

Review article

Geophysical and geochemical constraints on the origin of Holocene intraplate volcanism in East Asia

Jack F. Ward ^{a,*}, Gideon Rosenbaum ^a, Teresa Ubide ^a, Jonny Wu ^b, John T. Caulfield ^{a,c}, Mike Sandiford ^d, Derya Gürer ^a

^a School of Earth and Environmental Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia

^b Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX 77004, USA

^c Central Analytical Research Facility, Queensland University of Technology, Brisbane, Queensland 4000, Australia

^d School of Earth Sciences, University of Melbourne, Carlton, Victoria 3053, Australia

ARTICLE INFO

Keywords:

Mantle convection
Transition zone
Plume
Subduction-induced upwelling
Mantle tomography

ABSTRACT

A number of Holocene volcanoes in East Asia — Jeju, Ulleungdo, Tianshi, Longgang, Jingbohu, Erkeshan and Wudalianchi — are located far (600–1500 km) from the nearest subduction zone. The origin of these intraplate volcanoes remains unclear, and mechanisms proposed to explain their origin include plume activity and subduction processes with or without slab fluid involvement. Here we evaluate the feasibility of these mechanisms. We present an analysis of available geophysical data, including slab geometry models and the full-waveform FWEA18 tomography model, as well as statistical tests on a compilation of geochemical data. High-resolution tomography data provide no evidence for a deep-seated mantle plume. Instead, the tomography shows that Tianshi, Longgang, Jingbohu, Erkeshan and Wudalianchi are located above edges of the Pacific slab, which is stagnant near the 660 km discontinuity under East Asia. The tomography also shows that Jeju is situated above a section of the Philippine Sea slab that has subducted to the 410 km discontinuity. While the intraplate volcanoes are underlain by subducted slabs, their geochemical signatures do not support melting via slab metasomatism typical of subduction zones. Instead, the Holocene intraplate volcanoes are alkaline and have trace element compositions comparable to those of ocean island basalts. Given the absence of geophysical or geochemical evidence for plume activity or slab metasomatism, we propose that volcanism has been generated by decompression melting associated with convective upwellings at the edges of the Pacific and Philippine Sea slabs. Tectonic reconstructions suggest that the Pacific slab may have been stagnant in the mantle transition zone for millions of years, so we speculate that localised convection at Pacific slab edges was triggered by changes in Western Pacific subduction dynamics during late Neogene–Quaternary time. The geophysical and geochemical data also suggest that Quaternary rollback of the Philippine slab might be responsible for volcanism at Jeju, which is located at the leading edge of the Philippine Sea slab.

1. Introduction

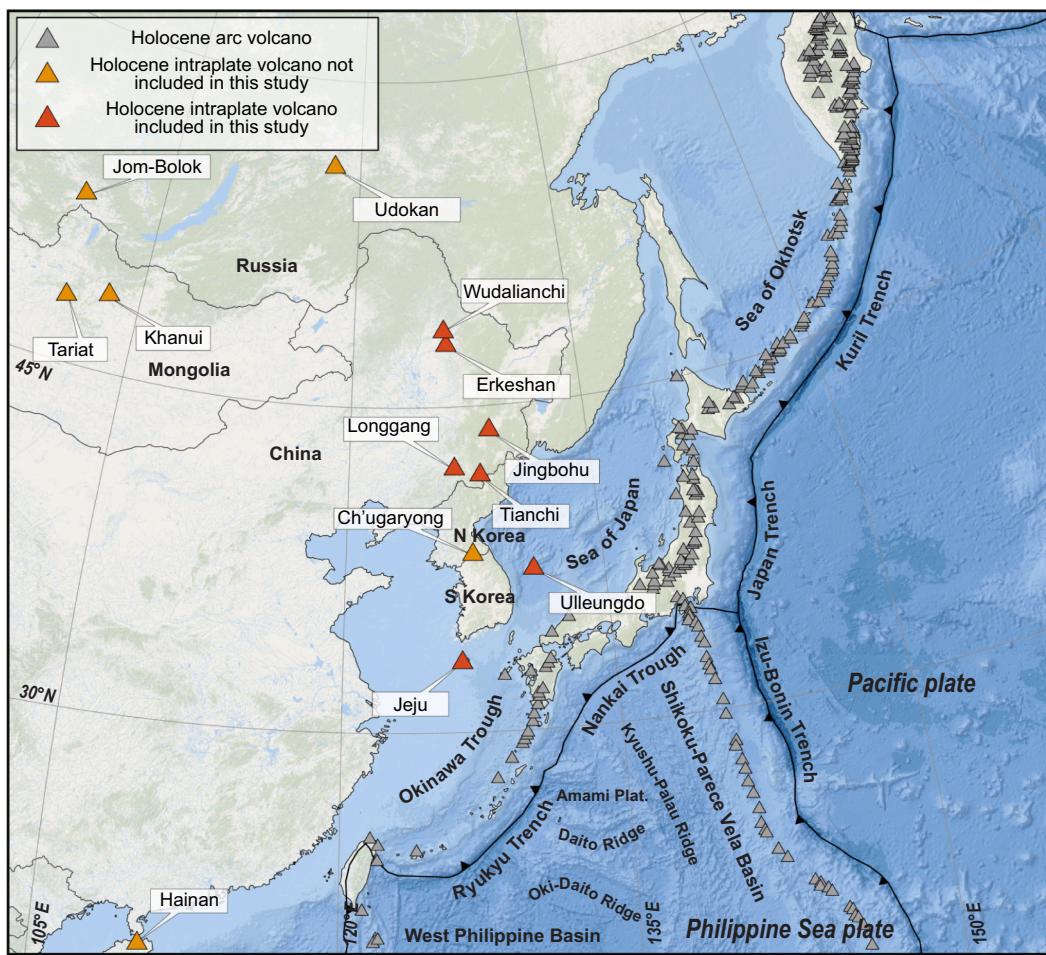
The majority of volcanic activity on Earth is attributed to processes involving subduction zone metasomatism, lithospheric extension, or mantle plume ascent (Cañón-Tapia and Walker, 2004; Perfit and Davidson, 2000). Some volcanoes, however, cannot be easily explained by these three mechanisms. There are examples of volcanoes in the proximity of subduction zones that seem unrelated to mantle wedge metasomatism (Gvirtzman and Nur, 1999; Schellart, 2010; Verma, 2002), and some intraplate volcanoes show no obvious evidence of

lithospheric extension or deep-seated plume activity (Christiansen et al., 2002; Finn et al., 2005). To explain the origin of such volcanism in subduction zone settings, small-scale convective processes have been invoked, involving, for example, slab edge effects (Govers and Wortel, 2005), slab tears (Lin et al., 2004; Rosenbaum et al., 2008; Rosenbaum et al., 2019), and the interaction of slabs with the mantle transition zone (Faccenna et al., 2010). In intraplate settings, the occurrence of ‘anomalous’ volcanism has been ascribed to edge-driven convection associated with lithospheric steps (Demidjuk et al., 2007; King and Anderson, 1998), which can be enhanced by asthenospheric shear

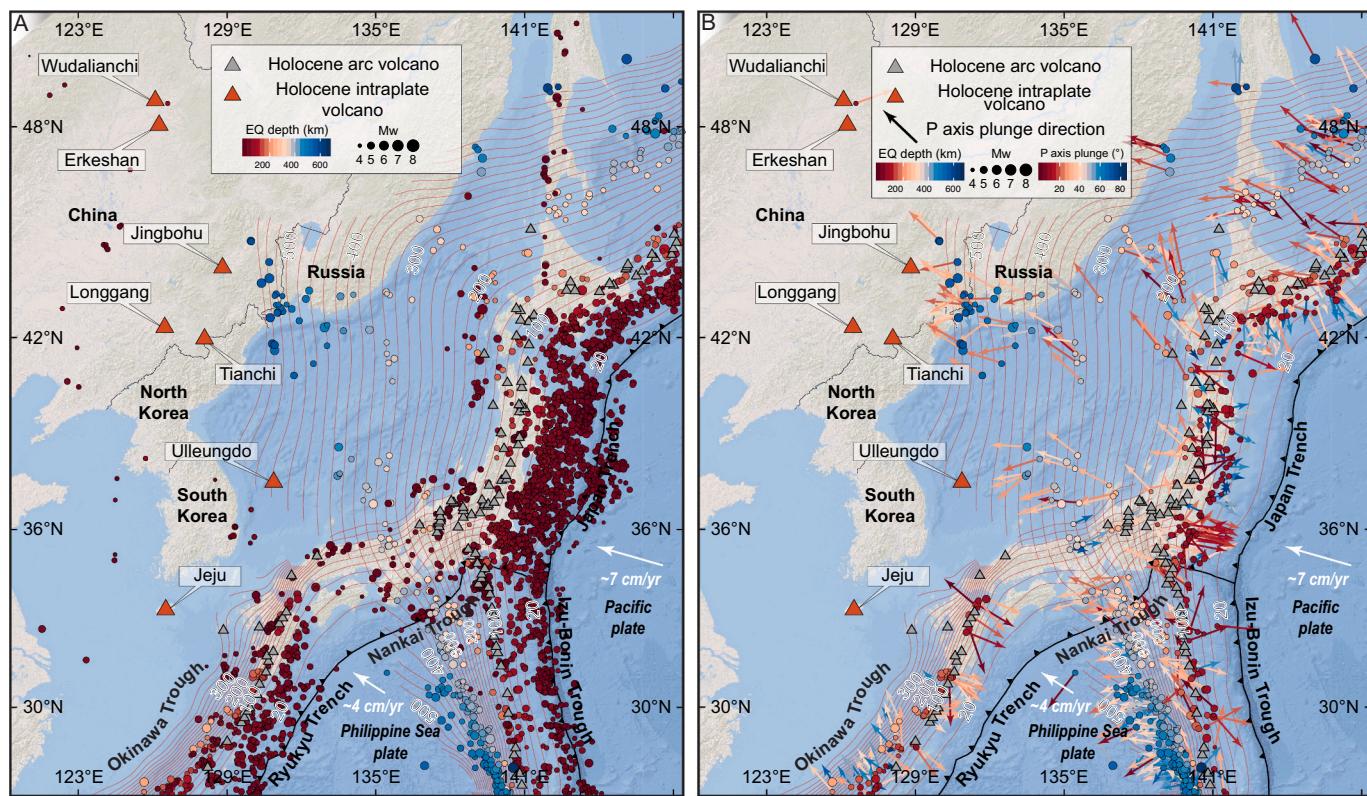
* Corresponding author.

E-mail address: jack.ward1@uqconnect.edu.au (J.F. Ward).

(Conrad et al., 2011; Davies and Rawlinson, 2014). Anomalous intra-plate volcanism has also been explained by the spontaneous formation of sub-lithospheric convection below mature oceanic lithosphere (Ballmer et al., 2009) and slab-related processes operating at great distances from the trench (Faccenna et al., 2010; Mather et al., 2020; Strak and Schellart, 2014; Tang et al., 2014; Yang and Faccenna, 2020).


Subduction of the Pacific and Philippine Sea plates has been responsible for widespread Holocene arc volcanism along the margins of East Asia (Fig. 1). However, a number of Holocene volcanoes, such as Jeju, Ulleungdo, Tianchi, Longgang, Jingbohu, Erkeshan and Wudalianchi (Fig. 1), are located far (600–1500 km) from the nearest subduction zone. The origin of these volcanoes, which we herein refer to as the ‘East Asian Holocene intraplate volcanoes’, remains enigmatic. Previously proposed geodynamic mechanisms include the rise of deep-seated mantle plumes (Kim et al., 1998; Kimura et al., 2018; Tatsumi et al., 2004), subduction processes without slab dehydration (Brenna et al., 2015; Chen et al., 2007; Tang et al., 2014; Zou et al., 2008; Zou et al., 2003), and subduction processes involving slab dehydration (Chen et al., 2017; Zhang et al., 2018; Zhao et al., 2007).

Relationships between deep slab subduction and some of the East Asian Holocene intraplate volcanoes have been proposed on the basis of seismic tomography data and numerical models (Tang et al., 2014; Yang and Faccenna, 2020). However, a review of relevant geophysical and geochemical data, assessing the influence of subduction-related convective processes on all of the East Asian Holocene intraplate volcanoes, has, to date, not been undertaken. The aim of this paper is to

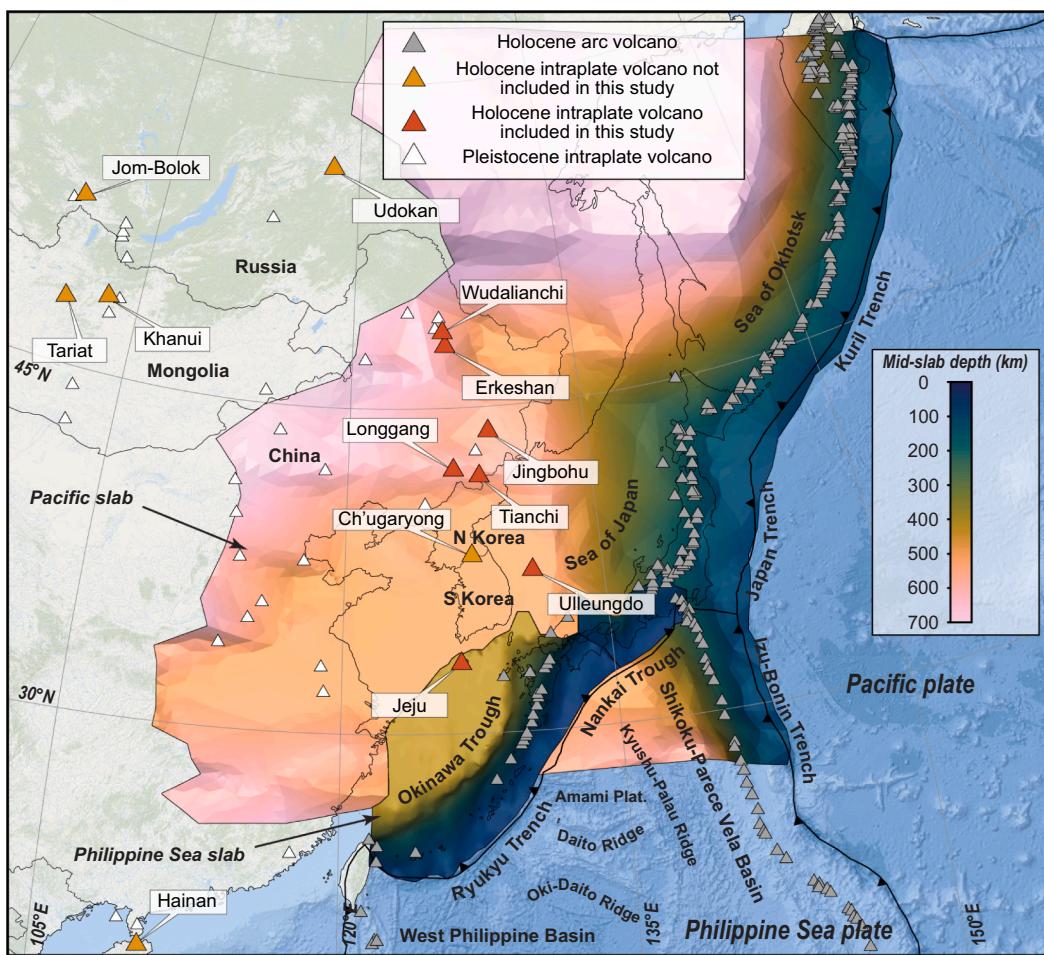

provide such a review. The recent release of the full-waveform FWFWA18 tomography model, which is one of the higher-resolution tomography models available for East Asia (Tao et al., 2018), provides an opportunity to (1) reassess previously proposed hypotheses for the origin of the East Asian Holocene intraplate volcanoes; (2) investigate the role of subduction-related convective processes in the formation of the intraplate volcanoes; and (3) develop a geodynamic model for the generation of these volcanoes. Here, we first summarise geophysical data to identify relationships between slab geometry and volcano distribution. We then perform a statistical analysis on available geochemical data to identify groupings of geochemical composition. Finally, we test the hypothesis that the spatial distribution and geochemical affinities of the East Asian Holocene intraplate volcanoes are ultimately controlled by subduction-related convective processes that induce decompression melting in the mantle.

