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Abstract—We characterize the “structures” defining a class of

real matrices—called nests—given by A 2 Rn⇥n
such that, up

to relabelling, all of its leading principal submatrices indexed by

{1, 2, · · · , k} satisfy sgn detA[{1, 2, · · · , k}] = (�1)k, k  n. By

structure we mean elements of {�1, 0, 1}n⇥n
, which circumscribe

the signs of realizations within a class of real matrices. We frame

the problem of characterizing structures in a form amenable to

classic control theory, and that generalizes to any class of matrices

defined by potentially Hurwitz structures, such as nests.

I. OVERVIEW

Much of modern control theory is realization-centric. A
control system realization typically feeds algorithms with nu-
merical values that produce binary statements on whether that
control system has a property or not, e.g., being controllable.
Softer metrics of these properties, e.g., singular values of
a controllability Gramian, are also based on a realization.
Even when considering unknown realizations, control theory
still emphasizes them: for example, by assuming that the
admissible realizations of a control system are confined to
quantifiable uncertainty in the k · k1 sense around a nominal
model. As an alternative to this conventional view, we pursue
a theoretical paradigm favoring structures in this paper. We
characterize the structures that define a class of real matrices—
called nests—that potentially have Hurwitz property.

Structural control theory represents systems as structures,
which can have many realizations. In the setting of linear
time-invariant (LTI) systems, structures are given by matrices
with entries in {�1, 0, 1}, representing negative and positive
numbers plus “hard” zeros. By fixing the signs of each entry in
a real matrix, a structure defines a class of realizations. If all re-
alizations of a structure are Hurwitz1, then the structure is also
said to be Hurwitz. The characterization of Hurwitz structures
is a pillar of structural control theory [1]. Hurwitz structures
satisfy strict conditions that can be checked in polynomial
time [2]. The conditions that positive Hurwitz structures must
satisfy are even stricter, and are faster to check [3]. Potentially
Hurwitz (⇡-Hurwitz) structures have at least one realization
that is Hurwitz. Characterizing ⇡-Hurwitz structures is still
an open problem [4]. In fact, even for special cases such
as stars [5] and trees [6], there is only one characterization
of ⇡-Hurwitz structures [7]. Negative results are also scarce
[8]. A major challenge is ⇡-Hurwitz structures have relatively
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1In [1], a real matrix is called sign-stable if it belongs to an all-Hurwitz
matrix class. We explain our decision to introduce new notation in Remark 2.

few constraints, in contrast to Hurwitz structures. Feedback
cycles in Hurwitz structures are negative and limited to two
states, which is not true in ⇡-Hurwitz structures [9]. In an
effort to put the complexity issue aside, only structures of
dimension at most five are considered, and listed, in [6]. But
dimensionality is a curse, and for dimensions as low as five, ad
hoc approaches crumble. In fact, the list in [6] is incomplete,
and amended in [10]. The structures missing in [6] belong to a
set of structures defining nests. A nest is a matrix A 2 Rn⇥n

such that, up to relabelling, its leading principal submatrices
satisfy sgn detA[{1, · · · , k}] = (�1)k. Structures defining
nests are ⇡-Hurwitz [10]: there is a positive diagonal D matrix
such that AD is Hurwitz. Although nests have been identified
as an important class of realizations, the characterization of the
⇡-Hurwitz structures that define them has remained an open
problem [10].

In this paper, we characterize the structures defining nests.
We do so by rather describing the graphs that correspond to
these structures. Informally, a nest is a sequence of super-
graphs that increases one vertex at a time. In classic control-
theoretic parlance, adding a vertex to a graph is equivalent to
adding a pole at the origin to a control system. To stabilize
them, graphs grow by means of particular structures called
Hamiltonians that act as controllers [11]. Framed in this way,
the problem is amenable to classical Root Locus arguments
[12]. We use Root Loci to devise conditions on the Hamilto-
nians themselves, such that successively adding a Hamiltonian
stabilizes the extra pole at the origin, while preserving the
remaining poles in the complex left-half plane. The solution
concept is itself a contribution, because it generalizes to any
⇡-Hurwitz problem, contrary to [7]. A technical reason is
the solution in [7] exploits realizations have Metzler property.
Following tradition in structural control theory [1], one seeks
to recognize extraneous graphical patterns and capture the ⇡-
Hurwitz essence in graphical properties the entire (sub)graph
satisfies. In view of abundant examples of how a structure
can be ⇡-Hurwitz [6], however, we feel this search will
prove elusive. Instead, we recognize a ⇡-Hurwitz structure
as a sequence of ⇡-Hurwitz superstructures that grow by
adding (possibly multiple) poles at the origin. The goal then
is devising the rules of how to stabilize the additional poles.
Herein, we successfully illustrate the approach to characterize
rather general structures, the only restriction being they “add”
one pole at the origin at a time.

A structural perspective can complement control theory in
many ways. For instance, by analyzing whether the structure
of an unstable system is potentially Hurwitz, we can infer
whether the instability is a matter of realization or of the
“nature” of the system. If a Hurwitz realization exists, perhaps
certain parameters of this system can be adjusted to fix it.



Otherwise, the very design of the system must be reviewed.
Hence, structural results verify whether it makes sense to even
try solving a design optimization problem. For example, as in
[13], [14], where stabilizability is an assumption, and the role
of “structure” is to constrain controller design. Conversely,
theoretical results such as ours can inform good practices to
design systems that are at least potentially Hurwitz. In fact,
in proving sufficiency of our characterization, we effectively
produce Hurwitz realizations of a structure. That is, structural
results can support automated design. Structural theory can
also be viewed as yet another approach to robust control.
Indeed, models often arise from first principles, and one can
confidently infer the signs of the interactions between states.
And linear models are also often good enough, thus, e.g.,
working with k·k

1
and k·k2 topologies, as in unstructured

robust control [15], effectively discard useful information
about the system. On the other end, parametric-style robust
control [16] embraces linear models. Uncertainty then lies in a
family of polynomials, whose coefficients are assumed to vary
independently within intervals of real numbers [16]. In reality,
however, coefficients depend on realizations in a substantially
more convoluted way, therefore assuming independent coeffi-
cients makes the analysis and design much more conservative.

Notation

Uppercase Greek letters are reserved for graphs, defined be-
low. Given a positive integer n, [n] denotes the set {1, · · · , n}.
For i, j 2 [n] and A 2 Rn⇥n, A[i, j] = Ai,j denote the entry
in i-th row, j-th column. This generalizes to sets: if I ✓ [n]2,
then A [I] represents the principal submatrix of A indexed by
the elements of I. But for ease of notation, we say A[n] to
mean A[[n]]. Uppercase I stands for the identity matrix. The
sign function is defined over the real numbers as

sgnx =

8
><

>:

�1, x < 0,

0, x = 0,

1, x > 0.

By complex left half-plane (LHP) we mean the subspace of
C defined by complex numbers with negative real part. Given
f a real function defined on a finite domain, by supp f we
mean the set of points over which f is nonzero.

II. PRELIMINARIES

Graphs

A matrix A in Rn⇥n maps to a (signed) graph � = (V,E).
Elements of V = [n] are vertices. Elements of E are edges.
Edges are triplets e = (i, j, sgnAj,i), and e is said to go from
vertex i, the tail, to vertex j, the head. Vertices that are tails
or heads of an edge are spanned by �. We often omit the
word “vertex” in “� spans vertex k.” A sequence of edges
(i, i+1, ·)ki=1 is a path between vertices 1 and k. Likewise, a
sequence of edges is a path between two vertices whenever it
is a path after appropriately relabeling vertices. Graphs of form
({i} , {(i, i, ·)}) are loops. If each of the k vertices of a graph
� is the head of exactly one edge, the tail of exactly one edge,

and there is a path between any two vertices, then � is a k-
cycle. For ease of notation, we often write (i1i2 · · · ik) instead
of ({i1, i2, · · · , ik} , {(i1, i2, ·), (i2, i3, ·), · · · (ik, i1, ·)}).

A graph �sub = (Vsub, Esub) is a subgraph of � = (V,E)
if Vsub ✓ V , and Esub ✓ E. With the understanding the
matrix A in Rn⇥n maps to �, A [�sub] is the submatrix of
A indexed by the vertices spanned by �sub—a missing edge
in �sub leads to a zero entry in A [�sub]. A sequence (�i)

m
i=1

of subgraphs is increasing if �i ⇢ �i+1. The number |�sub|
denotes the cardinality of Vsub, also called the order of �sub.
Subgraphs �1 and �2 are disjoint if they share no vertices
(hence, edges.) A partition of a graph into disjoint subgraphs
is also called decomposition. In particular, if the subgraphs of a
k-decomposition—with k vertices—consist of disjoint cycles,
then the k-decomposition is a k-Hamiltonian. Likewise, we
call a graph of order k a k-graph. Given � = (V,E), it is
convenient to define Hk(�), the set of k-Hamiltonians that
are subgraphs of �. We drop the order prefix and subscript
‘k’ when refering Hamiltonians of the same order of the
subgraph, i.e., H(�) = H|�|(�). It is also convenient to
define V(�) = V . In addition to partitioning, another way
of obtaining a subgraph is by “trimming.” Given � = (V,E),
to trim an edge e 2 E is to take �sub = (V,E\{e}). Similarly,
we can trim a subgraph from a graph, by removing subgraph
edges from the graph—while preserving edges shared with
other cycles. For example, let � be a 3-graph given by the
union of 2-cycle (12) and 3-cycle (123). Then, removing (12)
from � results in a graph given solely by (123). Note (12) and
(123) share edges, but these common edges are not removed.

Consider a k-cycle  = (V,E). Every vertex spanned by
 is the tail and the head of exactly one edge in  . Thus,
 maps to a permutation ⇡ over V taking heads to tails. A
permutation is a bijection from a set onto the same set. The
sign of ⇡ is determined by its parity: -1 when ⇡ is odd; +1
otherwise. ⇡ is odd when it is an odd-numbered product of
transpositions (permutations of two elements.) For example,
(243) = (24)(23) is even. Accordingly, if (vi, vi+1 mod k, si)
are the edges of  , then the sign2 of  is

sgn := sgn⇡ ·

 
kY

i=1

si

!
.

Analogously, if Hamiltonian � is a set of k cycles  i, then

sgn� := ⇧k
i=1 sgn i.

Let � : A 7! � denote the function that gives the graph �
associated with matrix A. Given A 2 Rn⇥n, let ⇢(A) denote
its characteristic polynomial ⇢(A)(s) := det(sI�A). With the
understanding that � = �(A), ⇢(�) means ⇢(A). Similarly, for
�sub ✓ � and Asub := A [�sub], ⇢(�sub) means ⇢(Asub).

Remark 1. Given A 2 Rn⇥n, let

⇢(A)(s) = sn + a1s
n�1 + · · ·+ an�1s+ an.

2This abuse of notation—using the symbol ‘sgn’ to refer to functions
defined over real numbers and graphs—should cause no confusion.
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(b) |H3(�)| = 2.

Fig. 1. Two signed graphs.

The coefficients of ⇢(A) are given by

ak = (�1)k
X

�2Hk(�(A))

detA[�], k 2 [n]. (1)

In words, (1) states the coefficients of �(A) are the “sums”
of Hamiltonians in the sense that ak amounts to the sum of
determinants of A indexed by k-Hamiltonians.

An important consequence of Remark 1 is: entries that are
not spanned by cycles are irrelevant to the eigenvalues of A.
We therefore discard entries/edges not belonging to cycles.

