the synthesis
results obtained from the prospective control design and the co-optimization stages respectively and
configure the softwaremodel with the appropriate values of control and platform parameters. Finally,
in the Application Software Modeling stage, the Co-Flex: Dissemble tool gets rid of the specification
models that were required only for the design and need not be a part of the implementation. In
addition, the developer can manually add some application-specific details to the model, if required.
Note that the underlying mathematical framework for the co-design of controllers and their

platform implementations was originally published in [36]. The main contribution of this paper
is a toolchain that implements this co-design framework and integrates it with a combination of
industry-strength tools used in real-life design. To the best of our knowledge, Co-Flex is the first
published co-design toolchain. We believe that it will motivate the adoption of co-design schemes
in the industry, which is crucial for safety-critical and resource-constrained systems.

Contributions: In summary, this paper makes the following contributions:

• We propose a design flow for FlexRay-based distributed control systems that relies on control-
platform co-design. In this flow, we start with a specification and first create a partial model of
the system. Using this partial model, we synthesize the design parameters that are then used to
model the remaining parts of the system. Software code generated from the developed model
can be directly used to flash the ECUs.

• We have developed a toolchain to automate the software development for FlexRay-based dis-
tributed control systems using the above design flow. This toolchain enables automated modeling
of distributed control systems through easy parametrization. It comprises tools implementing
control-platform co-design [36], using which a set of Pareto-optimal design options is gener-
ated. The toolchain integrates industrial-strength development tools, i.e., MATLAB/Simulink for
the modeling and analysis of control systems, with SIMTOOLS/SIMTARGET for the platform
modeling and configuration.

• We present a case study comprising five control applications mapped on to three different
ECUs communicating over a FlexRay bus. The model-in-the-loop simulation that is offered by
SIMTOOLS validates the control and platform parameters synthesized using our co-design scheme.
Further, we built a setup comprising three Elektrobit ECUs connected by cables (unshielded
twisted pair) and D-SUB9 connectors. We flashed the software binaries on the three ECUs without
any errors, implying that the configuration of the design parameters was correct.

Paper organization: In the next section, we explain the feedback control system model and
the FlexRay-based ECU network architecture. Further, we describe how feedback controllers are
conventionally designed and implemented on such distributed platforms. In Sec. 3, we describe
of our design flow along with the proposed toolchain. Next, in Sec. 4, the results based on a case
study are presented. Finally, Sec. 5 discusses related work, before concluding in Sec. 6.

2 PRELIMINARIES

We consider a distributed platform comprising a set of ECUs, denoted by E = {𝐸1, 𝐸2, · · · }. These
ECUs are connected by a communication bus. A number of control applications, C = {𝐶1,𝐶2, · · · },
run on such a platform. Each application is implemented using several software tasks performing
functions like sensing, computation, and actuation. When these tasks are mapped on physically
distributed ECUs, data between them are transferred on the bus. In this work, we study the
implementation of feedback control on a FlexRay-based ECU network. In this context, this section
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for the discrete-time delayed system can be written as follows:

𝑥 [𝑘 + 1] = 𝐴𝑑𝑥 [𝑘] + 𝐵𝑑,0𝑢 [𝑘] + 𝐵𝑑,1𝑢 [𝑘 − 1], 𝑦 [𝑘] = 𝐶𝑥 [𝑘],

where: 𝐵𝑑,0 =

∫ ℎ−𝑑′

0

(𝑒𝐴
𝑐𝑡𝑑𝑡) · 𝐵, 𝐵𝑑,1 =

∫ ℎ

ℎ−𝑑′

(𝑒𝐴
𝑐𝑡𝑑𝑡) · 𝐵.

(4)

Here, 𝑑 ′ = 𝑑 −
⌊
𝑑
ℎ

⌋
· ℎ. Furthermore, we consider the case where the task and message schedules

lead to one sampling period sensor-to-actuator delay, i.e., 𝑑 = ℎ, as shown in Fig. 2. Thus, Eq. (4)
can be rewritten as follows:

𝑥 [𝑘 + 1] = 𝐴𝑑𝑥 [𝑘] + 𝐵𝑑,0𝑢 [𝑘], where: 𝐵𝑑,0 =

∫ ℎ

0

(𝑒𝐴
𝑐𝑡𝑑𝑡) · 𝐵. (5)

For our assumption of 𝑑 = ℎ, we consider that the control input 𝑢 [𝑘] is given by:

𝑢 [𝑘] = 𝐾𝑥 [𝑘 − 1] + 𝐹𝑟, (6)

where 𝐾 and 𝐹 are the feedback and the feedforward gains respectively, and 𝑟 represents the
reference value that 𝑦 [𝑘] should eventually reach. The design of a feedback controller involves
finding the values for feedback and feedforward gains for a given value of sampling period such
that the closed-loop system is stable and the control performance is optimal. Here, we consider a
state-feedback controller and we assume that we have the full state information, i.e., the system is
fully observable. However, the co-design technique studied in this paper can be trivially extended to
output-feedback controllers, e.g., proportional-integral-derivative (PID) controllers, by employing
an appropriate control design technique.

Control performance: There are different metrics to measure the closed-loop performance of a
controller. Here, we consider two common metrics to measure the control performance 𝐽 . (i) We
study a quadratic cost function [39] for which the control performance 𝐽 can be written as follows:

𝐽 =

𝑛=
𝑇𝐺

ℎ∑

𝑘=0

(
𝜆𝑢 [𝑘]2 + (1 − 𝜆)𝜎 [𝑘]2

)
· ℎ, (7)

where 𝜆 is a weight taking the value between 0 and 1,𝑢 [𝑘] is the control input and 𝜎 [𝑘] = |𝑟 −𝑦 [𝑘] |

is the tracking error. Note that we can also add other cost functions, e.g., 𝐽 =
∫ 𝑇𝐺

0

[
𝜆𝑢 (𝑡)2 + (1 −

𝜆)𝜎 (𝑡)2
]
𝑑𝑡 in the poposed toolchain. The co-design approach used in the toolchain is independent

of the choice of the cost function. In Eq. (7), the value of 𝜆 should be chosen based on the design
requirement. For example, if we want the system output to stabilize at the reference value quickly
by spending more energy, we will choose a lower value of 𝜆. Here, we multiply the cost for each
discrete step by the sampling period ℎ which is different from the quadratic cost usually considered
in the literature. This is required because we want to compare controllers designed for different
sampling periods based on this metric. Therefore, we calculate the quadratic cost until a certain
given time𝑇𝐺 from which the number of samples 𝑛 for a given sampling period ℎ can be calculated
as𝑇𝐺/ℎ. (ii) We also consider the settling time to evaluate the control performance, i.e., 𝐽 = 𝜉 , where
𝜉 denotes the time necessary for the system to reach and remain within 1% of the reference value.

