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Abstract

The air transportation system connects the world through the trans-
port of goods and people. However, operational inefficiencies such as
flight delays and cancellations are prevalent, resulting in economic and
environmental impacts.

In the first part of this article, we review recent advances in using net-
work analysis techniques to model the interdependencies observed in
the air transportation system, and to understand the role of airports
in connecting populations, serving air traffic demand, and spreading
delays. In the second part of the article, we present some of our recent
work on using operational data to build dynamical system models of
air traffic delay networks. We show that Markov Jump Linear System
(MJLS) models capture many of the salient characteristics of these net-
worked systems. We illustrate how these models can be validated, and
then used to analyze system properties such as stability, and to design
optimal control strategies that limit the propagation of disruptions in
air traffic networks.



FAA: The Federal
Aviation
Administration is
the government
agency that provides
air traffic control
services in the US

NAS: The National
Airspace System,
refers to the airports
and airspace regions
in the US that are
controlled by the
FAA

Primary delay: The
delay caused by the
initial disturbance to
an aircraft’s schedule

Reactionary delay:
The delay caused by
the knock-on effects
of a primary delay,
caused when the
delay propagates to
subsequent legs of an
aircraft’s itinerary

1. INTRODUCTION

Air transport connects the world: More than 4.5 billion passengers, and trade estimated to
be valued at $6.7 trillion, were transported on 39 million scheduled flights in 2019 (1). Air
traffic demand has grown for the greater part of the past two decades, as has its connectivity,
which has nearly doubled in that time to more than 22,000 unique city-pairs worldwide
(1). The growth in air traffic has been accompanied by an increase in congestion, and
consequently, delays. In 2019, 19% of the flights in the United States (US) had an arrival
delay of greater than 15 minutes, and another 2.5% of flights were cancelled. Flight delays
are estimated to have an economic impact $30-40 billion each year in the US, and $60 billion
worldwide (2, 3, 4, 5).

Flight delays and cancellations can be initiated by a number of factors, including over-
scheduling during peak hours of operation, reductions in airport and airspace capacity
due to inclement weather (e.g., fog or thunderstorms), mechanical and maintenance issues
on aircraft, unavailability of crew members due to illness, extreme weather events (e.g.,
hurricanes), airport or airspace closures (6, 7), and even power or computer outages at an
airline (8, 9). While the above disruptions initiate primary delays at an airport, these delays
propagate to other airports, with potentially far-reaching impacts (10).

The networked nature of the air transportation system enables a high-degree of connec-
tivity between cities around the world, but can also cause brief disruptions at an airport
to cascade throughout the system. For example, two of the most disruptive events in 2016
were an hour-long computer outage at Southwest Airlines in Dallas, and a 5-hour-long power
outage (due to a fire) at Delta Airlines in Atlanta (8, 9). The impacts of these outages were
system-wide, lasted several days, and have been estimated to cost Southwest and Delta
Airlines, $177 and $150 million, respectively (9).
40% of flights in both the US and Europe are delayed not because of a direct impact, but

It is worth noting that approximately

because the aircraft is late arriving from a previous leg of its itinerary (11, 12).

Any investigation of air traffic delays should explicitly consider the network structure
and its role in the dynamics of delay propagation. By aiding traffic managers, airlines, and
transportation system engineers in their strategic and tactical decision-making, such a study
would enable efficient, robust, safe, and environmentally-friendly air traffic operations.

1.1. Challenges in Air Traffic Networks

Networks are a powerful abstraction that have been successfully used to model the dynamics
of a wide range of systems (14), from disease epidemics (15) and rumor propagation (16),
to engineered systems such as power grids (17, 18), the Internet (19), roads (20), public
transport (21), railroads (22) and air transportation (23). While each of these applications
has unique characteristics, we highlight some of the major challenges that arise in the
context of air traffic delay networks:

Coupling of nodal states and network topology: Air traffic networks exhibit a strong
coupling between the dynamics of the nodal states and the network topology. The network
topology changes with time (e.g., due to flight schedules) and is also a function of the state
of the nodes of the network (e.g., airport delays). Such complex intertwining of the nodal
states and the underlying topology poses technical challenges to the modeling and analysis
of these systems.

Multilayer networks: Connectivity in the air transportation system has been tradition-
ally modeled only in terms of operations, that is, flight service between an origin and a
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What causes flight delays?

Data from the US Bureau of Transportation Statistics on the different causes of flight delays is presented
below (11).

Causes of flight delay in the US

5%h = Air carrier delay
249%, \ Late-arriving aircraft
National Aviation System delay

Extreme weather

40%

Late-arriving aircraft. A single aircraft flies multiple flight legs each day in order to increase its utilization.
Aircraft in the US typically operate 4-6 flight legs a day; some aircraft fly as many as 10 flights in a single day
(13). Although airline schedules are planned with buffers between flight legs to mitigate delay propagation,
the delay of the incoming aircraft may exceed the buffer, resulting in reactionary delays.

Air carrier delays. This category includes all causes of delay that are considered to be within the control
of an airline, such as maintenance or flight crew issues, passenger boarding, fueling, baggage loading, aircraft
cleaning, etc.

NAS delays. These are delays due to air traffic control and traffic management initiatives, for example, to
address reduced capacity due to inclement weather or heavy traffic volume, at an airport or in the airspace.

Extreme weather. This category includes severe meteorological conditions such as hurricanes, tornadoes,
or blizzards, that prevent the safe operation of flights.

destination (24, 25, 26, 27). However, in reality, the air transportation system is multi-
layered: the nodes (airports) may interact along multiple dimensions, each of which can
be treated as a layer of the network (28). For example, one can represent traffic flows on
one layer of the network, airport capacities on another layer, and flight delays on a third
layer of the network. These layers would in turn be connected; for instance, bad weather
can lead to a reduction in airport capacities, which can in turn increase the delays on the
network. High delays can lead to network-wide cancellations, thereby modifying the traffic
on the network. In other words, the air transportation system is a multilayer network over
which delays and other disruptions emerge and spread. Limited methodological tools exist
for developing analytical, or even data-driven, models for such real-world networks.

