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Abstract. This paper explores the concept of dynamically generating definitions using 

a deep-learning model. We do this by creating a dataset that contains definition entries 

and contexts associated with each definition. We then fine-tune a GPT-2 based model 

on the dataset to allow the model to generate contextual definitions. We evaluate our 

model with human raters by generating definitions using two context types: short-form 

(the word used in a sentence) and long-form (the word used in a sentence along with 

the prior and following sentences). Results indicate that the model performed signifi-

cantly better when generating definitions using short-form contexts. Additionally, we 

evaluate our model against human-generated definitions. The results show promise for 

the model, showing that the model was able to match human-level fluency. However, 

while it was able to reach human-level accuracy in some instances, it failed in others. 

  

Keywords: GPT-2, contextual definitions, human evaluation, definition generation  

1 Introduction 

Prior studies have suggested that 95% of words in a text must be within a reader's vo-

cabulary for adequate reading comprehension to occur [10, 15]. This presents a problem 

for academic texts, which often use low-frequency words to describe key concepts re-

lated to their field. For readers to comprehend these concepts, they must first acquire 

the field-specific vocabulary. One of the classical ways to help with this problem is to 

have a glossary near the end of the textbook or a list of key terms at the beginning of 

the chapter, allowing the reader to have a relatively easy way to familiarize themselves 

with words that they are unfamiliar with and reference these definitions during reading. 

This classical approach in paper-based textbooks has a few notable issues: (1) the reader 

is forced to change pages and find the term that they are looking for (2) the number of 

definitions is limited to a small subset of words within the book (3) the definition might 

not be appropriate to the context, as happens when a word has multiple definitions. 

Intelligent systems have made the process of finding a definition much easier. Rather 

than turning pages or firin1g up a search engine, readers can now click on a piece of 

text, and a pop-up will appear displaying the definition for the selected term [5, 7]. 

These definitions are typically acquired by querying a definition database. While this 

is a good solution, it does come with some issues. (1) The source of definitions must 
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contain the definition for the word in the context displayed. (2) If the word has multiple 

definitions, one must either display a list of definitions or deploy a word sense disam-

biguation model to find the most fitting definition. (3) Definitions are not tuned to the 

precise context of the word.  

This paper explores the concept of using a deep-learning model to generate dynamic, 

contextual definitions by paying attention to the surrounding context of the word. We 

do this by creating a new dataset consisting of words, a definition for each word, and a 

list of contexts associated with each definition. We then fine-tune a GPT-2 based model 

on this dataset, resulting in a model capable of autoregressively generating a definition 

for any English word with only the word and a context as inputs. We assess the model 

using human evaluation with three research questions in mind: (1) What type of context 

provides the best initialization for the model (2) How does the model perform relative 

to human-generated definitions. (3) Is the model biased towards any particular subject? 

We answer these questions by analyzing how human raters rate machine-generated 

and human-generated definitions for terms from 5 college-level textbooks in terms of 

accuracy and grammatical fluency.  

2 Data Collection and Training 

2.1 Data Collection 

A key constraint before beginning data collection was to find sources where word en-

tries had both a definition and a context that matched that definition. A matching defi-

nition and contextual pair are important since sampling random sentences/paragraphs 

the term is within and attempting to find the most appropriate definition could lead to 

errors. We did not impose strict types of contexts. Contexts could be words in example 

sentences, words in example paragraphs, hypernyms, synonyms, hyponyms, etc. The 

primary goal was to give the model enough of a contextual clue to internally disambig-

uate the sense of the word and generate a definition that fit that sense.  

With this in mind, we collected training data from the following sources: (1) Wik-

tionary: Extracted definition/context data by cleaning the March 2021 version of the 

XML dump file [23]. Contexts contained synonyms, example sentences/paragraphs, 

hypernyms, hyponyms, and sense tags. (2) Lexico: Scraped Lexico for definitions, ex-

ample sentences, synonyms, and sense tags [11] (3) WordNet: Used the NLTK imple-

mentation of WordNet to acquire gloss entries and sense information [8, 13] (4) Wik-

ipedia: Used to expand definitions as discussed in section 2.2.  

