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Abstract In the last few years, there has been an increasing trend to
consider Structure from Motion (SfM, in computer vision) and Simulta-
neous Localization and Mapping (SLAM, in robotics) problems from the
point of view of pose averaging (also known as global SfM, in computer
vision) or Pose Graph Optimization (PGO, in robotics), where the motion
of the camera is reconstructed by considering only relative rigid body
transformations instead of including also 3-D points (as done in a full
Bundle Adjustment). At a high level, the advantage of this approach is
that modern solvers can effectively avoid most of the problems of local
minima, and that it is easier to reason about outlier poses (caused by
feature mismatches and repetitive structures in the images). In this paper,
we contribute to the state of the art of the latter, by proposing a method
to detect incorrect orientation measurements prior to pose graph opti-
mization by checking the geometric consistency of rotation measurements.
The novel aspects of our method are the use of Expectation-Maximization
to fine-tune the covariance of the noise in inlier measurements, and a new
approximate graph inference procedure, of independent interest, that is
specifically designed to take advantage of evidence on cycles with better
performance than standard approaches (Belief Propagation). The paper
includes simulation and experimental results that evaluate the perfor-
mance of our outlier detection and cycle-based inference algorithms on
synthetic and real-world data.

Keywords: Pose averaging; outliers; inference in graphical models.

1 Introduction

Reconstructing a 3-D scene from a collection of ordered or unordered images or
videos is one of the most prominent classical problems in computer vision and
robotics. In computer vision, this task is known as Structure from Motion (SfM),
and is traditionally performed using images alone. The typical solution pipeline
for this problem [26, 35, 39] includes three steps: 1) estimate relative poses
between pairs of images using matched features [7, 17, 31] and robust fitting
techniques [21,24]; 2) combine the pairwise estimates, either in sequential stages [3,
4, 22,43,44], or by combining poses alone (without considering a 3-D structure)
in a pose-averaging [1, 5, 14, 25, 33, 50, 51] or pose-graph [11] approach; 3) use
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Bundle Adjustment (BA) [18,26,49], which minimizes the reprojection error by
considering jointly the motion and the structure.

In robotics, a very similar task is known as Simultaneous Localization and
Mapping (SLAM, [10]), and it usually includes the use of additional information
such as wheel odometry, inertial measurements, or laser scans. Visual SLAM is
a variant of the SLAM problem where only visual information obtained from a
camera is used for the task [48]. Similarly to the case of SfM, the state of the art
approach for SLAM is based on a pose graph formulation where nodes represent
robot poses at different times, and edges represent relative pose measurements
between pairs of nodes. One typical difference between typical SfM and SLAM
applications is that, in the latter, the images are mostly ordered; hence, edges in
the graph can be divided into two categories: ego motion edges which correspond
to temporally close measurements; e.g., visual odometry measurements (for which
temporal correlations can easily predict the presence of outliers), and loop closure
edges which correspond to temporally distant measurements, e.g., when the same
physical location is revisited at different times.

In both pose averaging for SfM, and PGO for SLAM, the absolute poses
(nodes) in the graph are estimated from all the measurements (edges) via a
Maximum Likelihood (ML) formulation [16,39], which typically involves solving
a nonlinear least squares error minimization problem, and is highly sensitive to
initialized values and the unavoidable presence of outlier measurements. For the
problem of initialization, the most effective solutions use relaxations based on
eigenvector computations or semi-definite programming [5,11,33,51]. More recent
techniques can certify the global optimality of their ML estimates [9, 20,27,41].

For the problem of outliers, traditional approaches rely on local optimization
from an initial guess, and either discount outliers using robust cost functions
[2,30,38]), or attempt to directly identify them [12,23,29,46,47]. In the latter group,
there exist techniques based on inference on graphical models [53]. Empirically,
these methods work well when the outliers are only few, and embedded in a dense
graph of otherwise valid measurements; their performance decreases in more
challenging regimes, such as in the alignment of multiple maps in SLAM, where
many of the associations (loop closures) can be erroneous, and, for instance,
finding a good initial guess for the alignment is more challenging. Existing
solutions for this problem are limited to either a single map (as the optimization
based approach in [28]) or two maps (as the set maximization approach of [32]).

Paper contributions . We propose a probabilistic approach for outlier detection
between any number of maps. Our algorithm checks for the geometric consistency
of the rotation measurements in loops within the graph of poses, and decides
if each edge is an inlier or outlier without relying on a trajectory estimate. We
use a Gaussian additive noise model for rotation measurements and use the
rotational error over cycles as evidence to infer the inlier/outlier probabilities.
We use the Expectation-Maximization algorithm to fine-tune the parameters of
the distribution of measurement errors and present simulation results. For the
inference step required by our algorithm, we first apply Belief Propagation (BP),
and highlight its shortcomings in this setting, next we present a novel inference
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algorithm based on a novel cycle-based dual decomposition and the Alternating
Direction Method of Multipliers (ADMM) which has local convergence guarantees.
We evaluate the performance of our proposed solution using simulations and in
the alignment of four real-world maps produced by a standard SLAM algorithm.
Paper outline . In the remainder of the paper, we first review a probabilistic
graphical model for error propagation on the space of rotations, and errors on
cycles of poses (Section 2). We then review Belief Propagation for performing in-
ference on the graphical model, describe our ADMM-based alternative (Section 3);
and show how this inference can be embedded in an Expectation-Maximization
procedure to estimate the variances of the inliers and the outliers (Section 4).
Finally, we present our simulations and experiments (Section 5).

2 Probabilistic Model

In this section, we describe the approximate additive Gaussian noise model on
rotations used for modeling the errors on single edges and along graph cycles, as
well as the graphical model used to relate the inlier versus outlier probabilities
for each edge with the evidence provided by the geometric consistency of cycles.

2.1 Gaussian Noise Model and Uncertainty Propagation

We denote the graph of poses as G = (V, E , T ) with vertices V = {1, . . . , n}
representing absolute poses that need to be estimated, and edges E ⊆ V × V
representing the existence of measured relative transformations T̃ij ∈ T between

them, i.e., T̃ij ≈ TjT
−1
i . Each pose Ti is represented as a member of a matrix

Lie group, i.e., a group whose elements and group operation are representable by
square matrices, and that is also a smooth differentiable manifold.

In this paper, we limit our attention to SO(3), leaving the applications of our
methods to other Lie groups (e.g., SE(d) or Sim(d)) as future work. As we will
show, this choice already provides significant benefits in the detection of outliers.

We model errors over rotations through a Gaussian distribution in local
exponential coordinates, i.e., the distribution is defined in the tangent space at
the mean, and mapped to the Lie group via the exponential map. Formally:

ε ∼ N (0,Σ)

R̃ = exp(ε̂) R
(1)

where ε ∈ R3 is a zero-mean Gaussian random variable with covariance matrix
Σ ∈ R3×3, and ε̂ ∈ so(3) is a skew-symmetric matrix given by the hat operator

ε̂ =

 0 −ε3 ε2
ε3 0 −ε1
−ε2 ε1 0

 . (2)

We assume that, for inlier measurements, the magnitude of the vector ε, which
represents the magnitude of the noise, is small, thus justifying the following.
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Lemma 1 ([6], 7.3). The first order approximation of the uncertainty in the
composition of two rotations R̃1 ∼ NSO(3)(R1,Σ1) and R̃2 ∼ NSO(3)(R2,Σ2) is:

R̃2R̃1 ∼ NSO(3)(R2R1,Σ2 + R2Σ1R
T
2 ) (3)

This approximation, which comes from the truncation of the BCH formula, is
justified by our assumption that the inlier errors are relatively small. In addition,
we make the following assumption about the noise covariance Σ:

Assumption 1 The rotation distributions are isotropic, i.e. Σi = σ2
i I3, where

I3 is the identity matrix.

Combining Assumption 1 with (3), the distribution of the composition of a
subset S ⊂ V of noisy rotations is given by:∏

i∈S
R̃i ∼ NSO(3)

( ∏
i∈S Ri , (

∑
i∈S σ

2
i )I3

)
. (4)

If all the variances σi are equal, the resultant covariance matrix is given by
mσ2I3, where m = |S|. Since the expected length of a zero-mean spherical Gaus-
sian random variable ε ∼ N (0, ς2Id) is tightly bounded as d√

d+1
ς ≤ E(‖ε‖) ≤

√
dς

[13, Definition 3.1], for small enough m and σ the expected value of noise is
proportional to

√
m; this was experimentally validated in [19, Figure 3].

