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ABSTRACT

The tectonic history of the Philippine Sea plate is an essential piece in understanding the
tectonic evolution of Southeast Asia, but it is still unclear and controversial. We present the first
geochemical data obtained from lavas from the Gagua Ridge (GR) within the Philippine Sea.
The GR lavas exhibit geochemical signatures typical of subduction-related arc magmatism.
Plagioclase Ar-Ar ages of ca. 124—123 Ma and subduction-related geochemical signatures
support the formation of GR lavas in the vicinity of an arc during the Early Cretaceous induced
by subduction of the oceanic plate along East Asia. The ages of trapped zircon xenocrysts
within the GR lavas cluster at 250 Ma, 0.75 Ga, and 2.45 Ga and match well the ages of zircons
recovered from the Cathaysian block, southern China. Our results imply that the GR basement
is partially composed of continental material that rifted away from the Eurasian margin during
opening and spreading of the Huatung Basin. The depleted mantle wedge-derived magmas
evolved and picked up the continental zircons during ascent. The youngest zircon ages and
the GR lava Ar-Ar ages (ca. 124-123 Ma) presented in this study newly constrain an Early
Cretaceous age for the Huatung Basin. Our study provides further evidence that the Huatung
Basin is a remnant of a Mesozoic-aged ocean basin that dispersed from southern China during
the Cretaceous. Transport of continental slivers by growth and closure of marginal seas along
the East Asia margin may have been more prevalent than previously recognized.

INTRODUCTION

The Philippine Sea plate (PSP) is composed
of a mosaic of marginal basins and is almost com-
pletely bounded by subduction zones that involve
the Eurasian/Sundaland plates to the west, the
Pacific plate to the east, and the Indo-Australian
plate to the south (e.g., Hall, 2002). Tectonic
studies of the PSP have a profound influence
on interpretations of the origin of marginal seas
and plate-tectonic reconstructions for vast areas
of southeast China, southeast Asia, and western
Pacific regions since the Cretaceous (Hilde and
Lee, 1984; Hall, 2002; Sibuet et al., 2002; Hsu
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and Deffontaines, 2009; Zahirovic et al., 2014,
Lallemand, 2016; Wu et al., 2016; Huang et al.,
2019). Although some portions of the PSP are
better studied and show oceanic basins and ocean-
island arc lithosphere of Early Cretaceous to
recent ages (Deschamps and Lallemand, 2002;
Taylor and Goodliffe, 2004; Hickey-Vargas
et al., 2008; Tani et al., 2011), other areas are
completely undrilled and remain enigmatic. One
such region includes the Huatung Basin (HB) and
the Gagua Ridge (GR) along the northwestern
PSP (Fig. 1), and is the focus of this study.

The northwestern PSP has two ocean basins:
the larger and better-studied West Philippine
Basin (WPB), and the undrilled, smaller HB
(Fig. 1). The GR is a bathymetric high between
the HB and WPB, occupying a unique position

(Fig. 1). Existing interpretations regarding the
origin of the GR are diverse, including an uplifted
sliver of oceanic crust (Mrozowski et al., 1982),
a former intraoceanic fracture zone (Deschamps
etal., 1998), the WPB-HB plate boundary (Des-
champs et al., 2000; Sibuet et al., 2002), or a relict
subduction zone (i.e., westward subduction of the
WPB beneath the HB along the GR; Deschamps
and Lallemand, 2002; Eakin et al., 2015). Each
scenario has wide-ranging implications for HB-
WPB interactions and southeast Asian plate tec-
tonic evolution, and so data pertaining to these
scenarios were obtained in this study.

We present new Ar-Ar geochronology and
geochemistry for GR lavas, including major- and
trace-element and Sr-Nd-Hf-Pb isotope data for
whole rocks, and U-Pb—Hf isotopic and trace-
element data for zircons from the lavas. Com-
bined with the regional tectonic constraints, our
study provides new insights into the nature, ori-
gin, and dispersal of the GR that elucidate the
tectonic evolution of southeast Asia.

