
  

  

Abstract—This paper presents an experimental study that 
investigated how humans interact with viscous, damping-
defined mechanical environments and quantified the lower 
bounds of robotic damping that they can stably interact with. 
Human subjects performed posture maintenance tasks for 
different arm postures while holding a robotic arm manipulator 
simulating unstable (negative) damping-defined environments 
and applying rapid perturbations to disturb the arm posture and 
challenge arm stability. The results of this study demonstrated 
that the lower bound of robotic damping for stable physical 
human-robot interaction was more than twice as low in the 
anterior-posterior (AP) direction than the medial-lateral (ML) 
direction, with lower limits of -50.3 Ns/m and -21.6 Ns/m in the 
AP and ML directions, respectively. The results further showed 
that the human arm is less capable of adjusting to the unstable 
environments when it is close to the body and laterally displaced 
for the AP and ML directions, respectively. Secondary analysis 
on the kinematic response in the phase space also demonstrated 
that arm stability in the unstable environments can be more 
easily achieved in the AP than ML direction. The outcomes of 
this study can be used to design less conservative robotic 
impedance or admittance controllers that utilize a wider range 
of robotic damping up to a certain extent of negative damping 
but do not compromise coupled stability of the human-robot 
system, which could improve the overall performance in physical 
human-robot interaction by achieving more agile operations and 
reducing user effort. 
 

I. INTRODUCTION 

Collaboration and interaction between humans and robots 
can create many advantages over humans or robots alone. The 
benefits of such collaboration underscore the importance of 
physical human-robot interaction (pHRI) in many applications 
such as exercise therapy in robotic rehabilitation and robotic 
assistance and augmentation in industrial settings and military 
applications [1, 2]. Among different robotic platforms, robotic 
arm manipulators have gained popularity and attracted 
attention in many pHRI applications [3-6]. 
When controlling robots that physically interact with 

humans, it is critical to implement a control system that 
provides safe and stable interaction between the robot and 
human without unnecessarily limiting their performance. 
Among the controllers that have attempted to address safety 
and stability, impedance or admittance controllers that regulate 
mechanical impedance, i.e., dynamic behavior at the 
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interaction port often described by stiffness, damping, and 
inertia, have been used widely and effectively [7-9]. 
In the past decades, many studies have investigated how 

human arm impedance is regulated. Most of these studies have 
focused on quantifying endpoint stiffness, a static component 
of the arm impedance, and the studies showed how it is 
modulated and adapted during static posture and dynamic 
movement tasks under different environmental conditions [10-
12]. 
While this knowledge about human arm stiffness can be 

utilized in improving the performance of the robotic 
impedance controllers, arm damping, which is another 
important component of the arm impedance, can also 
contribute to the improvement of controller performance since 
it describes the regulation of the stability of a coupled human-
robot system [13, 14]. However, compared to the 
characterization of arm stiffness, finding a proper 
identification method to characterize arm damping is 
challenging since quantification results of this component is 
highly sensitive to different identification methods [10].  
Due to the limited prior research on human arm damping 

quantification, many current robotic impedance controllers use 
considerably high positive damping. This conservative control 
approach shows highly dissipative behaviors to the human user 
and guarantees the stability during pHRI, but deteriorates the 
performance in terms of agility and user-effort [15-17]. If it is 
known how human arm damping is modulated during pHRI, a 
lower bound of robotic damping of the impedance or 
admittance controllers could be determined to improve the 
overall performance without compromising the stability of the 
coupled human-robot system.  
In order to overcome the limitation of directly quantifying 

the human arm damping and determining the robotic damping 
accordingly, we proposed an alternative method of quantifying 
the lower bound of robotic damping that humans can stably 
interact with by analyzing the kinematic responses of the 
human arm during interaction with a robotic arm simulating 
viscous, damping-defined environment. With this method, we 
could extend the range of robotic damping in pHRI without 
directly quantifying human arm damping.  
Our initial effort to quantify the lower bound of robotic 

damping for stable pHRI was made for a single arm posture 
and has been previously presented in [18]. In this previous 
study, human subjects performed posture maintenance tasks 