2.2 Inlier and Outlier Gaussian Mixture Model

We model the distribution for each measurement Re along an edge e ∈ E with a
Gaussian mixture model with two modes, one for inliers and the other for outliers.
We use the Bernoulli indicator variable xe ∈ {0, 1} to denote e as an inlier
(xe = 0) or an outlier (xe = 1), with respective (user-defined) prior probabilities
p(xe = 0) = πe and p(xe = 1) = 1 − πe

.
= π̄e. Building upon Assumption 1,

we assume that every inlier edge has uncertainty σ2I3 and every outlier edge
has uncertainty σ̄2I3, where σ̄ � σ; note that a sufficiently large value of σ̄ in
practice leads to an approximation of the uniform distribution.

2.3 Graphical Model for Evidence over Cycles

A simple cycle is a closed chain of edges where each edge appears only once.
Every simple cycle c in our pose graph corresponds to an ordered set of rotation
measurements along the edges of the cycle, and the composition R̃c of these rota-
tions R̃c =

∏
e∈c R̃e should, ideally, be close to the identity (i.e., by transforming

a reference frame along a cycle return it to its initial pose). Defining zc to be the
geodesic distance of R̃c from the identity, i.e.,

zc =
1√
2
‖ log(R̃c)‖F = arccos

( tr(R̃c)− 1

2

)
, (5)
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where ‖·‖F is the Frobenius norm, we can use (4) to obtain a probabilistic
mode (distribution) of R̃c. Note that the variance of R̃c mainly depends on the
length and the number of outliers of the cycle.

Similarly to previous work that aims to use geometric relations in cycles in
Structure from Motion [19,53], we model the relation between errors on edges and
cycles by using a Bayesian network in which every edge e ∈ E , and every cycle
c ∈ C of the original pose graph is modeled by a node in the Bayesian network,
and each edge e is connected to the cycles c to which it belongs (Figure 1b);
the cycles serve as evidence for inferring the hidden inlier/outlier state random
variables xe for each edge e ∈ E . The joint probability distribution given by this
model for hidden states x ∈ {0, 1}|E| and cycle-consistency errors z ∈ R|C| is

p(x, z) =
∏
e∈E

p(xe)
∏
c∈C

p(zc |xc), (6)

where C is a set of cycles in G, and p(xe) is the prior probability of edge e,
and xc is the vector containing xe values for every e ∈ c. Equation (6) can be
graphically represented using a factor graph (Figure 1c).

(a)

x1 x2 x3 x4 x5

zc1 zc2 zc3

(b)

π1 π2 π3 π4 π5

x1 x2 x3 x4 x5

fc1 fc2 fc3

(c)

Figure 1: (a) Example of a small problem with four poses, five measurements,
and three cycles; (b) A Bayesian network representation where the upper nodes
correspond to the edges and the bottom nodes correspond to cycles (shaded in
gray because they are observed variables); (c) The factor graph representation,
with {πe} representing the edge prior probabilities, and {fc} the cycle evidence.
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Letting sc = 1Txc be the number of outliers in c for the configuration x, the
distribution p(zc |xc) is obtained from (4), where the covariance matrix is given
by ς2c (xc)I3 =

(
scσ̄

2 + (|c| − sc)σ2
)
I3 and |c| is the length of the cycle.

Note that in robotics applications (see also our experiments), we can limit the
inference of xe to loop closure edges Elc; in modern systems, ego motion edges are
unlikely to contain outlier measurements, hence we set the priors πe = 1 for any
ego motion edge e ∈ E . Moreover, using all possible cycles is neither necessary nor
practical for this task. The total number of cycles in a graph, in general, grows
combinatorially with the size of the graph, leading to a proportional increase in
the computational cost. To deal with this issue, we restrict ourselves to cycles
from a Minimum Cycle Basis Cmin ∈ 2C̄ of the pose graph, obtained using the de
Pina’s method [34]. This reduces the number of cycles to O(|Elc|), covers all the
edges in bi-connected components of the pose-graph, and every other cycle can
be obtained as a combination of cycles in the basis. Moreover, the MCB, which
is minimal in the sense of the number of times each edge appears in cycles in
Cmin, has the benefits of 1) reducing the number of connections in the Bayesian
graphical model (Figure 1b); and 2) short cycles reduce the uncertainty in the
observations zc along cycles with only inliers (see the discussion in Section 2.1).
In future work, we will explore the option of finding a basis that is minimal in
the sense of the sum of the errors zc.