GEOLOGIC SETTING AND SAMPLES
The HB is a small ocean basin that has an
enigmatic tectonic history. Deschamps and Lal-
lemand (2002) proposed that the HB was near
the Equator in the early Cenozoic and then
docked against the WPB along the GR at ca.
35 Ma, whereas Hall (2012) considered the HB
to have been near ~20°N latitude for most of
its history. If the HB and Luzon were already
juxtaposed by the Eocene, Luzon paleomagne-
tism similarly places the HB near the Equator or
even at low latitudes within the Southern Hemi-
sphere during the Eocene (Queano et al., 2007).
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Figure 1. Geologic map of the Gagua Ridge
(GR) western Philippine Sea, and adjacent
regions. Red star—sampling location of GR
lavas; black star—Taiwan Cathaysian conti-
nental fragment of Shao et al. (2015).

Wau et al. (2016) followed Queano et al. (2007)
and reconstructed Luzon-HB to be within a now-
vanished marginal “East Asian Sea.”

The GR is adjacent to an unusual subduction
flipping system (e.g., the PSP subducting north-

westward along the Ryukyu Trench, and the
South China Sea subducting eastward along the
Manila Trench; Fig. 1; Angelier, 1986; Sibuet
et al., 2002). The geophysical data indicate
crustal thickening on the order of ~12—18 km
beneath the GR (Eakin et al., 2015). In addition,
the northernmost segment of this linear GR sub-
ducts beneath the Ryukyu Trench (Deschamps
et al., 1998; Dominguez et al., 1998).

Lavas were collected in October 2018 from
the GR by remotely operated vehicle (ROV)
Haixing 6000 (Fig. 1). Four sites around the
highest peak of the ridge were investigated, but
only those located at the top provided relatively
fresh volcanic rocks (Figs. S1 and S2A in the
Supplemental Material'). The lavas are massive
and porphyritic, containing clinopyroxene, pla-
gioclase, and orthopyroxene phenocrysts (Figs.
S2C and S2D). Some plagioclases have resorp-

Supplemental Material. Methods, supplemental
figures, and supplemental tables. Please visit https://
doi.org/10.1130/GEOL.S.14842740 to access the sup-
plemental material, and contact editing @ geosociety.
org with any questions.

tion textures, leaving incomplete and crooked
rims (Fig. S2D).

Detailed petrography of the samples, analyti-
cal methods, analytical data, and data plots are
provided in the Supplemental Material.

RESULTS

The zircons from the GR lavas showed an
age spectrum mainly ranging from Cretaceous
to Archean, with three prominent population
peaks at 250 Ma (n = 13), 750 Ma (n = 24), and
2450 Ma (n = 14) (Fig. 2B). The zircons dis-
played a wide range of €,(f) values, from -31.0
to to 23.8 (Fig. 2A), corresponding to highly
variable depleted mantle (DM) crustal model
ages (Tpy©) between ca. 382 Ma and 3015 Ma
(Table S4), consistent with a heterogenous
source. Plagioclases in the GR lavas yielded
weighted Ar-Ar mean ages of 123.99 £ 0.24 Ma
and 124.06 £ 0.27 Ma (Figs. 2E and 2F).

Generally, the GR lavas were mainly basaltic
andesites (Fig. 3A) that showed limited variation
in major elements (e.g., Si0, 54.38-56.21 wt%,
total alkalis 4.32-5.87 wt%). They were char-
acterized by enrichment of large ion lithophile
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elements (LILEs, e.g., Ba, U, K, and Pb), resem-
bling the signature of subduction-related rocks
from circum-Pacific arcs (Fig. 3B). They all
displayed depleted mantle—type isotopic signa-
tures, with low #Sr/*¢Sr (0.703297-0.703574)
and high “Nd/"“Nd (0.512972-0.513067) and
76Hf/"""Hf (0.283112-0.283157) (Figs. 3F—
3H). The GR lavas showed a limited range of
Pb isotope compositions (**Pb/**Pb = 18.279-
18.330, 27Pb/?*Pb = 15.476-15.493, and
208Pp/204Ph = 37.961-38.038; Fig. 3E; Table S1).