To illustrate Remark 1, consider A 2 R3⇥3 given by

A =

2

4
�1 �2 �3
1 0 0
0 1 0

3

5 . (2)

The characteristic polynomial of A is

⇢(A) = s3 + s2 + 2s+ 3.

Each coefficient amounts to the sum of appropriate Hamiltoni-
ans. For example, the second leading coefficient corresponds
to 1-Hamiltonians of �(A). Shown in Fig. 1(a), this 1-
Hamiltonian is the loop spanning 1 and formula (1) gives
a1 = (�1)(�1) = 1. In fact, �(A) also contains exactly one of
the other two k-Hamiltonians, k = 2, 3. The 2-Hamiltonian is
(12). Accordingly, a negative sign multiplies the matrix entries
A[1, 2] and A[2, 1] resulting in a2 = (�1)2[�(1)(�2)] = 2.
On the other hand, the permutation associated with the 3-
cycle spanning �(A) decomposes as two transpositions, so
that a3 = (�1)3[(1)(1)(�3)].

Equivalence between cycles and permutations enables more
convenient Hamiltonian notation. We denote by � = ⇧i⇡i

a Hamiltonian � containing cycles  i equivalent to permuta-
tions ⇡i. For example, the graph shown in Fig. 1(b) has two 3-
Hamiltonians: (123) and (12). We omit identity permutations
when possible, saying (12) instead of (12)(3).

Structures
A matrix A in Rn⇥n is Hurwitz if all of its eigenvalues have

negative real part. We are interested in the relationship between
the Hurwitz property and the structure of A. By structure,
we mean a matrix taking values in {�1, 0, 1}, to which
realizations adhere. That is, A entries have their signs given
by the corresponding structure entry. For example, matrix (2)
is an instance of the structure

S =

2

4
�1 �1 �1
1 0 0
0 1 0

3

5 .

Just as a real matrix A, its structure S produces a graph.
Accordingly, the edges of a graph induced by S are triplets
(i, j, Si,j), retaining only nonzero S entries. In our example,
this gives the graph in Fig. 1(a). We then have the following.

Definition 1. If a graph � has a Hurwitz realization A,
then � is potentially Hurwitz, or ⇡-Hurwitz in short. If every
realization A with �(A) = � is Hurwitz, then � is Hurwitz.

Remark 2. In this paper, we use slightly unconventional
objects and notation in three situations. First, we work with
structures, defined in {�1, 0, 1}n⇥n, instead of what are typ-
ically called “sign patterns” [17], elements of {�, 0,+}

n⇥n.
The point is to avoid defining an algebra over {�, 0,+}.
Second, we consider being (potentially) Hurwitz both a graph-
ical and a structural property. Because graphs and structures
are equivalent, and because we characterize being potentially
Hurwitz graphically, this overloading of the term is more
convenient than confusing. Lastly, being potentially Hurwitz
is a property typically labelled being “potentially stable”
or “potentially sign-stable.” Given our previous decision on
terminology, choosing the first over the last aims at keeping
notation consistent and clear.

III. NESTS: ONE VERTEX AT A TIME

In this paper, we characterize the structure of class of real
matrices called nests. Given a nest A 2 Rn⇥n, there exists a
positive diagonal matrix D such that is AD Hurwitz [10].

Definition 2. Let A 2 Rn⇥n. If up to relabelling indices,
sgn detA [j] = (�1)j , j 2 [n], then A is called nest. If � =
�(A), then � is called an n-nest, or simply a nest.

Theorem 1. [10, Theorem 2.1, p.246] If A 2 Rn⇥n is a nest,
then there exists a positive diagonal matrix D such that, up
to relabelling, AD[k] is Hurwitz, k 2 [n].

Remark 3. Henceforth, all results are a contribution of this
paper. Also, moving forward we assume nests A 2 Rn⇥n have
indices relabelled so that sgn detA[j] = (�1)j , j 2 [n].

Lemma 1. Let � be a nest. There exist Hamiltonians �i and
⇡-Hurwitz subgraphs �i ✓ � such that �i [�i ✓ �i+1 and

�i [�i is ⇡-Hurwitz, i 2 [|�|� 1]. (3)

Proof. Let � have order n and let A be a realization of � such
that A[j] is Hurwitz for every j 2 [n]. The coefficients of ⇢(A)
must be positive because A is Hurwitz. In particular, ⇢(A) has
positive constant coefficient, which collects the Hamiltonians
of �. Thus, � contains a cycle  n spanning n inducing
Hamiltonians that positively add to the constant coefficient
of ⇢(A). Let �n�1 be one such Hamiltonian. Then, trim
from � every cycle spanning n other than  n. Denote the
resulting realization by Tn. Let �n�1 := �(Tn[n�1]). Because
cycles spanning n have no bearing on ⇢(An[j]) for j < n,
proper submatrices Tn [j] are Hurwitz. It remains to show
�m�1 [�m�1 is ⇡-Hurwitz. Put

Dn := Tn �


Tn[n� 1] 0

0 0

�
, Gn := Tn �Dn.



For ↵ sufficiently small, n� 1 eigenvalues of Gn + ↵Dn are
arbitrarily close to those of Tn[n� 1], all in LHP. Moreover,
the constant term of ⇢(Gn + ↵Dn) is identically nonzero3,
hence the remaining eigenvalue of Gn + ↵Dn is not zero.
Furthermore,  n is the only cycle spanning n, thus the
constant term of ⇢(Gn + ↵Dn) is positive. The remaining
eigenvalue of Gn + ↵Dn, a realization of �n�1 [ �n�1, is
therefore negative. �n�1[�n�1 is ⇡-Hurwitz. By arguing the
same way for Tn[n�1] as we did for A, we obtain �n�2 and
�n�2, and so on, until we have the desired sequence.