2. Geological setting

Quaternary arc volcanism in East Asia has occurred in response to the subduction of the Pacific and Philippine Sea plates (Fig. 1; Uto and Tatsumi, 1996). The Pacific plate subducts beneath the Eurasian and Philippine Sea plates, producing arc volcanism in the Japan–Kurile and Izu–Bonin arcs, respectively (Fig. 1; Liu et al., 2017; Sato and Amano, 1991). At the Japan Trench, the age of the subducting Pacific plate is Early Cretaceous (~130 Ma; Liu et al., 2017; Müller et al., 2008; Seton et al., 2012). The westernmost edge of the Pacific slab, which is located

Fig. 1. Map showing the distribution of Holocene arc volcanoes (grey triangles), Holocene intraplate volcanoes (red and orange triangles) and regional plate boundaries of Bird (2003) in East Asia. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. A) Map showing seismic data of the ISC-EHB Bulletin (coloured circles), regional plate boundaries of Bird (2003), depth contours of the Slab2 model (Hayes, 2018; Hayes et al., 2018) and the distribution of Holocene arc (grey triangles) and intraplate volcanoes (red triangles). B) Map showing >75 km deep earthquakes included in the ISC-EHB Bulletin (coloured circles), P-axes of the CMT catalogue (coloured arrows), regional plate boundaries of Bird (2003), depth contours of the Slab2 model (Hayes, 2018; Hayes et al., 2018) and the distribution of Holocene arc and intraplate volcanoes (grey and red triangles, respectively). The plate movement vectors are from Liu et al. (2017). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)


in the mantle transition zone below eastern China, is of Late Cretaceous age (~ 90 Ma; Liu et al., 2017). During most of the Cenozoic, subduction of the Pacific slab was accompanied by slab rollback, causing widespread overriding-plate extension in East Asia (Schellart and Lister, 2005). Slab rollback ended during the Miocene, and, since the Pliocene (~ 3.5 Ma), the overriding plate (at the latitude of Japan) was subjected to contractional deformation (Okada and Ikeda, 2012; Sato and Amano, 1991). The present-day plate kinematics, which involve trench advance along the Japan-Kuril and Izu-Bonin-Marianas trenches (Faccenna et al., 2018; Heuret and Lallemand, 2005), are responsible for E-W compression in mainland East Asia (Sato and Amano, 1991; Xu, 2001; Yu et al., 2016).

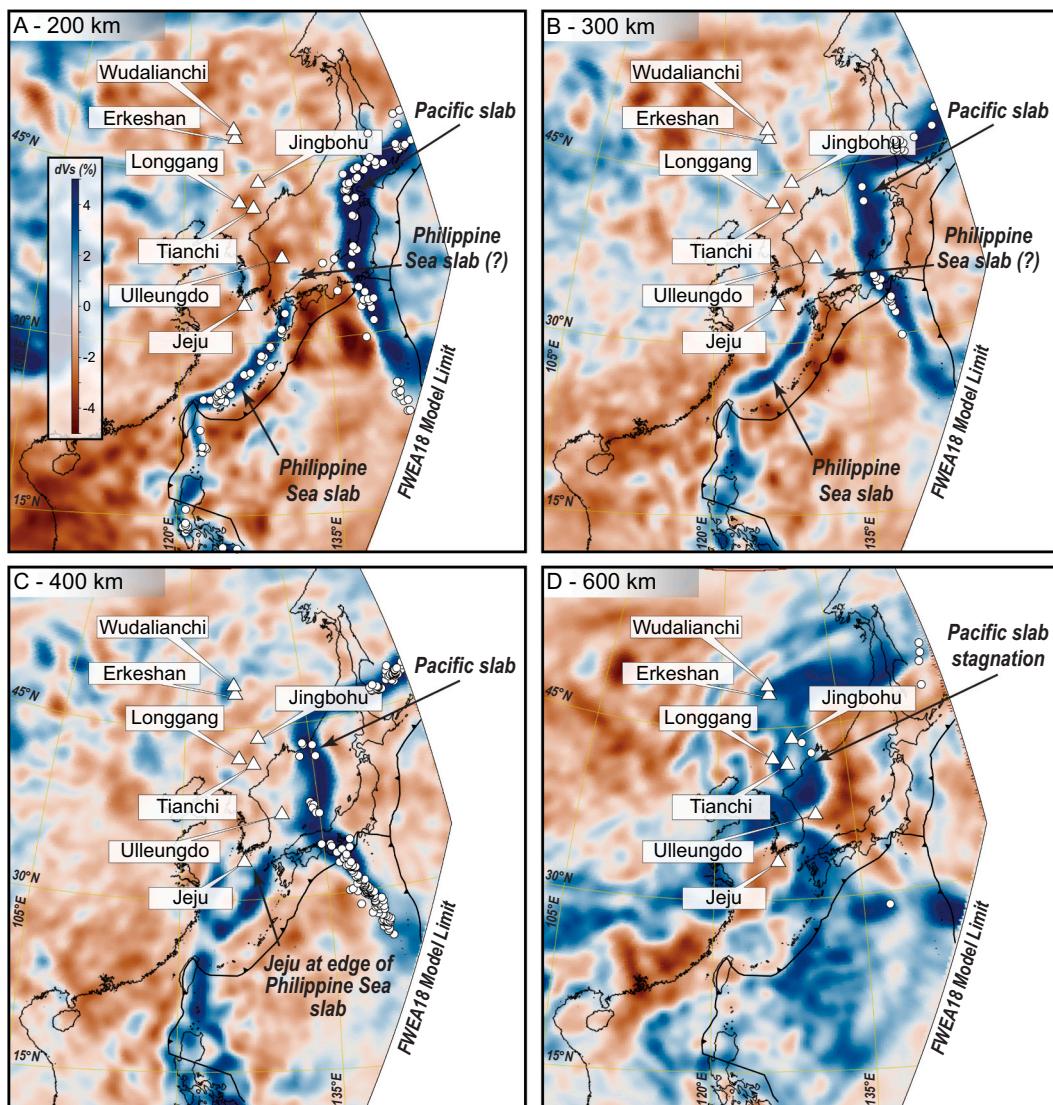
The Philippine Sea plate subducts beneath the Eurasian plate in the Nankai Trough and Ryukyu Trench (Fig. 1; Faccenna et al., 2018; Nakajima and Hasegawa, 2007). Eastward retreat of the Ryukyu Trench has been responsible for back-arc extension in the Okinawa Trough (Fig. 1; Faccenna et al., 2018; Sibuet et al., 1998). The Philippine Sea plate is made up of numerous Paleogene to present back-arc basins, including the West Philippine and Shikoku-Parece Vela basins (Fig. 1; Chamot-Rooke et al., 1987; Hall, 2002; Hickey-Vargas, 2005; Hilde and Chao-Shing, 1984; Jolivet et al., 2018; Lallemand, 2016; Okino et al., 1998). The Philippine Sea plate also contains arc fragments, including the Cretaceous Amami Plateau, Oki-Daito Ridge and Daito Ridge, and the Eocene Kyushu-Palau Ridge (Fig. 1; Hickey-Vargas, 2005; Yamazaki et al., 2010).

The island of Jeju, the closest Holocene intraplate volcano to the subduction zone (Fig. 1), comprises an emergent part of a basaltic volcanic field (Brenna et al., 2012b). Phreatomagmatic activity at Jeju commenced at ~ 1.8 Ma (Brenna et al., 2012b; Sohn and Yoon, 2010;

Sohn and Park, 2004; Yi et al., 1998). Holocene volcanic rocks erupted at Jeju include basalt, trachybasalt, basaltic andesite, basaltic trachyandesite, trachyandesite and trachyte (Brenna et al., 2012b). To the northeast of Jeju, the eruption of 2.7 Ma basaltic agglomerates marks the onset of Ulleungdo volcanism, which continued until the mid-Holocene (Im et al., 2012). Ulleungdo volcanic rocks, characterised by extreme alkali enrichments, include basalt, tephriphonolite, trachyandesite, phonolite, and trachyte (Brenna et al., 2014; Kim et al., 2008; Kim et al., 1999).

Two groups of Holocene intraplate volcanoes occur in eastern China. The first group includes the Jingbohu volcanic field, Tianchi (part of the Changbaishan volcanic field), and the Longgang volcanic field (Fig. 1). The Jingbohu volcanic field is composed of a volcanic plateau and a number of cinder cones and small exposed lava flows (Chen et al., 2007). Eruptions in the Jingbohu volcanic field occurred 5500–5200 years ago (Fan et al., 2003; Qicheng et al., 2006; Zou et al., 2008), producing basanite, hawaiite and phonotephrite (Chen et al., 2007; Zou et al., 2008). Tianchi, the youngest volcano in the Changbaishan volcanic field, erupted 1000 years ago (Horn and Schmincke, 2000; Wei et al., 2007). A generalised model of eruptive history at Tianchi includes the eruption of early stage (~ 2.77 –0.31 Ma), shield-forming basalt, a later phase of stratocone-building trachyte production, and a final episode of ignimbrite generation (Wang et al., 2003; Wei et al., 2007). In addition to these eruptive phases, volcanism at Tianchi has produced hawaiite, mugearite and basaltic andesite to peralkaline rhyolite (Chen et al., 2007). The Longgang volcanic field, in comparison, is made up of a series of cinder cones, maars and lava flows (Chen et al., 2007; Xu et al., 2003). Volcanism in the Longgang volcanic field, which occurred 1600–1500 years ago (Fan et al., 2002; Zou et al., 2008), gave rise to

Fig. 3. Map showing the mid-slab maps of Wu et al. (2016) relative to the distribution of Holocene arc volcanoes (grey triangles), Holocene intraplate volcanoes (red and orange triangles), Pleistocene intraplate volcanoes (white triangles) and regional plate boundaries of Bird (2003) in East Asia. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)


basalt, hawaiite, mugearite, basaltic trachyandesite and basaltic andesite (Chen et al., 2007).

The second group of Holocene intraplate volcanoes in eastern China includes those at Erkeshan and Wudalianchi (Fig. 1). Historical records suggest that Laoheishan and Huoshaoshan, two of the main cones in the Wudalianchi volcanic field, erupted at 1719–1721 CE (Feng and Whitford-Stark, 1986; Zou et al., 2003). Erkeshan is also considered to be of Holocene age (e.g., Chen et al., 2007). Phonotephrite, basaltic trachyandesite, tephriphonolite and trachyandesite make up eruptive sequences at both Erkeshan and Wudalianchi (Chen et al., 2007; Zhang et al., 2016; Zou et al., 2003), but Wudalianchi also contains olivine leucitite and leucite basanite (Chu et al., 2013). Based on field observations, it has been suggested that Keluo (75 km NNW of Wudalianchi) was also active during the Holocene (Global Volcanism Program, 2013), but there is no supporting geochronological evidence (Meng et al., 2018). Therefore, Keluo is not included in the list of Holocene volcanoes discussed in this study. A number of other East Asian Holocene intraplate volcanoes are not considered in this study, either because of the paucity of geochemical data (Ch'uga-ryong; Fig. 1), or because their origin has been intimately linked to plume activity (Hainan volcanic field, Udkan, Jom-Bolok, Khanui and Tariat; Xia et al., 2016; Yarmolyuk et al., 2020; Yarmolyuk et al., 2015; Zou and Fan, 2010).

3. Geophysical evaluation of East Asian slab structure

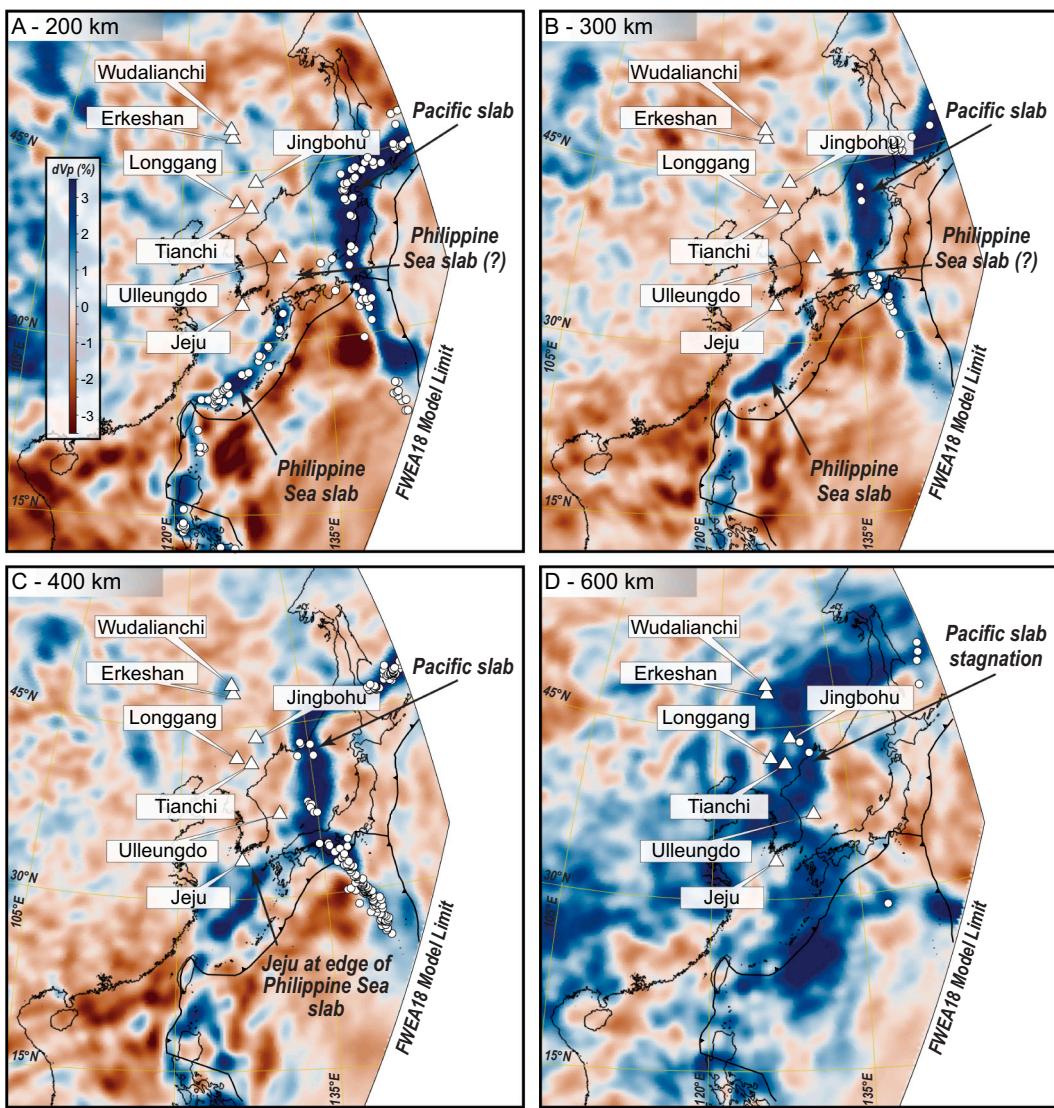
3.1. Approach

We utilised five geophysical datasets to evaluate the current geometry of subducted slabs and to identify potential links between slab geometry and intraplate volcanism in East Asia. The first dataset is the ISC-EHB Bulletin (Weston et al., 2018), which contains relocated earthquake hypocentres and phase arrival times from the International Seismological Centre database. The second dataset is the Global Centroid-Moment-Tensor (CMT) catalogue (Dziewonski et al., 1981; Ekström et al., 2012), which comprises moment tensor data for earthquakes that occurred after 1976. The third geophysical data source is the global Slab2 model (Hayes, 2018; Hayes et al., 2018), which utilises a probabilistic non-linear fit to compute slab geometry models from a data catalogue that includes receiver function, active-source seismic interpretation, seismic tomography, and local and regional seismic data. The fourth data source contains digital mid-slab maps of the Pacific and Philippine Sea slabs (Wu et al., 2016), which were created using GOCAD software from the interpretation of the MITP08 P-wave tomography data (Li et al., 2008) and the USGS Centennial earthquake catalogue seismic data (Engdahl, 2002). The mid-slab maps include stagnant, aseismic parts of the slabs, which can be reconciled with plate reconstructions (Wu et al., 2016). Thus, relative to the Slab2 model, the mid-slab maps provide a more complete structure of the Pacific and Philippine Sea slabs. The fifth dataset is the FWEA18 tomography model (Tao et al., 2018), which is a

Fig. 4. Horizontal depth slices of the FWEA18 S-wave seismic tomography model. White circles are seismic data of Engdahl (2002) that occurred within 50 km of the depth slice depth (i.e., for the 200 km depth slice, seismic events with a depth of 200 ± 50 km are shown). White triangles represent the East Asian Holocene intraplate volcanoes. The regional plate boundaries are from Bird (2003).

full-waveform inversion of P- and S-wave mantle velocities from 95 magnitude 5.3–6.9 earthquakes that occurred between 2009 and 2016. Based on calculations of the preconditioned Hessian-vector product, the resolution length of the FWEA18 model in the upper mantle and transition zone below eastern China is estimated to be between 50 and 80 km, but is spatially variable depending on source–receiver configurations (Tao et al., 2018). The overall geometry of the Pacific and Philippine Sea slabs shown by the FWEA18 tomography model is similar to the slab geometry shown by the MITP08 (Li et al., 2008) and UU-P07 global tomography models (Amaru, 2007; Hall and Spakman, 2015; van der Meer et al., 2018; Supplementary Figs. S1 and S2, respectively), as well as regional models of seismic tomography (Chen et al., 2017; Liu et al., 2017; Tang et al., 2014; Wei et al., 2012). To visualise the slab map and tomography data, we used *Scientific Colour Maps* (Crameri, 2018a, 2018b).

3.2. ISC-EHB Bulletin, CMT and Slab2 data


ISC-EHB Bulletin data show abundant shallow and intermediate seismicity along the length of the Pacific slab shown by the Slab2 model

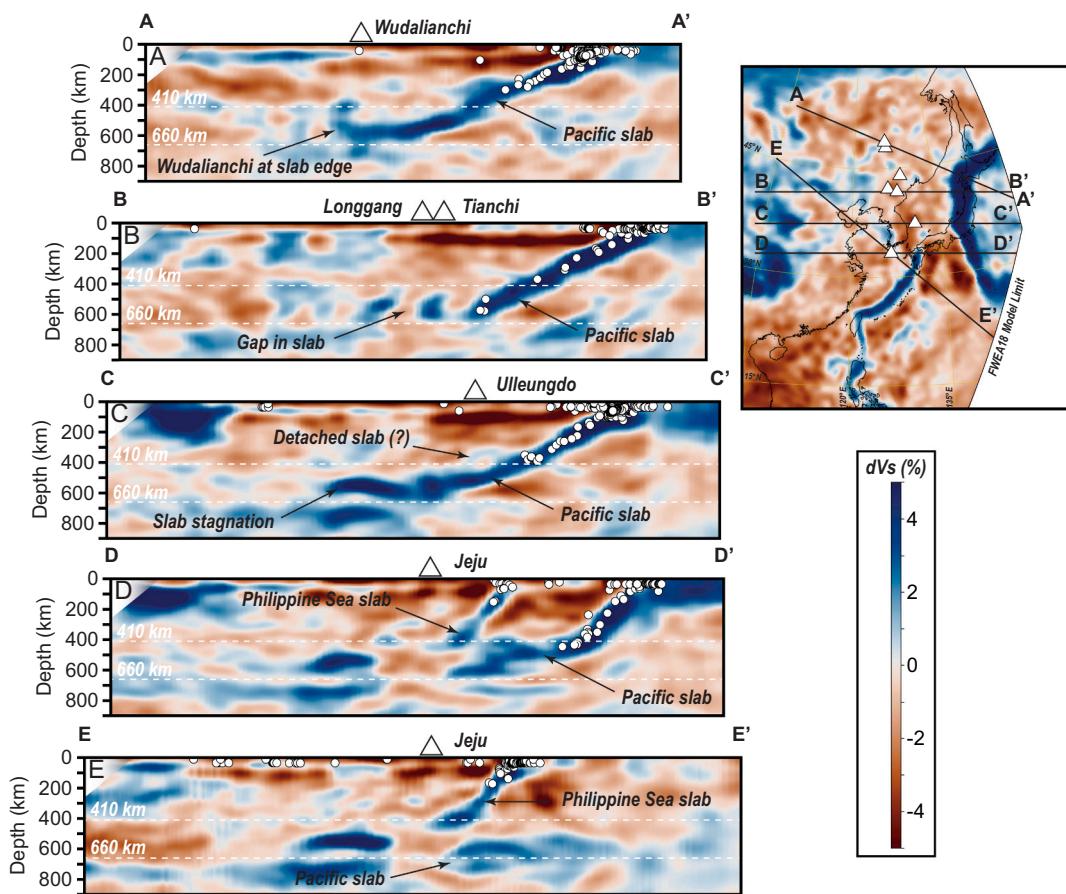
(Fig. 2A). Deep seismicity (>400 km) is more sporadic, but two notable clusters of deep earthquakes occur in association with the dipping part of the Pacific slab. The largest cluster occurs east of Tianchi and Jingbohu, between 129°E and 135°E and 40°N and 45°N (Fig. 2A). According to the Slab2 model, these earthquakes correspond to the westernmost edge of the dipping part of the Pacific slab at a depth of 560 km. P-axes of these earthquakes plunge 20–40° to the west and northwest (Fig. 2B).

A second earthquake cluster occurs east of Ulleungdo (38.48°N , 134.64°E). The P-axes of these earthquakes plunge at shallow to moderate angles to the west and southwest. Deep seismicity is absent in the area immediately under the East Asian Holocene intraplate volcanoes. According to the Slab2 model, the Pacific slab is subducting below Ulleungdo, whereas the other East Asian Holocene intraplate volcanoes are located beyond the edge of this slab (Fig. 2).

3.3. Three-dimensional slab models from seismic tomography

According to the mid-slab maps (Wu et al., 2016), the subducted Pacific slab extends at least 1700 km inland from the western Pacific

Fig. 5. Horizontal depth slices of the FWEA18 P-wave seismic tomography model. White circles are seismic data of [Engdahl \(2002\)](#) that occurred within 50 km of the depth slice depth (i.e., for the 200 km depth slice, seismic events with a depth of 200 ± 50 km are shown). White triangles represent the East Asian Holocene intraplate volcanoes. The regional plate boundaries are from [Bird \(2003\)](#).


subduction zones (Fig. 3). The maps show that the subduction angle of the Pacific slab is steeper in the north (north of 48°N) relative to the south (Fig. 3), as indicated also by slab seismicity (Fig. 2). A roughly similar slab geometry, extending at least 1800 km inland west of the Japan Trench, has been inferred by other authors (Liu et al., 2017). The northern part of the Philippine Sea slab, according to the mid-slab maps, extends some ~ 800 km to the northwest of the Ryukyu Trench, reaching the 410 km discontinuity under the East China Sea (Fig. 3). Pownall et al. (2017), using a different P-wave tomography model (Amaru, 2007), also observed deep subduction of the Philippine Sea slab northwest of the Ryukyu Trench. Jeju is located close to the leading edge of the Philippine Sea slab (Fig. 3). The other East Asian Holocene intraplate volcanoes are located above areas where the mid-slab depth is >500 km (Fig. 3).

3.4. FWEA tomography data

3.4.1. Horizontal depth slices

Horizontal depth slices of the FWEA18 S-wave model (Fig. 4) show westward subduction of the Pacific slab under East Asia, which is

expressed as a curvilinear, strong positive ($>2.5\%$) dVs anomaly. The Pacific slab dVs anomaly reaches mainland East Asia at a depth of ~ 500 km and broadens as it approaches the 660 km discontinuity (Fig. 4C–D). Tanchi, Jingbohu, Longgang, Erkeshan and Wudalianchi are located close to edges of the Pacific slab at a depth of 600 km (Fig. 4D). The Philippine Sea slab is also identified by a positive dVs anomaly (Fig. 4A, B), which is broadest at ~ 400 km (Fig. 4C). Jeju is located above the leading edge of the deeper part of the Philippine Sea slab (Fig. 4C), and Ulleungdo is also located on the edge of a positive dVs anomaly (Fig. 4A–B). The latter anomaly is weaker than the Pacific slab dVs anomaly, suggesting that it might represent part of the younger and hotter Philippine Sea slab. An alternative full waveform tomography model has also detected Philippine Sea slab, at similar depths, north of Honshu (Simuté et al., 2016). Like the FWEA18 S-wave depth slices, FWEA18 P-wave depth slices (Fig. 5) show interaction of the Pacific and Philippine Sea slabs with the 660 and 410 km discontinuities, respectively. The FWEA18 P-wave depth slices also highlight the possible positioning of the East Asian Holocene volcanoes above slab edges, which is most clearly shown in cross-sections (Figs. 6 and 7).

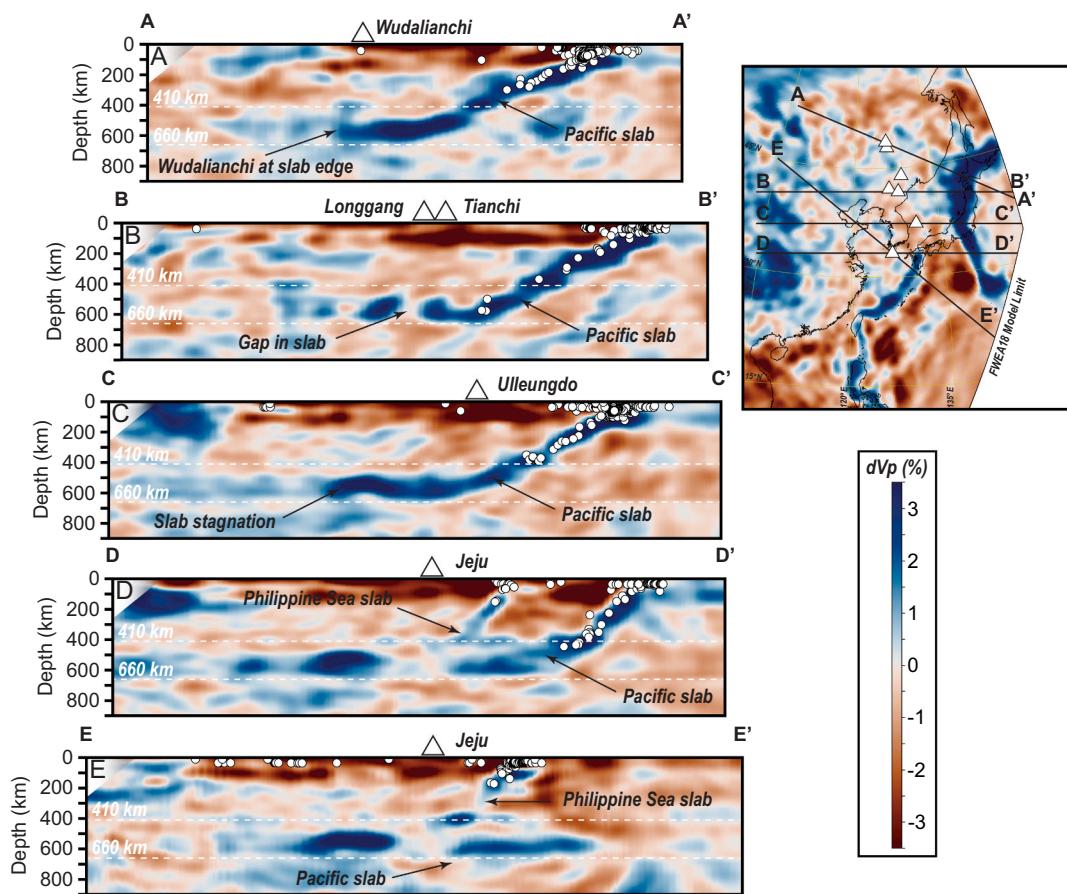
Fig. 6. Vertical cross-sections of the FWEA18 S-wave seismic tomography model. The locations of the cross-section lines are shown in the map in the upper right-hand corner. White circles are seismic data of Engdahl (2002) that occurred within 50 km of the cross-section line. White triangles represent the East Asian Holocene intraplate volcanoes.

3.4.2. Vertical cross-sections

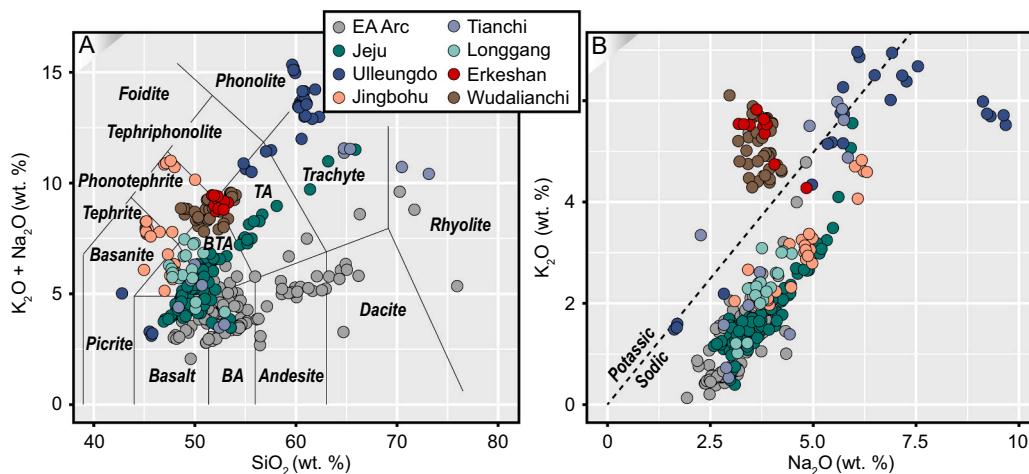
Vertical cross-sections of the FWEA18 S-wave tomography data show that the Pacific slab does not significantly penetrate below the 660 km discontinuity (Fig. 6). For example, a cross-section below Wudalianchi, oriented perpendicular to the strike of the Pacific slab, reveals abundant seismicity to a depth of ~300 km and the stagnation of the Pacific slab at the 660 km discontinuity (Fig. 6A). A nearly identical slab structure is revealed by the P-wave data along the same section (Fig. 7A). Both cross-sections indicate that Wudalianchi is situated near the westernmost edge of the Pacific slab.

Cross-sections below Tianchi and Longgang show seismic activity at greater depths (~600 km) and stagnation of the Pacific slab at the 660 km discontinuity (Figs. 6B and 7B). A prominent negative (i.e., slow) dVs anomaly beneath Longgang and Tianchi, in the transition zone, may represent a gap in the slab (Fig. 6B), as inferred by Tang et al. (2014). This gap is also visible in the P-wave tomography (Fig. 7B).