3 Inference for Graphical Models

In this section, we assume that the set of parameters Θ = {σ, σ̄,Π} where
Π = {πe}e∈Elc is given, and that we aim to find the marginal probabilities
from (6) for each edge, i.e., γe , p(xe|z), e ∈ E (in Section 4, we will extend
the procedure to concurrently estimate σ,σ̄ from the same data). An exact
solution to this probabilistic inference problem can easily become intractable, as
the complexity increases exponentially with the number of edges. Resorting to
approximation methods, we consider two options 1) Loopy Belief Propagation
(BP), which represents the standard traditional choice for approximate inference
in graphs, although it is not guaranteed to converge for general graphs; and
2) our novel inference algorithm based on dual decomposition along cycles with
the Alternating Direction Method of Multipliers (ADMM), which instead has
local convergence guarantees. Section 5 shows that, in our setting, the latter is
superior in terms of outlier detection.

3.1 Belief Propagation

Belief Propagation is one of the most well known inference algorithms for finding
marginal and conditional probabilities; it is a Variational Inference approach
based on the minimization of the Bethe free energy [52]. For graphical models
with loops, vanilla BP may fail to converge, and, even if it converges, the solution
is generally not exact.
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We review here the factor graph version of BP via the example of Figure 1.
In BP, messages are sent between neighboring variables and factors according to
the following equations [52]:

ne→fc(xe) =
∏

f∈N(e)\fc

mf→e(xe), mfc→e(xe) =
∑
xc\xe

fc(xc)
∏

i∈N(fc)\e

ni→fc(xi), (7)

where ne→fc is the message from variable e to factor fc, and mfc→e is the message
from factor fc to variable e; N(e) and N(fc) denote the factors that are connected
to the random variable xe and the factor fc, respectively (the former includes the
prior πe, which is constant). These messages are passed in an asynchronous order
until convergence of beliefs (approximate marginals), which are computed as:

be(xe) ∝
∏

f∈N(e)

mf→e(xe), bc(xc) ∝ fc(xc)
∏

e∈N(fc)

ne→fc(xe), (8)

where be is the belief for the indicator variable of an edge and an approximation
of γe = p(xe|z), and bc is the belief of all random variables connected to factor fc,
and an approximation of γc , p(xc|z) (note that γc is used in the Expectation-
Maximization procedure in Section 5). To force convergence of the BP iterations,
we introduce a damping factor as suggested in [40, Chapter 22] (we use 0.5 in
our experiments).

3.2 Alternating Direction Method of Multipliers

The Alternating Direction Method of Multipliers (ADMM) provides a robust and
decomposable algorithm for optimization problems by breaking them into smaller
and easier to handle sub-problems [8]. For convex problems, ADMM guarantees
global linear convergence rate [37]. It can also be used in non-convex problems,
although in that case it will convergence to a local minimum.

In order to estimate γe and γc, instead of marginalizing p(x, z) over each
edge directly, we propose to marginalize over the each cycle, i.e.,

pc(xc, zc) = p(zc|xc)
∏
e∈c

p(xe), (9)

and then force the marginals of each edge e from different overlapping cycles
to agree on a common value. Intuitively, our approximation strategy aims to
preserve the statistical correlation (joint distribution) between edges in the same
cycle, while ignoring the correlations across cycles.

More in detail, we can implement this strategy by solving a consensus problem

with ADMM [8, Chapter 7]. We denote as v̂c ∈ R2|c| the vector containing all
probabilities pc(xc|zc) obtained from (9) evaluated over all possible values of
xc ∈ {0, 1}|c|. For each cycle c, we try to estimate a vector vc such that 1) vc
is close to v̂c, and 2) when two distributions vc, vc′ for two overlapping cycles
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c, c′ are marginalized with respect to a common edge e ∈ (c ∩ c′), the two results
agree. We will parameterize the marginal distribution γe by keeping track of the
inlier probability alone, denoted as we = p(xe = 0|z). We can then formulate the
following minimization problem:

