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Abstract—This paper presents an experimental study that
investigated how humans interact with viscous, damping-
defined mechanical environments and quantified the lower
bounds of robotic damping that they can stably interact with.
Human subjects performed posture maintenance tasks for
different arm postures while holding a robotic arm manipulator
simulating unstable (negative) damping-defined environments
and applying rapid perturbations to disturb the arm posture and
challenge arm stability. The results of this study demonstrated
that the lower bound of robotic damping for stable physical
human-robot interaction was more than twice as low in the
anterior-posterior (AP) direction than the medial-lateral (ML)
direction, with lower limits of -50.3 Ns/m and -21.6 Ns/m in the
AP and ML directions, respectively. The results further showed
that the human arm is less capable of adjusting to the unstable
environments when it is close to the body and laterally displaced
for the AP and ML directions, respectively. Secondary analysis
on the kinematic response in the phase space also demonstrated
that arm stability in the unstable environments can be more
easily achieved in the AP than ML direction. The outcomes of
this study can be used to design less conservative robotic
impedance or admittance controllers that utilize a wider range
of robotic damping up to a certain extent of negative damping
but do not compromise coupled stability of the human-robot
system, which could improve the overall performance in physical
human-robot interaction by achieving more agile operations and
reducing user effort.

I. INTRODUCTION

Collaboration and interaction between humans and robots
can create many advantages over humans or robots alone. The
benefits of such collaboration underscore the importance of
physical human-robot interaction (pHRI) in many applications
such as exercise therapy in robotic rehabilitation and robotic
assistance and augmentation in industrial settings and military
applications [1, 2]. Among different robotic platforms, robotic
arm manipulators have gained popularity and attracted
attention in many pHRI applications [3-6].

When controlling robots that physically interact with
humans, it is critical to implement a control system that
provides safe and stable interaction between the robot and
human without unnecessarily limiting their performance.
Among the controllers that have attempted to address safety
and stability, impedance or admittance controllers that regulate
mechanical impedance, i.e., dynamic behavior at the

Research supported by National Science Foundation Award #1846885
and #1925110.

Hyunglae Lee is with the School for Engineering of Matter, Transport,
and Energy, Arizona State University, Tempe, AZ 85287, USA (e-mail:
hyunglae.lee@asu.edu; 480-727-7463; fax: 480-727-9321).

interaction port often described by stiffness, damping, and
inertia, have been used widely and effectively [7-9].

In the past decades, many studies have investigated how
human arm impedance is regulated. Most of these studies have
focused on quantifying endpoint stiffness, a static component
of the arm impedance, and the studies showed how it is
modulated and adapted during static posture and dynamic
movement tasks under different environmental conditions [10-
12].

While this knowledge about human arm stiffness can be
utilized in improving the performance of the robotic
impedance controllers, arm damping, which is another
important component of the arm impedance, can also
contribute to the improvement of controller performance since
it describes the regulation of the stability of a coupled human-
robot system [13, 14]. However, compared to the
characterization of arm stiffness, finding a proper
identification method to characterize arm damping is
challenging since quantification results of this component is
highly sensitive to different identification methods [10].

Due to the limited prior research on human arm damping
quantification, many current robotic impedance controllers use
considerably high positive damping. This conservative control
approach shows highly dissipative behaviors to the human user
and guarantees the stability during pHRI, but deteriorates the
performance in terms of agility and user-effort [15-17]. If it is
known how human arm damping is modulated during pHRI, a
lower bound of robotic damping of the impedance or
admittance controllers could be determined to improve the
overall performance without compromising the stability of the
coupled human-robot system.

In order to overcome the limitation of directly quantifying
the human arm damping and determining the robotic damping
accordingly, we proposed an alternative method of quantifying
the lower bound of robotic damping that humans can stably
interact with by analyzing the kinematic responses of the
human arm during interaction with a robotic arm simulating
viscous, damping-defined environment. With this method, we
could extend the range of robotic damping in pHRI without
directly quantifying human arm damping.

Our initial effort to quantify the lower bound of robotic
damping for stable pHRI was made for a single arm posture
and has been previously presented in [18]. In this previous
study, human subjects performed posture maintenance tasks
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within a predefined range of negative damping-defined
environments while their arm was perturbed to challenge
postural stability. However, the quantification was made only
at a single arm posture due to lengthy experiments requiring
brute force exploration to find the lower bound. While this
preliminary study provided useful baseline information, the
information gained cannot be directly applied to general arm
movement tasks covering a wide range of motion.

Our goal in this paper is to quantify the lower bound of
robotic damping that humans can stably interact with for
various arm postures covering most of the reachable space
during natural arm motions. To determine the lower bound in
each arm posture without lengthy experiments that might
cause subject fatigue, experiments were optimized using the
bisection algorithm and the baseline information about the
lower bound of robotic damping from the previous study.
Thus, we could successfully overcome the time limitation of
the previous study and determine the lower bound of robotic
damping for stable pHRI for various arm postures.

II. METHODS

A. Experimental Setup

A 7 degree-of-freedom (DOF) robotic arm (LBR iiwa
R820, KUKA, Germany) with a 6-axis load cell (Delta IP60,
ATI Industrial Automation, NC) were used to evaluate the
human arm stability during interaction with unstable
damping-defined environments in different arm postures.
Both kinematic and force data were recorded at 1 kHz and
low-pass filtered using a bi-directional 4th order Butterworth
filter with a cutoff frequency of 20 Hz to remove the high-
frequency noise.

Two distinct controllers have been implemented: 1) an
admittance controller to simulate unstable (negative)
damping-defined environments and 2) a position controller to
apply fast perturbation to disturb the arm posture and
challenge arm stability in either the anterior-posterior (AP) or
medial-lateral (ML) direction. The robot alternated between
these two controllers in a sample time of 1 ms. This small
delay provided a transient position perturbation to the arm
during interaction with the simulated mechanical
environments.

Subjects were seated with their trunk securely strapped to
a rigid chair and instructed to hold a handle connected to the
robot end-effector (Fig. 1A). Arm stability was evaluated
around the neutral arm posture, defined as follows: shoulder
in ~70° of abduction, ~45° of horizontal flexion, and the
elbow in ~90° of flexion.

A visual feedback display (at a distance of ~1 m from the
subject) helped subjects to complete posture maintenance
tasks by showing current and target hand positions (Fig. 1B).
Nine evenly distributed points around the neutral posture (+6
cm in the AP and ML directions) were tested. These nine
points were chosen to cover the whole accessible workspace
of the arm in the horizontal plane.

A high stiffness of 10 N/m was simulated in the vertical
plane to constrain vertical arm movement and only allow for
horizontal plane movement. In the horizontal plane, zero

Fig. 1. Experimental setup. A: Side view of the robotic arm coupled to a
human subject in the neutral position. B: Visual feedback display. Black
hollow circles showed 9 different targets for different arm postures. The
red solid circle presented the current hand position. Small gray circles
were at +5 cm from the current target position appeared at the beginning
of each trial either in the AP direction or ML direction to help subjects
explore the simulated mechanical environment. Dotted lines denote the
boundaries of the virtual walls around the target position. The solid lines
showed the boundaries of the virtual walls around the whole plane of
movement.

stiffness and a constant inertia of 10 kg were simulated, and
only robotic damping was varied to manipulate the level of
environmental stability. The ramp position perturbation had
an amplitude of 5 cm with an average speed of 20 cm/s. Our
previous study has performed a sensitivity analysis with
varying inertias and perturbation profiles and has
demonstrated their minimal impact on arm postural stability
[18].

Arm stability in both the AP and ML directions was tested
in each of the 9 arm postures. During trials in the AP direction,
the robotic damping in the ML direction was constant at 30
Ns/m and the damping in the AP direction was varied.
Similarly, during trials in the ML direction, the robotic
damping in the AP direction was constant at 30 Ns/m and in
the ML direction was varied. The damping in the AP direction
was varied from the initial value of -30 Ns/m, and iteratively
subtracted by 10 Ns/m until the human arm could no longer
stably interact with the simulated damping. If the arm failed
to stabilize at the initial value, the damping was iteratively
added by 10 Ns/m until stable interaction was achieved. From
this point, the damping was changed based on the bisection
method until the difference of the damping values for stable
interaction and unstable interaction was less than 5 Ns/m. The
damping value for the final successful trial was regarded as
the lower-bound of robotic damping that the human arm could
stably interact with. The same algorithm was implemented for
the ML direction, except that the initial damping was -10
Ns/m and the initial changing interval until the first failed trial
was 5 Ns/m. These values were chosen based on preliminary
experiments and previous findings in [18].

As a safety feature, two virtual walls were implemented.
One was a virtual wall of 40 x 40 cm? around the whole 9 arm
postures. High stiffness was implemented out of this virtual
wall to prevent any displacement outside of these boundaries.
The other was a virtual wall of 24 x 24 cm? around each target
position (Fig. 1B). If displacement reached this virtual wall,
the simulated damping switched to 30 Ns/m to stabilize the
arm and prevent any potential injuries.



Ten young, healthy subjects (age: 20-33, height: 162-186
cm, weight: 47-86 kg, sex: 7 males and 3 females)
participated in this study, which was approved by the
Institutional Review Board of Arizona State University
(STUDY 00010123). Subjects provided informed, written
consent prior to participation. All experimental procedures
were performed in accordance with the relevant guidelines
and regulations. No subject was informed regarding the
purpose of this study.

B. Experimental Protocol

An experiment was designed in which subjects performed
posture maintenance tasks in 9 different arm postures in both
the AP and ML directions. First, the target position and the
direction of movement were randomly selected among the 9
arm postures. Subjects were instructed to explore the selected
damping-defined mechanical environment by reaching the
small gray circles on the visual feedback display (Fig. 1B) that
were 5 cm apart from the chosen target position, and then to
return to the target position (£5 mm). After the target position
was maintained for a randomized time interval of 0.5-1.5 s,
the position perturbation displaced the arm to disturb the
current arm posture and challenge arm stability. Subject were
instructed to move their arm back to the target position as
efficiently as possible following the perturbation.

The damping-defined mechanical environment that
subjects need to explore changed according to the setup
mentioned in the previous subsection. The damping value
defining the mechanical environment started from the initial
condition until it converged to the lower bound of damping.
After the lower bound of damping was found for the selected
target position, the next target position was chosen randomly,
and the process was repeated. The process of the experiment
is presented in Algorithm 1, which explains with more details
about how the previously described method works to find the
lower bound of robotic damping in different arm postures. B
is denoted as the robotic damping.

A total of 18 experimental conditions (9 target positions x
2 directions) were tested. These experimental conditions were
divided into 9 blocks in order to avoid subject fatigue. On
average, each of these conditions took 7 trials to converge to
the lower bound, resulting in a total of 126 trials. Two
additional training blocks were provided before the main
experiment to help subjects familiarize themselves with the
experimental setup and protocol. The entire experiment,
including these two training blocks and rest periods, took
under 30 mins.

C. Data Analysis

For each trial, the negative robotic damping value
defining the unstable mechanical environment was chosen
based on the success or failure of the previous trial. A trial
was considered successful if subjects maintained the hand
position inside the target position (£5 mm) for 500 ms
continuously after the perturbation within 3 s. If subjects
failed to meet this criterion or if the hand position passed the
boundaries of the virtual wall around the current target
position (either in the exploration phase or after perturbation),
this trial was considered failed.

Algorithm 1 Finding the lower bound of robotic damping
that humans can stably interact with

1: while isempty Bjyyerbouna Of any target position
and perturbation direction do

2:  Select the target position randomly

3:  Select the direction of movement randomly

4: Initialization interval change & initial condition
based on direction

5: B «initial condition

6: while success_bound isempty || failed bound
isempty do

7:  Test trial with B

8: if trial succeed then

9: success_bound < B

10: B « B —interval change
11: else

12: failed bound < B

13: B « B + interval change

14: end while

15: while |success bound — failed _bound| > 5 do

16: B « (success_bound + failed_bound)/2
17: Test trial with B

18: if trial succeed then
19: success_bound < B
20: else

21: failed bound < B

22: end while

23: Biowerbound < Success_bound

24: return B,y erbouna t0 selected target position
and direction

25: end while

Nine different arm postures in both the AP and ML
directions were tested for each subject to find the lower bound
of robotic damping that the subject can successfully interact
with. For each of the 18 experimental conditions, group
results were reported by calculating the average of the lower
bound damping of all 10 subjects, which show the differences
of the lower bound of robotic damping with respect to the
direction of movement and distance of the arm to the body.

Besides the analysis in the time domain, kinematic
stability was also investigated in a phase space consisting of
phase variables of position and velocity. In particular, for each
of the 9 arm postures, successful trials at the lower bound of
robotic damping were analyzed to identify any differences
between the AP and ML directions regarding the margin of
stability.

In the phase space analysis, the rate of reduction in the
kinematic error after perturbation was calculated. Two-
dimensional (2D) phase variables X = [P V] were defined
where p and v were position and velocity, respectively. To
lessen the burden in computation without losing the details,
the raw data of position and velocity were down sampled by
averaging data points within a 50 ms window. Using the
down-sampled data, phase arrays, X (k) and X (k + 1), were
further defined as:



AP ML

>

Damping = -30 Ns/m

amping = -10 Ns/m

E 005 jL
R AN

L 0 N

3

&£ -0.05
B

—_ Damping = -70 Ns/m Damping = -40 Ns/m
E 005 J\

: AVAY
il 0K

2

a -0.05

-1 0 1 2 3 -1 0 1 2 3

Time (sec) Time (sec)

Fig. 2. Kinematic responses of the arm endpoint of a representative
subject for the AP and ML directions. Endpoint positions are presented
for the time interval of [-1, 3] s, where 0 s is the onset of the perturbation.
A: successful trials, B: failed trials. (Left): kinematic responses in the
AP direction, (right): kinematic responses in the ML direction. The
corresponding robotic damping value was included in each plot.
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where k, and k,, was the moment corresponding to the end
of the ramp position perturbation and the first moment that
subjects maintained the hand position inside the target for
500 ms continuously following the perturbation,
respectively. The relationship between X (k) and X (k+1),
potentially nonlinear, was linearized with respect to the
target position and represented by a 2D Jacobian matrix J;:

Xk +1) = J X (k). 2)

The maximum eigenvalue of /; was calculated to quantify
the rate of contraction of the phase variables in the phase
space. The system is stable as long as the eigenvalue is less
than 1. In addition, the higher the maximum eigenvalue, the
less the stability margin.

Statistical analysis was performed to investigate the
direction dependence (AP vs. ML) of arm stability for all of
the 9 arm postures. A paired t-test was performed separately
for the lower bound of robotic damping from the time
domain analysis and the maximum eigenvalue from the
phase space analysis.

III. RESULTS

All subjects could stably interact with unstable viscous
(negative damping-defined) environments to a certain
extent, but the time and effort needed to stabilize the arm
increased as the level of environmental stability decreased,
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Fig. 3. Lower-bound of robotic damping that the human arm can stably
interact with for each of the 9 testing postures for AP (top) and ML
(bottom) directions. The mean and standard deviation (in parentheses) of
10 subjects are presented.

i.e., robotic damping decreased. The lower bound of robotic
damping that subjects could stably interact with was
determined based on successful and failed trials, which
varied for different arm postures and perturbation directions.

Kinematic responses of the arm endpoint of a
representative subject for the AP and ML direction trials are
presented in Fig. 2. The difference between successful and
failed trials is clear from this figure. In the successful trials,
in both directions, subjects could stabilize the arm with
minimal oscillations, while in the failed trials they could not
regain posture stability.

The bisection algorithm with the baseline information
about the lower bound from the previous study [18] greatly
decreased the number of trials and time required for finding
the lower bound of robotic damping for stable pHRI. The
number of trials to find the lower bound for each posture and
each direction was less than 8 trials on average across all 10
subjects. The previous study, by comparison, required 240
trials to find the lower bound for a single posture, the neutral
position, in both the AP and ML directions [18], which is
about 15 times more than that in this study.

Group analysis on 10 subjects demonstrated that, on
average across all 9 different postures, the lower bound of
robotic damping that the human arm can stably interact with
was significantly lower in the AP direction than ML
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Fig. 4. Maximum eigenvalues from the phase space contraction analysis.
The values were calculated in the lower bound condition for each of the
9 testing postures for the AP (Top) and ML (Bottom) directions. The
corresponding statistical analysis results between the AP and ML
directions for each posture were denoted with asterisks in the top plot (*:
p<0.05, **: p<0.01, ***: p <0.001). The mean and standard deviation
(in parentheses) of 10 subjects are presented.

direction: -50.3 (2.9) Ns/m and -21.6 (4.0) Ns/m for the AP
and ML directions, respectively. Results for each of the 9
testing postures are shown in Fig. 3. The minimum lower
bound in the AP direction was -53.8 Ns/m for the arm
posture furthest from the body. The minimum value for the
ML direction was -26.4 Ns/m for the same arm posture as in
the AP direction.

For any of the 9 arm postures, the statistical analysis with
the paired t-test confirmed that the lower bound was
significantly lower in the AP than ML direction (p <
0.0005). A higher arm stability in the AP than ML direction
is consistent with previous findings that human arm
impedance is significantly higher in the AP than ML
direction [11, 19].

Group results also demonstrated that the human arm is
less capable of adjusting to unstable damping-defined
environments when it is closer to the body in the AP
direction, and when it is laterally displaced in the ML
direction.

According to the phase space analysis, the maximum
eigenvalue of the Jacobian matrix (J;) was always less than
1 for any successful trial with the identified lower bound of
robotic damping, implying stable pHRI.
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Fig. 5. Representative results of state trajectories (endpoint velocity vs.
position) in the phase space for the AP and ML directions in the same
posture in the lower bound condition. Red traces represent raw data
sampled at 1 kHz, and blue dot points represent down-sampled data
points. The corresponding maximum eigenvalue was included in each
plot.

Group results of the phase space analysis also confirmed
that the stability margin is greater in the AP than ML
direction, evidenced by the lower maximum eigenvalue of
Jr in the AP direction (Fig. 4). In all 9 arm postures, the
average eigenvalue in the AP direction was lower than that
in the ML direction, and 6 postures showed statistical
difference. This result demonstrates that arm stability at the
lower bound of robotic damping conditions for stable pHRI
can be more easily achieved in the AP than ML direction. In
other words, subjects had more difficulty in reducing the
kinematic error induced by the position perturbation during
interaction with an unstable environment in the ML than AP
direction. The sample results of a representative subject
showed higher overshoots, oscillations, and slower
convergence to the target position in the ML than AP
direction for the related lower bound condition (Fig. 5).
These results are consistent with the results of the time
domain analysis.

IV. DISCUSSION

Compared with human arm stiffness, arm damping has
been relatively understudied. This is mainly because
damping quantification is more sensitive to different
identification methods than other impedance parameters. A
lack of knowledge about human arm damping has prompted
excessively conservative robotic impedance controllers with
significant positive damping, which sacrifices the overall
performance in pHRI at the expense of stability. With the
knowledge about human arm damping modulation,
impedance controllers could utilize a wider range of robotic
damping values to the improve the overall performance, for
example, increasing agility of the coupled human-robot
system and decreasing user effort.

In order to overcome the limitation of directly
quantifying the human arm damping and determining a
proper range of robotic damping that could improve the
overall performance of the coupled human-robot system, we
quantified the lower bound of robotic damping that humans



can stably interact with, which will be used to directly
determine the range of robotic damping for the performance
improvement. To this end, we analyzed the kinematic
responses of the human arm, in both the time domain and
phase space, during interaction with a robotic arm
simulating viscous, damping-defined environment. In order
to cover most of the reachable space during natural arm
motions, the study was performed at 9 different arm postures
around the neutral arm posture. With the bisection algorithm
and the baseline information about the lower bound of
robotic damping from the previous study, we could
substantially reduce the time required for the quantification
by a factor of 15 compared to the previous brute force
approach in [18].

The results of this study demonstrated that the lower
bound of robotic damping that the human arm can stably
interact with is more than twice as low for the AP direction
than for the ML direction. The statistical analysis confirmed
that the difference of lower bound in AP and ML direction
in all 9 arm postures is significant. The results also showed
that the arm is less capable of adjusting to unstable damping-
defined environments when it is closer to the body and when
it is laterally displaced for the AP and ML directions,
respectively. Finally, the phase space analysis further
supported that arm stability at the lower bound of robotic
damping conditions is more easily achieved in the AP than
ML direction. In other words, the stability margin was
greater in the AP than ML direction. These results are
consistent with the previous findings that human arm
impedance is significantly higher in the AP than ML
direction and exhibits posture-dependent characteristics.

Outcomes of this study, i.e., lower bounds of robotic
damping for stable pHRI in different arm postures and in
both the AP and ML directions, will guide us to carefully
design robotic impedance controllers that are applicable to
complicated tasks requiring a wide range of motion, as is
common in many real-world tasks. The impedance or
admittance controllers with this bound information will
avoid imposing unnecessarily high damping but utilize a
wider range of robotic damping from negative to positive
values to improve the trade-off between stability and
performance (e.g., agility and wuser effort) without
compromising the coupled stability of the human-robot
system [20-22].

REFERENCES

[1]  Krebs, H.a. and B. Volpe, Rehabilitation robotics, in Handbook of
clinical neurology. 2013, Elsevier. p. 283-294.

[2]  Heyer, C. “Human-robot interaction and future industrial robotics
applications.” In IEEE/RSJ International Conference on
Intelligent Robots and Systems. 2010.

[3] S. Haddadin, M. Suppa, S. Fuchs, T. Bodenmuller, A. Albu-
Schaffer, and G. Hirzinger, Towards the robotic co-worker
(Robotics Research). Springer, 2011, pp. 261-282.

[4] P. Tsarouchi, S. Makris, and G. Chryssolouris, "Human-robot
interaction review and challenges on task planning and
programming,”" International Journal of Computer Integrated
Manufacturing, vol. 29, no. 8, pp. 916-931, 2016.

[5] A. Albu-Schaffer, S. Haddadin, C. Ott, A. Stemmer, T. Wimbock,
and G. Hirzinger, "The DLR lightweight robot: design and control

(6]

(8]

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

concepts for robots in human environments," Industrial Robot-an
International Journal, vol. 34, no. 5, pp. 376-385, 2007.

C. Ott, O. Eiberger, W. Friedl, B. Bauml, U. Hillenbrand, C.
Borst, © A. Albu-Schaffer, B. Brunner, H. Hirschmuller, S.
Kielhofer, R. Koni- “ etschke, M. Suppa, T. Wimbock, F.
Zacharias, and G. Hirzinger, “A humanoid two-arm system for

dexterous manipulation,” in 6th IEEE-RAS International
Conference on Humanoid Robots, Genova, pp. 276-283,
December 2006.

N. Hogan, "Impedance Control - an Approach to Manipulation .1.
Theory," Journal of Dynamic Systems Measurement and Control-
Transactions of the Asme, vol. 107, no. 1, pp. 1-7, 1985.

N. