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Abstract

Numerous tasks in machine learning and artifi-
cial intelligence have been modeled as submod-
ular maximization problems. These problems
usually involve sensitive data about individu-
als, and in addition to maximizing the utility,
privacy concerns should be considered. In this
paper, we study the general framework of non-
negative monotone submodular maximization
subject to matroid or knapsack constraints
in both offline and online settings. For the
offline setting, we propose a differentially pri-
vate (1− κ

e )-approximation algorithm, where
κ ∈ [0, 1] is the total curvature of the submod-
ular set function, which improves upon prior
works in terms of approximation guarantee
and query complexity under the same privacy
budget. In the online setting, we propose the
first differentially private algorithm, and we
specify the conditions under which the regret
bound scales as O(

√
T ), i.e., privacy could

be ensured while maintaining the same regret
bound as the optimal regret guarantee in the
non-private setting.

1 Introduction

A set function F : 2V → R over the ground set V is
submodular if for all j ∈ V and for all sets A ⊆ B ⊆
V \ {j}, the following holds:

F (A ∪ {j})− F (A) ≥ F (B ∪ {j})− F (B).

The submodularity property of set functions has pro-
found theoretical consequences and far-reaching appli-
cations. Submodular set functions play a significant
role in combinatorial optimization as many well known
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combinatorial functions are indeed submodular. Cut
functions of graphs and hypergraphs, rank functions
of matroids and covering functions are a few examples
of submodular set functions. Moreover, submodularity
has been identified and utilized in applications such as
viral marketing (Kempe et al., 2003), feature selection
for classification (Krause and Guestrin, 2007), image
segmentation (Kohli et al., 2008; Boykov and Jolly,
2001) and document summarization (Lin and Bilmes,
2011; Kirchhoff and Bilmes, 2014). The multilinear
extension f : [0, 1]V → R of F is defined as (Calinescu
et al., 2011a)

f(x) =
∑
S⊂V

F (S)
∏
i∈S

xi
∏
j /∈S

(1− xj) = ES∼x[F (S)].

Multilinear extensions coupled with lossless rounding
techniques are extensively used for maximizing the cor-
responding submodular set functions. In particular,
for submodular maximization subject to matroid con-
straints, Calinescu et al. (2011a) and Chekuri et al.
(2010) proposed the pipage rounding and swap round-
ing schemes respectively to round the fractional solu-
tion without losing in terms of the objective function.
Kulik et al. (2009, 2013) provided lossless rounding
techniques for knapsack constraints. It has been shown
that multilinear extensions can be efficiently computed
for a large class of submodular set functions, for exam-
ple, weighted matroid rank function, set cover function,
probabilistic coverage function and graph cut function.

In applications where the submodular function in-
volves sensitive data about individuals, privacy con-
cerns should be addressed as well as obtaining good ap-
proximation guarantees. For instance, consider the fol-
lowing feature selection problem (Krause and Guestrin,
2007; Mitrovic et al., 2017):

Example 1. Let D = {(xt, Ct)}Tt=1 be a sensitive
dataset consisting of a feature vector xt ∈ Rm for each
individual t ∈ [T ] along with a binary class label Ct.
The goal is to select a small subset of the m features
that provide a good classifier for the labels. In particu-
lar, determining the likeliness of an individual having a
certain disease using a representative collection of his
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or her features (such as height, age and weight) could
be cast in this framework.

In order to solve this problem, Krause and Guestrin
(2007) proposed a non-private algorithm based on max-
imizing a submodular function capturing the mutual
information between a subset of the features and the
class label of interest. However, in this setting, along
with obtaining the most relevant subset of features, it
is crucial to ensure that the privacy of any individual
included in the dataset is not compromised. See Mirza-
soleiman et al. (2016) for more applications (such as
personal data summarization) that could be cast as
submodular problems under more general constraints
in which privacy concerns should be addressed.

1.1 Preliminaries

Notations. We use [T ] to denote the set {1, 2, . . . , T}.
For a vector x ∈ Rm, we use xi to denote the i-th entry
of x. The inner product of two vectors x, y ∈ Rm is
denoted by either 〈x, y〉 or xT y. Also, for two vectors
x, y ∈ Rm, we write x � y if xi ≤ yi holds for every
i ∈ [m]. A set function F : 2V → R is called mono-
tone if for all S, S′ such that S ⊆ S′, F (S) ≤ F (S′)
holds. The dual norm ‖ · ‖∗ of a norm ‖ · ‖ is defined
as ‖y‖∗ = maxx:‖x‖≤1〈y, x〉.
DR-submodular functions. (Sadeghi and Fazel,
2020) We say that a differentiable function f : X → R,
X ⊂ Rm+ (i.e., continuous real variables), is DR-
submodular if its gradient is an order-reversing map-
ping, i.e.,

x � y ⇒ ∇f(x) � ∇f(y).