min
w,{vc}

∑
c∈C

hc
(
vc
)
,

subject to pT
e,cvc = we, ∀c ∈ C, e ∈ c,

0 ≤ w ≤ 1,

(10)

where w ∈ R|Elc| is the vector of all {we}, and the indicator vectors pe,c ∈
{0, 1}2|c| are a vectorial representation for obtaining the marginal inlier probability
we given the cycle distribution vc. In (10), each hc (i.e., each cycle), is considered
a subproblem with its own local constraints that can be solved in a distributed
fashion. As stated earlier, we want vc to be close to v̂c with respect to some
metric. If we choose the 2-Wasserstein metric, hc will be formulated as follows:

hc
(
vc
)

=

{
‖vc − v̂c‖2 if 1Tvc = 1, 0 ≤ vc ≤ 1,
+∞ otherwise.

(11)

(In future work, we plan to evaluate other measures of similarity between c
and ĉ, such as the Kullback–Leibler divergence.) Subproblems c, c′ that share
an edge are forced to agree through the constraints pT

e,cvc = pT
e,c′vc′ = we. This

problem formulation is very similar to a consensus optimization problem, with
the difference being that a linear combination of the variables vc should reach
consensus instead of the full vector, plus the global constraint 0 ≤ w ≤ 1. To
apply ADMM, we write (10) using the indicator function g(w) which returns
+∞ if the global constraint 0 ≤ w ≤ 1 is violated,

min
we

∑
c∈C

hc
(
vc
)

+ g(w),

subject to Pcvc = wc, ∀c ∈ C,
(12)

where the vector wc ∈ R|c| contains the elements we of w for every e ∈ c and

P ∈ R|c|×2|c| is obtained by horizontally stacking the vectors pT
e,c column-wise.

The augmented Lagrangian for (12) is:

Lρ =
∑
c∈C

(
hc(vc) + yT

c (Pcvc −wc) +
ρ

2
‖Pcvc −wc‖2

)
+ g(w), (13)

with dual variables yc ∈ R|c|, and penalty parameter ρ. The ADMM iterations
for this problem are given by [8]:

vk+1
c = argmin

vc

(
hc(vc) + ykTc Pcvc +

ρ

2
‖Pcvc −wk

c ‖2
)

wk+1 = argmin
w

(
g(w) +

∑
c∈C

(
− ykTc wc +

ρ

2
‖Pcvc −wc‖2

))
yk+1
c = ykc + ρ(Pcvc −wk

c ).

(14)
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Note that the variables vc and yc can be updated in parallel for each cycle. The
solution for vc is obtained by solving a quadratic programming problem (which
can be done efficiently), while the solution for the global consensus variable w is
given by:

wk+1
e = max(0,min(1, ωk+1

e )), (15)

ωk+1
e =

∑
c;e∈c

(
pT
e,cv

k+1
c + 1

ρ [ykc ]e

)
∑
c;e∈c 1

. (16)

The denominator in (16) is the number of times edge e appears in different cycles,
and therefore ωk+1

e is the average of marginalized values for edge e plus the
component of ykc that corresponds to e over cycles that contain that edge. In
(15), the values of ωk+1 are projected to be between zero and one.

This problem will reach (local) optimality when the primal residual rk and
dual residuals tk converge to zero, where:

rk =
∑
c∈C

∥∥Pcv
k
c −wk

c

∥∥2

tk = ρ2
∑
e∈Elc

∑
c;e∈c

(wke − wk−1
e )2

(17)

The penalty parameter ρ plays a very important role in the convergence speed of
this method. Intuitively, small ρ allows intermediate solutions to have a much
lower cost while somewhat ignoring the primal feasibility, and makes the solution
less impacted by initial value and easier to escape from the local minima, whereas
a large ρ will place a large penalty on violating the consensus constraints, but
tends to produce small primal residuals. As suggested in [8, Chapter 3], we start
with a small ρ, and gradually change the value of ρ based on primal and dual
residual, using the following dynamic update rule:

ρk+1 =

 τ incrρk if rk ≤ µtk
ρk/τdecr if tk ≤ µrk
ρk otherwise,

(18)

where µ > 1, τdecr > 1, and τdecr > 1 are constant parameters.