Fatemeh Zahedi is with the School for Engineering of Matter, Transport, 
and Energy, Arizona State University, Tempe, AZ 85287, USA (e-mail: 
fzahedi1@asu.edu). 
*: corresponding author 

Human Arm Stability in Relation to Damping-Defined Mechanical 
Environments in Physical Interaction with a Robotic Arm 

Fatemeh Zahedi and Hyunglae Lee*, Member, IEEE 



  

within a predefined range of negative damping-defined 
environments while their arm was perturbed to challenge 
postural stability. However, the quantification was made only 
at a single arm posture due to lengthy experiments requiring 
brute force exploration to find the lower bound. While this 
preliminary study provided useful baseline information, the 
information gained cannot be directly applied to general arm 
movement tasks covering a wide range of motion. 
Our goal in this paper is to quantify the lower bound of 

robotic damping that humans can stably interact with for 
various arm postures covering most of the reachable space 
during natural arm motions. To determine the lower bound in 
each arm posture without lengthy experiments that might 
cause subject fatigue, experiments were optimized using the 
bisection algorithm and the baseline information about the 
lower bound of robotic damping from the previous study. 
Thus, we could successfully overcome the time limitation of 
the previous study and determine the lower bound of robotic 
damping for stable pHRI for various arm postures. 
 

II. METHODS 

A. Experimental Setup 
A 7 degree-of-freedom (DOF) robotic arm (LBR iiwa 

R820, KUKA, Germany) with a 6-axis load cell (Delta IP60, 
ATI Industrial Automation, NC) were used to evaluate the 
human arm stability during interaction with unstable 
damping-defined environments in different arm postures. 
Both kinematic and force data were recorded at 1 kHz and 
low-pass filtered using a bi-directional 4th order Butterworth 
filter with a cutoff frequency of 20 Hz to remove the high-
frequency noise. 
Two distinct controllers have been implemented: 1) an 

admittance controller to simulate unstable (negative) 
damping-defined environments and 2) a position controller to 
apply fast perturbation to disturb the arm posture and 
challenge arm stability in either the anterior-posterior (AP) or 
medial-lateral (ML) direction. The robot alternated between 
these two controllers in a sample time of 1 ms. This small 
delay provided a transient position perturbation to the arm 
during interaction with the simulated mechanical 
environments. 
Subjects were seated with their trunk securely strapped to 

a rigid chair and instructed to hold a handle connected to the 
robot end-effector (Fig. 1A). Arm stability was evaluated 
around the neutral arm posture, defined as follows: shoulder 
in ~70° of abduction, ~45° of horizontal flexion, and the 
elbow in ~90° of flexion.  
A visual feedback display (at a distance of ~1 m from the 

subject) helped subjects to complete posture maintenance 
tasks by showing current and target hand positions (Fig. 1B). 
Nine evenly distributed points around the neutral posture (±6 
cm in the AP and ML directions) were tested. These nine 
points were chosen to cover the whole accessible workspace 
of the arm in the horizontal plane.  
A high stiffness of 10! N/m was simulated in the vertical 

plane to constrain vertical arm movement and only allow for 
horizontal plane movement. In the horizontal plane, zero 

stiffness and a constant inertia of 10 kg were simulated, and 
only robotic damping was varied to manipulate the level of 
environmental stability. The ramp position perturbation had 
an amplitude of 5 cm with an average speed of 20 cm/s. Our 
previous study has performed a sensitivity analysis with 
varying inertias and perturbation profiles and has 
demonstrated their minimal impact on arm postural stability 
[18].  
Arm stability in both the AP and ML directions was tested 