Data from each source was then combined into a JSON file that totaled approxi-

mately 300MB when compressed.  All entries from each source were kept should they 

contain enough information about the word, as further discussed in section 2.2. This 

includes word entries that had the same (or paraphrased slightly) sense definition in 

multiple sources. No merging was performed to ensure that all possible senses and con-

texts were represented in the dataset. However, it may also deter the model discussed 

in section 2.3 from memorizing definitions due to slight definition variations.   
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2.2 Modifications to data 

 

Fig. 1. Examples of expansion for the word "country" and "sublanceolate." 

Many definitions within the training dataset did not contain enough information about 

the word it was describing to be helpful to readers unfamiliar with the word. An exam-

ple of this can be seen in Figure 1A above. Here the definition of the word countries is 

"plural of country." While this definition is not wrong, it does not contain enough in-

formation for someone who does not have prior knowledge of the root word "country." 

We attempt to fix this issue by identifying the referenced word and appending the ref-

erenced word's definition to the end of the original definition.  

The referenced word was found using regular expressions, word frequency, and 

parts-of-speech tags. Regular expressions were used to find key phrases (e.g., plural of) 

that regularly pointed to the referenced word (e.g., the original word with grammatical 

suffixes removed). We additionally found that many definitions contained less than four 

words and heavily relied upon a key noun/adjective to convey the word's meaning. This 

was appropriate from our perspective when the referenced word was frequent and well-

known to most English speakers. However, there were also cases where the referenced 

word, such as displayed in Figure 1B, was infrequent and perhaps not well-known 

enough to strengthen the reader's mental representation of the original word. In cases 

such as these, we also attempted to expand the definition to something more useful.  

To expand the definitions, we identify the referenced word and search the training 

dataset for all entries of that reference word. We then use SentenceTransformer (RoB-

ERTa-large variant) to embed each found definition into sentence vectors, along with 

the base term's contexts [16, 18]. We then compute cosine similarity to compare each 

definition entry for the referenced word with the base term's contexts. The definition 

with the highest cosine similarity score was then appended to the end of the definition, 

as displayed in Figure 1. If the referenced word was not within the dataset, we query 

Wikipedia using wptools API [24]. If the word is found, we append the first sentence 

to the end of the definition. If not, the word and definition were removed from the 

dataset. 

After removing terms with low information, the total dataset contained 254k unique 

terms, 512k definitions, and 2.66M contexts. 
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2.3 Model and Training 

 

Fig. 2. Example of the formatting used during training for the word "textbook" 

Before training, we begin by making the data more machine-readable by placing each 

word, definition, and context from the dataset into the format shown in Figure 2 for 

each context entry. This format contains two special tokens: <CONTEXT> and 

<DEFINITION>. These tokens were used to make it easy for the model to determine 

where the context ended and where definition generation should begin.  

We then trained a fine-tuned version of GPT-2 called WikiMorph on the dataset [9, 

22]. WikiMorph uses the large variant of GPT-2 made available by Hugging Face to 

break down words into morphological compounds and definitions associated with each 

compound [20]. It was chosen for this work because it contains some ability to generate 

definitions for words and sub-words. Therefore, likely giving the model a good initial-

ization point. We then fine-tune this model on the dataset for 1 epoch. We stopped at 

only a single epoch because there were no improvements in validation loss or ROUGE 

scores on the validation data [17].  

2.4 Model Usage and Examples 

 

 

Fig. 3. Sample of generated definitions for the word "bank" used in different contexts. 

The model is used by placing the word and a context into the format displayed in Figure 

2 and omitting everything following the special <DEFINITION> token. We then feed 

this text into the model, which uses its tokenizer to encode the text into tensors. The 

model then begins to autoregressively generate a definition by referencing the given 

word, the given context, and all prior output tokens until it reaches the end token des-

ignated as "<|endoftext|>". We then use regular expressions to find all text between the 

<DEFINITION> and <|endoftext|> token to display to the user.  
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3 Evaluation 

3.1 Evaluation Setup 

 

Fig. 4. Example of survey question for the word "consciousness" 

To evaluate the model, we began by collecting sample texts and definitions from 5 

different university-level textbooks. These were from the following subjects: Anatomy 

and Physiology [6], American Government [1], Astronomy [2], Chemistry [4], and Psy-

chology [14]. We then searched these textbooks for paragraphs containing each of the 

key terms within its glossary. These paragraphs were then divided into sentences using 

Spacy's sentence segmentation model [19]. We then randomly chose 50 terms from 

each textbook and generated definitions using two different context types. (1) Short 

context: The sentence containing the term. (2) Long Context: The sentence containing 

the word and the sentence before and the sentence after if available.  We then fed the 

model each of these context types to create two different Qualtrics surveys.  