The Pacific slab structure below Ulleungdo is defined by Wadati–Benioff zone seismicity to a depth of ~400 km (Figs. 6C and 7C). Both the P- and S-wave datasets show that the Pacific slab is stagnated at the 660 km discontinuity. The S-wave section also shows a positive dVs anomaly that rises from the main part of the Pacific slab below Ulleungdo (Fig. 6C). Wu et al. (2016) have suggested that detached sections of Philippine Sea slab could be located in the mantle below Ulleungdo.


Cross-sections beneath Jeju show subduction of both the Pacific and Philippine Sea slabs (Figs. 6D and 7D). In these sections, the Pacific slab does not penetrate into the lower mantle, but instead appears to thicken in the transition zone. Evidence of deflection of the Pacific slab at a depth of ~410 km is supported by the flattening of slab seismicity at this

depth (Fig. 6D). Seismic activity associated with the Philippine Sea slab is restricted to shallower depths. The Philippine Sea slab appears to have been subducted to the 410 km discontinuity (Figs. 6D and 7D). Cross-sections below Jeju that are oriented perpendicular to the strike of the Philippine Sea slab show that Jeju is located at the western edge of the subducting Philippine Sea slab (Figs. 6E and 7E).


4. Geochemical insights into the origin of East Asian Holocene intraplate volcanoes

4.1. Approach

A compilation of published geochemical data from the East Asian Holocene intraplate volcanoes, as well as East Asian Holocene arc volcanoes (labelled “EA Arc” in Figs. 8–11), is presented in Supplementary Data File 1. After evaluating differences in alkali major element compositions (Fig. 8), we examined TiO_2 and trace element data from the intraplate volcanoes to qualitatively assess source component contributions. Firstly, we constructed primitive mantle (PM) normalised multielement diagrams of the average trace element composition of samples with $\text{SiO}_2 < 57 \text{ wt\%}$ for each volcano (i.e., below the andesite threshold to avoid the chemical effects of substantial magma differentiation; Fig. 9). We then compiled bivariate plots of TiO_2 and key trace element ratios (for samples with $\text{SiO}_2 < 57 \text{ wt\%}$; Fig. 10) and compared these values to a compilation of ocean island basalt (OIB) and volcanic arc data from the PetDB Database (www.earthchem.org/petdb). We used Nb/Y to track contributions of slab melts because high field strength elements (HFSEs), such as Nb, can be mobilised during slab melting (Hoffer et al., 2008). Enrichment of light rare earth elements

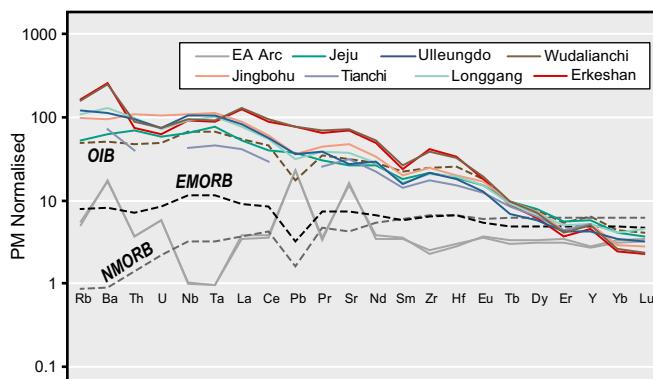

Fig. 7. Vertical cross-sections of the FWEA18 P-wave seismic tomography model. The locations of the cross-section lines are shown in the map in the upper right-hand corner. White circles are seismic data of Engdahl (2002) that occurred within 50 km of the cross-section line. White triangles represent the East Asian Holocene intraplate volcanoes.

Fig. 8. Anhydrous major element whole rock compositions of the East Asian Holocene volcanoes showing (A) SiO_2 (wt%) vs. total alkalis (TAS diagram) and (B) Na_2O (wt%) vs. K_2O (wt%). The East Asian Holocene intraplate volcanoes are, overall, more alkaline than the arc volcanoes (Fig. 8A). Fig. 8B shows that both alkaline and sodic rocks have been erupted in East Asia. Erkeshan and Wudalianchi have only erupted potassic rocks (Fig. 8B). Ulleungdo and Tanchi have erupted a combination of potassic and sodic rocks, and the remaining East Asian volcanoes have erupted sodic rocks. Data were compiled from Basu et al., 1991; Bindeman et al., 2004; Brenna et al., 2012b; Brenna et al., 2014; Chen et al., 2007; Chu et al., 2013; Hoang et al., 2013; Kita et al., 2012; Kita et al., 2001; Miyoshi et al., 2008; Shibata et al., 2014; Sugimoto et al., 2006; Yokoyama et al., 2006; Zhang et al., 2016; Zhang et al., 1995; Zou et al., 2008; Zou et al., 2003.

(LREEs) relative to heavy rare earth elements (HREEs), represented by La/Yb , is used to infer melting in the presence of garnet (which is stable at depths >80 km; Moyen, 2009). The ratios Ba/Th and Ba/La track dehydration fluid contribution from the slab because Ba is a fluid-mobile

large ion lithophile element (LILE; Hawkesworth et al., 1997a; Sun and Stern, 2001). Th is a fluid-immobile element whose mantle enrichment is affected by the addition of subducted sediments, which are rich in Th (Hawkesworth et al., 1997a). Therefore, the Th/Ce ratio provides

Fig. 9. Average PM normalised multielement compositions of the East Asian Holocene intraplate volcanoes for samples with $\text{SiO}_2 < 57 \text{ wt\%}$. PM normalised OIB, enriched mid-ocean ridge basalt (EMORB) and NMORB compositions (Sun and McDonough, 1989), as well as representative samples of main arc basalts (Kuritani et al., 2016), are displayed for comparison. Overall, the East Asian Holocene intraplate volcanoes display OIB-like trace element characteristics.

information about the addition of sediment to melts (Hawkesworth et al., 1997a; Hawkesworth et al., 1997b). Lastly, we constructed bivariate plots of (1) Nb/Th vs. Zr/Nb and (2) Zr/Y vs. Nb/Y , because these HFSE ratios are unaffected by secondary mobilisation and can be used to identify recycled components (Condie, 2003, 2005).

To identify statistically significant groupings of trace element data (normalised to normal mid-ocean ridge basalt; NMORB) from samples with $\text{SiO}_2 < 57 \text{ wt\%}$, we used principal component analysis (PCA; Fig. 11). PCA is a dimensionality reduction technique that simplifies a dataset with a large number of variables (i.e., a dataset with a large number of 'dimensions', in our case elemental compositions) by computing new, uncorrelated variables that are linear combinations of variables included in the original dataset (Jolliffe and Cadima, 2016; Ringnér, 2008). These new variables are termed 'principal components'. The first principal component represents the direction that accounts for the largest amount of variation, and the second principal component is the orthogonal component that shows the largest variation (Abdi and Williams, 2010; Ringnér, 2008). Here, we used PCA to reduce the dimensionality of NMORB-normalised trace element data, which are traditionally plotted in a multielement 'spider diagram'. By performing PCA on trace element data (Fig. 11), differences in geochemical patterns can be quantitatively assessed, thus allowing us to identify similarities and differences between the normalised trace element compositions of East Asian volcanoes. PCA is also useful because it allows visualisation of the trace element data on a single Cartesian plane, rather than many (potentially overlapping) lines on a multielement diagram. In order to avoid potential loading complications, we only included in the PCA samples that have data for Rb, Ba, Th, U, Nb, Ta, La, Ce, Pb, Pr, Sr, Nd, Sm, Zr, Hf, Eu, Tb, Dy, Er, Y, Yb and Lu.

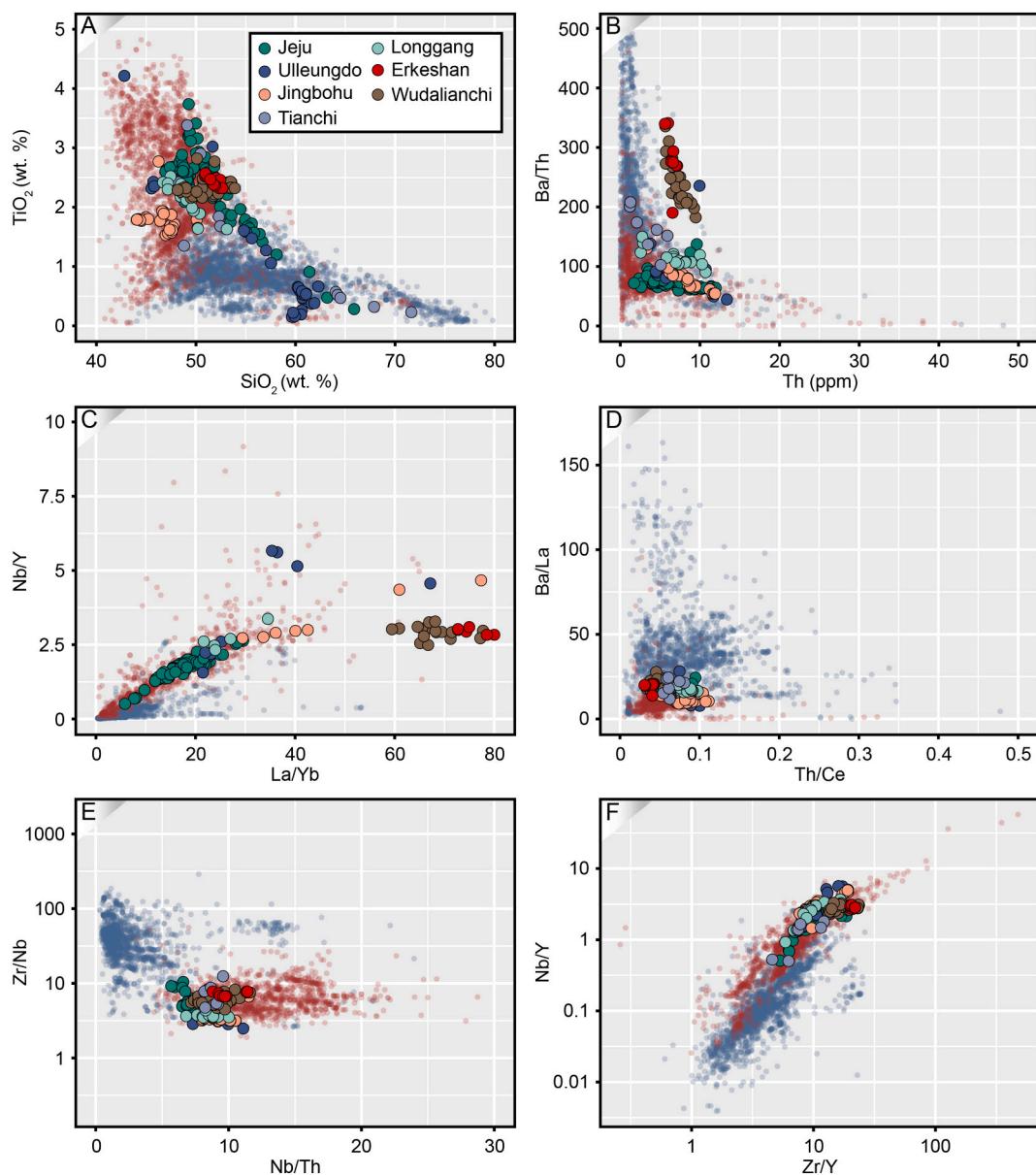
To obtain additional information about source contributions, we assessed isotopic ratios, including $^{143}\text{Nd}/^{144}\text{Nd}$, $^{208}\text{Pb}/^{204}\text{Pb}$, $^{207}\text{Pb}/^{204}\text{Pb}$, $^{206}\text{Pb}/^{204}\text{Pb}$ and $^{87}\text{Sr}/^{86}\text{Sr}$ (Fig. 12). The geochemical data were processed and visualised in R (R Core Team, 2013). Packages used include ggplot2 (Wickham, 2016) and those contained in the 'tidyverse' family (Wickham et al., 2019).

4.2. Geochemical variations in the East Asian Holocene volcanoes

Relative to the East Asian arc volcanoes, the intraplate volcanoes contain significantly higher concentrations of alkalis (Fig. 8A), which possibly arise from low degrees of partial melting of an enriched source. Although both potassic and sodic rocks occur at the East Asian Holocene intraplate volcanoes (Fig. 8B), Wudalianchi and Erkeshan are considered potassic volcanoes, and Longgang, Jingbohu, Tianchi and Jeju are

considered sodic volcanoes (e.g., Choi et al., 2006; Sun et al., 2017; Wang et al., 2017).

The average PM normalised trace element patterns of mafic compositions from the East Asian intraplate volcanoes are akin to those of OIBs and significantly different from the pattern of the East Asian arc basalts (Fig. 9). Relative to the arc basalts and normalised EMORB and NMORB, intraplate volcanoes are enriched in incompatible trace elements. All of the intraplate volcanoes are enriched in LREEs relative to HREEs, and they lack the prominent negative Nb and Ta anomalies (and positive Pb and Sr anomalies) characteristic of subduction-related rocks (which are shown by the East Asian arc basalts). Erkeshan and Wudalianchi are the only intraplate volcanoes that have prominent positive Ba anomalies. Taken together, the PM normalised multielement data provide strong evidence against the involvement of subduction-related fluids.


Bivariate diagrams of TiO_2 and trace element data (from samples with $\text{SiO}_2 < 57 \text{ wt\%}$; Fig. 10) further highlight the OIB-like chemical composition of the East Asian Holocene intraplate volcanoes. For example, at a given SiO_2 concentration, the TiO_2 concentrations of the intraplate volcanoes (median $\text{TiO}_2 = 2.28 \pm 0.76 \text{ wt\%}$; Fig. 10A) are typically higher than those of the samples included in the PetDB arc compilation. Indeed, the TiO_2 values of the intraplate volcanoes fall within the OIB field. A plot of Th (ppm) vs. the Ba/Th ratio (Fig. 10B) shows that the intraplate volcanoes generally have lower Ba/Th values than the arc rocks. Exceptions to this are Erkeshan and Wudalianchi, whose elevated Ba/Th values (up to 341) are comparable to those included in the compilation of global arc rocks. The Th (ppm) values of the East Asian intraplate volcanoes are similar to those of OIBs. La/Yb and Nb/Y values (Fig. 10C) of the intraplate volcanoes are higher than those of the arc volcanoes, and, like the other trace element ratio data, the intraplate La/Yb and Nb/Y values overlap with those included in the OIB compilation. Ulleungdo contains higher Nb/Y values than the other intraplate volcanoes, but these values are similar to some OIBs. The Th/Ce and Ba/La values of the intraplate volcanoes (Fig. 10D) are typically lower than those of the arc volcanoes. The OIB-like geochemical affinities of the East Asian Holocene intraplate volcanoes are also demonstrated by bivariate plots of Nb/Th vs. Zr/Nb (Fig. 10E) and Zr/Y vs. Nb/Y (Fig. 10F).