For both metrics, we assume that the initial condition and the reference input are in the design
specification. It is challenging to design a controller that gives optimal performance for different
combinations of these values, and hence, it is reasonable to assume that these values are selected as
per requirements. Note that we evaluate the control performance considering a negligible system
noise. Depending on the control requirements, one of the aforementioned performance metrics
can be used. For both metrics, a smaller value of 𝐽 implies a better control performance. Each
application 𝐶𝑖 with a control performance 𝐽𝑖 must satisfy a certain requirement 𝐽 𝑟𝑖 (i.e., 𝐽𝑖 ≤ 𝐽 𝑟𝑖 )
as given in the design specification. In a system consisting of multiple control applications with
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we represent the slots on the static segment as S = {1, 2, ..., 𝑁 }. Once a static slot is assigned, if no
data is sent in a specific communication cycle, the static slot will still be occupied.
We consider the case where a sequence of 64 cycles repeats infinitely. In a sequence, each

communication cycle is indexed by a cycle counter that counts from 0 to 63 and is then reset to 0.
The schedule of a FlexRay frameΘ𝑖 can be defined by a tuple (𝑆𝑖 , 𝐵𝑖 , 𝑅𝑖 ), where 𝑆𝑖 represents the slot
number, 𝐵𝑖 represents the base cycle, and 𝑅𝑖 is the repetition rate. The repetition rate is the number
of communication cycles that elapse between two consecutive transmissions of the same frame and
takes the value 𝑅𝑖 ∈ {2𝑛 |𝑛 ∈ {0, ..., 6}}. The base cycle is the offset of the cycle counter, i.e., it is the
cycle where the frame is scheduled for the first time. The sequence of 64 communication cycles and
a few examples of FlexRay schedules are shown in Fig. 3. In the context of this work, we consider
the FlexRay versions 2.1 and 3.0.1. In the later version, slot multiplexing amongst different ECUs
is allowed, i.e., a particular slot 𝑆𝑖 can be assigned to different ECUs in different communication
cycles. However, this is not allowed in the former version. We further assume that each FlexRay
frame, Θ𝑖 , is packed with only one message,𝑚𝑖 . The start and the completion time of the 𝑘-th
instance (𝑘 ∈ Z

∗) of a FlexRay frame (Θ𝑖 ) transmission, which are denoted respectively as 𝑡 (Θ𝑖 , 𝑘)

and 𝑡 (Θ𝑖 , 𝑘), can be written as follows:

𝑡 (Θ𝑖 , 𝑘) = 𝐵𝑖𝑇𝑏𝑢𝑠 + 𝑘𝑅𝑖𝑇𝑏𝑢𝑠 + (𝑆𝑖 − 1)Δ, 𝑡 (Θ𝑖 , 𝑘) = 𝐵𝑖𝑇𝑏𝑢𝑠 + 𝑘𝑅𝑖𝑇𝑏𝑢𝑠 + 𝑆𝑖Δ. (11)

In this paper, we consider the bus resource usage as the fraction of bandwidth in the static
segment that is allocated to the control applications. This can be translated into the percentage
of static slots assigned in every sequence of 64 communication cycles. Let Γ denote the set of all
FlexRay frames that will be sent on the static segment, where Θ𝑖 ∈ Γ, then the resource usage 𝑈
can be written as follows:

𝑈 =
100%

64𝑁

∑

Θ𝑖 ∈Γ

64

𝑅𝑖
=
100%

𝑁

∑

Θ𝑖 ∈Γ

1

𝑅𝑖
, (12)

where, the smaller the value of 𝑈 is, the better is the resource usage, i.e., more bandwidth can be
assigned to non-control applications.𝑈 can take only a finite number of discrete values because
the number of static slots used by the control applications is a natural number less than or equal to
64𝑁 . We can further constrain the value of𝑈 using the requirements on the control performance
that we will see in Sec. 3.2.3.

2.3 Conventional Design Flow

Typically, for the setting under study, the conventional design methodology only synthesizes the
control and platform parameters while respecting the system constraints, e.g., performance and
schedulability constraints. For a systemwith a set of control applications, C, the parameter synthesis
boils down to finding for each control application, 𝐶𝑖 , (i) the control parameters (including control
gains and sampling period) and (ii) the platform parameters (including task and message schedules).
The set of design parameters for 𝐶𝑖 is denoted by 𝑝𝑎𝑟𝑖 = 𝑝𝑎𝑟𝑠𝑖 ∪ 𝑝𝑎𝑟

𝑐
𝑖 , where 𝑝𝑎𝑟

𝑐
𝑖 = {ℎ𝑖 , 𝐾𝑖 , 𝐹𝑖 }

represents the control parameters and 𝑝𝑎𝑟𝑠𝑖 = {𝑜𝑠,𝑖 , 𝑝𝑠,𝑖 , 𝑜𝑐,𝑖 , 𝑝𝑐,𝑖 , 𝑜𝑎,𝑖 , 𝑝𝑎,𝑖 , 𝑆𝑠,𝑖 , 𝐵𝑠,𝑖 , 𝑅𝑠,𝑖 , 𝑆𝑐,𝑖 , 𝐵𝑐,𝑖 , 𝑅𝑐,𝑖 }

captures the platform parameters. Note that the WCETs of the tasks are assumed to be known. The
set of design parameters for the whole system is denoted by P, where P =

⋃
𝐶𝑖 ∈C

𝑝𝑎𝑟𝑖 .

To develop the software for a set of distributed control applications implemented over a FlexRay-
based ECU network, the systems and the control engineers usually start with a system specification.
On the platform side, these include: (i) ECUs and their hardware and operating system character-
istics; (ii) the basic parameters of the FlexRay cluster, e.g., the length of a communication cycle
(𝑇𝑏𝑢𝑠 ), the length (Δ) and the number (𝑁 ) of static slots; and (iii) the task partitions (𝜏𝑠,𝑖 , 𝜏𝑐,𝑖 , 𝜏𝑎,𝑖 )
and their mapping T𝐸𝑘 . On the control side, for each application 𝐶𝑖 , the plant model ({𝐴𝑐

𝑖 , 𝐵
𝑐
𝑖 ,𝐶

𝑐
𝑖 })
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and the performance requirement (𝐽 𝑟𝑖 ) need to be specified. Based on the specification, engineers
can design and implement the system in the following three phases.