A disadvantage of our method is that the local variables {vc} have dimensions
that grow exponentially with the length of the cycles; however, in our experiments
we noted that cycles of length up to |c| = 15 remain tractable, and longer cycles
could be discarded, since they are likely to provide only very weak evidence.

4 Expectation-Maximization

In the previous sections, we assumed that the parameters Θ = {σ, σ̄,Π} (the inlier
and outlier standard deviations, and the edge prior probabilities, respectively)
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were given. However, this assumption is not true and these parameters need to
be estimated. By including parameters in the distribution, we rewrite (6) as:

p(x, z|Θ) =
∏
e∈E

p(xe|πe)
∏
c∈C

p(zc | ςc(xc)) (19)

where the first term is a given by Bernoulli distribution. With some abuse
of notation, we assume πe is p(xe = 0) and π̄e = 1− πe which yields p(xe|πe) =
π1−xe
e π̄xe

e . The second term is a wrapped Gaussian mixture distribution:

p(zc | ςc(xc)) =
1

ψc

ς−3
c

φ(ςc)
exp(

−z2
c

2ς2c
) (20)

with ςc(x) =
√

(1Txc)σ̄2 + (|c| − 1Txc)σ2, φ(ςc) is a normalizing constant for
the wrapped Gaussian, ψc normalizes over all the possible values for x,

ψc =

|c|∑
s=0

(
|c|
s

)
ς−3
c (s)

φ(ςc(s))
exp(

−z2
c

2ς2c (s)
), (21)

and the term ς−3
c comes from the denominator of the Gaussian probability

density function,
√

det(ς2c I3). The value of ςc(xc) only depends on the number of
outliers sc = 1Txc, hence we can denote it is ςc(sc). The log-likelihood function
is:

L(Θ;x, z) = log(p(x, z|Θ))

=
∑
e∈E

(1− xe) log(πe) + xe log(π̄e) +
∑
c∈C
−3 log ςc −

z2
c

2ς2c
− log

(
ψcφ(ςc)

)
(22)

In the Expectation step, we find the expectation of the log likelihood of Θi

with respect to the current distribution of x given z and previous estimate of
parameters Θi−1:

Q(Θ(i)|Θ(i−1)) = Ex|z,Θ(i−1) [L] =
∑

x∈Z|E|2

L(Θ(i);x, z)p(x|z, Θ(i−1))
(23)

We use γie = p(xe|z, Θi) for the marginal of edge e, and γic = p(xc|z, Θi) for the
marginal of cycle c, given the parameters Θi (these are approximated via either
BP or ADMM). Now, by expanding (23) we get:

Q(Θ(i)|Θ(i−1)) =
∑
e∈E

∑
xe∈Z2

p(xe|z, Θ(i−1)) log p(xe|π(i)
e ) (24a)

+
∑
c∈C

∑
xc∈Z|c|2

p(xc|z, Θ(i−1)) log p(zc|xc, σ(i), σ̄(i)) (24b)

In the Maximization step, we find Θ(i) = argmaxΘ Q(Θ|Θ(i−1)). For Π(i), we

have π
(i)
e = γ

(i−1)
e , but for σ(i) and σ̄(i) it is not as straightforward. Each term

in the summation in (24b) is a quasiconcave function, but their sum need not be
quasiconcave. Therefore, we use a grid-search to find σ and σ̄ at each iteration.
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5 Simulations and Experiments on Map Merging

In this section, we provide performance results of our outlier detection algorithm
over synthetic and real data. For the synthetic data, we repeatedly generate a
pose graph with two maps of 15 nodes each and random poses. At every iteration,
m edges are added between the two maps, where m varies from 10 to 200 with
increments of 5. For every given m, from 1 to m − 1 edges are selected to be
outliers (with unitary increments). Inlier and outlier edges are given a random
noise rotation with a random direction, and the magnitude of noise uniformly
selected within 2.4◦ ≤ ‖ε‖ ≤ 3.6◦ for inliers and 72◦ ≤ ‖ε̄‖ ≤ 108◦ for outliers
(although we obtained similar results with different outlier distributions). The
total number of generated graphs is 8, 112 and both BP and ADMM inference
algorithms were used on the same graphs.