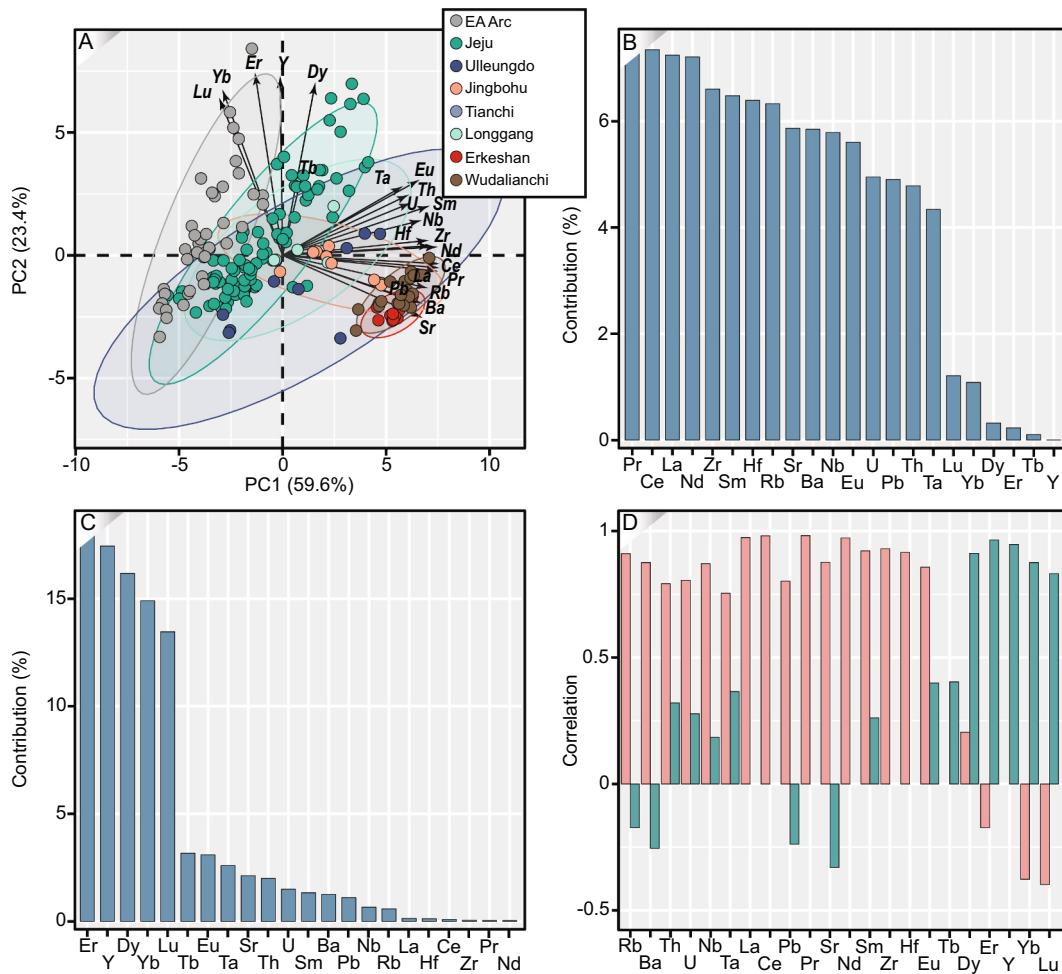
4.3. Statistical significance of trace element variations

The PCA data for samples with $\text{SiO}_2 < 57 \text{ wt\%}$ show that principal component one (PC1) and principal component 2 (PC2) account for 59.6% and 23.4% of the observed variance, respectively (Fig. 11A). The largest contributors to PC1 are Pr, Ce, La and Nd (Fig. 11B), whereas the largest contributors to PC2 are Er, Y, Dy, Yb and Lu (Fig. 11C). Correlations between the individual elements and the calculated principal component (PC; Fig. 11D) are also represented by vectors (Fig. 11A), where the length of the vector is directly proportional to the strength of the correlation between the individual element and the respective PC. For PC1, positive correlations are greatest with Pr, Ce, La and Nd, whereas Lu, Yb and Er are negatively correlated. For PC2, the strongest positive correlations are with Er, Y, Dy, Yb and Lu, whereas Sr, Ba, Pb and Rb are negatively correlated. Most of the East Asian arc data plot in the upper left quadrant of the PCA plot (Fig. 11A), indicating that these rocks are enriched in heavy REE relative to the intraplate rocks. Jeju is the only intraplate volcano that has data plotting in the East Asian arc field. Erkeshan and Wudalianchi plot exclusively in the lower right quadrant, indicating higher concentrations of Sr, Ba, Pb, Rb, Pr, Ce, La and Nd (i.e., LILEs and LREEs) relative to the other East Asian volcanoes.

4.4. Isotope variations

A bivariate plot of $^{87}\text{Sr}/^{86}\text{Sr}$ vs. $^{143}\text{Nd}/^{144}\text{Nd}$ (Fig. 12A) shows that most of the intraplate volcanoes occur on a mixing line between depleted (DMM/FOZO) and enriched components (EM1/LoMu).

Fig. 10. Bivariate plots of major and trace element data from samples with $\text{SiO}_2 < 57$ wt%. Data from the East Asian Holocene volcanoes are plotted over a compilation of OIB (red) and volcanic arc (blue) geochemical data from the PetDB Database (www.earthchem.org/petdb). These bivariate plots further highlight the OIB-like geochemical compositions of the East Asian Holocene intraplate volcanoes. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

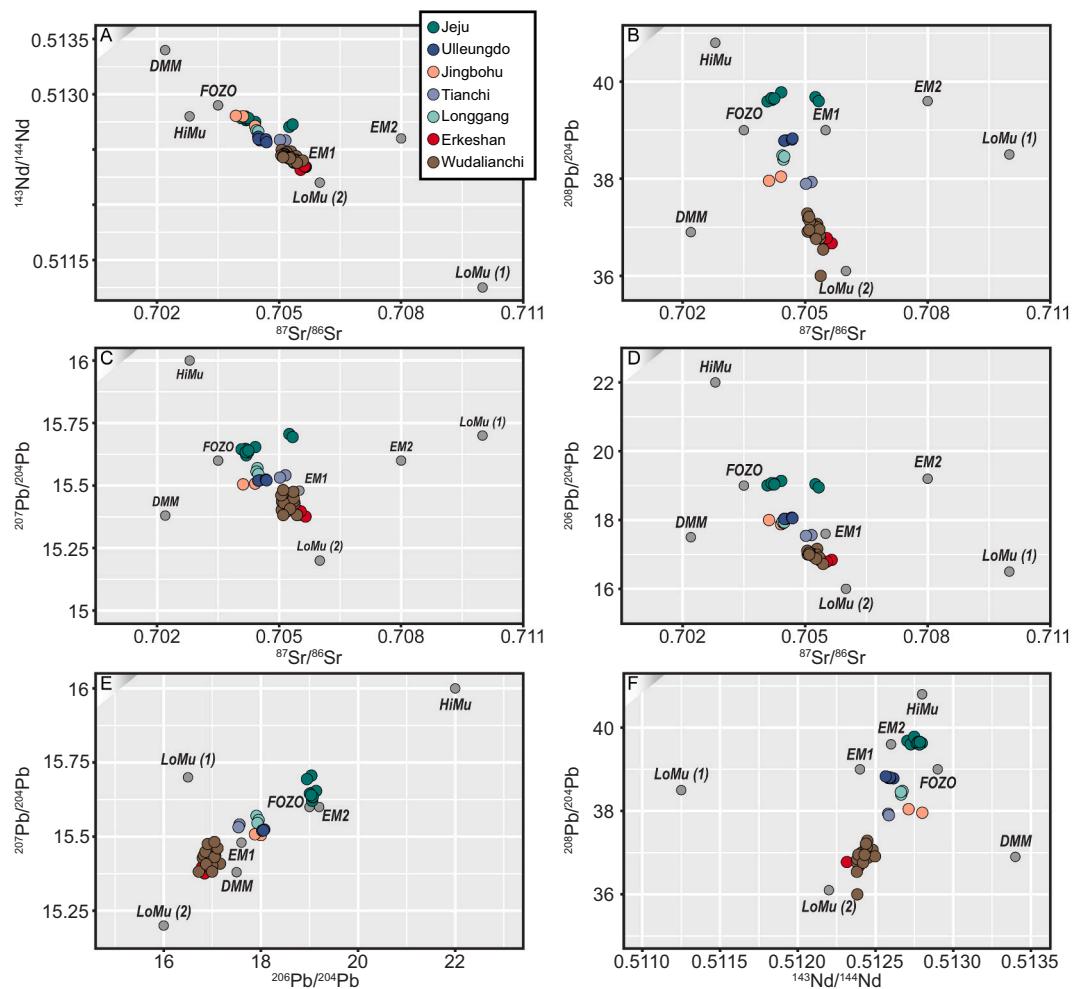

$^{143}\text{Nd}/^{144}\text{Nd}$ is lowest and $^{87}\text{Sr}/^{86}\text{Sr}$ highest at Erkeshan and Wudalianchi, whereas Jingbohu and Jeju plot at the other end of the linear trend. Bivariate plots of $^{87}\text{Sr}/^{86}\text{Sr}$ vs. $^{208}\text{Pb}/^{204}\text{Pb}$ (Fig. 12B), $^{87}\text{Sr}/^{86}\text{Sr}$ vs. $^{207}\text{Pb}/^{204}\text{Pb}$ (Fig. 12C) and $^{87}\text{Sr}/^{86}\text{Sr}$ vs. $^{206}\text{Pb}/^{204}\text{Pb}$ (Fig. 12D) suggest that the unradiogenic isotope compositions of Wudalianchi and Erkeshan are similar to those of the EM1/LoMu reservoirs (e.g., Chen et al., 2007; Sun et al., 2017; Wang et al., 2017). In Jeju and Ulleungdo samples, the $^{208}\text{Pb}/^{204}\text{Pb}$ values are higher than those of the other intraplate volcanoes (Fig. 12B). The $^{207}\text{Pb}/^{204}\text{Pb}$ (Fig. 12C) and $^{206}\text{Pb}/^{204}\text{Pb}$ values of Jeju (Fig. 12D) are also more radiogenic than the other intraplate volcanoes. Overall, these radiogenic Pb isotope compositions indicate the inclusion of an EM2 component in the source of Jeju (e.g., Kim et al., 2019). Although the $^{207}\text{Pb}/^{204}\text{Pb}$ composition of Ulleungdo (Fig. 12C) is more radiogenic than Erkeshan and Wudalianchi, it is comparable to Tianchi, Longgang and Jingbohu. Bivariate plots of $^{206}\text{Pb}/^{204}\text{Pb}$ vs. $^{207}\text{Pb}/^{204}\text{Pb}$ (Fig. 12E) and $^{143}\text{Nd}/^{144}\text{Nd}$ vs. $^{208}\text{Pb}/^{204}\text{Pb}$ (Fig. 12F) further highlight the less radiogenic signature of

Erkeshan and Wudalianchi relative to the other intraplate volcanoes, particularly Jeju and Ulleungdo.

5. Discussion

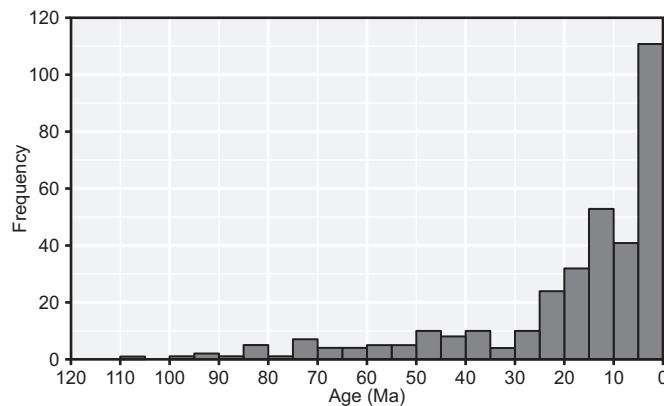
5.1. Previously proposed melting mechanisms

Holocene volcanism in East Asia has been previously explained by plume activity (Kim et al., 1998; Kimura et al., 2018; Tatsumi et al., 2004), subduction processes involving slab dehydration (Chen et al., 2017; Zhang et al., 2018; Zhao et al., 2007), and subduction processes without slab dehydration (Brenna et al., 2015; Chen et al., 2007; Tang et al., 2014; Zou et al., 2008; Zou et al., 2003). Plume-related volcanism is typically characterised by broad topographic swells, $^3\text{He}/^4\text{He}$ values of 10–30 R_A (Graham et al., 1998), and finger-like low dVp anomalies in seismic tomography (Nolet et al., 2007) with origins potentially as deep as the core–mantle boundary (Campbell, 2007; Nelson and Grand,

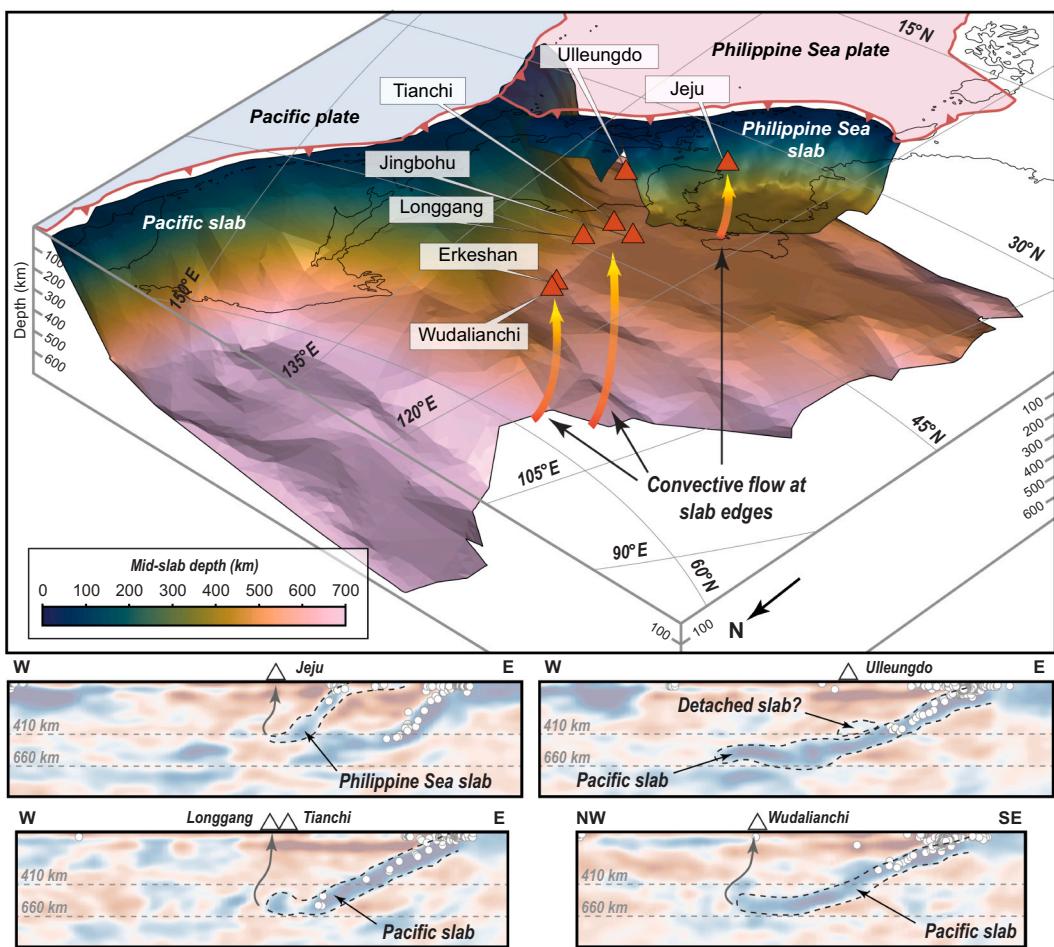

Fig. 11. Principal component analysis (PCA) of trace element data from samples with $\text{SiO}_2 < 57$ wt% normalised to NMORB values of Sun and McDonough (1989). A) Variations in the two main principal components (PC1 and PC2). Vector directions and lengths represent the strength of the correlation between the individual element and the respective principal component. B) Contribution of individual elements to PC1. C) Contribution of individual elements to PC2. D) Element correlations with PC1 (orange) and PC2 (teal). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

2018). The range of ${}^3\text{He}/{}^4\text{He}$ values (5.5–7 R_A) in the East Asian Holocene intraplate volcanoes is more akin to MORB (Chen et al., 2007), the volcanoes do not correspond to slow seismic anomalies in the lower mantle (Chen et al., 2007; Montelli et al., 2004; Tang et al., 2014), and the volume of basalt erupted is relatively small (Chen et al., 2007; Tang et al., 2014). Therefore, a mantle plume origin for these volcanoes seems unlikely.