IV. A SEQUENTIAL CHARACTERIZATION OF NESTS

Lemma 1 suggests Hamiltonians are the key to construct ⇡-
Hurwitz supergraphs, but having the “right” sign alone is not
enough. Consider an increasing sequence of ⇡-Hurwitz graphs
(�i)4i=1 shown in Fig. 2. Constructing �i+1 from �i follows
the same procedure: add an (i + 1)-Hamiltonian �i of sign
(�1)i+1. In �2 and �3, there is only one i-Hamiltonian, and
we have a two-part recipe to construct Hurwitz realizations:

G. Let Ai+1,↵ be a realization of �i [ �i such that its
submatrix Ai,↵ corresponding to �i is Hurwitz, whereas
the (new) entries corresponding to cycles introduced by
�i are given by ↵ 2 (0, 1);

S. For ↵ sufficiently small, Ai+1,↵ has i eigenvalues arbi-
trarily close to the LHP eigenvalues of Ai,↵, while the
positive constant term in ⇢(Ai+1,↵) implies the additional
eigenvalue is real and negative (see proof of Lemma 1.)

In summary, in part G, we grow a previous realization
known to verify the nest property by fixing the corresponding
previous entries and adding new entries to have values decided
on the next part; then, in part S, the new entries are taken
small enough to preserve previous eigenvalues while moving
the new eigenvalue into LHP. When adding a Hamiltonian
induces other Hamiltonians of opposite signs, however, it is
not immediate the above recipe produces a Hurwitz realization.
Because it is not immediate which of the opposing signs dom-
inates which. In other words, the constant term of ⇢(Ai+1,↵)
could be nonpositive, and part S of the recipe could not apply.
The sequence (�i)4i=1 illustrates this point. �4 builds upon �3
by adding 4-Hamiltonian �3 = (12)(34). But adding �3 also
induces �0

3 = (34), of opposite sign. Therefore, ⇢(A4,↵) need
not have a positive constant term. It depends on A3.

The reason �4 is ⇡-Hurwitz lies in two conditions that war-
rant recipe G-S will work. One is on every �sub ✓ �i[�i such
that H(�i[�sub]) is empty, all the Hamiltonians in H(�sub)
share the same �i cycles; for example, (34) in �3 [�3. We
call it the factoring property.

Definition 3. Let (�i,�i)ni=1 be a sequence of i-graphs �i
and (i + 1)-Hamiltonians �i such that �i+1 = �i [�i. Let
�sub ✓ �i [�i and let  be a cycle on �sub induced by �i.
If H(�i[�sub]) is nonmepty or empty and every Hamiltonian
in H(�sub) contains  , then  is factoring on �sub. If every
cycle induced by �i is factoring, then (�i,�i)ni=1 is factoring.

3The cycle  n induces Hamiltonians that add positively to ⇢(A).
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(c) �4 contains 4-Hamiltonians (12)(34) and (34).

Fig. 2. A sequence of ⇡-Hurwitz supergraphs: �1 ⇢ �2 ⇢ �3 ⇢ �4.

The second condition that makes �4 a nest is �i are sign-
compatible with �i, in the following sense: �i have sign
(�1)i+1 and the �i sub-Hamiltonian �i contains is dominant.
Concretely, the dominant Hamiltonians of �i are the support
of a “dominance” function �i : Di ! {0, 1} defined on

Di = {(�sub,�) : �sub ✓ �i [�i,� 2 H(�sub)} .

Hamiltonian �i is sign-compatible with �i if

�i \�i = ; or �i(�i[V(�i \�i)],�i \�i) = 1. (4)

The subgraph �i[V(�i\�i)] spans the same vertices as �i\�i

does, and (4) means either �i induces no other4 Hamilto-
nian or the �i sub-Hamiltonian �i contains is dominant on
�i[V(�i \�i)].

To flesh out how �i are defined, we turn to our example.
Start with �1, defined on D1 = (�1, (1)). Since �1 contains
exactly one Hamiltonian, put �1(�1, (1)) = 1. Next, extend5

�1 to �2:

�2(�2[1], (1)) = 1, �2(�2, (12)) = 1.

Hamiltonian (1) is dominant on �2[1] since �1(�1, (1)) = 1;
2-Hamiltonian (12) is dominant on �2 since it is the only one
�2 contains. The procedure we followed to extend �i to �i+1

so far consists in the following procedure: until there is a pair
(�sub,�) 2 Di+1 over which �i can be defined, do
Case 1. If �sub ✓ �i, then

�i+1(�i+1[V(�sub)],�) = �i(�sub,�).

4By assumption, every �i [ �i Hamiltonian shares all the cycles �i
introduces. Hence, if �i \�i = ;, then �i is the only such Hamiltonian.

5Note vertex 2 has no loops, therefore H1(�2[2]) = ;.



Case 2. Else, if H(�sub) = �, then

�i+1(�sub,�) = 1.

Case 1 handles pairs (�sub,�) such that � is dominant on
�i[V(�sub)]. The Hamiltonian � continues to be dominant on
�sub, which spans the same vertices as �i[V(�sub)] but may
have added �i edges6. For example, �2(�2[1], (1)) = 1.

Case 2 handles pairs (�sub,�) such that � is the only
Hamiltonian �sub contains, defining them dominant7 on �sub.
For example, �2(�2, (12)) = 1.

Extending �2 to �3 requires another case:
Case 3. Else, if �i(�i[V(�sub)],�0) = 1, then8

�i+1(�sub,�) = (1 + (sgn�)(sgn�0))/2.