in each of the 9 arm postures. During trials in the AP direction, 
the robotic damping in the ML direction was constant at 30 
Ns/m and the damping in the AP direction was varied. 
Similarly, during trials in the ML direction, the robotic 
damping in the AP direction was constant at 30 Ns/m and in 
the ML direction was varied. The damping in the AP direction 
was varied from the initial value of -30 Ns/m, and iteratively 
subtracted by 10 Ns/m until the human arm could no longer 
stably interact with the simulated damping. If the arm failed 
to stabilize at the initial value, the damping was iteratively 
added by 10 Ns/m until stable interaction was achieved. From 
this point, the damping was changed based on the bisection 
method until the difference of the damping values for stable 
interaction and unstable interaction was less than 5 Ns/m. The 
damping value for the final successful trial was regarded as 
the lower-bound of robotic damping that the human arm could 
stably interact with. The same algorithm was implemented for 
the ML direction, except that the initial damping was -10 
Ns/m and the initial changing interval until the first failed trial 
was 5 Ns/m. These values were chosen based on preliminary 
experiments and previous findings in [18]. 
As a safety feature, two virtual walls were implemented. 

One was a virtual wall of 40 x 40 cm" around the whole 9 arm 
postures. High stiffness was implemented out of this virtual 
wall to prevent any displacement outside of these boundaries. 
The other was a virtual wall of 24 x 24 cm" around each target 
position (Fig. 1B). If displacement reached this virtual wall, 
the simulated damping switched to 30 Ns/m to stabilize the 
arm and prevent any potential injuries. 

 

Fig. 1. Experimental setup. A: Side view of the robotic arm coupled to a 
human subject in the neutral position. B: Visual feedback display. Black 
hollow circles showed 9 different targets for different arm postures. The 
red solid circle presented the current hand position. Small gray circles 
were at ±5 cm from the current target position appeared at the beginning 
of each trial either in the AP direction or ML direction to help subjects 
explore the simulated mechanical environment. Dotted lines denote the 
boundaries of the virtual walls around the target position. The solid lines 
showed the boundaries of the virtual walls around the whole plane of 
movement.  

 
 



  

Ten young, healthy subjects (age: 20–33, height: 162–186 
cm, weight: 47–86 kg, sex: 7 males and 3 females) 
participated in this study, which was approved by the 
Institutional Review Board of Arizona State University 
(STUDY 00010123). Subjects provided informed, written 
consent prior to participation. All experimental procedures 
were performed in accordance with the relevant guidelines 
and regulations. No subject was informed regarding the 
purpose of this study. 

B. Experimental Protocol 
An experiment was designed in which subjects performed 

posture maintenance tasks in 9 different arm postures in both 
the AP and ML directions. First, the target position and the 
direction of movement were randomly selected among the 9 
arm postures. Subjects were instructed to explore the selected 
damping-defined mechanical environment by reaching the 
small gray circles on the visual feedback display (Fig. 1B) that 
were 5 cm apart from the chosen target position, and then to 
return to the target position (±5 mm). After the target position 
was maintained for a randomized time interval of 0.5–1.5 s, 
the position perturbation displaced the arm to disturb the 
current arm posture and challenge arm stability. Subject were 
instructed to move their arm back to the target position as 
efficiently as possible following the perturbation.  
The damping-defined mechanical environment that 

subjects need to explore changed according to the setup 
mentioned in the previous subsection. The damping value 
defining the mechanical environment started from the initial 
condition until it converged to the lower bound of damping. 
After the lower bound of damping was found for the selected 
target position, the next target position was chosen randomly, 
and the process was repeated. The process of the experiment 
is presented in Algorithm 1, which explains with more details 
about how the previously described method works to find the 
lower bound of robotic damping in different arm postures. B 
is denoted as the robotic damping. 
A total of 18 experimental conditions (9 target positions x 

2 directions) were tested. These experimental conditions were 
divided into 9 blocks in order to avoid subject fatigue. On 
average, each of these conditions took 7 trials to converge to 
the lower bound, resulting in a total of 126 trials. Two 
additional training blocks were provided before the main 
experiment to help subjects familiarize themselves with the 
experimental setup and protocol. The entire experiment, 
including these two training blocks and rest periods, took 
under 30 mins. 