Each survey began by displaying a multiple-choice question asking participants to 

choose which of the above subjects they felt most knowledgeable in. Their selection 

would determine what set of generated definitions they would assess throughout the 

rest of the survey. (e.g., if they chose psychology, they would evaluate the 50 generated 

definitions from the psychology textbook). For each generated definition, we asked two 

questions: (1) Is the generated definition accurate in the context displayed? (2) Is the 

generated definition grammatically fluent? Both questions used sliders that recorded 

results on a 0-100 scale, with the starting point set at 50 for each. To see an example 

question from the survey, please refer to Figure 4 above.  

We additionally created a third survey containing human-generated definitions to 

compare our model against. Human-generated definitions were collected from the train-

ing dataset described in Section 2. We searched the training dataset for all definition 

entries for each term used in the prior two surveys. We then selected the most appro-

priate definition using SBERT sentence vectors. Each definition for the term was em-

bedded into a sentence vector. We then computed cosine similarity between each of 



6 

these definitions from the training dataset with the definition from the textbook. The 

definition from the training dataset with the highest similarity value was displayed to 

the user in the same format shown in Figure 4. If a term happened to not be within the 

training dataset, it was dropped from the survey entirely. This lowered the number of 

questions for the human-generated definitions from 50 to 40-45, depending on the sub-

ject. 

For each survey, we implemented 3-4 control questions. These control questions re-

placed the generated definition displayed in Figure 4 with a random definition for a 

different term from the subject's textbook. Participants were required to assign an ac-

curacy value below 50 on the slider question for over half of the control questions to be 

included in the results. (i.e., to be considered reliable raters). Below 50 was the thresh-

old selected due to 50 being the starting position for the slider. (i.e., the participants had 

to actively move the slider towards "no" and indicate inaccuracy). 

3.2 Participants 

Table 1. Inter-rater reliability for each survey with included total numbers.  

  
American Govern-

ment 

Anatomy & 

Physiology 
Astronomy Psychology 

  n 𝛼 n 𝛼 n 𝛼 n 𝛼 

Short 
Accuracy 

18 
0.891 

4 
0.710 

3 
0.930 

14 
0.795 

Fluency 0.896 0.925 0.735 0.820 

Long 
Accuracy 

16 
0.871 

8 
0.890 

5 
0.945 

10 
0.944 

Fluency 0.944 0.961 0.957 0.940 

Real 
Accuracy 

16 
0.872 

5 
0.923 

4 
0.986 

14 
0.874 

Fluency 0.954 0.961 0.982 0.934 

 

Participants were sourced using CloudResearch in May 2021 [21]. CloudResearch is a 

platform that screens the Mechanical Turk population for higher quality participants. 

The only imposed requirement was that participants were required to be from English-

speaking countries. This led to a total of 194 participants. Of which, 53 were excluded 

from the results for two reasons: (1) They failed to pass control checks (2) They selected 

Chemistry as their preferred subject. Chemistry was removed from the results due to 

having too low number of participants to calculate inter-rater reliability. Final numbers 

for each group, along with inter-rater reliability, are shown in Table 1 above.  Reliabil-

ity was generally high, with Cronbach's alpha mostly in the .80-.95 range. 

4 Results and Discussion 

Table 2. Mean ratings for each subject for both accuracy and fluency scores.   

  
American 

Government 

Anatomy & 

Physiology 

Astron-

omy 
Psychology 

All 

Short 
Accuracy Mean 57.99 74.82 52.28 67.40 62.60 

Fluency Mean 80.89 84.91 89.99 84.60 82.82 

Long 
Accuracy Mean 47.87 60.44 48.81 59.16 53.70 
Fluency Mean 80.82 83.36 79.98 88.03 83.20 
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Real 
Accuracy Mean 79.54 74.91 72.65 80.52 78.60 

Fluency Mean 84.39 75.37 82.89 85.42 83.42 

 

 

 

Fig. 5. Density plot comparing human-generated definitions with short-context generated defini-

tions for both accuracy and fluency ratings. The dashed line indicates medians for each.   