Design phase: In this phase, system parameters are synthesized and validated based upon some
theoretical model of the underlying system. As a first step, the control and the systems engineers
negotiate and agree on certain constraints on fundamental parameters like sampling periods and
sensor-to-actuator delays for the control applications depending on the platform architecture.
For example, ECUs running OSEK/VDX operating system offer only a predefined set of sampling
periods. Similarly, the sensor-to-actuator delay of a controller is constrained by the non-negligible
time taken by the software tasks running on ECUs and data transmitted over the communication
bus which, in turn, depends on the processor speed and memory architecture of the ECUs and the
communication protocol and bandwidth of the bus.
Now, the control engineer tries to determine the control gains, sampling period and sensor-

to-actuator delay for each application separately based on the plant model and satisfying the
constraints on the sampling period and sensor-to-actuator delay. For a state-feedback controller,
given a sampling period, the control engineer can use the standard pole-placement technique to
calculate the values of control gains that will guarantee the stability of the system [13]. Modeling
and simulation tools like Simulink might be used to develop the plant and the controller models
for an application. To evaluate the quality of control (e.g., settling time, overshoot, and robustness
to noise), closed-loop simulations of the controller and the plant are performed. It might be also
required to search the design space for closed-loop poles, sampling period, and sensing-to-actuation
delay to ensure that the designed controller meets the control requirements (e.g., quadratic cost
and settling time). Finally, the parameter values that meet the control requirement are chosen as
the design configuration.

Next, the systems engineer partitions the model of each controller into several software tasks and
map those tasks onto ECUs depending on the layout of the physical system, e.g., the placement of
the sensors and actuators [43, 48]. Based on the task partitioning and mapping, the requirement on
the platform side is to generate valid schedules for the tasks as well as the messages between com-
municating tasks. This schedule synthesis problem can be formulated as a CSP while considering
constraints on designed values of sampling periods and delays, data dependencies, non-overlapping
tasks and messages, and other architectural constraints. Mathematical formulations of these con-
straints are provided in Sec. 3.2.3. The CSP, thus formulated, can be solved using a commercial solver
like Gurobi, CPLEX, or Z3. In case no feasible schedule exists, the systems engineer may inform the
control engineer to re-design the controllers with re-negotiated constraints on sampling periods
and delays. As a result, this conventional design paradigm can be iterative and time-consuming.
Moreover, in order to save time, if the engineers on either side make conservative assumptions
(e.g., use more ECUs) then the design becomes resource-inefficient which may not be sustainable
in the cost-sensitive automotive domain [17, 25]. Furthermore, this conventional design involves
significant manual intervention, and therefore, can be error-prone and tedious.

Software implementation phase: In this phase, the complete system software is modeled. The
Simulink models of the controllers, as developed by the control engineer in the design phase are
combined to form the software model. Subsequently, keeping the control laws intact, this model
is further manually modified to incorporate: (i) the architecture model, i.e., ECU and FlexRay
parameters; (ii) implementation-specific details like task partitioning and mapping, data mapping
and frame packing; and (iii) application-specific details, e.g., depending on the type of speed encoder
(i.e., absolute or incremental), the sensor task needs to be modeled differently. This updated system
software is then manually configured according to the task and message schedules obtained from
the design phase. Here, SIMTOOLS provides specific blocksets that enable modeling of the FlexRay
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network and ECUs, partitioning and mapping of tasks, packing of data or signals into frames, and
configuration of task and message schedules. After the software implementation, simulations are
typically run to validate the correctness of the implemented models. For example, SIMTOOLS offers
a simulation option to validate both functionality and timing correctness.

Code generation and hardware implementation phase: In this phase, the binary file for each
ECU is generated from the software model and then flashed. First, the complete model developed so
far is split into separate models where each represents the software that will run on an ECU. Next, C-
code and, subsequently, the binary file are generated for each ECU from the corresponding software
model. Here, for example, SIMTOOLS offers a function Split and Build that automates the software
partitioning where the software is developed in Simulink using SIMTOOLS/SIMTARGET toolboxes.
It is then possible to generate C-code and the binary file for each ECU by invoking Simulink
Real-Time Workshop (RTW) together with SIMTARGET. Simulink RTW facilitates code generation
for Simulink blocks while SIMTARGET generates codes for SIMTOOLS/SIMTARGET blocks. The
binary files, thus generated, are then used to flash the ECUs for further hardware-in-the-loop (HIL)
testing.

The aforementioned development process has several disadvantages:

• Developers need to model the system from scratch, which is time-consuming.
• Developers manually formulate the control and the platform design problems from the system
specification.

• In the software implementation phase, the model is manually configured with the values of
the platform parameters that are obtained from the design phase, which is error-prone, time-
consuming and cumbersome.

• The final implementation might not be efficient with respect to (i) the QoC of the applications
and (ii) the amount of computation and communication resources that are allocated to them.

3 PROPOSED DESIGN FLOW AND TOOLCHAIN

In this paper, we propose a new design flow for distributed embedded controllers as shown in Fig. 4.
We have also used it for developing FlexRay-based automotive control software. We have further
developed a toolchain, named Co-Flex, to support software development based on the proposed
methodology in MATLAB/Simulink environment in conjunction with SIMTOOLS/SIMTARGET
toolboxes. Using the SIMTOOLS and SIMTAGET toolboxes require a license that is only available
in an USB stick (i.e., they are in the form of license dongles). Without these toolboxes, Co-Flex
cannot be instantiated. This, unfortunately, restricts the use of our toolbox in the public domain
because of the dependency on the commercial SIMTOOLS and SIMTAGET toolboxes. Hence, we
are not making our toolbox publicly available. This shortcoming is inherent in any toolchain that
is targeted towards industrial use and relies on commercially-available design tools. For the future,
we plan to build a similar toolchain using public domain software tools and make it available
for the academic community. But even without it, we believe that this paper ś describing how
industry-strength tools can be combined for the purpose of control-platform co-design ś is useful
for the academic community too.

The proposed design flow alongwith Co-Flex can overcome the disadvantages of the conventional
approach in the following ways.

• Co-Flex provides a library that assists developers to conveniently model a controller with
implementation-specific details like task partitioning and mapping, task schedules, data mapping,
and frame packing. Thus, it is not required to develop the software model from scratch and,
instead, Co-Flex blocks can be used and parameterized according to the specification.
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(ii) sensor, control, and actuator task mappings and schedules, (iii) sampling period, (iv) control
gains (vii) control performance metric, and (viii) performance requirement. A newly added block
basically represents a skeleton implementation of a distributed control application with empty
sensor, control, and actuator task models. After parameterizing the block, developers can push a
button create (provided in the mask) to automatically configure the underlying model to represent
a distributed embedded control application as shown in the right snapshot in Fig. 6. Besides, the
block is reconfigurable, i.e., developers can use the same block to model a different controller
in case of a change in the specification. However, if the order of the corresponding controlled
plant is different then developers must first push the button clear to go back to the skeleton
implementation. Furthermore, a push button verify is provided in this block in order to check
data consistency between this block and the SIMTOOLS platform configuration block. The inputs
of this block are the system states 𝑥 and the output is the control input 𝑢.