C. Data Analysis 
For each trial, the negative robotic damping value 

defining the unstable mechanical environment was chosen 
based on the success or failure of the previous trial. A trial 
was considered successful if subjects maintained the hand 
position inside the target position (±5 mm) for 500 ms 
continuously after the perturbation within 3 s. If subjects 
failed to meet this criterion or if the hand position passed the 
boundaries of the virtual wall around the current target 
position (either in the exploration phase or after perturbation), 
this trial was considered failed. 

Nine different arm postures in both the AP and ML 
directions were tested for each subject to find the lower bound 
of robotic damping that the subject can successfully interact 
with. For each of the 18 experimental conditions, group 
results were reported by calculating the average of the lower 
bound damping of all 10 subjects, which show the differences 
of the lower bound of robotic damping with respect to the 
direction of movement and distance of the arm to the body. 
Besides the analysis in the time domain, kinematic 

stability was also investigated in a phase space consisting of 
phase variables of position and velocity. In particular, for each 
of the 9 arm postures, successful trials at the lower bound of 
robotic damping were analyzed to identify any differences 
between the AP and ML directions regarding the margin of 
stability.    
In the phase space analysis, the rate of reduction in the 

kinematic error after perturbation was calculated. Two-
dimensional (2D) phase variables 𝑋 = [𝑝 𝑣] were defined 
where 𝑝 and 𝑣 were position and velocity, respectively. To 
lessen the burden in computation without losing the details, 
the raw data of position and velocity were down sampled by 
averaging data points within a 50 ms window. Using the 
down-sampled data, phase arrays, 𝑋⃗(𝑘) and 𝑋⃗(𝑘 + 1), were 
further defined as: 

Algorithm 1 Finding the lower bound of robotic damping 
that humans can stably interact with 

1: while isempty 𝑩𝒍𝒐𝒘𝒆𝒓𝒃𝒐𝒖𝒏𝒅 of any target position    
    and perturbation direction do 
2:  Select the target position randomly 
3:  Select the direction of movement randomly 
4:  Initialization interval_change & initial_condition 
  based on direction 
5:  B ← initial_condition 
6:  while success_bound isempty || failed_bound  
  isempty do 
7:  Test trial with B 
8:  if trial succeed then 
9:   success_bound ← B 
10:  B ← B – interval_change 
11:  else 
12:   failed_bound ← B 
13:   B ← B + interval_change 
14:  end while 
15:  while |success_bound – failed_bound| > 5 do 
16:  B ← (𝐬𝐮𝐜𝐜𝐞𝐬𝐬_𝐛𝐨𝐮𝐧𝐝	 + 	𝐟𝐚𝐢𝐥𝐞𝐝_𝐛𝐨𝐮𝐧𝐝) 𝟐⁄  
17:  Test trial with B 
18:  if trial succeed then  
19:   success_bound ← B 
20:  else 
21:   failed_bound ← B 
22:  end while 
23:  𝑩𝒍𝒐𝒘𝒆𝒓𝒃𝒐𝒖𝒏𝒅 ← success_bound  
24:  return 𝑩𝒍𝒐𝒘𝒆𝒓𝒃𝒐𝒖𝒏𝒅 to selected target position   
        and direction 
25: end while  
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where 𝑘, and 𝑘- was the moment corresponding to the end 
of the ramp position perturbation and the first moment that 
subjects maintained the hand position inside the target for 
500 ms continuously following the perturbation, 
respectively. The relationship between 𝑋⃗(𝑘) and 𝑋⃗(𝑘 + 1), 
potentially nonlinear, was linearized with respect to the 
target position and represented by a 2D Jacobian matrix 𝐽.: 
 

																												𝑋⃗(𝑘 + 1) = 𝐽.𝑋⃗(𝑘). (2) 
 
The maximum eigenvalue of 𝐽. was calculated to quantify 
the rate of contraction of the phase variables in the phase 
space. The system is stable as long as the eigenvalue is less 
than 1. In addition, the higher the maximum eigenvalue, the 
less the stability margin.  
Statistical analysis was performed to investigate the 

direction dependence (AP vs. ML) of arm stability for all of 
the 9 arm postures. A paired t-test was performed separately 
for the lower bound of robotic damping from the time 
domain analysis and the maximum eigenvalue from the 
phase space analysis.  
 

III. RESULTS 

All subjects could stably interact with unstable viscous 
(negative damping-defined) environments to a certain 
extent, but the time and effort needed to stabilize the arm 
increased as the level of environmental stability decreased, 

i.e., robotic damping decreased. The lower bound of robotic 
damping that subjects could stably interact with was 
determined based on successful and failed trials, which 
varied for different arm postures and perturbation directions. 
Kinematic responses of the arm endpoint of a 

representative subject for the AP and ML direction trials are 
presented in Fig. 2. The difference between successful and 
failed trials is clear from this figure. In the successful trials, 
in both directions, subjects could stabilize the arm with 
minimal oscillations, while in the failed trials they could not 
regain posture stability.  
The bisection algorithm with the baseline information 

about the lower bound from the previous study [18] greatly 
decreased the number of trials and time required for finding 
the lower bound of robotic damping for stable pHRI. The 
number of trials to find the lower bound for each posture and 
each direction was less than 8 trials on average across all 10 
subjects. The previous study, by comparison, required 240 
trials to find the lower bound for a single posture, the neutral 
position, in both the AP and ML directions [18], which is 
about 15 times more than that in this study. 
Group analysis on 10 subjects demonstrated that, on 

average across all 9 different postures, the lower bound of 
robotic damping that the human arm can stably interact with 
was significantly lower in the AP direction than ML 

 
 

Fig. 2. Kinematic responses of the arm endpoint of a representative 
subject for the AP and ML directions. Endpoint positions are presented 
for the time interval of [-1, 3] s, where 0 s is the onset of the perturbation. 
A: successful trials, B: failed trials. (Left): kinematic responses in the 
AP direction, (right): kinematic responses in the ML direction. The 
corresponding robotic damping value was included in each plot. 

 
 

 

Fig. 3. Lower-bound of robotic damping that the human arm can stably 
interact with for each of the 9 testing postures for AP (top) and ML 
(bottom) directions. The mean and standard deviation (in parentheses) of 
10 subjects are presented. 



  

direction: -50.3 (2.9) Ns/m and -21.6 (4.0) Ns/m for the AP 
and ML directions, respectively. Results for each of the 9 
testing postures are shown in Fig. 3. The minimum lower 
bound in the AP direction was -53.8 Ns/m for the arm 
posture furthest from the body. The minimum value for the 
ML direction was -26.4 Ns/m for the same arm posture as in 
the AP direction. 
For any of the 9 arm postures, the statistical analysis with 

the paired t-test confirmed that the lower bound was 
significantly lower in the AP than ML direction (p < 
0.0005). A higher arm stability in the AP than ML direction 
is consistent with previous findings that human arm 
impedance is significantly higher in the AP than ML 
direction [11, 19].  
Group results also demonstrated that the human arm is 

less capable of adjusting to unstable damping-defined 
environments when it is closer to the body in the AP 
direction, and when it is laterally displaced in the ML 
direction.  
According to the phase space analysis, the maximum 

eigenvalue of the Jacobian matrix (𝐽.) was always less than 
1 for any successful trial with the identified lower bound of 
robotic damping, implying stable pHRI.  

Group results of the phase space analysis also confirmed 
that the stability margin is greater in the AP than ML 
direction, evidenced by the lower maximum eigenvalue of 
𝐽.  in the AP direction (Fig. 4). In all 9 arm postures, the 
average eigenvalue in the AP direction was lower than that 
in the ML direction, and 6 postures showed statistical 
difference. This result demonstrates that arm stability at the 
lower bound of robotic damping conditions for stable pHRI 
can be more easily achieved in the AP than ML direction. In 
other words, subjects had more difficulty in reducing the 
kinematic error induced by the position perturbation during 
interaction with an unstable environment in the ML than AP 
direction. The sample results of a representative subject 
showed higher overshoots, oscillations, and slower 
convergence to the target position in the ML than AP 
direction for the related lower bound condition (Fig. 5). 
These results are consistent with the results of the time 
domain analysis. 
 