Complex and variable dynamics: Air traffic networks exhibit significant variability
(e.g., in weather patterns and airline schedules) which have seasonal, weekly, and daily
trends; furthermore, weather phenomena are uncertain. As a consequence, it is difficult to
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Static network: A
network whose nodes
and edges, including
the weights and
directions, do not
change over time

Dynamic network: A
network whose nodes
or edges (weights or
directions) vary with
time

analyze and model the dynamics of air traffic delays even when operational data is available,
since one needs to be able to control for the changes in capacity and demand.

Airline competition: Constrained air traffic network resources are shared by aircraft
operated by multiple competing airlines, each with its own utility function. These utility
functions govern their scheduling and operating practices, and therefore, the dynamics of
the overall system.

Data quality and privacy: Information and data sharing are a key part of any modeling,
analysis, or optimization algorithms. In data-driven analysis, it is important to note that
some data (e.g., the ascribing of delay causes) can be subjective, resulting in potential
biases in the conclusions. Some data elements pertaining to airline operating practices and
cost functions are proprietary, and the flight plans of certain aircraft may be held private,
resulting in only partial information on some system states.

1.2. Qutline of the Paper

In Section 2, we present an overview of the advances in the analysis of both static and
dynamic aviation networks. In Section 3, we present a Markov Jump Linear System (MJLS)
model of airport delays, and describe its general applicability to networked systems with
switching topologies. Section 4 presents results on the stability of MJLS models of air traffic
delay networks, and Section 5 presents new results on optimal control for MJLS models.
Finally, Section 6 concludes with promising directions for future research.

While this paper adopts a network-centric perspective on air transportation, it is im-
portant to note that optimization and control techniques have long been an integral part of
air traffic management. Successful applications of such techniques include airport surface
congestion management (29, 30, 31), traffic flow management through large-scale optimiza-
tion (32, 33), tactical conflict resolution (34, 35), equitable resource allocation (36, 37),
and airline operations scheduling (38, 39). Developing practical, data-driven optimization
and control algorithms to manage large-scale network operations will be essential to ensure
safety and to enable growth in manned and unmanned air traffic operations over the coming
years.

2. STRUCTURE AND EVOLUTION OF AVIATION NETWORKS

Research on network models of air transportation can be broadly classified based on the
quantity of interest (e.g., flight connectivity or operational performance), the scope of the
network (e.g., limited to a specific geography or airline), and temporal behavior (static
or dynamic network) (23). Most prior studies have focused on static flight connectivity
networks, with airports are nodes, and edges represent the number of flights or the number
of passengers between pairs of airports (25, 26, 27). Prior work has also considered air traffic
in different parts of the world, as well as passenger and cargo airlines (40, 41, 42). There
has been limited consideration of the dynamics of delays, cancellations, airport congestion,
and airspace capacity in air traffic networks (Figure 1).

We first discuss centrality in the context of static networks, and then extend these
concepts to the case of dynamic networks, focusing on applications to air traffic delays.
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Figure 1

Different representations of the state of the air transportation system on July 1, 2016. Although
networks in (iii)-(v) are directed, an average undirected network is shown for ease of visualization.

2.1. Node Centrality

Static network analysis of the air transportation system has yielded insights into its scale-
free nature (23, 43), airline-specific patterns (40, 43), and its robustness to disruptions
(44, 45, 46).

A key aspect of analyzing network structure is the quantification of the centrality of
a node in a graph. We define a network (or graph) by the set of V' nodes, and the edges
between these nodes. The directionality and weight of edges can be represented using an

adjacency matrix A € RV*V

, where the element a;; represents the weight on the edge from
node i to node j. In the air traffic context, the edge (4, j) is sometimes referred to as an OD
pair (Origin-Destination pair). The entry a;; = 0 if there is no edge from node i to node
j. The centrality, or importance of a node in a network, is context-dependant, and can be

evaluated in several ways (14, 47). We describe three measures of node centrality:

1. Degree centrality: For a node i, the in-degree (d:") and the out-degree (d“') are
defined as di™ = >, aji and dovt = >, ij, respectively.

2. Eigenvector centrality (or eigencentrality): While the degree centrality measures the
strength of association of a node with its immediate neighbors, the eigencentrality
reflects the importance of a node in the context of the entire network. The eigen-
centrality for all nodes of an undirected network with (symmetric) adjacency matrix
Asym are given by the elements of the principal eigenvector (i.e., the eigenvector
corresponding to the eigenvalue with the largest magnitude) of Agym.

3. Hub and authority scores (48, 49, 50): The generalization of eigencentrality to di-
rected graphs considers the importance of the inbound and outbound connections of
network nodes using metrics called the hub score and authority score. These scores
are computed as the principal eigenvector of AAT and AT A, respectively (Figure 2).

Wihile flight connectivity networks are often represented as unweighted undirected net-
works, delays or cancellation networks exhibit asymmetric relationships between airports.
As a result, they are better modeled as weighted, directed networks, with the edge weights
representing the average flight delays (or cancellations) on a particular route. Such networks
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Figure 2

(Left) An example of a network, and (right) centrality metrics for its nodes.

have only recently received attention (51).

2.2. Clustering of Air Traffic Networks

Clustering has been used in the aviation context to categorize operational data in terms
of flight connectivity, delays, traffic, trajectories, weather impacts, etc. Most of these
efforts have involved clustering high-dimensional data (e.g., weather (52), airport capacities
(53, 54, 55), or flight trajectories (56)). Their scope has been restricted to either one airport
or a small group of airports, and has not considered network interactions. By contrast,
we focus on network representations of operational performance, specifically delays and
cancellations, and consider the problem of graph clustering (57, 51).It is worth noting the
distinction between the node-clustering problem (i.e the community detection problem), and
the problem of graph-clustering problem. The former (58, 59, 60, 61, 62, 51) categorizes
groups of nodes in a given graph that are similar to each other, while the latter aims to
identify entire graphs that are similar to each other.