CONTINENTAL FRAGMENT BENEATH
THE GAGUA RIDGE

U-Pb ages of zircons in the GR lavas ranged
widely from 3035 to 123 Ma (Figs. 2A and 2B),
which suggests that zircon grains are likely
xenocrystic. The GR zircons showed high U, Th,
and Y contents and U/Yb values that markedly
differ from those of recycled oceanic crust, man-
tle peridotite, and kimberlite, but that resemble
those of continental crust (Figs. 2C and 2D). The
U-Pb ages and Hf isotope systematics of the GR
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zircons (Figs. 2A and 2B) broadly match those
of zircon records from the Cathaysian block,
South China (Yu et al., 2010; Li et al., 2014).
The Mesozoic age peak (250 Ma) of the GR
zircons can possibly be related to widespread
contemporaneous magmatic rocks in southern
China, while zircon age peaks (ca. 0.75 Ga and
ca. 2.45 Ga) are largely consistent with those for
zircons from Cathaysia crust, southern China
(Fig. 2B). Thus, the GR zircons most likely
originated from Cathaysian block.



The GR zircons were likely inherited from
crust-derived material within mantle sources.
It is known that crust-derived materials only
contain small amounts of accessory zircon. If
our zircon xenocrysts had been derived from
recycled continental crust in the mantle source,
the erupted lavas would have continental sig-
natures, e.g., enriched Sr-Nd isotopes, due to
significantly higher trace-element contents in
recycled continental crust relative to mantle.
However, these features are absent in the GR
lavas (e.g., the depleted mantle—like Sr-Nd isoto-
pic compositions; Fig. 3F). Furthermore, inher-
ited zircons with multiple episodes of recycling
and/or long-distance transport are typically well
rounded or ellipsoidal with pitted surfaces. In
contrast, most of the inherited zircons in the
GR lavas are euhedral to subhedral (Fig. S3),
suggesting no long-distance transport. All these
features argue against the GR zircons being from
subducting sediment involving long transport
distances or from crust with multiple episodes
of recycling.

Alternatively, the zircons in the GR lavas
could have been entrained from the Cathaysian
crust during magma ascent and/or within the
magma chamber. This implies the existence of
continental crust beneath the GR. Compared
to older continental crust, the GR lavas have
remarkably depleted Sr-Nd isotope composi-
tions (Fig. 3F), which suggests that juvenile
parent magmas assimilated a small amount
of older material to incorporate zircon grains
but not enough to dramatically affect isotopic
systematics.

PETROGENESIS

As shown in the multi-element spider dia-
gram (Fig. 3B), enrichments in fluid-mobile
elements (e.g., U, K, Pb, Sr, and Ba) in the
GR lavas are typical of subduction-related
magmatism. The relatively low Ti/V val-
ues, as well as high Ba/Yb values, of the GR
lavas represent subduction-related signatures
(Figs. 3C and 3D). Unlike mature arc systems
(e.g., Luzon and Ryukyu arc), the isotopic
compositions of the GR lavas plot far away
from the domain of global subducting sedi-
ment (GLOSS; Figs. 3E, 3F, and 3G; Plank and
Langmuir, 1998). In particular, the GR lavas
are distributed along the mantle array on the
plot of *Nd/'**Nd versus '"°Hf/'"""Hf (Fig. 3H),
suggesting a fairly minor contribution from
subducting sediment to the mantle source
(Plank and Langmuir, 1998; Hickey-Vargas
et al., 2008). Additionally, the GR lavas have
a typical subducted slab—derived “fluid” signa-
ture, with low Nd/Pb (<4.3, relative to ~20 in
mid-oceanic ridge basalts; Fig. 3E). In the case
of the GR lavas, the elevation of Sr/Th and Ba/
La coupled with the narrow variations of Th/
Ce and Th/Yb (Fig. S4) also underline a sig-
nificant contribution of slab-derived fluids to

the mantle source. Consequently, we postulate
that the GR lavas were derived from depleted
mantle that had been metasomatized by sub-
ducted slab-related materials. Following the
approach of Ishizuka et al. (2003), a simple
simulation showed that the mantle source of
the GR lavas was likely to have been meta-
somatized by ~4% fluid derived from altered
oceanic crust and subducted sediment in a mix-
ing ratio of 50:50-90:10 (Figs. 3F and 3G).

The GR lavas show subduction-related arc
geochemical signatures, suggesting a past sub-
duction event. The GR lavas formed by 124 Ma
(Figs. 2E and 2F), which is also consistent with
the minimum age (123 = 1.7 Ma) of zircon in
the GR lavas within error (Table S2). Thus, it is
most likely that the GR lavas were derived from
a mantle source region metasomatized by slab-
derived fluids along southern China during the
Cretaceous, which was an active margin (e.g.,
Hall, 2012). In terms of geochemical composi-
tions, the HB lavas have compositions similar
to lavas formed in backarc basins and spread-
ing centers (e.g., Nb, Ta, and Ti enrichments,
relatively high Nd/Pb and Ti/V values, and low
Ba/Yb values; Fig. 3), while the GR lavas were
more influenced by subducted components (the
arc or close to rear-arc position).