Case 3 handles pairs (�sub,�) such that �i[V(�sub)] has
a dominant Hamiltonian. A new Hamiltonian is dominant on
�sub if and only if it has the same sign of a dominant Hamil-
tonian on �i[V(�sub)]. For example, the subgraph �3[12] has
two 2-Hamiltonians, (12) and (1)(2). The first, (12), is inher-
ited from �2 thus dominant on �3[12], by case 1; the second
is induced by positive loop (2), introduced by �2. From
sgn(12) 6= sgn(1)(2) follows that �3(�3[12], (1)(2)) = 0.
Therefore, �3 is defined by

�3(�3[1], (1)) = 1, �3(�3[2], (2)) = 1,

�3(�3[1, 2], (12)) = 1, �3(�3[1, 2], (1)(2)) = 0,

�3(�3[1, 3], (13)) = 1, �3(�3, (2)(13)) = 1.

Finally, we add fourth and last case. The last case concerns
Hamiltonians induced by �i that are not the only ones
on their corresponding subgraphs and that span a subgraph
�sub ✓ �i [�i for which there is no dominant Hamiltonian
on �i[V(�sub)], handled by cases 2 and 3, respectively.
Case 4. Else, if (�i[V(�i \�i)],� \ �i) 2 Di, then

�i+1(�sub,�) = �i(�i[V(�i \�i)],� \ �i).

Case 4 handles pairs (�sub,�) such that � ( �i but �i\�
is nonempty; � is dominant on �sub if and only if �i \� is
dominant on �i[V(�i \�i)]. For example, the 4-Hamiltonian
�3 = (12)(34) introduces the 2-cycle (34), which in turn
induces another 4-Hamiltonian �0

3 = (1)(2)(34). Because
both 4-Hamiltonians contain a cycle �3 introduces, case 1
does not apply; case 2 does not apply because H(�3 [�3) is
not a singleton; and, of course, case 3 does not apply either
because there is no dominant �3 Hamiltonian on �3 [ �3.
Both �3 and �0

3 intercept �3, however, thus case 4 applies.
Accordingly, �4(�4,�4) = 1 whereas �4(�4,�0

4) = 0.
Cases 1-4 are mutually exclusive. For example, (1) is a

dominant sub-Hamiltonian of (1)(2) on �2[1], but (�2, (1)(2))
does not fall into case 4, it falls into case 3, because �2 has a

6So �i+1 is not precisely an extension because it coincides with �i on a
subgraph spanning the same vertices, but with possibly more edges.

7If a Hamiltonian is dominant in �i and it is the only Hamiltonian on
its corresponding subgraph, then it is considered on case 1.

8If sgn� = sgn�0, then (1 + (sgn�)(sgn�0))/2 = 1. Otherwise,
(1 + (sgn�)(sgn�0))/2 = 0.

dominant Hamiltonian. In fact, �3(�3[1, 2], (1)(2)) = 0 since
sgn(1)(2) 6= sgn(12).

Algorithm 1: Extension by precedence
input : �i : Di ! {0, 1} and (�i,�i)
output: �i+1 : Di+1 ! {0, 1}

1 D  Di+1;
2 while 9(�sub,�) 2 D do // try each (�sub,�)
3 if �sub ✓ �i then // case 1
4 �i+1(�sub,�) �i(�i[V(�sub)],�);
5 else if H(�sub) = � then // 2
6 �i+1(�sub,�) 1;
7 else if �i(�i[V(�sub)],�0) = 1 then // 3
8 �i+1(�sub,�) (1 + (sgn�)(sgn�0))/2;
9 else if (�i[V(�sub)],�i \�i) 2 Di then // 4

10 �i+1(�sub,�) �i(�i[V(�sub)],�i \�i);
11 if �i+1(�sub,�) is defined then // update D
12 D  D \ (�sub,�);
13 end

14 end

Going through Di+1 and checking cases 1-4 until there is
no pair (�sub,�) over which �i+1 can be defined eventually
exhausts Di+1, resulting in �i+1 well-defined over Di+1.
If �sub ✓ �i, then for each � 2 H(�sub), (�sub,�)
falls into case 1. The remaining subgraphs �sub (and their
Hamiltonians) all contain a cycle introduced by�i. If H(�sub)
is a singleton, (�sub,H(�sub)) falls into case 2. Otherwise,
either H(�sub) contains Hamiltonians from H(�i[V(�sub)]),
or it does not. If it does, then (�sub,�) falls into case 3, for
every� 2 H(�sub)\H(�i[V(�sub)]). Finally, H(�i[V(�sub)])
may be empty, but not H(�sub). If so, every � 2 H(�sub)
must contain 9 a cycle from �i. This is case 4.

We denote the procedure of defining �i to �i+1 as extension
by precedence, formally presented as Algorithm 1.

Definition 4. If �i+1 is obtained from �i by Algorithm 1, then
�i+1 extends �i by precendence.

Given �sub ✓ �i, the support and the kernel of �i partition
(�sub,H(�sub)) into two components. Moreover, these two
components correspond to disjoint level sets of the sign
function. This is trivially true for any �1 a negative loop,
so assume it true for i  k. Case 1 copies �k onto �k+1

on the corresponding subgraphs, therefore the claim is true,
by assumption. Case 2 trivially satisfies the claim. Case 3
matches dominant/dominated Hamiltonians induced by �i

with �i dominant/dominated Hamiltonians by their signs,
therefore also satisfies the claim. Finally, consider case 4.
By assumption, the support and the kernel of �k partition
H(�i[�i \�i]) into two components S and K corresponding
to disjoint level sets of the sign function. Then, case 4
partitions H(�sub) into two components, one with dominant

9Otherwise, all Hamiltonians in H(�sub) only have �i cycles. Since
they do not intersect, there can be at most one such Hamiltonian on �sub, in
which case we fall into case 2.



sub-Hamiltonians in S and the other with dominated sub-
Hamiltonians in K. Moreover, since every Hamiltonian in
these induced components share the same �k cycles, the
induced components are also disjoint level sets of the sign
function (possibly with a “flipped” sign in comparison to S .)