The clustering of graphs can be carried out defining a feature vector, denoted fg, for
each graph G, and subsequently performing a vector clustering technique (e.g., k-means
clustering (63)) on these feature vectors. The degree centrality or eigencentrality can be
used as the feature vector fg (59, 64). However, degree centrality does not consider global
measures of centrality, while eigencentrality is only suitable for undirected graphs. One
could also populate fg with the edge weights a;;; however the feature vector then loses the
network-centric context, and its length grows super-linearly (O(V?)) with the size of the
network. These challenges in clustering weighted, directed networks were addressed in (51)
by using a scaled hub/authority score feature vector given by :

fg = Z Qij (2) 1.
%)

This feature vector accounts for network-centric features and the magnitude of the edge
weights while clustering weighted, directed graphs. It can therefore help distinguish between
two delay networks based on the magnitude and direction of the delays, as well as the
importance of the corresponding airports in the context of the entire network.

Delay networks evolve with time. It is therefore valuable to identify characteristic net-
work topologies. These typical or characteristic topologies can help identify anomalous
network structures, comparing network topologies, and understand the evolution of the
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(Top) An example of a time-series of weighted-directed networks. (Bottom) Clustering can
provide an equivalent, high-level representation of the evolution of the network.

system. Figure 3 shows a time-series of weighted directed graphs (representing delay net-
works), and how clustering could model the evolution of the system. This approach of
using clustering to analyzing the evolution of air transportation networks will be further
elaborated in Section 3.

2.3. Temporal Evolution of Air Traffic Networks

The temporal evolution of a networked system is associated with two distinct phenomena.
The first, widely-studied, phenomenon is the spreading process on the nodes of a network
(e.g., epidemic propagation in a population network). The second phenomenon is the
evolution of the structure of the network itself, namely, changes in the number of nodes, or
strength and direction of edges. Figure 3 illustrates one such example, in which the edge
weights, which could represent flight delays between a pair of airports, changes with time.

Models of flight delays help characterize the temporal evolution of the air traffic delay
network. Two modelling approaches are popular in this context: queuing theory and ma-
chine learning. Queuing models track aircraft as they pass through constrained resources,
modeled as queues (65, 66, 67). However, they often require proprietary information on crew
itineraries, and are sensitive to airport and airspace capacity estimates (68, 69, 70). Recent
work on machine learning methods has significantly improved delay prediction accuracy
(71, 72, 73), but lack the analytical tractability and interpretability needed for resilience
and robustness analysis (74, 75).

We seek to develop a data-driven model of air traffic delay network dynamics that is
analytically tractable and accounts for time-varying network topologies as well as weighted,
directed graphs. While certain aspects of this problem, such as asymmetric interactions
(76) and switching topologies (77), have been previously considered, we present our recent
work on developing and validating a data-driven model of airport delays (78).

3. NETWORK MODEL OF AIRPORT DELAYS

We present a Markov Jump Linear System (MJLS) model for the hourly progression of
airport delays (78). MJLS are a subset of hybrid systems (79), which have been successfully
used to model electromechanical systems (80), epidemic propagation (81), communication
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Node state: The
vector x(t), also
referred to as the
continuous state

Discrete mode: The
current mode m(t)
belonging to one of
the M possible
options, also referred
to as the mode or
topology.

State of the MJLS:
Combination of the
node state x(t) and
the discrete mode
m(t).

networks (82), and multi-agent interactions (83). The proposed model is constructed using
operational flight delay data from the US, incorporates the time-varying network effects
that drive delay propagation, and is lends itself to further analysis (Section 4 and 5).

3.1. Airport Delay Dynamics Model

3.1.1. Data and setup. An air traffic delay network comprises of nodes corresponding to
airports, and weighted, directed edges corresponding to the magnitude of flight delays
between the two airports. We define a delay network for each hour of the day, with the edge
weight being the median departure delay for all flights that were scheduled to take off on
that route during the hour. We use data for domestic air traffic in the US during the years
2011-12 to construct these time-series of weighted-directed networks (11). We consider only
the 30 major airports in the US (FAA Core 30); thus the number of nodes V = 30. A
network for each hour in the two-year period results in 731 x 24 = 17,544 networks, each
with a distinct V' x V' adjacency matrix, A(t). We denote the total inbound and outbound
delays at an an airport ¢ at hour t as di*(t) and d5"*(t) respectively. These airport delays
are related to the elements of the adjacency matrix A(t) = [ai;(t)] as di(t) = > ai(t)
and d§"t(t) = >, aij(t). Our objective is to develop a model for the evolution of di™(t) and
d$"*(t). With regards to notation, we use boldface to denote vectors (e.g., x(t) for the state
vector, 0 for a vector of zeros, etc.), R for the set of reals, N for the set of natural numbers,
Lcondition @s an indicator variable, and Iarx s to denote a M x M identity matrix.

3.1.2. Topology-dependent model. The total outbound delay at airport ¢ at time-step ¢+ 1
depends on two components: the outbound delay at that airport at time ¢ (reflecting delay-
persistence) and the delay bound to ¢ from the other airports at time ¢ (modeling the
network effect). Similarly, the outbound delay at airport ¢ at ¢+ 1 depends on its outbound
delay at time t as well as the network effect of other connected airports. Combining these

two factors linearly using proportionality constants a™, oi, A%, and £i*, we get:
V .
AN (t+1) = " dP () + A7) a, (t)d) () 2.
j=1
AP (t+1) = a"d(t) + B Y azi(t)d5(t) 3.
j=1

where @;;(t) represent the elements of the row normalized adjacency matrix A(t) (i.e.,
@;;(t) is the fraction of the total outbound delay at node ¢ that is destined for node j).
The constants o and 3, are assumed to be non-negative, and their magnitudes reflect the
relative importance of the persistence and the network effect in the delay dynamics. These
constants do not necessarily sum up to 1, since delay may not be conserved due to factors
such as buffers in flight schedules (which help attenuate delays) or high airport connectivity
(which could exacerbate delays). We denote the node-state of the system at any time ¢ as
the vector x(¢) which comprises of all the inbound and outbound delays at all airports:

e
x(t) = |:di“(t) :| . 4.