• Plant: The right block in the top-left snapshot of Fig. 6 is a Plant. Developers can specify the
plant model by parameterizing this block. It can represent a controlled plant of any order. The
parameters to this block include (i) the system order, (ii) the state matrix 𝐴𝑐 , (iii) the input matrix
𝐵𝑐 , and (iv) the output matrix 𝐶𝑐 . After parameterizing the block, developers can push a button
create to automatically build an underlying plant model as shown in the bottom-left diagram in
Fig. 6. This block is also reconfigurable and developers can use the push button clear to delete the
underlying model. The input of this block is the control input 𝑢 and the outputs are the system
states 𝑥 and the system output 𝑦. Closed-loop system model can be obtained by connecting (i) the
outputs 𝑥 of this block to the inputs of the FeedbackController block and (ii) the output 𝑢 of the
FeedbackController block to the input of this block. The purpose of this block is twofold: (i) The
plant specification can be read from this block to design the controller. (ii) The underlying plant
model can be used for closed-loop simulations to validate the designed control and platform
parameters before the hardware implementation.

Now, using Co-Flex:Model and SIMTOOLS/SIMTARGET, the specification modeling is carried out
as follows: (i) For each control application, insert a FeedbackController block and a Plant block and
parameterize them according to the specification. Then, create the models for the plant and the
partially-specified controller respectively and connect them as shown in the top-left snapshot in
Fig. 6. (ii) Insert a Database File Block provided by SIMTOOLS that allows to specify the complete
platform configuration. (iii) In the Database File Block, configure the message signals, the ECUs,
and the FlexRay network according to the specification. (iv) In the Database File Block, use Import

constraints from model feature so that the task and message mappings are read automatically from
the model. (v) Configure frames and assign messages to frames such that for each control application
there are two FlexRay frames, i.e., a sensor signal frame and a control signal frame respectively.
(vi) Finally, the modeling correctness can be verified by pushing the button verify in each of the
FeedbackController blocks.
The output of this phase is a partially-specified software model, as mentioned in Fig. 4. The

control and schedule parameters must be written to this model and more application-level details
are added to synthesize the complete software model.

3.2 Design and Software Implementation

This phase starts with the extraction of relevant information from the specification model which
is required to formulate the parameter synthesis problem. Based on the extracted information, a
co-optimization problem is formulated. Here, the co-optimization problem can be defined as to find
the set of parameters 𝑝𝑎𝑟𝑖 for each control application, where 𝑝𝑎𝑟𝑖 ∈ P, while optimizing the total
FlexRay bus resource usage as in Eq. (12) and the overall QoC as in Eq. (9).
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impact of the delay on the control performance is insignificant compared to that of the sampling
period [28]. Also, this offers more flexibility in scheduling the tasks and messages. This would
reduce the dimensions of the design space from all three factors (i) - (iii) to only (i) and (iii), thus
reducing the problem complexity. The co-design approach under study can also be applied to other
cases, e.g., a constant delay or a delay value proportional to the sampling period.

With the assumption𝑑𝑖 = ℎ𝑖 , the purpose of the prospective controller design stage is to determine
for each application the control gains that optimize the control performance at each possible value
of the sampling period. Here, we make use of the fact that the sampling period can only take a finite
number of values to prune the design space further. Considering that each control application 𝐶𝑖 is
implemented by the tasks 𝜏𝑠,𝑖 , 𝜏𝑐,𝑖 , 𝜏𝑎,𝑖 and messages𝑚𝑠,𝑖 ,𝑚𝑐,𝑖 , there is a dependency between the
sampling period ℎ𝑖 and the repetition rate of the messages 𝑅𝑠,𝑖 , 𝑅𝑐,𝑖 . This is represented as follows:

ℎ𝑖 = 𝑅𝑠,𝑖𝑇𝑏𝑢𝑠 = 𝑅𝑐,𝑖𝑇𝑏𝑢𝑠 . (13)

Due to the fact that 𝑅𝑠,𝑖 and 𝑅𝑐,𝑖 can only take values in {2𝑘 |𝑘 ∈ {0, ..., 6}}, the choice of ℎ𝑖 becomes
constrained accordingly. In this stage, Co-Flex offers a tool Control that can be invoked for each
application to design prospective optimal controller at each possible sampling period.

Co-Flex: Control ś This tool can be invoked from the FeedbackController block by checking a
checkbox indicated by an arrow in Fig. 8. In order to design prospective controllers for application
𝑋 , this tool uses AppX.csv to fetch the plant model, the control performance metric, and the
performance requirement. It also reads BusParam.csv to obtain the length of a bus cycle 𝑇𝑏𝑢𝑠 that
is required to determine the possible values of the sampling period. With 𝑑𝑖 = ℎ𝑖 , the closed-loop
system experiences one sampling period delay. We use the pole placement method reported in [19]
for such a delayed system. This method is applied on the equivalent discrete-time system model.
It enables to find the control gains for a set of stable poles and, hence, ensures the stability of
the closed-loop system. For the optimal pole placement, to the best of our knowledge, there is no
closed-form analytical framework. In this work, we search the design space for poles, although it
can be computationally expensive. Note that there exists an optimal control technique [12], i.e., the
linear quadratic regulator (LQR), when the control performance is computed using a quadratic cost
function. It cannot be directly applied when we want to optimize the settling time. Nevertheless,
we can easily add the LQR control design technique to the tool.