To get a sense of why factorability and sign-compatibility
are enough for �4 to be a nest, let Ai,↵ be Hurwitz submatrices
generated by recipe G-S above, i 2 [3]. Then, let A4,↵ be
the result of part G of recipe G-S. Every 4-Hamiltonian in
�3 [ �3 contains 2-cycle (34). Hence, the constant term in
⇢(A4,↵) is linear in the edges of (34). Thus, to preserve the
LHP eigenvalues of A3,↵, suffices to take the additional edges
in A4,↵ small. Likewise, to preserve the LHP eigenvalues of
A2,↵ in A3,↵, the positive loop spanning 2 must be small
compared to the negative 2-cycle spanning 1 and 2. Hence,
�3 dominates �0

3, ⇢(A4,↵) has positive constant term, and
part S of the above recipe applies to A4,↵.

Definition 5. Let (�i,�i)ni=1 be as in Definition 3. If
D. sgn�i = (�1)i+1 and �i(�i[V(�i \�i)],�i \�i) = 1;
X. �i+1 extends �i by precedence;

then (�i,�i)ni=1 is sign-compatible.

We are now ready to characterize nests. First, sufficiency.

Theorem 2. If �1 is a negative loop and (�i,�i)ni=1 is
factoring and sign-compatible, then every �i [�i is a nest.

Proof. The proof is a formalization of the main ideas of recipe
G-S in light of the procedure of extension by precedence. But
we argue part S differently, not by exploiting continuity in the
determinant. Instead, we exploit continuity in elementary Root
Locus to incrementally produce Hurwitz realizations Gi of �i
verifying Definition 2, such that Gi[�j ] are Hurwitz, j 2 [i].
The point is to emphasize �i acts as a controller stabilizing
an extra pole at the origin, while preserving �i poles in LHP.

Let G1 = �1, and let ↵1 2 (0, 1). To construct a Hurwitz
realization G2 of �2 = �1 [�1, first fix G2[�1] = G1, then
take the negative edge in G2[�1] equal �↵1. If there is another
edge spanning 2 (i.e., if �1 is a 2-cycle), take it equal 1 in
G2[�1]. Letting ⇢(Gi) denote the characteristic polynomial of
Gi, then ⇢(G2)(s) = s2 + c1,↵s+ ↵1 can be expressed as

⇢(G2)(s) = ↵1(s
2 + 1) + (1� ↵1)s⇢↵1(G1)(s).

As ↵1 ! 0, ⇢↵1(G1)(s) = s + c1,↵(1 � ↵1)�1 converges to
⇢(G1)(s) = s+ 1, pointwise10. The roots of ⇢(G2) verify

1 +K1
s2 + 1

s⇢↵1(G1)(s)
= 0, (5)

an unusual Root Locus [12] in the sense that the poles of
(5) as well the gain K1 := ↵1/(1� ↵1) are functions of ↵1.
That is, K1 does not vary independently of the poles of (5).
As ↵1 ! 0, the poles of (5) tend to the roots of s⇢(G1)(s);
one is in LHP—the real root of ⇢(G1)(s) = (s + 1)—the
other is 0. The zeros are two roots of (positive) unit, none of
which are on (0,+1). That is, the positive real axis is not part

10Uniformly: if�1 is a 2-cycle, then c1,↵ = 1; otherwise, c1,↵ = 1+↵1.

of the Root Locus for any fixed ↵1. Now, the Root Locus is
continuous with respect to its poles and zeros, therefore for ↵1

sufficiently small the closed-loop poles of (5) are in LHP. For
concreteness, choose ↵1 = 1/2. If �1 introduces a negative
loop (2), the dominance function �2 is

�2(�2[1], (1)) = �2(�2[2], (2)) = �2(�2, (1)(2)) = 1; (6)

otherwise �1 introduces a negative 2-cycle and

�2(�2[1], (1)) = �2(�2, (12)) = 1. (7)

In either case, there are only dominant Hamiltonians on �2
and its subgraphs. Also, the support and the kernel of �2
partition every nonempty H(�sub), �sub ✓ �2, into two
components. Furthermore, these components coincide with
disjoint level sets of the sign function. In particular, the sums
of dominant Hamiltonians on their corresponding subgraphs
are trivially greater than, in absolute value, the sum of the
other Hamiltonians on the same subgraphs.

We repeat this argument inductively to construct a Hurwitz
sequence (Gi)ni=1 verifying Definition 2, with �i = �(Gi).

Induction hypotheses. There exist Hurwitz (Gi)ki=1 such
that Gi are nests, and �i = �(Gi), i  k. Moreover, for every
�sub ✓ �i such that H(�sub) is nonempty,
������

X

(�sub,�)2supp �i

detGi[�]

������
>

������

X

(�sub,�)2(supp �i)c

detGi[�]

������
. (8)

Induction step. Fix Gk+1[�k] = Gk. Let ↵k+1 2 (0, 1). Let
Ck denote the set of cycles�k introduces. For each cycle in Ck,
fix one edge of Gk+1 with absolute value ↵k+1; take remaining
new edges with absolute value 1. The factoring property
(�i,�i)ki=1 has implies ↵k+1 factors the constant term of
⇢(Gk+1), at least once. So let h = |Ck| � 1, that is, the number
of cycles �k introduces. Then, ↵h

k+1 factors the constant term
of ⇢(Gk+1). Let ↵h

k+1ck+1 denote this term, ck+1 a number
depending on Gk that will be shown positive. The number
ck+1 absorbs negative signs any of the Ck cycles might have.
Regardless, ↵h

k+1ck+1 is positive. Indeed, by the induction
assumption, the support of �k restricted to �k[V(�k \�k)] is
the 1-level-set of the sign function; the�k sub-Hamiltonian on
�k[V(�k\�k)] belongs to this level set, which dominates the
other in the sense of inequality (8); by assumption, (�i,�i)ki=1

is factoring, that is, all �k [�k Hamiltonians share the same
�k cycles, therefore the sign of det[Gk+1] is one for every
choice of ↵k+1; this sign matches that of every �k [ �k

Hamiltonian whose sub-Hamiltonian belongs to the 1-level-
set of �k; �k is sign-compatible, by assumption, therefore
one of such �k [�k Hamiltonians; finally, again because �k

is sign-compatible, this sign produces positive det[Gk+1], by
property D of sign-compatibility. Therefore, ck+1 is positive.
So let

⇢(Gk+1)(s) = sk+1 + c1,↵s
k + · · ·+ ↵h

k+1ck+1. (9)

As ↵k+1 ! 0, cj,↵ converge to cj , for all j  k, where

⇢(Gk)(s) = sk + c1s
k�1 + · · ·+ ck.