Using x(t) € RQIO“, where N = 2V = 60, Equations 2 and 3 are expressed succinctly as
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Figure 4

Plot of the within-cluster sum of squares (WCSS) distance as a function of the number of clusters
(left), and the percent reduction in WCSS with each additional cluster (right). We use k = 6.

x(t+1) = (diag([0™;0™)) + diag((8° 67 )AW) x(1) = TWHx(1), 5.

where A(t) = < ATO @) A(()t) ) . Thus, Equation 5 describes the dynamics of the continuous-

state x(t) as a function of the topology A(t).

3.1.3. Clustering of network topologies. Since the evolution of the delays depends on the
network topology A(t) which can take many possible values, we aim to find a set of char-
acteristic network topologies. In other words, we want to identify a limited set of matrices
that are representative of A(¢). Incidentally, the principal eigenvector of A(t) is the vec-
tor comprising of the hub-and authority scores of a network with adjacency matrix A(t)
(48). We emphasize a subtle observation: Equation 5 is such that a centrality measure on
static networks ends up being relevant in identifying characteristic patterns that govern the
temporal dynamics of the system. A weighted hub-authority clustering (based on Equation
1) is subsequently performed to identify six representative network topologies (Figure 4),
which are further split based on whether the overall system delay is increasing or decreasing
at that time. The M = 12 network topologies, {A1, As, ..., An}, are shown in Figure 5.

3.1.4. Parameter estimation. The parameters a and [ are estimated for each discrete
mode (network topology) using a linear regression. These parameters are combined with
the topologies {A1,..., Ay} via Equation 5 to identify the system dynamics matrices
{I'1,T2,...,Tm}. The transitions in the network structure are assumed to be a result
of Markovian jumps between M = 12 possible topologies. In other words, the probability
of transitioning from mode m(t) at time ¢ to m(t+1) at time t+ 1, Pim(t+1) = j|m(t) = 1]
is denoted m;;(t). The transition probability m;;(¢t) (and the corresponding M x M transi-
tion matrix II;) is obtained using the maximum likelihood estimator, which in this case is
equal to the empirically observed frequency of transitions from mode i to j at time t. The
discrete mode transitions may also be associated with resets or jumps in the state of the
node. In other words, any transitions from topology ¢ to topology j modify the node state
as x(t + 1) = J; ;Tix(t). The state reset matrix J; ; is also estimated by linear regression.
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Figure 5

Characteristic network topologies (discrete modes) from 2011-12, including delay trends
(increasing or decreasing). The modes are named on a qualitative basis, and the frequency of
occurrence is shown in parentheses. The spectral radius (magnitude of the largest eigenvalue) of
the corresponding system dynamics matrix, p(I") is also presented.

3.2. Validation and Model Performance

We consider the MJLS model whose parameters «, 3, and J are estimated using data from
2011. Figure 6 highlights the potential for the model to reflect high-level temporal trends
in delay dynamics. For this experiment, the MJLS model is initialized with the airport
delays at 8 am EST, and the delays are propagated using Equations 6 and 7. We see
that the MJLS model is able to capture the varying scale and magnitude of delays across
different airports, as well as the temporal trend of increasing and decreasing delays (with a
6.4% error over the first 12 hours). There is a 1- to 2-hour lag in the ability of the model
to capture decaying delays, possibly because the model, for simplicity, has just M = 12
discrete modes. Although not shown in this figure, the model is also found to track the
variance in delay reasonably well.

The predictive capability of the MJLS model is worth noting (86). Table 1 compares a
linear regression and the MJLS models for predicting delays at a 2-, 4-, and 6-hour horizons.
The models use different inputs: the MJLS model uses x(t) and m(t) as the initial condition,
while the linear regression models use ¢, x(t), and a characteristic network topology label for
the previous day (for potential residual delay effects). The results indicate that the MJLS
model performs better than linear regression (as well as simple neural network architectures)
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Markov Jump Linear System (MJLS) models

The dynamics of the inbound and outbound airport delays is described using a discrete-
time switched linear system, where the evolution of the airport delays in each discrete mode
is linear, and the discrete mode transitions are governed by a Markov process (84, 85).
An example of a MJLS system with three discrete network topologies is shown below.

X+ 1) =Toxt) | ) " | x(t4+1)=ax(t)
In general, the dynamics of the airport delays x(t) from mode m(t) at time ¢ is given by:

xX(t+1) = Jne),me+n)Dm@x(t)
mij (t) = Plm(t + 1) = jlm(t) = 4]
Initial conditions : x(0) > 0 and m(0)

where the state reset matrix Jo, ) me+1) = Inxn if m(t) = m(t +1).

Positive MJLS (PMJLS). A PMJLS is a MJLS for which the state always remains non-negative for any
non-negative initial condition, i.e., x(0) > 0 = x(¢) > 0 V¢. For airport delay dynamics, all the elements
of I'; and J; ; are non-negative and thus the system is a PMJLS, consistent with the fact that airport delays
are always non-negative.

Mean Prediction error (min)

Method 2 hour 4 hour 6 hour
Linear Regression 7.59 9.51 10.47
MJLS model 6.75 8.83 10.09

Table 1 Mean prediction errors for the total system delay for the MJLS and a linear
regression model across different prediction horizons (86). The model was developed
using data from 2011, and tested on data from 2012.

while modelling airport delay propagation (86).

3.3. Other Applications of Modeling Framework

The proposed framework (Figure 7) yields a switched-system model for the temporal evo-
lution of a continuous nodal state vector. In our application, the continuous state cor-
responded to airport delays, but it could be extended to packet latency at routers in a
communication network, or the extent of gossip spread in a social network. In each of these
settings, one could express a parametric, topology-dependant model for the nodal state, re-
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evaluated for 2011. All times are in US Eastern Standard Time (EST).
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Overview of the steps involved in developing a switched-system network model from data. The
text in parenthesis describes the adaptations of the steps for the airport delay model.

duce the model complexity by restricting the topology to a finite set by clustering (87), learn
the model parameters by regression, and iteratively refine the parameters if needed. More
generally, the model need not be linear or the topology transitions Markovian, presenting
great flexibility.