For 𝑑𝑖 = ℎ𝑖 , the control performance can be written as 𝐽𝑖 = 𝑓 (ℎ𝑖 , 𝐾𝑖 , 𝐹𝑖 ), i.e., it is a function
of the sampling period and the control gains. When the plant model {𝐴𝑐

𝑖 , 𝐵
𝑐
𝑖 ,𝐶

𝑐
𝑖 }, the sampling

period ℎ𝑖 , and the control gains {𝐾𝑖 , 𝐹𝑖 } are known, the control performance is determined via
the closed-loop simulation of the plant and the controller as per Eq. (5) and Eq. (6) respectively.
The control performance at each feasible value of the sampling period, i.e., ℎ𝑘𝑖 = 2

𝑘𝑇𝑏𝑢𝑠 , can also
be written as 𝐽𝑘𝑖 = 𝑔(𝐾𝑘

𝑖 , 𝐹
𝑘
𝑖 ), i.e., it is a function of control gains only. The control gains can be

uniquely computed based on a chosen set of poles, thus, we can write 𝐽𝑘𝑖 = 𝑔′(𝜌𝑘𝑖 ), where 𝜌
𝑘
𝑖

denotes the set of poles. The Control tool searches for the set of poles that optimizes the control
performance. Using the method in [19], stable controllers can only be designed for a restricted

set of poles. We prune the design space accordingly. Note that the search is carried out with a
specific granularity in the restricted pole space. Considering that this search discretizes the pole
space, it does not guarantee to obtain the optimal controller. However, the smaller the search
granularity is, the better are the chances of getting a controller closer to the optimum. We denote
that, corresponding to a sampling period ℎ𝑘𝑖 , the Control tool synthesizes the control gains 𝐾

𝑘∗
𝑖

and 𝐹𝑘∗𝑖 that optimize the control performance to a value 𝐽𝑘∗𝑖 . Interested readers are encouraged to
read [36] for the detailed implementation of the search algorithm to design an optimal controller
for a given sampling period.
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The Control tool further formulates a look-up table (LUT) for each control application𝐶𝑖 , as stated
in Fig. 4. The LUT stores, for each possible sampling period ℎ𝑘𝑖 , the optimal control performance
𝐽𝑘∗𝑖 and the corresponding control gains 𝐾𝑘∗

𝑖 and 𝐹𝑘∗𝑖 . In the co-optimization stage, the sampling
periods of the control applications will be used as variables during the problem formulation. The
objective of the overall QoC can, therefore, be formulated as a discrete function of the sampling
periods. Corresponding to the values of the sampling periods, the control laws can be selected by
referring to these LUTs. Therefore, the sampling periods here serve as the main interface between
the prospective controller design stage and the co-optimization stage.

3.2.3 Co-Optimization.

With the results from the prospective controller design stage, the co-optimization problem can
be formulated as a constrained programming model. The parameters to be synthesized include
(i) the sampling periods of the control applications, (ii) the task schedules, and (iii) the message
schedules. We consider the platform constraints and the control performance constraint that are
formulated as follows:

∀𝐶𝑖 ∈ C, 𝑥 ∈ {𝑠, 𝑐, 𝑎}, 𝑦 ∈ {𝑠, 𝑐}, 𝑝𝑥,𝑖 = 𝑅𝑦,𝑖𝑇𝑏𝑢𝑠 = ℎ𝑖 . (14)

∀𝐶𝑖 ∈ C, 𝑥 ∈ {𝑐, 𝑎}, 𝑦 ∈ {𝑠, 𝑐}, 𝛼𝑥,𝑖 , 𝛽𝑦,𝑖 ∈ {0, 1}. (15)

∀𝐶𝑖 ∈ C, 𝑜𝑠,𝑖 + 𝑒𝑠,𝑖 + 𝜖 < (𝐵𝑠,𝑖 + 𝛽𝑠,𝑖𝑅𝑠,𝑖 )𝑇𝑏𝑢𝑠 + (𝑆𝑠,𝑖 − 1)Δ. (16)

∀𝐶𝑖 ∈ C, (𝐵𝑠,𝑖 + 𝛽𝑠,𝑖𝑅𝑠,𝑖 )𝑇𝑏𝑢𝑠 + 𝑆𝑠,𝑖Δ < 𝑜𝑐,𝑖 + 𝛼𝑐,𝑖𝑝𝑐,𝑖 − 𝜖. (17)

∀𝐶𝑖 ∈ C, 𝑜𝑐,𝑖 + 𝛼𝑐,𝑖𝑝𝑐,𝑖 + 𝑒𝑐,𝑖 + 𝜖 < (𝐵𝑐,𝑖 + 𝛽𝑐,𝑖𝑅𝑐,𝑖 )𝑇𝑏𝑢𝑠 + (𝑆𝑐,𝑖 − 1)Δ. (18)

∀𝐶𝑖 ∈ C, (𝐵𝑐,𝑖 + 𝛽𝑐,𝑖𝑅𝑐,𝑖 )𝑇𝑏𝑢𝑠 + 𝑆𝑐,𝑖Δ < 𝑜𝑎,𝑖 + 𝛼𝑎,𝑖𝑝𝑎,𝑖 − 𝜖. (19)

∀𝐶𝑖 ∈ C, (𝑜𝑎,𝑖 + 𝛼𝑎,𝑖𝑝𝑎,𝑖 + 𝑒𝑎,𝑖 ) − 𝑜𝑠,𝑖 = ℎ𝑖 . (20)

∀ 𝐶𝑖 ,𝐶 𝑗 ∈ C, 𝑥,𝑦 ∈ {𝑠, 𝑐, 𝑎}, 𝐸𝑘 ∈ E

∀ {𝑚 ∈ Z
∗ |0 ≤ 𝑚 ≤𝑙𝑐𝑚(𝑝𝑥,𝑖 , 𝑝𝑦,𝑗 )/𝑝𝑥,𝑖 } , {𝑛 ∈ Z

∗ |0 ≤ 𝑛 ≤ 𝑙𝑐𝑚(𝑝𝑥,𝑖 , 𝑝𝑦,𝑗 )/𝑝𝑦,𝑗 }

if (𝜏𝑥,𝑖 ≠ 𝜏𝑦,𝑗 ) ∧ (𝜏𝑥,𝑖 , 𝜏𝑦,𝑗 ∈ T𝐸𝑘 ) then
[
𝑡 (𝜏𝑥,𝑖 ,𝑚) + 𝜖 · 1(𝑥 ∈ {𝑠, 𝑐}) < 𝑡 (𝜏𝑦,𝑗 , 𝑛) − 𝜖 · 1(𝑦 ∈ {𝑐, 𝑎})

or 𝑡 (𝜏𝑦,𝑗 , 𝑛) + 𝜖 · 1(𝑦 ∈ {𝑠, 𝑐}) < 𝑡 (𝜏𝑥,𝑖 ,𝑚) − 𝜖 · 1(𝑥 ∈ {𝑐, 𝑎})
]
.1

(21)

∀ 𝐶𝑖 ,𝐶 𝑗 ∈ C, 𝑥,𝑦 ∈ {𝑠, 𝑐}

∀ {𝑛 ∈ Z
∗ |0 ≤ 𝑛 < 𝑚𝑎𝑥 (𝑅𝑥,𝑖 ,𝑅𝑦,𝑗 )/𝑅𝑥,𝑖 } , {𝑚 ∈ Z

∗ |0 ≤ 𝑚 < 𝑚𝑎𝑥 (𝑅𝑥,𝑖 , 𝑅𝑦,𝑗 )/𝑅𝑦,𝑗 }

if (Θ𝑥,𝑖 ≠ Θ𝑦,𝑗 ) ∧ (𝑆𝑥,𝑖 = 𝑆𝑦,𝑗 ) then 𝐵𝑥,𝑖 + 𝑛𝑅𝑥,𝑖 ≠ 𝐵𝑦,𝑗 +𝑚𝑅𝑦,𝑗 .

(22)

∀ 𝐶𝑖 ∈ C, 𝑥 ∈ {𝑠, 𝑐}, 1 ≤ 𝑆𝑥,𝑖 ≤ 𝑁 . (23)

∀ 𝐶𝑖 ∈ C, 𝑥 ∈ {𝑠, 𝑐}, 0 ≤ 𝐵𝑥,𝑖 < 𝑅𝑥,𝑖 . (24)

∀ 𝐶𝑖 ∈ C, 𝑥 ∈ {𝑠, 𝑐, 𝑎}, 0 ≤ 𝑜𝑥,𝑖 < 𝑝𝑥,𝑖 . (25)

∀𝑘 ∈ {0, 1, ...6}, 𝐽𝑘∗𝑖 ≤ 𝐽 𝑟𝑖 ⇐⇒ ℎ𝑘𝑖 ∈ 𝑑𝑜𝑚[ℎ𝑖 ] and ℎ𝑖 == 2
𝑘𝑇𝑏𝑢𝑠 ⇐⇒ 𝐽𝑖 == 𝐽

𝑘∗
𝑖 . (26)

Constraint (14) implies that the sampling period of an application must be equal to the period
of repetition of the component tasks and messages. Constraints (15) to (19) state that in a control
application all task executions and message transmissions have to be carried out in the correct

1
1(.) takes the value of 1 if the input is true and 0 if otherwise.
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temporal order, i.e., certain precedence relations must be followed. Constraint (20) is due to the
assumption of one sampling period sensor-to-actuator delay. Constraints (21) and (22) lay down
respectively that no two tasks or two messages mapped on the same resource must overlap in
time. Constraints (23) and (24) state the permissible values of slot ids and base cycles respectively.
Constraint (25) asserts that each time window of duration equal to the task period must have at
least one task instance. Constraint (26) implies that the sampling period of an application can attain
only those values corresponding to which the designed optimal controller from the previous stage
satisfies the performance requirement. Furthermore, in case of FlexRay 2.1, an additional constraint
must be considered as slot multiplexing between different ECUs is not allowed. This is given by:

∀ 𝐶𝑖 ,𝐶 𝑗 ∈ C, 𝑥,𝑦 ∈ {𝑠, 𝑐}, ∃𝐸𝑘 ∈ E,

if (Θ𝑥,𝑖 ≠ Θ𝑦,𝑗 ) ∧ (𝜏𝑥,𝑖 ∈ T𝐸𝑘 ) ∧ (𝜏𝑦,𝑗 ∉ T𝐸𝑘 ) then 𝑆𝑥,𝑖 ≠ 𝑆𝑦,𝑗 .
(27)

Moreover, the optimization objectives of bus resource usage and overall QoC can be formulated
respectively as follows:

𝑈 =
100%

64𝑁

∑

𝐶𝑖 ∈C

(
64

𝑅𝑠,𝑖
+

64

𝑅𝑐,𝑖
) =

100%

64𝑁

∑

𝐶𝑖 ∈C

128𝑇𝑏𝑢𝑠

ℎ𝑖
. (28)

𝐽𝑜 =

∑

𝐶𝑖 ∈C

𝑤𝑖 𝐽
𝑛
𝑖 =

∑

𝐶𝑖 ∈C

𝑤𝑖

∑

𝑘

𝜇𝑖,𝑘 𝐽
𝑘∗(𝑛)
𝑖 , where

∑

𝑘

𝜇𝑖,𝑘 = 1 and 𝐽𝑘∗(𝑛)𝑖 =
100𝐽𝑘∗𝑖

𝐽 𝑟𝑖
. (29)

As formulated above, the control-platform co-design for the setting under study can be modeled
as a constrained optimization problem with two objectives. There exist several methods dealing
with multi-objective optimization. A simple way is to convert the multiple objectives into one
single objective with scalarization. However, the problems using this method here are as follows:
(i) The two objectives are completely different in nature and it is challenging to combine them as a
single metric. (ii) It would not be possible for developers to understand the design trade-off, which
is necessary because the two objectives are noticed to be often conflicting. In this case, a more
informative and developer-friendly approach is to first generate the Pareto front and let developers
explore the trade-off between the two objectives according to their customized preference. Co-
Flex toolbox comprises a tool named Opti that can be used to automate the formulation of the
co-optimization problem and, thereafter, for finding the Pareto-optimal solutions to the problem.

Co-Flex: Opti ś This tool can be invoked from the Co-Flex Toolbox block, as shown in Fig. 9, by
checking the corresponding checkbox. It can automatically formulate the problem according to the
constraints and objectives in Eqs. (14) ś (29) by referring to the files generated in the specification
extraction stage and the look-up tables from the prospective controller design stage. In order to solve
the problem and obtain the desired Pareto front, the tool uses a customized optimization approach.
Considering that the resource usage𝑈 only takes a limited number of values, it first computes the
maximum and the minimum possible values of the resource usage𝑈 + and𝑈 − as follows:

𝑈 +
=

100

64𝑁

∑

𝐶𝑖 ∈C

128𝑇𝑏𝑢𝑠

max
ℎ𝑖 ∈𝑑𝑜𝑚 [ℎ𝑖 ]

(ℎ𝑖 )
, 𝑈 −

=
100

64𝑁

∑

𝐶𝑖 ∈C

128𝑇𝑏𝑢𝑠

min
ℎ𝑖 ∈𝑑𝑜𝑚 [ℎ𝑖 ]

(ℎ𝑖 )
. (30)

For each possible value of 𝑈 from 𝑈 − to 𝑈 +, i.e., given the equality constraint on 𝑈 , it solves
the optimization problem with 𝐽𝑜 as the single objective and obtain a solution. The additional
constraint is that 𝐽𝑜 of this solution has to be better than 𝐽𝑜 of the last solution, in order to ensure
that all solutions are non-dominated. The co-optimization problem with two objectives is, thus,
turned into a series of single-objective optimization problems, where each may generate a Pareto
point. Here, popular approaches like Mixed Integer Linear Programming (MILP) or meta-heuristic
methods cannot be applied directly to solve each of the single-objective optimization problems.
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variable 𝑖 then the synthesized value of the parameter is given by element 𝑖 in the extracted row.
Furthermore, as depicted in Fig. 4, the values of the control gains can be obtained by this tool from
the LUTs generated in the prospective controller design stage according to the synthesized values
of the sampling periods.
Following result interpretation, developers need to configure the software model with the

obtained parameter values. Towards this, theWriteback tool can directly write the control gains (as
shown by the pointers in Fig. 10) and the application task schedules in the model automatically.
However, for the FlexRay frame schedules, the tool generates a csv file in a format that can be directly
imported in SIMTOOLS Database File Block, as shown in Fig. 10. The format also includes other
attributes of the frames like the transmitting and receiving FlexRay controller, frame size, among
others. These details can be obtained by referring to FrameData.csv generated in the specification
extraction stage. Similarly, for the communication tasks, schedules are generated and stored in a
format in which it needs to be entered in SIMTOOLS Database File Block. However, SIMTOOLS does
not allow importing communication task schedules, and therefore, they are manually entered by
the developer according to the generated file. In our opinion, this process can be made completely
automated by collaborating with tool suppliers.

Following the parameter write back, the developed software model can be tested using the plant
models via closed-loop simulations. SIMTOOLS offers a Simulation Configuration Block that enables
validation of timing behavior in addition to functional correctness.

3.2.5 Application Software Modeling.

The model developed so far contains details of the controlled plants that will not be in the final
software implementation. Moreover, SIMTOOLS Split and Build function does not look inside a
subsystem block. Therefore, the controller implementations ś that lie inside the FeedbackController
blocks ś must be brought to the first level for generating codes and binaries correctly in the next
phase. Co-Flex comprises a tool Dissemble that automates the above two processes.

Co-Flex: Dissemble ś This tool can be invoked from the Co-Flex Toolbox block, as shown in Fig. 9,
by checking the corresponding checkbox. It takes the development closer to the implementation
by (i) deleting the plant models and (ii) expanding subsystem blocks that represent the controller
implementations. However, it might be required to reuse the model developed so far partially or
completely for a different car with different requirements. Therefore, it makes sense to not modify
the model developed so far and, instead, create a new model by copying only the parts that will be
in the implementation. Dissemble tool automatically copies the controller implementations and
the platform configuration block into a new Simulink model while adding new blocks for clock
synchronization. This can be achieved by using the MATLAB function add_block.

Furthermore, the model so far may not contain the details of sensor and actuator tasks. They
depend on the type of sensors and actuators used. For example, in case of an adaptive cruise control
application, the sensor can be a camera and the sensor task requires video processing to detect a
slowdown of the vehicle in front. Therefore, in this stage, developers need to manually incorporate
such details about sensing and actuation into the software model. In future, standard task models
can also be added to Co-Flex: Model library to further reduce manual interventions. This final
software model with every detail of the applications is then used in the next phase for the code
generation and the hardware implementation, respectively.

4 A CASE STUDY

We consider a system motivated by software applications in the automotive domain. Due to
confidentiality issues, it is difficult to find a case study that represents a real industrial system and
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obtain all the details including the mathematical model of the plants. Therefore, we use a synthetic
case study, consisting of a FlexRay-based ECU network implementing 5 control applications that
are typically found in the automotive domain.

Plant models: We study a set of 5 control applications denoted by C = {𝐶1,𝐶2,𝐶3,𝐶4,𝐶5}. 𝐶1

to 𝐶5 represent respectively a DC motor speed control (DCM), a car suspension system (CSS),
an electronic wedge brake (EWB), and two variants of cruise control (CC1) and (CC2). In this
work, we have studied only linear plant models, however, in real-world scenarios, we might have
piecewise-linear or nonlinear plants. It is to be investigated in the future how to extend the co-
design technique, discussed in this paper, to such scenarios. The plants2 under consideration are
described as follows:

(𝐶1) The DC motor speed control application (DCM) has state variables 𝑥 = [𝑥1 𝑥2]
𝑇 representing

respectively the rotational speed of the motor shaft and the armature current. The control input 𝑢
is the motor terminal voltage. This application can, for example, represent a wheel speed control in
an electric vehicle. The system matrices for this plant are given as follows:

𝐴𝑐
=

[
−10 1

−0.02 −2

]
, 𝐵𝑐 =

[
0

2

]
, 𝐶𝑐

=
[
1 0

]
. (31)

For this plant, we consider that the control objective is to have a value of the cost function, given
by Eq. (7), lower than 0.7 in a unit step response. Here, we assume that the value of 𝜆 is 0.001.

(𝐶2) The car suspension system (CSS) has the state variables 𝑥 = [𝑥1 𝑥2 𝑥3 𝑥4], where 𝑥1 and
𝑥2 represent the position and velocity of the car, and 𝑥3 and 𝑥4 are the position and velocity of
the mass of the suspension system. The control input 𝑢 is the force applied to the body by the
suspension system. The system matrices are given as follows:

𝐴𝑐
=



0 1 0 0

−8 −4 8 4

0 0 0 1

80 40 −160 −60



, 𝐵𝑐 =



0

80

20

−1120



, 𝐶𝑐
=
[
1 0 0 0

]
. (32)

The control objective is to have a unit impulse response with a settling time 𝜉 lower than 1 s.

(𝐶3) We study a simplified version of an electronic wedge brake (EWB). Two state variables
𝑥 = [𝑥1 𝑥2] are the position and the velocity of the braking wedge, respectively. For a simplified
DC motor model, the control input 𝑢 is the force exerted by the motor. The plant model is given by:

𝐴𝑐
=

[
0 1

8395.1 0

]
, 𝐵𝑐 =

[
0

4.0451

]
, 𝐶𝑐

=
[
7992 0

]
. (33)

The control objective is to have a unit step response with a settling time 𝜉 lower than 0.2 s.

(𝐶4) CC1 is a simplified version of a cruise control system, i.e., neglecting the dynamics of the
powertrain and tires. Here, the state variable 𝑥 represents the speed of a vehicle and the control
input 𝑢 is the force exerted on the vehicle. The plant model is given by:

𝐴𝑐
= −0.05, 𝐵𝑐 = 0.001, 𝐶𝑐

= 1. (34)

The control objective is to have a unit step response with a settling time 𝜉 lower than 0.5 s.