To answer our research questions, we ran mixed-effects beta regressions for accuracy 

and fluency using all three survey conditions and random intercepts for definitions and 

participants. Each model was initially fit with the interaction between context and topic, 

but if the interaction was not significant, it was dropped, and the model refit. For accu-

racy, we ran an ANOVA and found a significant main effect of context, χ2(2) = 42.70, 
p < .001. We probed this main effect to answer our first research question, which is 

what context type gave the model the best initialization for definition generation. Post 

hoc comparison using Tukey's HSD revealed that definitions generated from shorter 

contexts (M = 62.60, SE = 0.875) performed significantly better than those generated 

from longer contexts (𝑀 =  53.70, 𝑆𝐸 = 0.886), t(5316)=2.38, 𝑝 = 0.045. We sus-

pect two possible reasons as to why shorter contexts performed better in terms of accu-

racy: (1) The training data had far more entries with sentence contexts (56.84% of the 

total contexts) relative to longer contexts with two or more sentences (1.66% of the 

total contexts), indicating the model may need more examples of longer contexts to 

learn what to filter out and what to pay attention to. (2) While there could be instances 

where longer contexts provide additional information, all the evaluation data came from 

college-level textbooks, which may contain enough information-rich keywords within 

a single sentence for the model to determine the correct sense and generate an appro-

priate definition.  

To answer our second research question to see how the model performs relative to 

human-generated definitions, we conducted an additional post hoc comparison using 

Tukey’s HSD, which revealed that human-generated definitions (M = 78.57, SE = 0.70) 

performed significantly better than definitions generated from shorter contexts (M = 

62.60, SE = 0.875), t(5316) = 4.11, p < .001, as well as those generated from longer 

contexts (𝑀 =  53.70, 𝑆𝐸 = 0.886), t(5316)=2.38, p < .001. Further examination of 

the accuracy density plot seen in Figure 5 sheds some light on this result. It shows that  
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Fig. 6. Examples of two generated definitions for a word outside the training dataset called "pho-

tochemistry." (A) Displays an error case in which the model generated an incorrect definition. 

(B) Displays a more accurate definition.  

the model was able to perform admirably in many situations, with a median rating equal 

to 75. However, it also had an abundance of error cases where ratings were below 25. 

The exact reasons for these error cases require further investigation. Two possible cul-

prits include: (1) The model had difficulty reading the context. As demonstrated by 

Figure 6 and the fact that the model performed significantly better on short contexts, it 

is safe to conclude that the model is sensitive to contexts. (2) A poor representation of 

the input word due to it not being in the training data or having too many conflating 

definitions without enough contextual examples to properly learn all senses.  

To answer our third research question to see if the model performed better on some 

topics relative to others, we did not find significant differences between textbook sub-

jects. Though, a non-significant trend suggests that, while human-generated definitions 

did equally well across topics, the model might perform better on some topics relative 

to others. In particular, the average meaning ratings for definitions generated from 

shorter contexts were approximately equal to those for human-generated definitions on 

the topic of Anatomy and Physiology. This trend is potentially worthy of further anal-

ysis in subsequent studies examining a wider variety of textbook sources and topics.  

We performed an identical ANOVA analysis for fluency and found no significant 

main effects of context, topic, or interaction. As shown in the fluency density plot in 

Figure 5, the model's performance was excellent for fluency relative to human-gener-

ated definitions. Some of this could be due to the data found within our dataset being 

slightly less fluent than a typical human definition due to some entries coming from 

dirty sources or the definition expansion method discussed in Section 2.2. However, 

even with this considered, the model appeared to perform exceptionally well with mean 

values effectively greater than or equal to 80 for both short and long-form context sur-

veys.  

5 Conclusion 

This work presents a deep-learning model capable of dynamically generating defini-

tions based solely on the surrounding context. We examined the model's ability to gen-

erate definitions using two context types: short and long-form. Short-form contexts sig-

nificantly outperformed long-form contexts in human-rated accuracy but fell short of 

human-generated definitions on this metric. In contrast, short-form and long-form 
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conditions were indistinguishable from human-generated definitions in terms of flu-

ency, displaying some promise for the model.  
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