4. STABILITY OF AIRPORT DELAY DYNAMICS

Stability analysis provides insights into the temporal and topology-specific patterns that
lead to increasing or decreasing delays, and also helps further validate the model. For
example, one would expect airport delays to decay overnight, as traffic demand decreases.
The stability, or instability, of a system may also motivate approaches to effectively control
the system, as we will explore further in Section 5.

For a discrete-time, linear, time-invariant (LTT) system, stability is defined as the con-
vergence of the sequence of the continuous state norms to 0, and a necessary and sufficient
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for stability is that the spectral radius of the system matrix is less than 1. The evolution of
x(t) in a MJLS is a stochastic process, and consequently, relevant notions of stability have
been proposed for switched systems in general (88, 89), and MJLS in particular (90, 91, 92).
Stability conditions for MJLS are starkly different from those for LTI systems— stability or
instability of the individual modes is neither necessary nor sufficient for the stability of
the MJLS (91). In this section, we present conditions for the stability of PMJLS with
continuous state resets, and interpret them in the context of air traffic delay networks.

Stability of discrete-time positive Markov Jump Linear Systems (PMJLS)

Definitions

Mean Stability (MS): A system is said to be mean stable if the expected value of the state tends to zero
as time tends to infinity, i.e, limg_, o E[x(k)] = 0, for any non-negative initial conditions, x(0), and for any
m(0).

Exponentially Mean Stability: A system is said to be exponentially mean stable if there exist positive

scalars c and < 1, such that E[x(k)] < cr*||x(0)||1, for all times k, for any non-negative initial conditions,
x(0), and for any m(0).

Exponential §-Moment Stability: A system is said to be exponentially 5-moment stable if there exist
positive scalars ¢ and r < 1 such that E[||x(k)||°] < ¢r*[x(0)||°, for all times k, for any non-negative initial
conditions, x(0), and for any m(0). When § = 2, it is known as exponential mean-square stability.

Almost Sure Stability (ASS): A system is said to be almost surely stable if the state tends to zero
as time tends to infinity, with probability 1, i.e., Pllimy—oo [|x(k)|| = 0] = 1, for any non-negative initial
conditions, x(0), and for any m(0).

Remarks:

1. The notion of MS was specifically introduced to exploit the non-negativity property
of PMJLS, in order to obtain stability criteria (93, 94).

2. The concept of ASS requires that every realization of the system state tends to zero,
rather than just tending to zero in expectation. This definition is typically more
useful in practice (95).

Relationships between the different notions of stability

For a PMJLS, these notions of stability are related as follows (93, 78):
Mean Stable <= Exponentially Mean Stable <= Exponentially 1-Moment Stable = Almost Surely Stable

While sufficient conditions, with varying degrees of conservatism, have been proposed for ASS, a necessary
and sufficient condition remains elusive (96). As a result, a proof of MS is typically used as a sufficient
condition for ASS.
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4.1. Mean Stability of a PMJLS

We begin with the mathematical preliminaries needed for our main result on necessary and
sufficient conditions for the mean stability (MS) of a PMJLS. We ignore the state reset
matrices J; ; in our analysis for simplicity; however, the results can be trivially extended
to incorporate them (78). The key idea involved is to define and track an augmented state

vector q(t) € RVMx*!

given by
at) = [@u®), -+, an(®) ], where qu(t) = Ex(t) L. 9.

Next, matrices By € RVM*NM and § = [s;;] € RV*NM are defined as

7T11(t)F1 - TFMl(t)F]V[

1, if j=4i+ kN, forke N
B = : : and s;; = Hy =1t o 10.
’ ’ 0, otherwise
TI'Uu(t)IH TI']u]y[(t)FM
Lastly, we define Cy, ¢, € RV*VM a9
Cits = SAvinxmN + Bty + Byy+1Biy + ...+ Big—1 - 'Bt1)7 11.

where Cy, ¢, = [cj;], with c;; € RV i=1,... ,N,and j=1..., M.

The following propositions describe the evolution of q(¢) and E[x(t)]:
Proposition 1. Given x(t) and m(t), qi(t + 1) = T, ()T x(t).
Proposition 2. The augmented state vector evolves as q(t + 1) = Byq(t).
Proposition 3. The ezpected state E[x(t)] is equal to Zf\il qi(t).
Proposition 4. The expected sum of future states Z?:tl E[x(t)] is equal to Ct, +,q(t1).

These propositions indicate that knowledge of the current state, either in the form of
(x(t),m(t)) or q(¢) is sufficient to propagate the augmented state and the expected state
E[x(t)] for future time. We now present the main result:

Theorem 1 (from (78)). If the transition probabilities are time-varying and periodic with
length K, i.e., mij(t+K) = m;(t), then the PMJLS is Mean Stable if and only if the spectral
radius of the matriz Dy = Bryx-1Bryx—2--- Bk is less than 1, for some k € [0, K].

Theorem 1 prescribes the conditions required to test for MS when transition matrices
are time-varying and periodic. Since traffic patterns and flight delays are cyclic over the
course of a day, the transition probability matrix I1; is periodic with K = 24. The following
corollary considers the case when transition matrices are not time-varying.

Corollary 1. If m;;(t) = mi; Vt, and B, = B Vt, then a necessary and sufficient condition
for the Mean Stability of the PMJLS system is that the spectral radius of B is less than 1.

Theorem 1 provides a relatively straightforward test for MS based on the spectral radius
of D, p(D). Additionally, since MS implies ASS for a PMJLS, mean stability implies that
airport delays x(t) will converge to 0 with probability 1 as ¢ — oco. It is also worth
remembering that these are sufficient and not necessary conditions, i.e., if the conditions
for MS are not satisfied, it does not tell us anything about ASS. However, for the case of
airport delays, we expect the system to be both MS and ASS.
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Figure 8

(Left) Worst-case delay magnification (over the next hour) of 1 unit of total delay initiated at a
particular hour of the day. (Right) Worst-case amplification of 1-unit of time delay injected at
four different times (4 am, 8 am, 12 pm and 4 pm), when allowed to propagate. All times are in
US EST.

4.2. Implications for Airport Delay Dynamics

The airport delay MJLS model involves periodic transitions (with time period K = 24)
between 12 discrete modes, some of which are stable, while others are unstable (Figure
5). To evaluate stability of the resulting PMJLS, we compute the spectral radius of D as
p(D) = 0.67 < 1, to conclude that the system is MS, and therefore ASS. This finding is
consistent with our expectation that delays will tend to decay over the course of a 24-hour
period in expectation, and further validates the MJLS model. Interestingly, if we had not
incorporated the time-varying transition matrix and instead considered the average matrix
I, = I1 Vt, then p(B) = 1.06, and by Corollary 1 the system is would not be MS. This result
highlights the critical role that the discrete mode transitions to ‘Low NAS decreasing’ (and
other decaying delay modes) during the later part of the day play in stabilizing the system.

The spectral radius of B; gives an upper bound on the amplification (i.e., the worst
case magnification) of the total system delay at time ¢, over the next time-step (an hour,
in our case). Figure 8, which plots p(B:) as a function of time indicates that the topology
transitions are such that the delays tend to decay after 8 pm, thus resulting in low airport
delays overnight. Additionally, from Proposition 2, we can also show that the worst case
W, is equal to p(Biy—1...Bt;+1Bi,). Using
this result, we plot the worst case amplification of a 1-unit total delay initialized at different

amplification of delays from ¢; to to,

points in time (4 am, 8 am, 12 pm and 4 pm) in Figure 8. Delays initiated earlier in the
day have a greater potential to cascade throughout the system and get magnified (up to
80 times by 8 pm) as compared to those introduced during the later part of the day. Our
analysis emphasizes the need to ensure disruption-free operations during the early part of
the day for improved system performance — an operational practice regularly-employed by
airline operations managers and air traffic controllers.

Our results illustrate the role that stability analysis plays in model validation and in
identifying key aspects of the delay dynamics. Finally, we point readers towards recent work
on structural (97) and finite-time (98) stability, which have yielded interesting insights.
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Figure 9

Mean system delay vs. number of flight cancellations, for hourly data from 2011-12 grouped by
the number of flight cancellations. The color of each dot denotes the number of hours for each of
the groups. While delays and cancellations both increase initially, cancellations are used to
strategically reduce traffic demand when disruptions are severe, resulting in lower delays for flights
that continue to operate.

5. OPTIMAL CONTROL OF AIR TRAFFIC DELAY NETWORKS

Long-term strategies for reducing air traffic delays require expensive infrastructure and
technological investments. Tactical control approaches, at the time-frame of a few hours,
such traffic flow management (e.g., ground delay programs or airspace flow programs re-
sulting in flight swaps and cancellations) can be effective in mitigating congestion due to
unforeseen disruptions (39). In the context of our MJLS model for air traffic delays, these
actions correspond to either interventions on the nodal (continuous) state to decrease delays
at airports, or interventions on the network topology to decrease the propagation of delays.
Figure 9 shows an example of how flight cancellations are used to reduce demand, and
consequently, reduce delays for the remaining flights. The development of control strategies
for such networked systems will enable efficient, resilient and robust operations in a number
of other critical infrastructures (99, 34, 100).

The control of processes on networks has been well-studied in the context of epidemiol-
ogy (81, 101) and resilient infrastructures (102, 103, 104). However, controllers for systems
with switching topologies have received less attention (91, 105). The most popular approach
to control the nodal state of a MJLS is to use a mode-dependent state feedback controller
(91, 106). Dynamic programming (107), convex programming (108), particle based approx-
imate methods (109), and receding horizon controllers (110, 111) have also been developed.
These controllers all modify the nodal state x(t) to achieve a desired control objective. The
control of mode transitions, by which one alters the transition probability IT; or induces
specific mode transitions, has been impractical in many traditional settings, and therefore
not been explored (112). However, increasing autonomy has enabled the ability to modify
the structure of network interactions in many infrastructure systems. In this section, we
develop controllers for a PMJLS that acts on both the continuous (node) state and the
discrete mode, in order to minimize a desired objective function.
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Control of Markov Jump Linear Systems

Let the continuous state of the system be x(¢), and the discrete mode be m(t) at time ¢. The objective
of a controller is to optimally trade off the control effort with the benefits of a smaller continuous state x(t).
Since x(t) > 0 for a PMJLS, the continuous state magnitude can be represented by the 1-norm. The control
action at time ¢ minimizes the cost-to-go, and the objective function for the controller is expressed as

T
Minimize IE[Z |[z(7)]l1] + control penalty (t) 12.

F=i

System at time ¢+/

System at time ¢

San Francisco
Increasing
@ Total airport delay magnitude

® Yellow circle indicates airport
delay after node control action

Node or continuous state control. The control action u(t) € RY*!? modifies the continuous state as
x(t+ 1) = Tppyx(t) — u(t), while ensuring that x(t) > 0 and 0 < u(t) < Usmaz1. The action u(t) incurs a
control penalty of 87 (t)u(t), where 8(t) € RgOXI is the cost per unit action on each node.

Topology or mode control. A mode control action forces a transition to a particular discrete mode at
time t + 1, instead of allowing it to be drawn from the distribution II;. The control penalty for forcing a
transition from mode ¢ at time ¢ to mode j at ¢ + 1 is given by «a; ;(¢t) € R>o. There is no penalty in the
absence of a forced transition.

Integrated control. An integrated control action involves a combination of continuous state and mode
control.

5.1. Optimal Control of a PMJLS

We present the optimal node, topology and integrated control actions that should be taken
when the system has a continuous state x(¢), and discrete mode m(t), at time t, in order
to minimize the objective function in Equation 12.
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Theorem 2 (Node control). The node control action u*(t) given by

13.
0 otherwise

“(t) = {max {Umaz, 22 [Cmwlizzs ()} if Bi(t) < mi
where nT = Zzg ﬂ'm(t)’jcg; e RN and C’t(I)l’T = [cz;}i:LN, j=1:m minimizes the func-
tion in Equation 12. The minimum value is equal to

(A" + 0" Ton)x(t) + (87 (1) = 0" u" (1) 14.

Proof. First, use Equation 9 and Proposition 1 to obtain q(¢ + 1). Then, use Proposition 4
to simplify the expected state norm from time ¢t + 1 to T in Equation 12. This reduces the
problem to a variable-separable linear program. O

The optimal node control policy is a threshold rule that identifies nodes at which in-
tervention is justified, and uses the largest control action subject to the limit of Ujnqz, and
such that x(¢41) > 0. Note that u*(¢) = 0 if no action can decrease the objective function.

Proposition 5. When the topology is forced to transition to mode k at time t+ 1, the value
of the objective function (Equation 12) is

()l + [|Cear.r @™ (¢ + 111 + ey (2) 15.

Toox(®), ifi=k
where qgk)(t—i—l): wx(t), i1 forie{l,...,M}
0, otherwise

Proof. Separate the terms in Equation 12, and simplify using Propositions 1 and 2. O

Theorem 3 (Topology control). The optimal topology control action chooses the mode that
yields the lowest objective function value (Equation 12) from among the following options:

(i) No topology control, with objective function value given by Proposition 4.
(i) Topology transition to any mode k € {1,..., M}, with objective function value given
by Proposition 5.

Proof. The cases (i) and (ii) decompose the domain of the optimization. Hence, the global
minimum is the best solution among these locally optimal solutions. O

The optimal topology control action is the result of evaluating (M + 1) sub-problems,
and then choosing the best action (Theorem 3). The enumeration of the (M + 1) cases is
tractable in practice since the matrices Cy41,7 can be computed offline.

Proposition 6. The optimal node control action u*(t) conditioned on a forced topology
transition to mode k at t + 1 (i.e., m(t + 1) = k) is obtained by setting n” = 3, ¢k in
Theorem 2.

Proof. Use Equation 9 and Proposition 1 to obtain an appropriate q(t+1). The rest of the
proof follows that for Theorem 2. O

Theorem 4 (Integrated control). The optimal integrated (i.e., node and topology) control
action at time t is the one that results in the lowest objective function value from among
the following options:
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Number of control actions

Control strategy Delay cost

Node | Topology Both
Node controller 0.79 2.02 - -
Topology controller 0.85 - 3.22 -
Integrated controller 0.70 1.91 2.26 0.07

Table 2 Controller performance averaged over a € [0,0.25] and 8 € [0, 200].

(i) No forced topology transition, and optimal node control as in Theorem 2.
(i) Forced topology transition to some mode k € {1,..., M}, and a conditionally optimal
node control action, as in Proposition 6.

Proof. Similar to the proof for Theorem 3. O

The integrated controller prescribes a potential topology transition and a control u*(t)
on the node state as described in Theorem 4. It is important to note that the integrated
controller controller does not simply choose between the node and topology controllers, but
rather chooses the optimal solution (i.e., the minimizer of Equation 12) over the space of
all possible combinations of node and topology control actions.

5.2. Evaluation of Controller Performance

We aim to minimize airport delays over the course of a 24-hour operational day (4 am EST
to 3 am EST). The initial conditions for the PMJLS model, x(0) and m(0), are drawn from
historical data (2011-12). We study the performance of the controllers in simulation, for
varying values of node and topology control action penalties. In our numerical experiments,
x(0) is normalized, Umaz = 100, and the control penalties are parametrized as B(t) = 81
and a;;(t) = aﬁff(;;)v where a and B are non-negative scalars. The node control penalty,
5, is the unit cost for reducing the delay at an airport. The topology transition penalty is

proportional to the time remaining during that day, since actions are more challenging to
implement early in the day, and affect a higher volume of downstream traffic. Furthermore,
the topology control costs are assumed to be inversely proportional to the transition prob-
abilities, to reflect the property that rare transitions are more difficult to induce than the
ones that occur naturally with a high probability.

For a set of parameters (o, 8) and a control policy, we measure the effectiveness of a
strategy in terms of its delay cost:

S22 VE[|Ix(7) |1 + control penalty(r)]

S22 VE[[Ix(7)]|1 | no control action]

16.

Delay cost («, 3, control policy) =

The delay cost (or simply the cost) should be less than or equal to 1 for any reasonable
controller; lower the delay cost, the better the controller performance. Finally, we note that
the evolution of x(t) is stochastic and thus the expectation in Equation 16 is estimated
empirically using 1,000 simulations for each value of o and S.

5.3. Comparison of Node, Topology and Integrated Control

From Figure 10 (left and center) we observe that smaller values of o and (3 result in lower
delay costs for the topology and node controller, respectively. This finding is consistent
with our expectation that the effectiveness of a controller would decrease if the penalty for
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Figure 10

Delay cost contours for varying a and 8, for (left) topology control, (center) node control, and
(right) integrated control. The yellow regions denote the highest delay costs. Smaller penalties
(values of a and ) result in lower costs, and that integrated control obtains lower costs over a
larger range of penalties.

an intervention is high. The integrated controller jointly optimizes over the entire space of
node and topology actions to obtain greater benefits over a wider range of o and S values
(Figure 10, right).

Table 2 quantifies the average performance of the controllers over the entire parameter
space. The integrated controller has the lowest average cost, and hence the best overall
performance. Two major factors contribute to the lower costs: Firstly, the integrated
controller can switch between node-only and topology-only control. This observation is
qualitatively confirmed from Figure 10, where we see that the integrated controller captures
the low cost regions of both the node and topology controllers. Secondly, the integrated
controller can uniquely combine node and topology control actions to obtain lower costs
than either of them can. For instance, @ = 0.13 and 8 = 120 results in node, topology, and
integrated control costs of 0.98, 0.99, and 0.94, respectively. An analysis of the number of
control actions (Table 2) yields similar insights: Although the integrated controller mostly
chooses either a node-only or topology-only action, it also chooses to do both of them on
occasion, in order to obtain lower costs.