IV. DISCUSSION 

Compared with human arm stiffness, arm damping has 
been relatively understudied. This is mainly because 
damping quantification is more sensitive to different 
identification methods than other impedance parameters. A 
lack of knowledge about human arm damping has prompted 
excessively conservative robotic impedance controllers with 
significant positive damping, which sacrifices the overall 
performance in pHRI at the expense of stability. With the 
knowledge about human arm damping modulation, 
impedance controllers could utilize a wider range of robotic 
damping values to the improve the overall performance, for 
example, increasing agility of the coupled human-robot 
system and decreasing user effort.  
In order to overcome the limitation of directly 

quantifying the human arm damping and determining a 
proper range of robotic damping that could improve the 
overall performance of the coupled human-robot system, we 
quantified the lower bound of robotic damping that humans 

 
Fig. 5. Representative results of state trajectories (endpoint velocity vs. 
position) in the phase space for the AP and ML directions in the same 
posture in the lower bound condition. Red traces represent raw data 
sampled at 1 kHz, and blue dot points represent down-sampled data 
points. The corresponding maximum eigenvalue was included in each 
plot.  

 
 

  
Fig. 4. Maximum eigenvalues from the phase space contraction analysis. 
The values were calculated in the lower bound condition for each of the 
9 testing postures for the AP (Top) and ML (Bottom) directions. The 
corresponding statistical analysis results between the AP and ML 
directions for each posture were denoted with asterisks in the top plot (*: 
p < 0.05, **: p < 0.01, ***: p < 0.001). The mean and standard deviation 
(in parentheses) of 10 subjects are presented. 

 
 



  

can stably interact with, which will be used to directly 
determine the range of robotic damping for the performance 
improvement. To this end, we analyzed the kinematic 
responses of the human arm, in both the time domain and 
phase space, during interaction with a robotic arm 
simulating viscous, damping-defined environment. In order 
to cover most of the reachable space during natural arm 
motions, the study was performed at 9 different arm postures 
around the neutral arm posture. With the bisection algorithm 
and the baseline information about the lower bound of 
robotic damping from the previous study, we could 
substantially reduce the time required for the quantification 
by a factor of 15 compared to the previous brute force 
approach in [18]. 
The results of this study demonstrated that the lower 

bound of robotic damping that the human arm can stably 
interact with is more than twice as low for the AP direction 
than for the ML direction. The statistical analysis confirmed 
that the difference of lower bound in AP and ML direction 
in all 9 arm postures is significant. The results also showed 
that the arm is less capable of adjusting to unstable damping-
defined environments when it is closer to the body and when 
it is laterally displaced for the AP and ML directions, 
respectively. Finally, the phase space analysis further 
supported that arm stability at the lower bound of robotic 
damping conditions is more easily achieved in the AP than 
ML direction. In other words, the stability margin was 
greater in the AP than ML direction. These results are 
consistent with the previous findings that human arm 
impedance is significantly higher in the AP than ML 
direction and exhibits posture-dependent characteristics.  
Outcomes of this study, i.e., lower bounds of robotic 

damping for stable pHRI in different arm postures and in 
both the AP and ML directions, will guide us to carefully 
design robotic impedance controllers that are applicable to 
complicated tasks requiring a wide range of motion, as is 
common in many real-world tasks. The impedance or 
admittance controllers with this bound information will 
avoid imposing unnecessarily high damping but utilize a 
wider range of robotic damping from negative to positive 
values to improve the trade-off between stability and 
performance (e.g., agility and user effort) without 
compromising the coupled stability of the human-robot 
system [20-22]. 
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