(𝐶5) CC2 is a more detailed version of a cruise control system. It regulates the vehicle speed
in order to follow the driver’s command. The state space representation of this system can be

2The references are mentioned in [36].
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5 RELATED WORK

Towards meeting the high performance and low cost requirements for embedded control systems,
co-design of control algorithms and their platform implementations ś often referred to as a cyber-
physical systems design approach ś is the key [6, 7, 17, 37, 53]. Such co-design also helps reduce
testing and integration efforts when implementing control algorithms. While co-synthesis has
already been studied in the general embedded systems context [50], several control/architecture
co-design methods have recently been proposed [16, 36, 38]. [38] has proposed a method that
integrates controller design with task and message scheduling while optimizing the overall control
performance. Later, [16] has put forward a co-design problem formulation for FlexRay-based control
systems also with control performance as the only optimization objective. This work considers both
sampling period and delay as variables during the controller design. Note that [16, 38] have not
considered the trade-off between multiple optimization objectives. Also, some existing approaches
appear difficult to scale. For example, in [16], it already takes more than one hour to synthesize a
system of 5 applications, amongst which 3 are control applications. In our proposed toolchain, we
have implemented the co-design approach from [36]. It scales to industrial-sized systems (e.g., a
bus cluster) and co-optimizes overall QoC and resource usage, respectively. Note that none of these
works have extended a co-design framework into a full-fledged toolchain support compatible with
COTS software development tools.

For this work, we have reviewed existing industrial toolchains for automotive software develop-
ment. Major Tier 2 automotive suppliers include Vector, dSPACE, Elektrobit, and Siemens Industry
Software (formerly known as Mentor Graphics). Vector offers PREEvision [45], where a software
architecture and a mapping of software components to ECUs can be specified and an in-vehicle net-
work can be configured. Specification for each ECU can be extracted from PREEvision and imported
into DaVinci Configurator Pro [44], where it is integrated with a basic software and the codes for
software components generated from model-based design tools like Simulink. Developers need to
configure the runtime environment for ECUs in DaVinci Configurator Pro [44] and then binary
files can be generated that will be used to flash the ECUs. A similar tool flow is offered by Siemens
Industry Software where Capital [30] allows architecture and network design while Volcano Vehicle
System Builder [31] enables software integration for ECUs. In the same vein, dSPACE provides
SystemDesk [9] for architecture design and TargetLink [10] for functionality development and
code generation. In this work, we have studied software development for FlexRay-based distributed
control systems using MATLAB/Simulink and SIMTOOLS/ SIMTARGET [4, 41, 42], as discussed in
Sec. 2.3. Using the aforementioned toolchains, controllers are designed in model-based design tools
while the schedule configuration for ECUs (e.g., in DaVinci Configurator Pro and Volcano Vehicle
System Builder) and communication buses (e.g., in PREEvision and Capital) are realized in different
tools. Unlike these toolchains, Co-Flex offers to co-design control and platform parameters.

In the context of hardware/software co-design, there also exists academic tools like Metropolis [2],
Metro II [8], Ptolemy II [11], andMetronomy [21] that allowmodeling of heterogeneous components
and their co-simulation, thereby enabling a design space exploration for heterogeneous systems.
Metropolis offers a unified language for capturing different models of computation like dataflow,
state machine, and discrete time. Later, Metropolis was extended to Metro II that also allows
different specification language for different components. For example, in the case of a building
design automation, a controller can be specified as a Simulink model, the specification for a
physical building can be in Modelica, while an architecture can be modeled in Metro II [49]. The
controller and the building models can be co-simulated with the computing platform in Metro II.
Both Metropolis and Metro II use a SystemC based engine for the simulation [1]. Ptolemy II can
also be used to model functions and architecture in an integrated framework, however, it is more
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focused on functional modeling allowing several models of computation including process networks,
synchronous reactive and continuous time. Metronomy combines the advantages of Ptolemy II
and Metro II respectively and allows to model functions in Ptolemy and architectures in Metro II.
Besides these tools, TrueTime [5] is a MATLAB/Simulink toolbox that enables to simulate embedded
control systems. Also, Blech [20], an imperative synchronous programming language, can be used
to develop safety-critical embedded control software that can be verified for different functional
and timing properties. None of the aforementioned tools offer to co-design controllers and their
platform implementations. Moreover, Metropolis, Metro II, Ptolemy II, and Metronomy are based on
the principle of separation of concerns. We believe that the co-design technique presented in [36]
can be integrated into these tools. However, the above tools do not have in-built models for the
target platform under study and the corresponding basic software. Hence, we have considered a
commercial toolchain that can be used to develop the software for a distributed platform comprising
EB 6120 ECUs connected over a FlexRay bus.

6 CONCLUDING REMARKS

In this paper, we have introduced a software development process for FlexRay-based distributed
control systems. It enables correct-by-construction and convenient design and implementation of
such systems. We have also developed an integrated toolchain that automates the development
process to a large extent. It integrates a recently proposed control and platform co-design scheme
into available COTS development tools for control systems and embedded software. Therefore, it
reduces manual effort and improves design optimality.
Our proposed toolchain is only a preliminary one, showing that such an integrated design

and implementation of distributed embedded controllers is possible in an automotive setting. We
would like to extend the toolchain to address a more comprehensive design problem that includes
frame packing, task partitioning and mapping. Moreover, the toolchain, in its current state, only
considers LTI feedback control systems. In the future, we can consider nonlinear systems and
control techniques like model predictive control (MPC), gain scheduling and adaptive control. For
complex controllers, e.g., an MPC, the WCET of a controller might be different for each sampling
period. Note that the co-design technique used in Co-Flex can easily accommodate the scenario
where a WCET is a function of the sampling period. This is because in the inner layer, the sampling
period is known, and therefore, the corresponding WCET can be used for scheduling. In this work,
we have considered that the WCET of a task is given, however, an automated toolchain would need
a WCET estimator.

In industrial systems, a controller might switch between multiple operational modes depending
on the changes in the physical system (e.g., plant dynamics might change based on environmental
factors like temperature and wind speed) or in the cyber system (e.g., overloads in ECUs and
communication buses). While [3] has considered integrated modeling and verification of such
control loops using the theory of hybrid automata, [18, 34, 35] have shown how to optimally
dimension communication resources shared by such multi-mode controllers. An optimal co-design
of control and platform parameters considering multi-mode controllers can be studied in the future.

While we have studied SIMTOOLS and SIMTARGET for the design of FlexRay-based systems, we
may investigate how our proposed development process extends to other communication systems
like CAN and time-triggered Ethernet. We may also study a more complex tool flow for software
synthesis of distributed control systems on platforms comprising multiple different communication
buses and allowing different ECU scheduling policies. We hope that this work motivates further
research on closing the gap between the state of the art and the state of practice in designing
distributed embedded controllers.
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