A twice differentiable function f is DR-submodular
if and only if its Hessian matrix ∇2f is entry-wise
non-positive. It is noteworthy that although DR-
submodularity and concavity are equivalent for the
special case of m = 1, DR-submodular functions are
generally non-concave. Nonetheless, an important con-
sequence of DR-submodularity is concavity along non-
negative directions (Bian et al., 2017; Calinescu et al.,
2011b), i.e., for all x, y such that x � y, we have
f(y) ≤ f(x) + 〈∇f(x), y − x〉.
For a DR-submodular function f , we say that f is
L-smooth over non-negative directions with respect to
the norm ‖ · ‖ if

f(y)−f(x) ≥ 〈∇f(x), y−x〉− L
2
‖y−x‖2 ∀x, y;x � y,

or equivalently, ‖∇f(y) − ∇f(x)‖∗ ≤ L‖y −
x‖ ∀x, y;x � y holds, where ‖ · ‖∗ is the dual norm of
the norm ‖ · ‖. There are many functions which satisfy
the DR-submodularity property (Sadeghi et al., 2020;
Raut et al., 2020). In particular, multilinear exten-
sions of submodular set functions are DR-submodular.

The Hessian matrix of this class of functions has non-
positive off-diagonal entries and all its diagonal entries
are zero.
Total curvature of submodular set functions.
For a monotone submodular set function F : 2V → R+,
the total curvature κF is defined as follows:

κF = 1−min
v∈V

F (V )− F (V \ {v})
F ({v})− F ({})

.

Since F is monotone, κF ≤ 1 holds. Also, submodu-
larity of F ensures that κF ≥ 0. Therefore, we have
0 ≤ κF ≤ 1.
Matroids and matroid polytopes. A matroidM
is a pairM = (V, I), where V is a finite ground set and
I is a collection of subsets of V called the independent
sets, that satisfies the following properties: 1) ∅ ∈ I.
2) For S′ ⊂ S ⊂ V , if S ∈ I, then S′ ∈ I holds. 3) For
S, S′ ∈ I, if |S| > |S′|, there exists v ∈ S \S′ such that
S′ ∪ {v} ∈ I. The matroid polytope corresponding to
the matroidM = (V, I) is defined as

P (M) = conv{1I : I ∈ I}

= {x � 0 :
∑
s∈S

xs ≤ rM(S), ∀S ⊂ V },

where the rank function rM : 2V → Z+ is rM(S) =
max{|I| : I ⊆ S, I ∈ I} and conv denotes the convex
hull. We define rank(M) = rM(V ) as the rank of the
matroidM.
Knapsack constraints and knapsack polytopes.
Given a ground set V , a positive vector c ∈ R|V |++ and
a collection I = {S ⊆ V :

∑
s∈S cs ≤ 1} of subsets of

V , S ∈ I is called a knapsack constraint. The natural
continuous relaxation {x ∈ [0, 1]|V | : cTx ≤ 1} is the
knapsack polytope corresponding to I.

1.2 Related work

Non-private submodular maximization. Maxi-
mizing non-negative monotone submodular set func-
tions under a certain constraint has been extensively
studied in the literature in both offline and online set-
tings. Consider the problem of maximizing the mono-
tone submodular function F (S) subject to a cardinality
constraint |S| ≤ k. For offline monotone submodular
set function maximization subject to a cardinality con-
straint, Nemhauser et al. (1978) proposed a simple
greedy algorithm that obtains the provably optimal ap-
proximation ratio of 1− 1

e . At each round i ∈ [k], the
greedy algorithm constructs Si from Si−1 by adding the
element vi ∈ V \ Si−1 which maximizes the marginal
gain F (Si−1∪{vi})−F (Si−1). However, ifM = (V, I)
is a matroid, the greedy algorithm applied to the sub-
modular maximization problem subject to the matroid
constraint S ∈ I achieves a sub-optimal 1

2 approxi-
mation ratio. Calinescu et al. (2011a) proposed the
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continuous greedy algorithm for this problem which
achieves the optimal 1− 1

e approximation ratio. The
continuous greedy algorithm is applied to the multilin-
ear extension of the submodular set function under the
matroid polytope and is as follows:

dy/dt = vmax(y)
vmax(y) = arg maxv∈P (M)〈v,∇f(y)〉 ,

where f is the multilinear extension of the submodu-
lar set function F and P (M) is the matroid polytope
corresponding to the matroid M. In this algorithm,
y(1) =

∫ 1

0
vmax(y(τ))dτ is the output. More recently,

Sviridenko et al. (2017) introduced a modification of
the continuous greedy algorithm with an approximation
ratio of 1 − κ

e , where κ ∈ [0, 1] is the total curvature
of the submodular set function, and proved that the
derived approximation ratio is indeed optimal.
In the online setting, Chen et al. (2018) proposed an on-
line variant of the continuous greedy algorithm, called
the Meta Frank-Wolfe algorithm, with a provably opti-
mal O(

√
T ) regret bound, where T is the length of the

horizon.

Offline differentially private submodular maxi-
mization. Let D be a sensitive dataset associated to
a monotone submodular set function FD : 2V → R+.
Offline submodular maximization in the context of dif-
ferential privacy has been studied under two different
settings:

• FD is ∆-decomposable (Gupta et al.; Chaturvedi
et al., 2020): In this setting, it is assumed thatD =
(F1, . . . , FT ), where for all t ∈ [T ], Ft : 2V → [0,∆]
is a private monotone submodular set function and
FD(·) = 1

T

∑T
t=1 Ft(·).