The roots of (9) are defined by characteristic equation

1 +Kk+1
sk+1 + ck+1

s⇢↵k+1(G1)(s)
= 0, (10)

with Kk+1 = ↵h
k+1/(1 � ↵h

k+1). As ↵k+1 ! 0, the poles of
(10) converge to a single pole at 0 plus the roots of ⇢(Gk).
These roots are in LHP, by the induction hypothesis. The zeros
are k + 1 roots of the (scaled) unit circle, none of which
on interval (0,+1) because ck+1 is positive. That is, the
Root Locus of s⇢(G1)(s) + Kk+1(sk+1 + ck+1) has empty
intersection with the positive real axis. But 0 is itself a pole,
hence the Root Locus of s⇢(G1)(s) + Kk+1(sk+1 + ck+1)
does contain an interval (�✏, 0], for small ✏ > 0. Since (10)
is continuous with respect to poles and zeros, the roots of
⇢(Gk+1) are thus all in LHP for sufficiently small ↵k+1. In
fact, the roots of (9) are all in LHP for arbitrarily small
↵k+1. We exploit this to choose ↵k+1 for Gk+1 to satisfy
the induction hypothesis.

By assumption, �k+1 extends �k by precedence. If H(�sub)
is a singleton, any choice of Gk+1[�sub] trivially satisfies the
induction hypotheses, including inequality (8). Therefore this
adds no constraints to the choice Gk+1[�k \�k]. The same is
true if all Hamiltonians share the same new �k+1 cycles: (8)
holds for i = k+1 because (8) holds for i = k, by hypothesis.
Similarly, (8) holds on Gk+1[�sub \�k] by hypothesis. Thus,
denoting by D and d the left and right-hand side of (8)
restricted to Gk+1[�sub \ �k], since D > d, by choosing
entries in Gk+1[�sub \�k] small enough, (8) continues to hold
on Gk+1[�sub], by continuity (whether the �sub Hamiltonians
induced by �k are dominant or not.)

To establish the sequential characterization of nests is tight,
we prove a converse to Theorem 2. In doing so, we make two
mild assumptions, in the interest of space. We restrict ourselves
to nests that are also minimal graphs. A ⇡-Hurwitz graph is
called minimal if it is no longer ⇡-Hurwitz after deleting one
of its edges. Secondly, given �sub ✓ �i [ �i, we assume
there is no cycle that is a �sub sub-Hamiltonian and whose
�i edges are a subset of another cycle that is also a �sub
sub-Hamiltonian.

Assumption 1. If � is a minimal (n+1)-nest, then � contains
a minimal n-nest, unique up to relabelling.

Assumption 2. Suppose (�i,�i)
k�1
i=1 is a factoring and sign-

compatible sequence and let �k := �k�1 [ �k�1. If �k is
a (k + 1)-Hamiltonian on �k [ �k, then every �k-induced
cycle on �k[�k that is part of a Hamiltonian on a subgraph
�sub ✓ �k [�k is uniquely identified by a �k edge.

Theorem 3. If � is a minimal n-nest, then it contains a
factoring and sign-compatible sequence (�i,�i)

n�1
i=1 .

Proof. We argue inductively. Since the induction hypotheses
below can be readily verified by inspection for the case where
n  2, we state them directly.

Induction hypotheses.

1. If � is a minimal nest of order n  k, then � contains a
factoring and sign-compatible sequence (�i,�i)

n�1
i=1 , and,

in fact, � = �n�1 [�n�1 =: �n.
2. If G is a realization of �n such that G[j] is Hurwitz for

all j 2 [n], then
�����
X

�2D

detG[�]

����� >

������

X

�2H(�[I])\D

detG[�]

������
(11)

holds over

D =
�
� 2 H(�[I]) : 9(�n[I],�

0) 2 supp �n : sgn� = sgn�0 .

3. If (�i,�i)mi=1 is a factoring and sign-compatible continu-
ation of (�i,�i)

n�1
i=1 , i.e., m � n � 1, and �m+1 is an

(m + 2)-Hamiltonian spanning �m+1 := �m [ �m such
that every cycle induced by �m+1 is factoring on �m+1,
then every cycle induced by �m+1 on every subgraph of
�i, with i  n, is factoring. In particular, if m = n�1, then
(�i,�i)ni=1 is a factoring and sign-compatible continuation
of (�i,�i)

n�1
i=1 .

Induction step. Let � have order k + 1. By definition,
� admits a realization G such that G[j] is Hurwitz for all
j  k + 1. The subgraph �[k] is a nest, too. Assumption 1
implies this nest is minimal as well. In turn, �[k] contains
a factoring and sign-compatible sequence (�i,�i)

k�1
i=1 , by

induction hypothesis 1. Define �k = �k�1 [ �k�1. Then,
�[k] = �k. Furthermore, for I ✓ [k] such that H(�k[I]) is
nonempty, inequality (11) holds over D.