IMPLICATIONS FOR SOUTHEAST
ASIA TECTONIC EVOLUTION

Published geophysical and geochemical data,
sedimentation rates, and geomagnetic modeling
show that the HB is likely a trapped remnant of
a Cretaceous-aged oceanic basin (Deschamps
et al., 2000; Hickey-Vargas et al., 2008; Eakin
et al., 2015; Huang et al., 2019; Hsieh et al.,
2020). However, other studies favor a younger
age for the HB based on seafloor magnetics and
seismology, including Eocene (Hilde and Lee,
1984), Eocene to Miocene (Sibuet et al., 2002),
Oligocene—Miocene (Kuo et al., 2009), or mid—
late Eocene (Doo et al., 2014). Our study affirms
a Cretaceous age for the HB based on our GR
lava eruption ages and the youngest zircon ages
of ca. 124-123 Ma (Fig. 2; Table S2).

Our identification of a Cathaysian continen-
tal fragment in the Philippine Sea suggests that
HB formation could have been related to rifting
of the Cathaysian block during the Cretaceous,
when southeast China transitioned from an active
subducting margin to extension (Xu et al., 2014;
Zahirovic et al., 2016). It is also possible that
the HB formed during the Early Cretaceous
from 131 to 119 Ma (Deschamps et al., 2000);
both cases imply rifting of a Cathaysian conti-
nental fragment during the Cretaceous. Com-
bining published plate models with our results,
the HB could be far-traveled, or it could have
remained relatively close to Eurasia during its
history (Fig. 4). In the far-traveled scenario, the
HB was located near southern China in the Early
Cretaceous, drifted ~2000 km southward to equa-
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Figure 4. Present-day Southeast Asia map
showing the possible tectonic journey of
Cathaysian-affinity continental crustal sliver
beneath the Gagua Ridge (GR) found in this
study (red star). The continental sliver (red
polygon) rifted from South China during the
Cretaceous and possibly followed one of two
paths: far travel (purple path) or short transport
(orange path). Both cases reveal the transport
of continental slivers by growth and closure
of marginal seas along East Asia, which may
be more prevalent than generally recognized.
Brown areas—present-day landmasses; green
area—present-day Huatung Basin (HB).

torial latitudes by the Eocene, and then followed
the PSP and Luzon ~2000 km northwards after
50 Marto its present position (Fig. 4). Southward
drift of the HB could have been accommodated
by opening of a backarc basin or marginal sea
near South China, including a large proto-South
China Sea or other vanished marginal sea (Des-
champs and Lallemand, 2002; Wu et al., 2016;
Zahirovic et al., 2016). Alternatively, a “short-
transport” scenario is possible, wherein the HB
is a relict proto-South China Sea fragment that
remained relatively close to southern China,
moved ~500 km southward during the South
China Sea opening, was captured by the PSP,
and then moved ~500 km northwards (Fig. 4;
Hall, 2012). This scenario requires the HB to
have been tectonically transported a shorter dis-
tance and seems more favorable (Fig. 4), and it is
still compatible within specific constraints used
by far-traveled plate models (Deschamps and
Lallemand, 2002; Wu et al., 2016).

Another sliver of Cathaysian-affinity conti-
nent was found within the Luzon arc basement
that apparently drifted southward during the
South China Sea opening, was accreted, and
then moved northward with the PSP during the
mid- to late Cenozoic (Shao et al., 2015). Taken
together with our results, we newly we pres-
ent the undrilled HB as a narrow (up to 150 km
wide) sliver of oceanic crust bounded on both
sides by continental fragments of Cathaysian
affinity (Fig. 4). Accretion of “ribbon conti-
nents” is a fundamental process in orogenesis
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and continental growth over time and space
(Cawood et al., 2009). Our results now show that
the transport of continental slivers by growth
and closure of marginal seas along the East Asia
margin (Fig. 4) may have been more prevalent
than previously recognized.
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