In Fig. 2a, we plot each simulation as a point on the precision-recall plane. Fig.
2b, the ratio of detected outliers is plotted versus the ratio of the outlier edges
to total loop closure edges. It is clear that our ADMM inference performs better
than BP, as it has overall higher precision and recall. In addition, as the ratio
of outliers to loop closure edges increase, the performance of BP continuously
deteriorates, while ADMM presents a V-shaped curve; we hypothesize that this
is due to the fact that situations with a majority of inliners or outliers represent
easier cases (there is little discrepancy between the results of the local inferences
over the different cycles), while mixed situations are more difficult to reconcile.

In Fig. 3 we present an SfM experiment on the Castle-P30 dataset [45]. We
obtain 83 pairwise relative rotation measurements by estimating the essential
matrix (shown in red), and further add 30 random pairwise relative measurements
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Figure 2: (a) Precision ( TP
TP+FP )-Recall ( TP

TP+FN ) for each simulated case using
a threshold for γe of 0.5; points toward the top and right boundaries are better.
(b) The ratio of detected outliers to the total number of outliers (Recall) versus
the ratio of outlier loop closure edges to total loop closure edges; higher is better.
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Figure 3: Error in relative pairwise orientation measurement R̃e w.r.t ground-
truth Re (x−axis) versus the probability of detection as inlier (y−axis) by our
EM-ADMM algorithm.

by sampling a random vector in SO(3) with a magnitude uniformly sampled
between 0 and π (shown in blue). The given results indicate that most of the
edges with small noise in their measurements are classified as inliers and those
with high noise are classified as outliers.

In Fig. 4 we present the result of implementing our classifier on actual data
obtained from an office environment and compare its performance with the
method in [53]. Four independent sequences of RGB-D images were obtained
using an Intel RealSense D435 camera, and were processed with ORB-SLAM2 [36].
The result of merging maps is shown with and without removing outliers, after
initial alignment and pose graph optimization using GTSAM [15].

Data associations between the maps are obtained using the ORB-SLAM2’s
place recognition module in addition to an object detector (MobileNet-SSD [42]).
In Table 1a the number of image pairs (RGB and Depth) for each map and the
total number of images is given. A subset of these images is picked as Keyframes
and constitute nodes in the joint pose graph. In Table 1b, the number of loop
closure edges between the maps is given. There are no loop closure edges within
each map. In Table 1c, the length of the cycles and frequency of cycles of those
lengths are given from Cmin which is used by our algorithm and also by the
algorithm from [53]. We removed cycles from Cmin with length greater than 15
due to increased complexity in the subproblem 11 and reduced the quality of
evidence gathered from long cycles. As stated before, the length of the cycle is
the number of loop-closure edges (total of 247) that appear in a bigger cycle
which includes ego motion edges of robots’ pose graphs. The outlier detection
algorithm from [53] detects 13 outliers, whereas our algorithm finds 21 outliers.

6 Conclusion

In this paper, we presented a probabilistic outlier detection algorithm which
detects outliers based on the geometric consistency of rotation measurements over
the cycles of a pose graph. We introduced a novel discrete inference algorithm
with convergence guarantees that performed better than Belief Propagation.
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(a) Map 1 (b) Map 2

(c) Map 3 (d) Map 4

(e) Outliers present (f) Outliers removed by [53]

(g) Outliers removed by our method

Figure 4: In (a)-(d), point clouds from four different sequences of images are
depicted. The final point cloud made from joining all the four pointclouds
without outlier detection is shown in (e) and with outlier detection is shown in
(f)(from [53]) and (g) (our method). In (e) and (f), phantoms can be observed
(e.g., see marked area) and the overall shape of the environment is not correct
due to misalignment caused by outliers, whereas with out method in (g) these
issues are considerably less severe.
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Map 1 Map 2 Map 3 Map 4 Total

Nodes 637 471 447 220 1,775
Images 3,233 2,289 2,641 926 9,089

(a) Images and nodes in each map and their total numbers from our dataset.

Map-pair Indices 1 - 2 1 - 3 2 - 3 1 - 4 3 - 4

Freq. of edges 50 8 70 70 49

(b) Frequency of loop-closure edges between map pairs.

Cycle length 3 4 5 6 7 12 15

Cycle freq. 80 102 45 8 2 1 1

(c) Length of the cycles in our dataset versus their frequency.

Table 1: Statistics on the dataset used for the experiments.
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