Because G is Hurwitz, ⇢(G) has positive constant coeffi-
cient. Hence, � contains a Hamiltonian of sign (�1)k+1. In
fact, since (11) holds on any subgraph of �k, there must be
one such Hamiltonian, �k, that is “sign-compatible” with �k
in the sense that if �k contains a �k sub-Hamiltonian, then
this sub-Hamiltonian has the same sign as the dominant �k
Hamiltonians on the corresponding subgraph11.

Every cycle induced by �k that is a sub-Hamiltonian on �
is uniquely identified by a �k edge, by Assumption 2. Hence,
by deleting a �k edge, we trim exactly one cycle induced
by �k that is a sub-Hamiltonian on �k [�k. Moreover, �k
is a nest, so one “sign-compatible” (k + 1)-Hamiltonian is
enough to produce a Hurwitz realization G of �k [�k such
that G[j] is Hurwitz for all j 2 [k + 1]. Also, by (11) there
is a “sign-compatible” (k + 1)-Hamiltonian. Furthermore, a
cycle induced by �k that is not factoring on �k [�k can be
replaced by a �k dominant sub-Hamiltonian. But then every
cycle induced by �k must be factoring on �k [�k, because
� is minimal. In turn, (�i,�i)ki=1 is factoring, by hypothesis
3, and we can extend �k to �k+1 by precedence. Therefore,
dominance function �k+1 is well-defined, and the sequence
(�i,�i)ki=1 is sign-compatible12 as well. Then, (11) clearly
holds on D, with n = k + 1, for any I ✓ [k + 1] such that

11Strictly speaking, to say �k is sign-compatible, we need a dominance
function �k+1. To extend �k to �k+1, however, �k must be factoring, which
we have yet to prove �k . Hence, at this point �k is “sign-compatible.”

12Not just “sign-compatible”.



H(�[I]) is nonempty. That is, induction hypotheses 1 and 2
hold for n = k + 1. We now prove the last one also does.

Define �k+1 := �k [ �k, and let �k+1 be a (k + 2)-
Hamiltonian spanning �k+1 such that every cycle induced
by �k+1 is factoring on �k+1 [ �k+1. Then, every cycle
induced by �k+1 is factoring on every subgraph of �k, by
hypothesis 3. In turn, if a cycle induced by �k+1 is not
factoring on some �sub ✓ �k+1 [ �k+1, then �sub must
contain a cycle induced by �k. In fact, H(�sub) must contain
two Hamiltonians �sub,1 and �sub,2 such that �sub,1 contains
 1 but not  2, both cycles induced by �k+1, and vice versa.
Now, both �sub,1 \  1 and �sub,2 \  2 contain cycles �i

induced by �k, which are factoring, because (�i,�i)ki=1 is
factoring. But then  1 is not factoring on �sub,1 \ ([i�i),
i.e.,  1 is not factoring on �k, a contradiction.

Remark 4. Routh-Hurwitz theorem counts LHP roots of a
polynomial by consecutively producing smaller-order polyno-
mials and comparing their leading coefficients [18]. In an LTI
setting, these leading coefficients are functions of the actual
entries of the system matrix, carrying intricate interdependen-
cies between them. This hinders exploiting Routh-Hurwitz to
gain insight on what makes structures (potentially) Hurwitz.

On the other hand, decomposing polynomials additively
preserves the direct relationship between their coefficients and
actual matrix entries. This is a core idea we exploit. For
example, consider the system of Fig. 2. Starting with a real
pole at -1 and then taking entries with cycle gains given by
✏i, we produce polynomials in the form ⇢i+1(s) = s⇢i(s) +
⇢res,i+1(s, ✏i+1), ⇢res,i+1(s, ✏i+1) “residual” polynomials,

⇢1(s) = s+ 1,

⇢2(s) = s⇢1(s) + ✏2,

⇢3(s) = s⇢2(s) + ✏3s
2 + 2✏3s+ ✏23,

⇢4(s) = s⇢3(s) + ✏4s
2 + ✏4(1 + ✏2)s+ (✏2 � ✏3)✏4.

V. LAST REMARKS

We characterize, in graphical terms, the structure of nests.
They are sequences of supergraphs, building upon the pre-
vious one by adding appropriately signed Hamiltonians. The
notion of sign-compatibility we introduce captures the precise
meaning of being appropriately signed. Informally, it means
Hamiltonians are positive and have the same sign of the first
Hamiltonians formed in the sequence, which are dominant.
Framing the problem this way makes it amenable to classic
control theory; root locus arguments, specifically. From this
point of view, the new Hamiltonians act as controllers stabiliz-
ing an extra pole at the origin added to the previous ⇡-Hurwitz
graph. Our conceptual contribution is precisely framing the
problem this way.

A general solution concept

One interpretation of Theorem 2 is ”Hamiltonians �i act
as controllers stabilizing �i subjected to a single integrator.”
By considering not only single, but any integrator, this inter-
pretation turns into a prototype for a general solution concept
to characterize potentially Hurwitz structures, beyond nests.

1 2 3 4�

�

+

+ +

�

Fig. 3. 4-Hamiltonian (dashed edges) stabilizes two poles at the origin.

For example, the graph � shown in Fig. 3 is ⇡-Hurwitz, but
not a nest. It is, however, a sequence (�i,�i)2i=1 of ⇡-Hurwitz
supergraphs �i and Hamiltonians �i, such that �i+1 = �i [
�i. Namely, �1 is the loop spanning 1, �1 is the 2-cycle
spanning 1 and 2, and �2 is the 4-Hamiltonian. That is, �2

increases the order of �2 by 2—rather than by 1, as in a nest.
Root Locus explains why nests, the graph on Fig. 3, and

any other graph is ⇡-Hurwitz. The question now is whether
this Root Locus argument scales up to “bigger steps” between
supergraphs. A question we will pursue moving forward with
the structural control theory agenda.
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