The East Asian Holocene intraplate volcanoes are located above subducted slabs (Figs. 3–7), but the depth of the slabs below these volcanoes (>400 km) is considerably greater than typical depths (90–150 km) associated with subduction-related volcanism (Schmidt and Poli, 1998). In addition, the volcanic rocks do not display typical subduction-related geochemical characteristics, such as calc-alkaline major element compositions, positive anomalies of fluid-mobile LILEs, and negative anomalies of fluid-immobile HFSEs (Elliott, 2003; McCulloch and Gamble, 1991). Instead, the intraplate volcanoes have OIB-like PM normalised trace element compositions (Fig. 9).


Trace element ratio data provide further evidence that melting associated with the intraplate volcanoes was not generated by typical subduction processes. For example, the median Th/Ce value of all intraplate samples with $\text{SiO}_2 < 57$ wt% is 0.07, which is OIB-like and significantly lower than the values of arc rocks that have received contributions of subducted sediments (Th/Ce up to 0.35; Hawkesworth et al., 1997a). Ba/La values of the intraplate volcanoes are also lower

than Ba/La values of arc rocks produced by metasomatic processes (Fig. 10D; e.g., Sun and Stern, 2001). Although only qualitative, these observations are in line with previous studies that have suggested that sediments or fluids associated with recent subduction processes do not contribute to East Asian intraplate volcanism (Brenna et al., 2015; Chen et al., 2007; Zou et al., 2008; Zou et al., 2003). The Ba/Th values (Fig. 10B) of Jeju, Ulleungdo, Jingbohu, Tianchi and Longgang are also comparable to those of MORB and OIB ($\text{Ba}/\text{Th} = 50–200$; Bourdon et al., 2003). Ba/Th values of Erkeshan and Wudalianchi plot within the 'subduction' field ($\text{Ba}/\text{Th} = 200–1200$; Bourdon et al., 2003), but these elevated values are likely associated with the long-term storage of ancient sediments in the mantle transition zone, which were added during a phase of subduction at ca. 2.2 Ga (Wang et al., 2017). The long-term isolation in the mantle transition zone of these ancient low- μ sediments, dominated by K-hollandite (which retains K, Rb, Ba and Pb; Wang et al., 2017), may also be responsible for the presence of an EM1/LoMu-like reservoir under East Asia (Sun et al., 2014; Wang et al., 2017). Indeed, Jingbohu, Tianchi, Longgang, Erkeshan and Wudalianchi appear to be the products of mixing between a depleted endmember (subcontinental lithospheric mantle for the potassic volcanoes and asthenospheric mantle for the sodic volcanoes; Wang et al., 2017; Zhang et al., 2018 and authors therein) and the EM1/LoMu reservoir associated with the mantle transition zone (Fig. 12). Mixing of a depleted component and an EM2 component of asthenospheric origin has been invoked


Fig. 12. Bivariate plots of key isotope data from intraplate volcanoes in East Asia. Samples of all SiO_2 concentration are shown in these plots. Jeju displays the most radiogenic isotope compositions. Erkeshan and Wudalianchi are noteworthy for displaying very low $^{208}\text{Pb}/^{204}\text{Pb}$, $^{207}\text{Pb}/^{204}\text{Pb}$ and $^{206}\text{Pb}/^{204}\text{Pb}$ values. The remaining intraplate volcanoes usually plot between the radiogenic values of Jeju and the unradiogenic values of Erkeshan and Wudalianchi. Data sources are listed in Supplementary Table S1. Isotope reservoir values are from Chen et al. (2007) and authors therein.

to explain Jeju isotope compositions (Fig. 12; Choi et al., 2014; Choi et al., 2006), and the isotope compositions of Ulleungdo likely arise from mixing of asthenospheric DMM, EM1 and EM2 components (Choi et al., 2014; Choi et al., 2006). Therefore, the isotope compositions of the East Asian Holocene intraplate volcanoes appear to reflect mixtures of mostly asthenospheric mantle sources.

Fig. 13. Histogram showing the occurrence of East Asian basalts younger than 110 Ma (modified from Li et al., 2017).

Evidence of excess ^{230}Th and other observations from geochemical data (including low $^{206}\text{Pb}/^{204}\text{Pb}$ values, low Sr/Th values, low U/Th values, and an absence of positive K anomalies) provide further support for the lack of recent inputs of slab fluid and sediments into the East Asian Holocene intraplate volcanoes (Brenna et al., 2015; Chen et al., 2007; Sun et al., 2017; Zou et al., 2008; Zou et al., 2003). Some authors have suggested, based on the occurrence of negative $\delta^{26}\text{Mg}$ values, that mainland East Asian intraplate volcanoes originated from mantle sources that were modified by Pacific slab melts (Li et al., 2017; Yang et al., 2012; Zhang et al., 2018). However, these $\delta^{26}\text{Mg}$ anomalies have been explained by the presence of recycled carbonate-bearing sediments and carbonated eclogite, added during ancient subduction events, in the East Asian mantle (Sun et al., 2017; Wang et al., 2017). Relationships between $\delta^{26}\text{Mg}$, Sr-Nd-Pb isotope and trace element data demonstrate the occurrence of recycled rutile-bearing eclogite and carbonate components in the Jeju mantle source, as do they preclude significant contributions of subducted sediments (Kim et al., 2019). Delivery of enriched crustal trace element and isotope signatures, characteristic of OIBs globally, to the source of East Asian Cenozoic continental intraplate basalts has also been linked to the Mesozoic rollback of the Paleo-Pacific slab, which induced rutile dehydration at post-arc depths (Xu and Zheng, 2017; Zheng et al., 2020). Bivariate plots of Nb/Th vs. Zr/Nb and Zr/Y vs. Nb/Y (Fig. 10E-F) further support the inclusion of recycled crust in the East Asian mantle. Correlations between $1/\text{Os}$ and $^{187}\text{Os}/^{188}\text{Os}$ (Chu et al., 2013), together with constraints from

Fig. 14. Schematic diagram of potential subduction processes that generate Holocene intraplate volcanism in East Asia. The tomography cross-sections are from Fig. 6. The slab map and tomography data show that Jeju is located at the edge of the Philippine Sea slab. Quaternary slab rollback could be creating convection below Jeju. Ulleungdo potentially overlays a detached section of the Philippine Sea slab. Tianshi, Longgang, Jingbohu, Erkeshan and Wudalianchi are located close to the edge of the Pacific slab. Late Neogene–Quaternary plate rotation and velocity increase could be generating increased convection along the edge of the Pacific slab.

geochemical modelling (McGee et al., 2015) and correlations of various geochemical compositions (Brenna et al., 2012a; Kimura et al., 2018; Kuritani et al., 2011; Wang et al., 2017; Zou et al., 2003), indicate that crustal contamination has not affected the geochemical composition of most East Asian Holocene intraplate basalts. Therefore, the geochemical evidence suggests that recent slab metasomatism has not significantly contributed to the composition and formation of the East Asian Holocene intraplate volcanoes. Alternatively, based on the OIB-like, LREE-enriched compositions of the intraplate volcanoes (which have been interpreted to signal melting of deep, garnet-bearing sources; Chen et al., 2007; Chu et al., 2013; Meng et al., 2018) and the proximity of the intraplate volcanoes to deep slab edges, it is possible that convection of enriched asthenospheric mantle at slab edges has led to decompression melting and the formation of these volcanoes.

5.2. Geodynamic controls on intraplate volcanism in East Asia

Most of the East Asian Holocene intraplate volcanoes are located close to and above the deep edges of the Pacific and Philippine Sea slabs, as indicated by the different geophysical datasets analysed in our study (Figs. 3–7). Mantle flow triggered by slab–mantle interaction and/or dewatering of a stagnant slab can potentially generate melting and associated alkaline volcanism (Faccenna et al., 2010). In the case of the East Asian Holocene intraplate volcanoes, however, the geochemical data do not support dewatering or fluid metasomatism. Furthermore, the Pacific slab may have been stagnant in the transition zone below East

Asia for tens of millions of years (Liu et al., 2017), meaning that the cause of convective flow along the Pacific slab margin cannot be easily reconciled with the model of Faccenna et al. (2010), which predicts maximum poloidal mantle flow when the slab approaches the 660 km discontinuity. It is also difficult to apply this model to the Philippine Sea slab because this slab has not yet reached the 660 km discontinuity (Figs. 3–7).

It appears, therefore, that the origin of intraplate volcanism in East Asia should also be considered in the context of regional-scale tectonic events, which might have triggered a change in the upper mantle convection regime (i.e., on top of the 660 km discontinuity). The onset of volcanism at Jeju, at ~1.7 Ma, coincides with a plate kinematic change expressed by (1) Philippine Sea slab rollback (Brenna et al., 2015); (2) a shift from northerly Philippine Sea plate motion to WNW-oriented migration (Wu et al., 2016); and (3) the onset of coupling between the Pacific and Caroline plates (Wu et al., 2016). Changes in the absolute plate motion of the Pacific plate occurred at ~2.6 Ma and ~0.78 Ma, involving rotation of the Pacific plate in East Asia and faster westward plate motion (Harbert and Cox, 1989; Wessel and Kroenke, 2000), which overlapped with a period of increasing Pacific slab pull force (Faccenna et al., 2012) and the onset of compressional deformation at the latitude of Japan (Okada and Ikeda, 2012; Sato and Amano, 1991). Although it is important to consider the effects of erosion on the preservation of older volcanoes, it appears that East Asian intraplate volcanic activity became more prevalent during the late Neogene and Quaternary (Fig. 13; Chen et al., 2007; Li et al., 2017; Meng et al., 2018). Given that the Pacific slab

has been in the mantle transition zone since at least 10–20 Ma (Liu et al., 2017), we speculate that changes in the western Pacific subduction dynamics triggered mantle flow reorganisation, which involved convective mantle flow at the leading edge of the Pacific slab, that generated intraplate volcanism via decompression melting (Fig. 14). A similar mechanism has recently been proposed to explain the origin of non-age-progressive Cenozoic intraplate volcanism in eastern Australia (Mather et al., 2020). This volcanism, according to Mather et al. (2020), was generated by melting of volatile-rich mantle material in response to enhanced slab flux and the perturbation of the mantle transition zone by subducted slabs. Given that the convergent margin in East Asia has been controlled predominantly by slab motion (rather than motion of the upper plate; Heuret and Lallemand, 2005), an increase of slab flux caused by regional kinematic changes could explain the dramatic increase in eruption frequency during the Quaternary (Fig. 13).

Our proposed mechanism for the origin of intraplate volcanism in East Asia is supported by analogue models (Strak and Schellart, 2014), which demonstrated that subduction-induced poloidal flow in the mantle wedge of a retreating system is greatest when a slab tip approaches depths of 450–500 km (thus explaining Jeju volcanism in response to Philippine Sea slab rollback). These analogue models have also shown that the advance of a subducted slab over the 660 km discontinuity can generate quasi-toroidal flow around lateral slab edges, as well as poloidal flow at the leading slab edge (Strak and Schellart, 2014). If so, widespread volcanism may occur along the perimeter of the Pacific and Philippine Sea slabs, raising the question why the occurrence of the intraplate volcanoes is rather sporadic. For the case of the Philippine Sea slab, it is possible that isolated decompression melting at sub-lithospheric depths was only enabled in Jeju, because it is located above the edge of the Philippine Sea slab (Figs. 3–7) and in an area that is bounded by thick lithospheric structures that could promote edge-driven convection (Song et al., 2018). For the case of the Pacific slab, indeed, many additional (Pleistocene) intraplate volcanoes are distributed along the western slab edge (Fig. 3). These Pleistocene intraplate volcanoes have OIB-like geochemical compositions comparable to those of their Holocene counterparts, lacking evidence for the incorporation of recent subduction components (e.g., Chen et al., 2007). Because the western edge of the Pacific slab was already in the mantle transition zone during Pleistocene time (Liu et al., 2017), it is possible that the Pleistocene volcanoes were also produced by slab edge convection (and associated decompression) caused by changes of subduction dynamics.

One volcano that cannot be easily explained by our proposed model is Ulleungdo, which is located several hundred kilometres away from the Pacific slab edge (Figs. 3–7). The leading edge of the Philippine Sea slab appears to occur south of Ulleungdo (Figs. 2 and 3; Simuté et al., 2016). Fast seismic anomalies below the Sea of Japan, similar to the fast S-wave anomaly below Ulleungdo, possibly represent detached fragments of Philippine Sea slab (Wu et al., 2016; Fig. 6C), which might have played a role in triggering volcanism with a component of slab melt metasomatism (as suggested by high Nb/Y values; Fig. 11C). However, given that the potential detached slab shown by the FWEA18 tomography data is not very well resolved, the origin of Ulleungdo remains an open question.

6. Conclusion

Geophysical data suggest that the East Asian Holocene intraplate volcanoes are mostly located above deep edges of the Pacific and Philippine Sea slabs. Although the intraplate volcanoes are located above slabs, their geochemical compositions reflect minimal recent contributions of subduction fluids or sediments. Instead, the geochemical data suggest that ancient, recycled crust and sediments are included in the source of the intraplate volcanoes. Variations in isotope composition are interpreted to reflect mixing of mostly asthenospheric mantle sources. Based on these geophysical and geochemical data, we suggest that the East Asian Holocene intraplate volcanoes formed above slab edges via

convective processes, involving enriched asthenospheric mantle, that may have triggered decompression melting. We also speculate that slab-edge convection could have been triggered by regional-scale tectonism associated with changes in the kinematics of the Pacific and Philippine Sea plates.

Supplementary data to this article can be found online at <https://doi.org/10.1016/j.earscirev.2021.103624>.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This research was funded by ARC grant DP200101566 (GR, TU and MS) and US National Science Foundation grant EAR-1848327 (JW). The manuscript benefited from comments and suggestions by Wouter Schellart and an anonymous reviewer. Sanzhong Li and Arturo Gomez-Tuena are thanked for their expert editorial handling and feedback.