Remark 1. Node control can achieve significant delay cost reductions, even with a small
number of control actions.

Small penalties for control actions (i.e., small values of o and ) result in lower costs
(Figure 10). However, lower delay costs are not necessarily associated with more control
interventions, as shown in Figure 11. Here, we see that smaller control penalties can be
associated with either a small or a large number of control actions, depending on the nature
of the actions. In particular, the number of node control actions performed for small values
of B is just 1, as the first action u(1) can be used to reduce the delays very effectively.

Remark 2. The node, topology and integrated control policies are optimal one-shot con-
trollers.

These three controllers prescribe the optimal action to be taken at time ¢ assuming that
no other action will be taken at any future time, i.e., the objective function in Equation 12
optimizes for the best one-shot control action that could be performed at time ¢.

Remark 3. The node, topology, and integrated controllers minimize the cost-to-go (Equa-
tion 12), and not the delay cost (Equation 16).
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Figure 11

Number of control actions for (left) optimal node control, and (right) optimal topology control, for
varying values of control action penalty, in our air traffic delay network example.

It is therefore possible that other controllers with potentially lower delay costs may exist.
Furthermore, the delay cost of an integrated controller may not always be lower than that
of a topology or node controller, even though the integrated controller is the optimal one-
shot controller that minimizes the cost-to-go. For instance, when «« = 0 and 8 = 20, the
node, topology and integrated control costs are 0.35, 0.11, and 0.33 respectively. In this
case, the integrated controller, which is determined using one-shot optimization, is unable
to incorporate the fact that mode transitions are free at all future times, and any actions
on nodes, even though attractive currently, might increase the delay cost in the long run.

Remark 4. Integrated controllers are a good choice for practical implementation.

Real-world implementation occur in settings with uncertain dynamics, temporal and spatial
constraints on the control actions, and with a rolling time horizon. One-shot controllers
that minimize the cost-to-go are therefore a good choice in practice, since they are quite
robust to model and control action uncertainty. Our numerical simulations suggest that the
integrated controller not only performs the best on average over a wide range of parameters
(Table 2), but is also never the worst-performing controller of the three alternatives.

5.4. Partial Controllability

The ability to control the continuous nodal state or topology transitions may be limited
in practice. We consider two examples of partial controllability: The first one restricts
the ability to reduce delays (i.e., node control) to only a subset of airports, for example,
due to regulatory constraints. The second scenario affords limited temporal flexibility in
implementing control actions, for example, due to coordination efforts between multiple
ATC facilities. For each of these cases, we estimate the delay costs to evaluate the system-
wide impact of these restrictions. These scenarios also help evaluate the resilience of system
(by identifying critical airports, and control action timings), and help quantify the ability
of the system to regulate its performance under degraded operational conditions.

Figure 12 plots the effect of limiting node action to only one airport. The top four
airports in the US which have the largest individual ability to reduce total system delays
(for « = 0.1 and 8 = 10) are Atlanta (ATL), Chicago O’Hare (ORD), San Francisco (SFO),
and Los Angeles (LAX). In other words, if we were forced to focus our delay reduction
efforts at only one airport, choosing from within this set would be most effective.

The delay cost when restricting control actions to particular times of the day is shown
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Figure 12

The size of the circle at an airport is proportional to the reduction in delay costs when the node
control component of an integrated controller (with o = 0.1 and 8 = 10) is limited to only that
airport.
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Delay costs (with the 99% confidence intervals) when integrated control actions are limited to
(left) once in a day, at time ¢, and (right) twice in a day, at ¢; and t2, where t1 < t2. Parameter
values: @ = 0.1 and 8 = 10. All times are in EST.

in Figure 13. The ability to reduce delays varies significantly based on the chosen time(s).
In particular, Figure 13 (left) shows that if we are allowed to perform an integrated control
action only once during a day, doing it early in the morning or late at night is not effective.
In the former case, delays have not significantly built up for the control to be effective (and
the topology control cost is higher), whereas in the latter case, most of the day’s traffic and
delays have already been realized, and very little is left to be controlled. Figure 13 (left)
suggests that around noon Eastern Time is the ideal time to implement the solution of an
integrated controller, in order to decrease delays by almost 10%. This notion of restricting
the timing of control actions can be extended to two time-periods, ¢; and t2, as shown in
Figure 13 (right): the results suggest that 11 am and 12 pm Eastern Time are the most
effective times to apply control actions to reduce delay costs.
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6. CONCLUSIONS

This paper illustrated the application of data-driven modeling, optimization, and control
algorithms in ensuring the efficiency and robustness of a large-scale infrastructure. We
showed that the dynamics of air traffic delays are well-represented by positive Markov Jump
Linear System models, and that these models can then be used for the analysis and optimal
control of the air transportation system. The research presented in this paper also reveals
several promising directions for further investigation, including a comprehensive analysis
of system resilience, the extension of these results to multilayer networks, the development
of optimal recovery algorithms for networked systems, and the practical implementation of
these approaches to enable safe and efficient air traffic operations.

SUMMARY POINTS

1. The analysis of airport delays using network models offers unique insights into the
dynamics of delay propagation, thereby improving predictability and resilience to
disruptions.

2. Markov Jump Linear Systems (MJLS) are a powerful abstraction to model the
dynamics of networked systems with time-varying topologies.

3. Spreading processes on complex networks (e.g., delay propagation in the air traffic
network) can be controlled by modifying the nodal state as well as the underlying
network structure. This observation motivates the development of a novel class of
MJLS controllers, and its application to air traffic delay networks.

FUTURE ISSUES

1. The problem of evaluating the robustness and resilience of systems with time-
varying network topologies remains largely unexplored.

2. Multilayer networks promise to deliver more accurate and comprehensive represen-
tations of air transportation system dynamics (e.g., with separate and interacting
network layers for delays, cancellations, traffic flows, and capacity); however, data-
driven modeling, analysis and control of such systems remains an open challenge.

3. The true potential of the proposed techniques can only be achieved through real-
world implementation, which requires bridging the gap between theory and practice
in the control of complex, dynamic networks.
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