• FD is ∆-sensitive (Mitrovic et al., 2017; Rafiey
and Yoshida, 2020): For this framework, we
have D = (F1, . . . , FT ), where for all t ∈ [T ],
Ft : 2V → R+ is a private monotone submodular
set function, however, the submodular objective
function FD depends on the dataset D in ways
that could be much more complicated than sim-
ply averaging the private submodular functions
F1, . . . , FT (e.g., Example 1). Two datasets D and
D′ are neighboring (D ∼ D′) if all but one of
the T submodular functions in the datasets are
equal. It is assumed that FD is ∆-sensitive, i.e.,
∆ = maxD′:D′∼D maxS⊆V |FD(S)−FD′(S)| holds.

Note that if FD is ∆-decomposable, the sensitivity
parameter is bounded above by ∆

T , implying FD is (∆
T )-

sensitive. In this paper, we focus on the more general
setting where FD is ∆-sensitive, and we review the
prior work in this setting below. For submodular max-
imization subject to cardinality or matroid constraints,

Mitrovic et al. (2017) combined the greedy algorithm
with the exponential mechanism of McSherry and Tal-
war (2007) for differential privacy as follows: At round
i ∈ [k] of the greedy algorithm, define a quality func-
tion qi via qi(v,D) = FD(Si−1 ∪ {v})−FD(Si−1), and
select every v ∈ V \ Si−1 with probability proportional
to exp(εq(v,D)/2λ) where λ is the sensitivity of the
quality function q, i.e., for all v ∈ V and two neighbor-
ing datasets D and D′, we have |q(v,D)−q(v,D′)| ≤ λ.
Mitrovic et al. (2017) showed that this algorithm is
ε-differentially private (see Section 2 for a formal def-
inition of differential privacy) and obtained an ex-
pected utility bound of (1 − 1

e )OPT − O(∆k2 ln(|V |)
ε )

and 1
2OPT−O(∆(rank(M))2 ln(|V |)

ε ) for submodular max-
imization subject to cardinality constraint |S| ≤ k and
matroid constraint M = (V, I) respectively. How-
ever, the result of Mitrovic et al. (2017) for the setting
with matroid constraints fails to achieve the optimal
approximation ratio of 1− 1

e . More recently, for sub-
modular maximization subject to a matroid constraint
M = (V, I), Rafiey and Yoshida (2020) combined the
discretized version of the continuous greedy algorithm
with the exponential mechanism in the following way:
Let Cρ be a ρ-covering of the matroid polytope P (M),
i.e., for any x ∈ P (M), there exists y ∈ Cρ such
that ‖x − y‖2 ≤ ρ. At each round k ∈ [K], where
K = rank(M) is the rank of the matroid, the algo-
rithm samples yk ∈ Cρ with probability proportional
to exp(ε〈yk,∇fD(xk)〉/2∆), and sets xk+1 = xk + 1

K yk
(where x1 = 0). Rafiey and Yoshida (2020) showed that
the output of this algorithm (xK+1) obtains the utility
bound (1− 1

e )OPT−O(
√
ε+ ∆(rank(M))7|V | ln(|V |)

ε3 ) with
high probability while ensuring ε-differential privacy.
Although the result in Rafiey and Yoshida (2020) has
the optimal 1− 1

e approximation ratio, it has several
major drawbacks that are as follows:

1. The O(
√
ε) term in the approximation guarantee

is unusual, i.e., if ε→∞ (no differential privacy),
the approximation guarantee is vacuous.

2. In order to ensure differential privacy, ρ = ε
|V |

should hold and thus, |Cρ| = O(|V |1+(
rank(M)

ε )2).
Therefore, discretization of the matroid poly-
tope and implementing the exponential mech-
anism over such a large domain requires
O(rank(M)|V |1+(

rank(M)
ε )2) gradient evaluation of

the multilinear extension, and is not computation-
ally efficient (although Rafiey and Yoshida (2020)
provided a second algorithm with improved query
complexity, it is still computationally expensive).

3. The dependence of the additive factor
O(∆(rank(M))7|V | ln(|V |)

ε3 ) in the approximation
guarantee on ε and rank(M) is not optimal.
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Differentially private online learning. Online sub-
modular maximization has not been studied under the
context of differential privacy yet. Nonetheless, the
problem of differentially private online learning is exten-
sively studied for linear and convex objective functions
(Dwork et al., 2010; Jain et al., 2012; Guha Thakurta
and Smith, 2013; Agarwal and Singh, 2017). In partic-
ular, Agarwal and Singh (2017) considered an online
linear optimization problem over T rounds where at
each step t ∈ [T ], the algorithm first chooses a point
xt ∈ X in the convex and compact domain set X and
subsequently, it observes the loss vector `t and incurs a
loss of 〈`t, xt〉. Agarwal and Singh (2017) proposed an
ε-differentially private modification of the well-known
Follow the Regularized Leader (FTRL) scheme for
linear objectives with a regret bound that scales as
O(
√
T ) + Õ( 1

ε ). Therefore, if ε ≥ Ω( 1√
T

), the regret
incurred by the differentially private algorithm matches
the optimal O(

√
T ) regret in the non-private setting,

i.e., differential privacy could be ensured for free. We
use this algorithm as a sub-routine in our proposed
algorithm for differentially private online submodular
maximization.

1.3 Contributions

In this paper, we study the general framework of mono-
tone submodular maximization subject to matroid or
knapsack constraints in both offline and online settings.
Specifically, we make the following contributions (all
missing proofs are provided in the Appendix):

• In Section 3.1, we propose the Differentially Pri-
vate Continuous Greedy (DPCG) algorithm for
offline monotone submodular maximization sub-
ject to matroid or knapsack constraints and we
analyze its performance in both settings. The
DPCG algorithm is ε-differentially private un-
der both constraints. For matroid constraints,
we obtain a utility bound of (1 − 1

e )OPT −

O(
√

∆(rank(M))3|V | ln(|V |)
ε ) with O(

√
ε.rank(M)
|V | ln(|V |)∆ )

multilinear extension evaluations which is a sig-
nificant improvement over the (1 − 1

e )OPT −
O(
√
ε+ ∆(rank(M))7|V | ln(|V |)

ε3 ) bound in Rafiey and
Yoshida (2020) with O(rank(M)|V |1+(

rank(M)
ε )2)

multilinear extension evaluations. Also, we ob-
tain the first approximation guarantee for knap-
sack constraint {S ⊆ V :

∑
s∈S cs ≤ 1} which

is (1 − 1
e )OPT − O(

√
∆|V | ln(|V |)

(cmin)3ε ), where cv ≥
cmin, ∀v ∈ V .

• For submodular functions with bounded curva-
ture, we propose a modification of the DPCG al-
gorithm, called the κ-DPCG algorithm, in Section

3.2 which has a utility bound of (1 − κ
e )OPT −

O(
√

∆(rank(M))3|V | ln(|V |)
ε ) and (1 − κ

e )OPT −

O(
√

∆|V | ln(|V |)
(cmin)3ε ) for matroid and knapsack con-

straints respectively, where κ ∈ [0, 1] is the to-
tal curvature of the submodular set function. In
other words, compared to the DPCG algorithm,
the κ-DPCG algorithm maintains the same ad-
ditive factor in its utility bound while its 1 − κ

e
approximation ratio is strictly better than 1− 1

e
for submodular functions with curvature κ < 1.

• In the online setting, we propose the first al-
gorithm for (ε, δ)-differentially private (defined
in Section 2) submodular maximization, namely
the Differentially Private Meta Frank-Wolfe
(DPMFW) algorithm, whose regret bound scales as

O(
√
T )+O(

T 1/4
√

ln(1/δ)

ε ). Therefore, if
√

ln(1/δ)

ε ≤
O(T 1/4), the regret bound of the DPMFW algo-
rithm matches the provably optimal O(

√
T ) bound

in the non-private setting, i.e., privacy could be
guaranteed for free.

Note that although all our proposed algorithms are
applied to the multilinear extension of the discrete
submodular objective function, we can couple the algo-
rithms with the lossless rounding schemes of Calinescu
et al. (2011a); Chekuri et al. (2010) for matroid con-
straints and Kulik et al. (2009, 2013) for knapsack
constraints to obtain discrete solutions with similar
guarantees for the original submodular set function.

2 Differential privacy

In this work, a sensitive dataset D consists of pri-
vate non-negative monotone submodular set functions
F1, . . . , FT : 2V → R+. In the offline setting, the
non-negative monotone submodular objective function
FD : 2V → R+ depends on {Ft}Tt=1 and is given in
advance. Two datasets D and D′ are neighboring
(D ∼ D′) if all but one of the T submodular functions
in the datasets are equal. We define the sensitivity of
the submodular set function FD via

∆ = max
D′:D′∼D

max
S⊆V
|FD(S)− FD′(S)|.

For the online setting, at each step t ∈ [T ] (where T
is the length of the horizon), the private submodular
function Ft arrives after committing to an action St
leading to a utility Ft(St) for the algorithm.
Definition 1. (Dwork and Roth, 2014) For ε, δ ∈ R+,
a randomized algorithm A is called (ε, δ)-differentially
private if for any two neighboring datasets D and D′
and any set of possible outcomes S, the following holds:

P[A(D) ∈ S] ≤ exp(ε)P[A(D′) ∈ S] + δ.
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If δ = 0, we say that A is ε-differentially private.

Theorem 1 (Basic composition theorem). (Dwork and
Roth, 2014) Let Ak be an (εk, δk)-differentially private
algorithm for k ∈ [K]. Then, if algorithm A is defined
to be A = (A1, . . . ,AK), A is (

∑K
k=1 εk,

∑K
k=1 δk)-

differentially private.

K-fold adaptive composition. Let {(εk, δk)}Kk=1 be
a sequence of privacy parameters and let A be an
algorithm that works as follows on a dataset D: At
each round k ∈ [K], the algorithm chooses an (εk, δk)-
differentially private algorithm Ak and releases the
output of Ak, where Ak depends on the output of
the previous algorithms A1, . . . ,Ak−1 but not on the
dataset D itself. The output of A is called the K-fold
adaptive composition of (εk, δk)-differentially private
algorithms Ak. The following privacy guarantee holds
for the composite algorithm A.

Theorem 2 (Advanced composition theorem). (Dwork
and Roth, 2014) Given target privacy parameters 0 <
ε′ < 1 and δ′ > 0, in order to ensure (ε′,Kδ + δ′)
cumulative privacy loss for the composite algorithm
A, it suffices that each algorithm is (ε, δ)-differentially
private, where ε = ε′

2
√

2K ln(1/δ′)
.

3 Differentially private offline
submodular maximization

In this section, we first introduce the Differentially
Private Continuous Greedy (DPCG) algorithm and
analyze its approximation and privacy guarantees in
Section 3.1. Then, in Section 3.2, we consider the
setting where the submodular objective function has
a bounded curvature, and we introduce the κ-DPCG
algorithm with improved approximation ratio.

3.1 Differentially Private Continuous Greedy
(DPCG) algorithm

We propose the Differentially Private Continuous
Greedy (DPCG) algorithm in Algorithm 1. The al-
gorithm performs K Frank-Wolfe iterations to obtain
{vk}Kk=1 and outputs the average x = 1

K

∑K
k=1 vk. Note

that the output is the average of K points in the convex
constraint set P (the matroid or knapsack polytope)
and hence, x ∈ P holds. The privacy is ensured through
adding noise sampled from the distribution D to the
gradients {∇f(x(k))}Kk=1. We first provide three useful
Lemmas below.

Lemma 1. If the multilinear extension f is L-smooth
with respect to ‖ · ‖1 and the diameter of P is denoted
by R = maxx∈P ‖x‖1, Algorithm 1 outputs x = x(K+1)

Algorithm 1 Differentially Private Continuous Greedy
(DPCG) algorithm
Input: K, the constraint set P , the multilinear ex-
tension f : [0, 1]|V | → R of the monotone submodular
set function F : 2V → R, and the noise distribution
D.
Initialization: x(1) = 0.
for k = 1, 2, . . . ,K do

Draw Y (k) ∼ D.
Set vk = arg maxv∈P 〈v,∇f(x(k)) + Y (k)〉.
Set x(k+1) = x(k) + 1

K vk.
end for
Output: x = x(K+1).

such that the following holds:

E[f(x)] ≥ (1− 1

e
)f(x∗)−GD −

LR2

2K
,

where expectation is taken with respect to the noise
distribution D and GD := EY∼D

[
maxx∈P 〈Y, x〉 −

minx∈P 〈Y, x〉
]
measures the width of P under D.

Proof. For k ∈ [K], we can write:

f(x(k+1))− f(x(k))
(a)
≥ 1

K
〈vk,∇f(x(k))〉 − L

2K2
‖vk‖21

(b)
≥ 1

K
〈x∗,∇f(x(k))〉+

1

K
〈x∗ − vk, Y (k)〉 − LR2

2K2

(c)
≥ 1

K
〈(x∗ − x(k)) ∨ 0,∇f(x(k))〉

+
1

K
〈x∗ − vk, Y (k)〉 − LR2

2K2

(d)
≥ 1

K

(
f(x∗ ∨ x(k))− f(x(k))

)
+

1

K
〈x∗ − vk, Y (k)〉 − LR2

2K2

(e)
≥ 1

K

(
f(x∗)− f(x(k))

)
+

1

K
〈x∗ − vk, Y (k)〉 − LR2

2K2
,

where (a) is due to L-smoothness of f , (b) follows from
the update rule of the algorithm, (c) and (e) use the
monotonocity of f and (d) exploits concavity of f along
non-negative directions. Taking the expectation of the
above inequality and rearranging the terms, we have:

E[f(x(k+1))]− f(x∗) ≥ (1− 1

K
)
(
E[f(x(k))]− f(x∗)

)
− 1

K
GD −

LR2

2K2
.

Applying the inequality recursively for all k ∈ [K], we
obtain:

E[f(x(K+1))]− f(x∗) ≥ (1− 1

K
)K
(
E[f(x(1)︸︷︷︸

=0

)]− f(x∗)
)

−GD −
LR2

2K
.
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Rearranging the terms and using the inequality (1−
1
K )K ≤ 1

e , we obtain the desired result.

Lemma 2. L-smoothness parameter of the multilinear
extension f of the submodular set function F : 2V → R
is bounded as L ≤ mF , where mF = maxi∈V F ({i}).
Moreover, for submodular maximization over the ma-
troid polytope P (M), R ≤ rank(M) holds, and for
submodular maximization subject to a knapsack con-
straint, we have R ≤ 1

cmin
.

Assume that the submodular objective function is ∆-
sensitive (defined in Section 2). The following lemma
provides the performance guarantees of the DPCG
algorithm under Laplace noise distribution.

Lemma 3. If D = Lap|V |(λ), where Lap|V |(λ) denotes
a distribution over R|V | such that each coordinate is
drawn i.i.d. from the Laplace distribution with p.d.f.
f(z|λ) = 1

2λexp(− |z|λ ), ∀z ∈ R, setting λ = 2K|V |∆
ε ,

the following holds in expectation:

E[f(x)] ≥ (1− 1

e
)f(x∗)− LR2

2K
−O(

RK|V | ln(|V |)∆
ε

),

where R = rank(M) and R = 1
cmin

for matroid and
knapsack constraints respectively. Also, with probability
at least 1− 1

K , we have:

f(x) ≥ (1− 1

e
)f(x∗)− LR2

2K
−O(

RK|V | ln(K|V |)∆
ε

).

Moreover, Algorithm 1 preserves ε-differential privacy.

Proof. In order to analyze the differential privacy of the
proposed algorithm, let fD and fD′ be the multilinear
extension of monotone submodular set functions FD
and FD′ associated with neighboring datasets D and
D′. Using the definition of multilinear extension, we
can write:

‖∇fD(x)−∇fD′(x)‖1 =

|V |∑
i=1

|∇ifD(x)−∇ifD′(x)|

=
∑
v∈V
|ES∼x

[
FD(S ∪ {v})− FD(S \ {v})

− FD′(S ∪ {v}) + FD′(S \ {v})
]
|

≤
∑
v∈V

ES∼x
[
|FD(S ∪ {v})− FD′(S ∪ {v})|

+ |FD′(S \ {v})− FD(S \ {v})|
]

≤ 2|V |∆.

Let λ = 2K|V |∆
ε . We show that for each k ∈ [K],

∇f(x(k)) + Y (k) is ( εK )-differentially private. Con-
sidering the immunity of differential privacy to post-
processing and using the basic composition theorem,

we can conclude that the proposed algorithm is ε-
differentially private. We have:

P(∇fD(x) + Y (k) = z)

P(∇fD′(x) + Y (k) = z)
=

|V |∏
i=1

exp
(
− ε|zi−∇ifD(x)|

2K|V |∆
)

exp
(
− ε|zi−∇ifD′ (x)|

2K|V |∆
)

=

|V |∏
i=1

exp
(ε(|zi −∇ifD′(x)| − |zi −∇ifD(x)|)

2K|V |∆
)

≤ exp
(ε‖∇fD′(x)−∇fD(x)‖1

2K|V |∆
)

≤ exp(
ε

K
).

Hence, ∇f(x(k))+Y (k) is ( εK )-differentially private. We
now find an upper bound for GD. Using the definition
of the matroid polytope P (M), for all x ∈ P (M), we
have ‖x‖1 ≤ rank(M), where rank(M) is the rank of
the matroid constraint. Therefore, we have:

max
x∈P (M)

〈Y, x〉 − min
x∈P (M)

〈Y, x〉 ≤ ‖x‖1‖Y ‖∞ + ‖x‖1‖Y ‖∞

= 2‖x‖1‖Y ‖∞
≤ 2rank(M)‖Y ‖∞.

Thus, we have GD ≤ 2rank(M)EY∼Lap|V |(λ)‖Y ‖∞.
Note that in the case of knapsack constraint cTx ≤
1, we have cmin‖x‖1 ≤ cTx ≤ 1 and thus,
‖x‖1 ≤ 1

cmin
holds. Therefore, we have GD ≤

2
cmin

EY∼Lap|V |(λ)‖Y ‖∞ under the knapsack constraint.
For the Laplace random vector Y ∼ Lap|V |(λ), we
have:

E‖Y ‖∞ ≤ O
(
λ ln(|V |)

)
,

P
(
‖Y ‖∞ ≤

√
10λ ln(K|V |)

)
≥ 1− 1

K2
.

Therefore, using the union bound over k ∈ [K], we can
obtain the result as stated.

Alternatively, we can use the Gaussian noise to en-
sure differential privacy. The analysis for this case is
provided in the Appendix. Compared to the Laplace
noise, the additive factor in the approximation guaran-
tee using the Gaussian noise is smaller by an order of√
|V | ln(|V |). However, this improved accuracy comes

at the price of achieving (ε, δ)-differential privacy as op-
posed to ε-differential privacy using the Laplace noise.
We can also use the advanced composition theorem
to ensure differential privacy. In particular, for 0 <
ε < 1 and δ > 0, if ∇f(x(k)) + Y (k), ∀k ∈ [K] is
( ε

2
√

2K ln(1/δ)
)-differentially private using the Laplace

noise, we can use the advanced composition theorem
for all k ∈ [K] and ensure (ε, δ)-differential privacy of
Algorithm 1. The result is summarized in the lemma
below.
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Lemma 4. If D = Lap|V |(λ), setting λ =
4
√

2K ln(1/δ)|V |∆
ε , the following holds in expectation:

E[f(x)] ≥ (1− 1

e
)f(x∗)− LR2

2K

−O(
R
√
K ln(1/δ)|V | ln(|V |)∆

ε
).

where R = rank(M) and R = 1
cmin

for matroid and
knapsack constraints respectively. Also, with probability
at least 1− 1

K , we have:

f(x) ≥ (1− 1

e
)f(x∗)− LR2

2K

−O(
R
√
K ln(1/δ)|V | ln(K|V |)∆

ε
).

Moreover, Algorithm 1 preserves (ε, δ)-differential pri-
vacy.

Combining the result of Lemma 2 and 3, we provide
the approximation and privacy guarantee of Algorithm
1 below.

Theorem 3. Setting K = O(
√

ε rank(M)
|V | ln(|V |)∆ ), Algorithm

1 is ε-differentially private and has the following ap-
proximation guarantees for matroid and knapsack con-
straints respectively:

E[f(x)] ≥ (1− 1

e
)f(x∗)−O(

√
∆(rank(M))3|V | ln(|V |)

ε
),

E[f(x)] ≥ (1− 1

e
)f(x∗)−O(

√
∆|V | ln(|V |)

(cmin)3ε
).

3.2 κ-Differentially Private Continuous
Greedy (κ-DPCG) algorithm

For a general monotone continuous function f : Rm →
R, we define:

cf = 1− min
i∈[m]

min
x,y

∇if(y)

∇if(x)
.

Note that cf ≤ 1 due to monotonocity of f and cf ≥ 0
by setting x = y in the definition. If f : [0, 1]V → R+

is the multilinear extension of a normalized monotone
submodular set function F : 2V → R+, we can write:

cf = 1−min
i∈V

min
x,y

∇if(y)

∇if(x)

(a)
= 1−min

i∈V
min
y

∇if(y)

∇if(0)

(b)
= 1−min

i∈V
min
y

ES∼y[F (S ∪ {i})− F (S \ {i})]
F ({i})− F ({})

(c)
= 1−min

i∈V

F (V )− F (V \ {i})
F ({i})− F ({})

= κF ,

Algorithm 2 κ-Differentially Private Continuous
Greedy (κ-DPCG) algorithm
Input: K, λ > 0, the constraint set P , the multi-
linear extension f : [0, 1]|V | → R of the monotone
submodular set function F : 2V → R, and the noise
distribution D.
Initialization: x(1) = 0.
for k = 1, 2, . . . ,K do

Draw Y (k) ∼ D.
Set vk = arg maxv∈P :`T v≥λ〈v,∇g(x(k)) + Y (k)〉.
Set x(k+1) = x(k) + 1

K vk.
end for
Output: x = x(K+1).

where κF is the total curvature of the submodular
set function F . (a) follows from DR-submodularity of
f , (b) uses the definition of the multilinear extension
and (c) is due to submodularity of F . Therefore, the
parameter cf extends the notion of curvature from sub-
modular set functions to general monotone continuous
functions and could be of independent interest. We
propose the κ-DPCG algorithm in Algorithm 2. Let
λ = `Tx∗ where `i = minx∇if(x) = F (V )−F (V \{i})
and x∗ = 1S∗ be the optimal point corresponding to
the optimal solution S∗ ⊆ V . Compared to the DPCG
algorithm, the κ-DPCG algorithm is different in two
important respects:

1. The DPCG algorithm is applied to the function
g(x) = f(x) − `Tx. Note that the function g is
normalized monotone DR-submodular as well.

2. The linear maximization step is performed over
the intersection of the constraint set P and {x :
`Tx ≥ λ}.

Similar to Lemma 1, We provide the approximation
guarantee of the κ-DPCG algorithm below.

Lemma 5. If the multilinear extension f is L-smooth
with respect to ‖ · ‖1 and the diameter of P is denoted
by R = maxx∈P ‖x‖1, Algorithm 2 outputs x = x(K+1)

such that the following holds:

E[f(x)] ≥ (1− κF
e

)f(x∗)−GD −
LR2

2K
,

where GD := EY∼D
[

maxx∈P 〈Y, x〉 − minx∈P 〈Y, x〉
]

and κF is the total curvature of the submodular ob-
jective function F .

Therefore, all the analysis from Section 3.1 can be per-
formed here as well and thus, the κ-DPCG algorithm
maintains the same privacy and utility guarantees as
the DPCG algorithm except for its improved approxi-
mation ratio 1− κF

e .
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Note that although we have used λ = `Tx∗ in Algo-
rithm 2, the optimal value x∗ is generally unknown
and therefore, we have to guess the value of λ in prac-
tice. Using the definition of ` and submodularity of
F , we have `i ≤ mF ∀i ∈ V . Therefore, λ ≤ |V |mF

holds. We discretize the interval [0,mF ] with O( 1
γ )

points of the form iγmF for 0 ≤ i ≤ 1
γ , along with

O( 1
γ |V | ln(|V |)) points of the form (1 + γ

|V | )
imF for

0 ≤ i ≤ log1+ γ
|V |
|V | to fill the interval [mF , |V |mF ].

We then run Algorithm 2 using each point as a guess for
λ and we output the best solution found, i.e., the solu-
tion with the highest utility. If λ ∈ [0,mF ], we should
have λ ≥ λ̂ ≥ λ − γmF using one of the guesses λ̂ in
the interval [0,mF ]. Otherwise, if λ ∈ [mF , |V |mF ],
consider the largest guess λ̂ in the interval [mF , |V |mF ]

satisfying λ ≥ λ̂. We have:

λ ≥ λ̂ ≥ λ(1 +
γ

|V |
)−1 ≥ λ(1− γ

|V |
) ≥ λ− γmF ,

where the last inequality uses λ ≤ |V |mF . Therefore, in
practice, the approximation guarantee of the κ-DPCG
algorithm has an additional γmF error term which can
be tuned through choosing γ.

4 Differentially private online
submodular maximization

In this section, we study the following general proto-
col of online submodular maximization in the context
of differential privacy: There is a fixed constraint set
(V, I) which could either be a matroid or a knapsack
constraint. At each iteration t ∈ [T ], the online algo-
rithm chooses St ∈ I. Upon committing to this choice,
a normalized monotone submodular set function Ft is
revealed and the algorithm receives the payoff Ft(St).
The goal is to minimize the (1− 1

e )-regret defined below:

RT = (1− 1

e
) max
S∈I

T∑
t=1

Ft(S)−
T∑
t=1

Ft(St),

where 1− 1
e is the optimal polynomial time approxima-

tion ratio for offline monotone submodular maximiza-
tion subject to matroid or knapsack constraints. We
propose the Differentially Private Meta Frank-Wolfe
(DPMFW) algorithm for online submodular maximiza-
tion which exploits Algorithm 1 of Agarwal and Singh
(2017) for differentially private online linear optimiza-
tion as a sub-routine. The algorithm is presented in
Algorithm 3. The DPMFW algorithm is applied to
the multilinear extensions {ft}Tt=1 of the discrete mono-
tone submodular utility functions {Ft}Tt=1. At round
t ∈ [T ], similar to the DPCG algorithm, the DPMFW
algorithm outputs the average of K points {v(k)

t }Kk=1 in
the constraint set and hence, xt ∈ P holds. However,

Algorithm 3 Differentially Private Meta Frank-Wolfe
(DPMFW) algorithm
Input: K, the constraint set P .
Output: {xt}Tt=1

Initialize K instances {Ek}Kk=1 of the ( ε

2
√

2K ln(1/δ)
)-

differentially private algorithm of Agarwal and Singh
(2017) with noise distribution D and regularizer
g(x) =

∑|V |
i=1 xi ln(xi) for online linear optimization

over P .
for t = 1, . . . , T do
x

(1)
t = 0.
for k = 1, 2, . . . ,K do

Let v(k)
t be the output of Ek for round t.

Set x(k+1)
t = x

(k)
t + 1

K v
(k)
t .

end for
Play xt = x

(K+1)
t .

for k = 1, 2, . . . ,K do
Feedback ∇ft(x(k)

t ) to Ek as the linear utility
vector observed at round t.

end for
end for

since the utility function Ft remains unknown until the
algorithm commits to a choice St, we instead run K
instances {Ek}Kk=1 of the differentially private online lin-
ear optimization algorithm of Agarwal and Singh (2017)
to mimic the K Frank-Wolfe updates of the DPCG
algorithm. {Ek}Kk=1 combine the well-known Follow the
Regularized Leader (FTRL) algorithm for online linear
optimization with the Tree Based Aggregation Protocol
(TBAP) of Dwork et al. (2010); Jain et al. (2012) for
maintaining differentially private partial sums of linear
utility vectors arriving online. See the Appendix for a
more detailed presentation of Algorithm 1 of Agarwal
and Singh (2017). We provide the regret bound and
privacy guarantee of the DPMFW algorithm below.
Theorem 4. Let 0 < ε < 1 and δ > 0. If
D = Lap|V |(λ), where Lap|V |(λ) is a distribution
over R|V | such that each coordinate is drawn i.i.d.
from the Laplace distribution with p.d.f. f(z|λ) =

1
2λexp(− |z|λ ) ∀z ∈ R, setting λ =

2mF |V | lnT
√

2K ln(1/δ)

ε

and K = O(
√
T ), Algorithm 3 is (ε, δ)-differentially

private and has the following expected regret bound for
matroid and knapsack constraints respectively:

E[RT ] ≤ O(rank(M)
√
T ln |V |)

+ Õ(
(rank(M))3/2|V |T 1/4

√
ln(1/δ)

ε
),

E[RT ] ≤ O(

√
T ln |V |
cmin

) + Õ(
|V |T 1/4

√
ln(1/δ)

(cmin)3/2ε
).

The above theorem shows that if
√

ln(1/δ)

ε ≤ O(T 1/4)
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holds, we can obtain a regret bound of O(
√
T ) which

matches the optimal regret bound for online submodu-
lar maximization in the non-private setting.
We can alternatively use the Gaussian noise as the
noise distribution D. The analysis in this setting is
provided in the Appendix.

5 Conclusion

In this paper, we studied the maximization of non-
negative monotone submodular set functions, subject
to matroid or knapsack constraints, in both offline
and online settings. We proposed differentially private
algorithms with optimal approximation ratios which are
faster (i.e., less query complexity) and have improved
accuracy compared to the prior works.
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