References

- Abdi, H., Williams, L.J., 2010. Principal component analysis: wiley interdisciplinary reviews. *Comput. Stat.* 2 (4), 433–459.
- Amaru, M., 2007. Global Travel Time Tomography with 3-D Reference Models. Utrecht University.
- Ballmer, M.V., Van Hunen, J., Ito, G., Bianco, T., Tackley, P., 2009. Intraplate volcanism with complex age-distance patterns: a case for small-scale sublithospheric convection. *Geochim. Geophys. Geosyst.* 10 (6).
- Basu, A.R., Junwen, W., Wankang, H., Guanghong, X., Tatsumoto, M., 1991. Major element, REE, and Pb, Nd and Sr isotopic geochemistry of Cenozoic volcanic rocks of eastern China: implications for their origin from suboceanic-type mantle reservoirs. *Earth Planet. Sci. Lett.* 105 (1–3), 149–169.
- Bindeman, I.N., Ponomareva, V.V., Bailey, J.C., Valley, J.W., 2004. Volcanic arc of Kamchatka: a province with high- δ ^{18}O magma sources and large-scale $^{18}\text{O}/^{16}\text{O}$ depletion of the upper crust. *Geochim. Cosmochim. Acta* 68 (4), 841–865.
- Bird, P., 2003. An updated digital model of plate boundaries. *Geochem. Geophys. Geosyst.* 4 (3).
- Bourdon, B., Turner, S., Dosseto, A., 2003. Dehydration and partial melting in subduction zones: Constraints from U-series disequilibria. *J. Geophys. Res. Solid Earth* 108 (B6).
- Brenna, M., Cronin, S.J., Smith, I.E., Maas, R., Sohn, Y.K., 2012a. How small-volume basaltic magmatic systems develop: a case study from the Jeju Island Volcanic Field, Korea. *J. Petrol.* 53 (5), 985–1018.
- Brenna, M., Cronin, S.J., Smith, I.E., Sohn, Y.K., Maas, R., 2012b. Spatio-temporal evolution of a dispersed magmatic system and its implications for volcano growth, Jeju Island Volcanic Field, Korea. *Lithos* 148, 337–352.
- Brenna, M., Price, R., Cronin, S.J., Smith, I.E., Sohn, Y.K., Kim, G.B., Maas, R., 2014. Final magma storage depth modulation of explosivity and trachyte–phonolite genesis at an intraplate volcano: a case study from Ulleung Island, South Korea. *J. Petrol.* 55 (4), 709–747.
- Brenna, M., Cronin, S.J., Keresztsuri, G., Sohn, Y.K., Smith, I.E., Wijbrans, J., 2015. Intraplate volcanism influenced by distal subduction tectonics at Jeju Island, Republic of Korea. *Bull. Volcanol.* 77 (1), 7.
- Campbell, I.H., 2007. Testing the plume theory. *Chem. Geol.* 241 (3–4), 153–176.
- Cañón-Tapia, E., Walker, G.P., 2004. Global aspects of volcanism: the perspectives of “plate tectonics” and “volcanic systems”. *Earth Sci. Rev.* 66 (1–2), 163–182.
- Chamot-Rooke, N., Renard, V., Le Pichon, X., 1987. Magnetic anomalies in the Shikoku Basin: a new interpretation. *Earth Planet. Sci. Lett.* 83 (1–4), 214–228.
- Chen, Y., Zhang, Y., Graham, D., Su, S., Deng, J., 2007. Geochemistry of Cenozoic basalts and mantle xenoliths in Northeast China. *Lithos* 96 (1), 108–126.
- Chen, C., Zhao, D., Tian, Y., Wu, S., Hasegawa, A., Lei, J., Park, J.-H., Kang, I.-B., 2017. Mantle transition zone, stagnant slab and intraplate volcanism in Northeast Asia. *Geophys. J. Int.* 209 (1), 68–85.
- Choi, S.H., Mukasa, S.B., Kwon, S.-T., Andronikov, A.V., 2006. Sr, Nd, Pb and Hf isotopic compositions of late Cenozoic alkali basalts in South Korea: Evidence for mixing between the two dominant asthenospheric mantle domains beneath East Asia. *Chem. Geol.* 232 (3–4), 134–151.
- Choi, H.-O., Choi, S.H., Yu, Y., 2014. Isotope geochemistry of Jeongok basalts, northernmost South Korea: implications for the enriched mantle end-member component. *J. Asian Earth Sci.* 91, 56–68.
- Christiansen, R.L., Foulger, G., Evans, J.R., 2002. Upper-mantle origin of the Yellowstone hotspot. *Geol. Soc. Am. Bull.* 114 (10), 1245–1256.
- Chu, Z.-Y., Harvey, J., Liu, C.-Z., Guo, J.-H., Wu, F.-Y., Tian, W., Zhang, Y.-L., Yang, Y.-H., 2013. Source of highly potassic basalts in Northeast China: evidence from Re–Os, Sr–Nd–Hf isotopes and PGE geochemistry. *Chem. Geol.* 357, 52–66.

Condie, K.C., 2003. Incompatible element ratios in oceanic basalts and komatiites: tracking deep mantle sources and continental growth rates with time. *Geochem. Geophys. Geosyst.* 4 (1), 1–28.

Condie, K.C., 2005. High field strength element ratios in Archean basalts: a window to evolving sources of mantle plumes? *Lithos* 79 (3–4), 491–504.

Conrad, C.P., Bianco, T.A., Smith, E.I., Wessel, P., 2011. Patterns of intraplate volcanism controlled by asthenospheric shear. *Nat. Geosci.* 4 (5), 317–321.

Cramer, F., 2018a. Geodynamic diagnostics, scientific visualisation and StagLab 3.0. *Geosci. Model Dev.* 11 (6), 2541–2562.

Cramer, F., 2018b. Scientific colour-maps. Zenodo. <https://doi.org/10.5281/zenodo.4491293> v. 10.

Davies, D.R., Rawlinson, N., 2014. On the origin of recent intraplate volcanism in Australia. *Geology* 42 (12), 1031–1034.

Demidjuk, Z., Turner, S., Sandiford, M., George, R., Foden, J., Etheridge, M., 2007. U-series isotope and geodynamic constraints on mantle melting processes beneath the Newer Volcanic Province in South Australia. *Earth Planet. Sci. Lett.* 261 (3–4), 517–533.

Dziewonski, A., Chou, T.A., Woodhouse, J., 1981. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. *J. Geophys. Res. Solid Earth* 86 (B4), 2825–2852.

Ekström, G., Nettles, M., Dziewoński, A., 2012. The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes. *Phys. Earth Planet. Inter.* 200, 1–9.

Elliott, T., 2003. Tracers of the Slab, 138. *Geophysical Monograph-American Geophysical Union*, pp. 23–46.

Engdahl, E.R., 2002. Global seismicity: 1900–1999. In: *International Handbook of Earthquake and Engineering Seismology*, pp. 665–690.

Faccenna, C., Becker, T.W., Lallemand, S., Lagabrielle, Y., Funiciello, F., Piromallo, C., 2010. Subduction-triggered magmatic pulses: a new class of plumes? *Earth Planet. Sci. Lett.* 299 (1–2), 54–68.

Faccenna, C., Becker, T.W., Lallemand, S., Steinberger, B., 2012. On the role of slab pull in the Cenozoic motion of the Pacific plate. *Geophys. Res. Lett.* 39 (3).

Faccenna, C., Holt, A.F., Becker, T.W., Lallemand, S., Royden, L.H., 2018. Dynamics of the Ryukyu/Izu-Bonin-Marianas double subduction system. *Tectonophysics* 746, 229–238.

Fan, Q., Sui, J., Liu, R., Wei, H., Li, D., Sun, Q., Li, N., 2002. Periods of Quaternary volcanic activity in Longgang area, Jilin province. *Acta Petrol. Sin.* 18 (4), 495–500.

Fan, Q., Sun, Q., Li, N., Yin, J., Chen, H., Gao, F., Zhang, X., 2003. The section of airfall clastic rock of Holocene volcano in Jingbohu region and its eruptive history. *Seismol. Geol.* 25, 3–11.

Feng, M., Whitford-Stark, J., 1986. The 1719–1721 eruptions of potassium-rich lavas at Wudalianchi, China. *J. Volcanol. Geotherm. Res.* 30 (1–2), 131–148.

Finn, C.A., Müller, R.D., Panter, K.S., 2005. A Cenozoic diffuse alkaline magmatic province (DAMP) in the southwest Pacific without rift or plume origin. *Geochem. Geophys. Geosyst.* 6 (2).

Global Volcanism Program, 2013. *Volcanoes of the World*. Smithsonian Institution.

Govers, R., Wortel, M., 2005. Lithosphere tearing at STEP faults: response to edges of subduction zones. *Earth Planet. Sci. Lett.* 236 (1–2), 505–523.

Graham, D.W., Larsen, L., Hanan, B., Storey, M., Pedersen, A., Lupton, J., 1998. Helium isotope composition of the early Icelandic mantle plume inferred from the Tertiary picrites of West Greenland. *Earth Planet. Sci. Lett.* 160 (3–4), 241–255.

Gvirtzman, Z., Nur, A., 1999. The formation of Mount Etna as the consequence of slab rollback. *Nature* 401 (6755), 782.

Hall, R., 2002. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. *J. Asian Earth Sci.* 20 (4), 353–431.

Hall, R., Spakman, W., 2015. Mantle structure and tectonic history of SE Asia. *Tectonophysics* 658, 14–45.

Harbert, W., Cox, A., 1989. Late Neogene motion of the Pacific plate. *J. Geophys. Res. Solid Earth* 94 (B3), 3052–3064.

Hawkesworth, C., Turner, S., McDermott, F., Peate, D., Van Calsteren, P., 1997a. U-Th isotopes in arc magmas: Implications for element transfer from the subducted crust. *Science* 276 (5312), 551–555.

Hawkesworth, C., Turner, S., Peate, D., McDermott, F., Van Calsteren, P., 1997b. Elemental U and Th variations in island arc rocks: implications for U-series isotopes. *Chem. Geol.* 139 (1–4), 207–221.

Hayes, G., 2018. Slab2-A Comprehensive Subduction Zone Geometry Model. US Geological Survey Data Release.

Hayes, G.P., Moore, G.L., Portner, D.E., Hearne, M., Flamme, H., Furtney, M., Smoczyk, G.M., 2018. Slab2, a comprehensive subduction zone geometry model. *Science* 362 (6410), 58–61.

Heuret, A., Lallemand, S., 2005. Plate motions, slab dynamics and back-arc deformation. *Phys. Earth Planet. Inter.* 149 (1–2), 31–51.

Hickey-Vargas, R., 2005. Basalt and tonalite from the Amami Plateau, northern West Philippine Basin: new Early Cretaceous ages and geochemical results, and their petrologic and tectonic implications. *Island Arc* 14 (4), 653–665.

Hilde, T.W., Chao-Shing, L., 1984. Origin and evolution of the West Philippine Basin: a new interpretation. *Tectonophysics* 102 (1–4), 85–104.

Hoang, N., Uto, K., Matsumoto, A., Itoh, J.i., 2013. Pleistocene intraplate magmatism in the Goto Islands, SW Japan: implications for mantle source evolution and regional geodynamics. *J. Geodyn.* 68, 1–17.

Hoffer, G., Eissen, J.-P., Beate, B., Bourdon, E., Fornari, M., Cotten, J., 2008. Geochemical and petrological constraints on rear-arc magma genesis processes in Ecuador: the Puyo cones and Mera lavas volcanic formations. *J. Volcanol. Geotherm. Res.* 176 (1), 107–118.

Horn, S., Schmincke, H.-U., 2000. Volatile emission during the eruption of Baitoushan Volcano (China/North Korea) ca. 969 AD. *Bull. Volcanol.* 61 (8), 537–555.

Im, J.H., Shim, S.H., Choo, C.O., Jang, Y.D., Lee, J.S., 2012. Volcanological and paleoenvironmental implications of charcoals of the Nari Formation in Nari Caldera, Ulleung Island, Korea. *Geosci. J.* 16 (2), 105–114.

Jolivet, L., Faccenna, C., Becker, T., Tesauro, M., Sternai, P., Bouilhol, P., 2018. Mantle flow and deforming continents: from India-Asia convergence to Pacific Subduction. *Tectonics* 37 (9), 2887–2914.

Jolliffe, I.T., Cadima, J., 2016. Principal component analysis: a review and recent developments: *Philosophical Transactions of the Royal Society A. Math. Phys. Eng. Sci.* 374 (2065), 20150202.

Kim, H.-J., Han, S.-J., Lee, G.H., Huh, S., 1998. Seismic study of the Ulleung Basin crust and its implications for the opening of the East Sea (Japan Sea). *Mar. Geophys. Res.* 20 (3), 219–237.

Kim, K.H., Tanaka, T., Nagao, K., Jang, S.K., 1999. Nd and Sr isotopes and K-Ar ages of the Ulleungdo alkali volcanic rocks in the East Sea, South Korea. *Geochem. J.* 33 (5), 317–341.

Kim, K.H., Nagao, K., Sumino, H., Tanaka, T., Hayashi, T., Nakamura, T., Lee, J.I., 2008. He-He and Nd-Sr isotopic compositions of late Pleistocene felsic plutonic back arc basin rocks from Ulleungdo volcanic island, South Korea: Implications for the genesis of young plutonic rocks in a back arc basin. *Chem. Geol.* 253 (3–4), 180–195.

Kim, J.-I., Choi, S.H., Koh, G.W., Park, J.B., Ryu, J.-S., 2019. Petrogenesis and mantle source characteristics of volcanic rocks on Jeju Island, South Korea. *Lithos* 326, 476–490.

Kimura, J.-I., Sakuyama, T., Miyazaki, T., Vaglarov, B.S., Fukao, Y., Stern, R.J., 2018. Plume-stagnant slab-lithosphere interactions: origin of the late Cenozoic intra-plate basalts on the East Eurasia margin. *Lithos* 300, 227–249.

King, S.D., Anderson, D.L., 1998. Edge-driven convection. *Earth Planet. Sci. Lett.* 160 (3–4), 289–296.

Kita, I., Yamamoto, M., Asakawa, Y., Nakagawa, M., Taguchi, S., Hasegawa, H., 2001. Contemporaneous ascent of within-plate type and island-arc type magmas in the Beppu-Shimabara graben system, Kyushu island, Japan. *J. Volcanol. Geotherm. Res.* 111 (1), 99–109.

Kita, I., Asakawa, Y., Yuki, T., Yasui, M., Shimoike, Y., Yamamoto, M., Hasegawa, H., Taguchi, S., Sumino, H., 2012. Rifting of Kyushu, Japan, based on the fault-controlled concurrent eruption of oceanic island basalt-type and island arc-type lavas. *Bull. Volcanol.* 74 (5), 1121–1139.

Kuritani, T., Ohtani, E., Kimura, J.-I., 2011. Intensive hydration of the mantle transition zone beneath China caused by ancient slab stagnation. *Nat. Geosci.* 4 (10), 713.

Kuritani, T., Tanaka, M., Yokoyama, T., Nakagawa, M., Matsumoto, A., 2016. Intensive hydration of the wedge mantle at the Kuril Arc–NE Japan Arc junction: implications from mafic lavas from Suo Volcano, Northern Japan. *J. Petrol.* 57 (6), 1223–1240.

Lallemand, S., 2016. Philippine Sea Plate inception, evolution, and consumption with special emphasis on the early stages of Izu-Bonin-Mariana subduction. *Prog. Earth Planet. Sci.* 3 (1), 15.

Li, C., Van Der Hilst, R.D., Engdahl, E.R., Burdick, S., 2008. A new global model for P wave speed variations in Earth's mantle. *Geochem. Geophys. Geosyst.* 9 (5).

Li, S.-G., Yang, W., Ke, S., Meng, X., Tian, H., Xu, L., He, Y., Huang, J., Wang, X.-C., Xia, Q., 2017. Deep carbon cycles constrained by a large-scale mantle Mg isotope anomaly in eastern China. *Natl. Sci. Rev.* 4 (1), 111–120.

Lin, J.Y., Hsu, S.K., Sibuet, J.C., 2004. Melting features along the Ryukyu slab tear, beneath the southwestern Okinawa Trough. *Geophys. Res. Lett.* 31 (19).

Liu, X., Zhao, D., Li, S., Wei, W., 2017. Age of the subducting Pacific slab beneath East Asia and its geodynamic implications. *Earth Planet. Sci. Lett.* 464, 166–174.

Mather, B.R., Müller, R.D., Seton, M., Rutter, S., Nebel, O., Mortimer, N., 2020. Intraplate volcanism triggered by bursts in slab flux. *Sci. Adv.* 6 (51), eabd0953.

McCulloch, M.T., Gamble, J., 1991. Geochemical and geodynamical constraints on subduction zone magmatism. *Earth Planet. Sci. Lett.* 102 (3–4), 358–374.

McGee, L.E., McLeod, C., Davidson, J.P., 2015. A spectrum of disequilibrium melting preserved in lava-hosted, partially melted crustal xenoliths from the Wudalianchi volcanic field, NE China. *Chem. Geol.* 417, 184–199.

Meng, F.-C., Safonova, I., Chen, S.-S., Rioul, P., 2018. Late Cenozoic intra-plate basalts of the Greater Khingan Range in NE China and Khangai Province in Central Mongolia. *Gondwana Res.* 63, 65–84.

Miyoshi, M., Fukuoka, T., Sano, T., Hasenaka, T., 2008. Subduction influence of Philippine Sea plate on the mantle beneath northern Kyushu, SW Japan: an examination of boron contents in basaltic rocks. *J. Volcanol. Geotherm. Res.* 171 (1), 73–87.

Montelli, R., Nolet, G., Dahlen, F., Masters, G., Engdahl, E.R., Hung, S.-H., 2004. Finite-frequency tomography reveals a variety of plumes in the mantle. *Science* 303 (5656), 338–343.

Moyen, J.-F., 2009. High Sr/Y and La/Yb ratios: the meaning of the “adakitic signature”. *Lithos* 112 (3–4), 556–574.

Müller, R.D., Sdrolias, M., Gaina, C., Roest, W.R., 2008. Age, spreading rates, and spreading asymmetry of the world's ocean crust. *Geochem. Geophys. Geosyst.* 9 (4).

Nakajima, J., Hasegawa, A., 2007. Subduction of the Philippine Sea plate beneath southwestern Japan: slab geometry and its relationship to arc magmatism. *J. Geophys. Res. Solid Earth* 112 (B8).

Nelson, P.L., Grand, S.P., 2018. Lower-mantle plume beneath the Yellowstone hotspot revealed by core waves. *Nat. Geosci.* 11 (4), 280–284.

Nolet, G., Allen, R., Zhao, D., 2007. Mantle plume tomography. *Chem. Geol.* 241 (3–4), 248–263.

Okada, S., Ikeda, Y., 2012. Quantifying crustal extension and shortening in the back-arc region of northeast Japan. *J. Geophys. Res. Solid Earth* 117 (B1).

Okino, K., Kasuga, S., Ohara, Y., 1998. A new scenario of the Parece Vela Basin genesis. *Mar. Geophys. Res.* 20 (1), 21–40.

Perfit, M.R., Davidson, J.P., 2000. Plate tectonics and volcanism. In: Encyclopedia of Volcanoes, pp. 89–113.

Pownall, J.M., Lister, G.S., Spakman, W., 2017. Reconstructing subducted oceanic lithosphere by “reverse-engineering” slab geometries: the northern Philippine Sea Plate. *Tectonics* 36 (9), 1814–1834.

Qicheng, F., Qian, S., Ni, L., Tuanhua, W., 2006. Holocene volcanic rocks in Jingbo Lake region Deverys of magmatism. *Prog. Nat. Sci.* 16 (1), 65–72.

R Core Team, 2013. R: A Language and Environment for Statistical Computing, Vienna, Austria.

Ringnér, M., 2008. What is principal component analysis? *Nat. Biotechnol.* 26 (3), 303–304.

Rosenbaum, G., Gasparon, M., Luente, F.P., Peccerillo, A., Miller, M.S., 2008. Kinematics of slab tear faults during subduction segmentation and implications for Italian magmatism. *Tectonics* 27 (2).

Rosenbaum, G., Sandiford, M., Caulfield, J., Garrison, J.M., 2019. A trapdoor mechanism for slab tearing and melt generation in the northern Andes. *Geology* 47, 23–26.

Sato, H., Amano, K., 1991. Relationship between tectonics, volcanism, sedimentation and basin development, Late Cenozoic, central part of Northern Honshu, Japan. *Sediment. Geol.* 74 (1–4), 323–343.

Schellart, W., 2010. Mount Etna–Iblean volcanism caused by rollback-induced upper mantle upwelling around the Ionian slab edge: an alternative to the plume model. *Geology* 38 (8), 691–694.

Schellart, W.P., Lister, G., 2005. The role of the East Asian active margin in widespread extensional and strike-slip deformation in East Asia. *J. Geol. Soc.* 162 (6), 959–972.

Schmidt, M.W., Poli, S., 1998. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. *Earth Planet. Sci. Lett.* 163 (1–4), 361–379.

Seton, M., Müller, R., Zahirovic, S., Gaina, C., Torsvik, T., Shephard, G., Talsma, A., Gurnis, M., Turner, M., Maus, S., 2012. Global continental and ocean basin reconstructions since 200 Ma. *Earth Sci. Rev.* 113 (3–4), 212–270.

Shibata, T., Yoshikawa, M., Ujike, O., Miyoshi, M., Takemura, K., 2014. Along-arc geochemical variations in Quaternary magmas of northern Kyushu Island, Japan. *Geol. Soc. Lond., Spec. Publ.* 385 (1), 15–29.

Sibuet, J.C., Deffontaines, B., Hsu, S.K., Thareau, N., Le Formal, J.P., Liu, C.S., 1998. Okinawa trough backarc basin: Early tectonic and magmatic evolution. *J. Geophys. Res. Solid Earth* 103 (B12), 30245–30267.

Simuté, S., Steptoe, H., Cobden, L., Gokhberg, A., Fichtner, A., 2016. Full-waveform inversion of the Japanese Islands region. *J. Geophys. Res. Solid Earth* 121 (5), 3722–3741.

Sohn, Y.K., Park, K.H., 2004. Early-stage volcanism and sedimentation of Jeju Island revealed by the Sagye borehole, SW Jeju Island, Korea. *Geosci. J.* 8 (1), 73.

Sohn, Y., Yoon, S.-H., 2010. Shallow-marine records of pyroclastic surges and fallouts over water in Jeju Island, Korea, and their stratigraphic implications. *Geology* 38 (8), 763–766.

Song, J.H., Kim, S., Rhee, J., Lee, S.H., Kim, Y., Kang, T.S., 2018. Imaging of lithospheric structure beneath Jeju Volcanic Island by teleseismic traveltimes tomography. *J. Geophys. Res. Solid Earth* 123 (8), 6784–6801.

Strak, V., Schellart, W.P., 2014. Evolution of 3-D subduction-induced mantle flow around lateral slab edges in analogue models of free subduction analysed by stereoscopic particle image velocimetry technique. *Earth Planet. Sci. Lett.* 403, 368–379.

Sugimoto, T., Shibata, T., Yoshikawa, M., Takemura, K., 2006. Sr-Nd-Pb isotopic and major and trace element compositions of the Yufu-Tsurumi volcanic rocks: implications for the magma genesis of the Yufu-Tsurumi volcanoes, Northeast Kyushu, Japan. *J. Mineral. Petrol. Sci.* 101 (5), 270–275.

Sun, S.-S., McDonough, W.-S., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. *Geol. Soc. Lond., Spec. Publ.* 42 (1), 313–345.

Sun, C.H., Stern, R.J., 2001. Genesis of Mariana shoshonites: contribution of the subduction component. *J. Geophys. Res. Solid Earth* 106 (B1), 589–608.

Sun, Y., Ying, J., Zhou, X., Shao, J.A., Chu, Z., Su, B., 2014. Geochemistry of ultrapotassic volcanic rocks in Xiaoguilin NE China: Implications for the role of ancient subducted sediments. *Lithos* 208, 53–66.

Sun, Y., Teng, F.Z., Ying, J.F., Su, B.X., Hu, Y., Fan, Q.C., Zhou, X.H., 2017. Magnesium isotopic evidence for ancient subducted oceanic crust in LOMU-like potassium-rich volcanic rocks. *J. Geophys. Res. Solid Earth* 122 (10), 7562–7572.

Tang, Y., Obayashi, M., Niu, F., Grand, S.P., Chen, Y.J., Kawakatsu, H., Tanaka, S., Ning, J., Ni, J.F., 2014. Changbaishan volcanism in northeast China linked to subduction-induced mantle upwelling. *Nat. Geosci.* 7 (6), 470.

Tao, K., Grand, S.P., Niu, F., 2018. Seismic structure of the upper mantle beneath Eastern Asia from full waveform seismic tomography. *Geochim. Geophys. Geosyst.* 19 (8), 2732–2763.

Tatsumi, Y., Shukuno, H., Yoshikawa, M., Chang, Q., Sato, K., Lee, M.W., 2004. The petrology and geochemistry of volcanic rocks on Jeju Island: plume magmatism along the Asian continental margin. *J. Petrol.* 46 (3), 523–553.

Uto, K., Tatsumi, Y., 1996. Quaternary volcanism of the Japanese Islands. *Island Arc* 5 (3), 250–261.

van der Meer, D.G., van Hinsbergen, D.J., Spakman, W., 2018. Atlas of the underworld: slab remnants in the mantle, their sinking history, and a new outlook on lower mantle viscosity. *Tectonophysics* 723, 309–448.

Verma, S.P., 2002. Absence of Cocos plate subduction-related basic volcanism in southern Mexico: a unique case on Earth? *Geology* 30 (12), 1095–1098.

Wang, Y., Li, C., Wei, H., Shan, X., 2003. Late Pliocene–recent tectonic setting for the Tianshi volcanic zone, Changbai Mountains, northeast China. *J. Asian Earth Sci.* 21 (10), 1159–1170.

Wang, X.-J., Chen, L.-H., Hofmann, A.W., Mao, F.-G., Liu, J.-Q., Zhong, Y., Xie, L.-W., Yang, Y.-H., 2017. Mantle transition zone-derived EM1 component beneath NE China: Geochemical evidence from Cenozoic potassic basalts. *Earth Planet. Sci. Lett.* 465, 16–28.

Wei, H., Wang, Y., Jin, J., Gao, L., Yun, S.-H., Jin, B., 2007. Timescale and evolution of the intracontinental Tianchi volcanic shield and ignimbrite-forming eruption, Changbaishan, Northeast China. *Lithos* 96 (1–2), 315–324.

Wei, W., Xu, J., Zhao, D., Shi, Y., 2012. East Asia mantle tomography: New insight into plate subduction and intraplate volcanism. *J. Asian Earth Sci.* 60, 88–103.

Wessel, P., Kroenke, L.W., 2000. Ontong Java Plateau and late Neogene changes in Pacific plate motion. *J. Geophys. Res. Solid Earth* 105 (B12), 28255–28277.

Weston, J., Engdahl, E., Harris, J., Di Giacomo, D., Storchak, D., 2018. ISC-EHB: reconstruction of a robust earthquake data set. *Geophys. J. Int.* 214 (1), 474–484.

Wickham, H., 2016. *ggplot2: Elegant Graphics for Data Analysis*. Springer.

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L.D.A., François, R., Gromelund, G., Hayes, A., Henry, L., Hester, J., 2019. Welcome to the Tidyverse. *J. Open Source Software* 4 (43), 1686.

Wu, J., Suppe, J., Lu, R., Kanda, R., 2016. Philippine Sea and East Asian plate tectonics since 52 Ma constrained by new subducted slab reconstruction methods. *J. Geophys. Res. Solid Earth* 121 (6), 4670–4741.

Xia, S., Zhao, D., Sun, J., Huang, H., 2016. Teleseismic imaging of the mantle beneath southernmost China: New insights into the Hainan plume. *Gondwana Res.* 36, 46–56.

Xu, Z.-H., 2001. A present-day tectonic stress map for eastern Asia region. *Acta Seismol. Sin.* 14 (5), 524–533.

Xu, Z., Zheng, Y.-F., 2017. Continental basalts record the crust–mantle interaction in oceanic subduction channel: A geochemical case study from eastern China. *J. Asian Earth Sci.* 145, 233–259.

Xu, Y.-G., Menzies, M.A., Thirlwall, M.F., Huang, X.-L., Liu, Y., Chen, X.-M., 2003. “Reactive” harzburgites from Huinan, NE China: products of the lithosphere–asthenosphere interaction during lithospheric thinning? *Geochim. Cosmochim. Acta* 67 (3), 487–505.

Yamazaki, T., Takahashi, M., Iryu, Y., Sato, T., Oda, M., Takayanagi, H., Chiyonobu, S., Nishimura, A., Nakazawa, T., Ooka, T., 2010. Philippine Sea Plate motion since the Eocene estimated from paleomagnetism of seafloor drill cores and gravity cores. *Earth Planets Space* 62 (6), 495–502.

Yang, J., Faccenda, M., 2020. Intraplate volcanism originating from upwelling hydrous mantle transition zone. *Nature* 579 (7797), 88–91.

Yang, W., Teng, F.-Z., Zhang, H.-F., Li, S.-G., 2012. Magnesium isotopic systematics of continental basalts from the North China craton: implications for tracing subducted carbonate in the mantle. *Chem. Geol.* 328, 185–194.

Yarmolyuk, V.V., Kudryashova, E.A., Kozlovsky, A.M., Lebedev, V.A., Savatenkov, V.M., 2015. Late Mesozoic–Cenozoic intraplate magmatism in Central Asia and its relation with mantle diapirism: evidence from the South Khangai volcanic region, Mongolia. *J. Asian Earth Sci.* 111, 604–623.

Yarmolyuk, V., Savatenkov, V., Stupak, F., Kudryashova, E., 2020. Sources of magmas and conditions of rock formation in the Late Cenozoic Uralian Volcanic plateau. In: *Proceedings Doklady Earth Sciences*, Vol. 493. Springer, pp. 517–521.

Yi, S., Yun, H., Yoon, S., 1998. Calcareous nannoplankton from the Seoguipo Formation of Cheju Island, Korea and its paleoceanographic implications. *Paleontol. Res.* 2 (4), 253–265.

Yokoyama, T., Kuritani, T., Kobayashi, K., Nakamura, E., 2006. Geochemical evolution of a shallow magma plumbing system during the last 500 years, Miyakejima volcano, Japan: constraints from 238 U–230 Th–226 Ra systematics. *Geochim. Cosmochim. Acta* 70 (11), 2885–2901.

Yu, H., Zhao, L., Liu, Y., Ning, J., Chen, Q.-F., Lin, J., 2016. Stress adjustment revealed by seismicity and earthquake focal mechanisms in Northeast China before and after the 2011 Tohoku-Oki earthquake. *Tectonophysics* 666, 23–32.

Zhang, M., Suddaby, P., Thompson, R.N., Thirlwall, M.F., Menzies, M.A., 1995. Potassic volcanic rocks in NE China: geochemical constraints on mantle source and magma genesis. *J. Petrol.* 36 (5), 1275–1303.

Zhang, L.-Y., Prelevic, D., Li, N., Mertz-Kraus, R., Buhre, S., 2016. Variation of olivine composition in the volcanic rocks in the Songliao basin, NE China: lithosphere control on the origin of the K-rich intraplate mafic lavas. *Lithos* 262, 153–168.

Zhang, M., Guo, Z., Liu, J., Liu, G., Zhang, L., Lei, M., Zhao, W., Ma, L., Sepe, V., Ventura, G., 2018. The intraplate Changbaishan volcanic field (China/North Korea): a review on eruptive history, magma genesis, geodynamic significance, recent dynamics and potential hazards. *Earth Sci. Rev.* 187, 19–52.

Zhao, D., Maruyama, S., Omori, S., 2007. Mantle dynamics of Western Pacific and East Asia: insight from seismic tomography and mineral physics. *Gondwana Res.* 11 (1–2), 120–131.

Zheng, Y.-F., Xu, Z., Chen, L., Dai, L.-Q., Zhao, Z.-F., 2020. Chemical geodynamics of mafic magmatism above subduction zones. *J. Asian Earth Sci.* 194, 104185.

Zou, H., Fan, Q., 2010. U-Th isotopes in Hainan basalts: implications for sub-asthenospheric origin of EM2 mantle endmember and the dynamics of melting beneath Hainan Island. *Lithos* 116 (1–2), 145–152.

Zou, H., Reid, M.R., Liu, Y., Yao, Y., Xu, X., Fan, Q., 2003. Constraints on the origin of historic potassic basalts from northeast China by U-Th disequilibrium data. *Chem. Geol.* 200 (1–2), 189–201.

Zou, H., Fan, Q., Yao, Y., 2008. U-Th systematics of dispersed young volcanoes in NE China: asthenosphere upwelling caused by piling up and upward thickening of stagnant Pacific slab. *Chem. Geol.* 255 (1), 134–142.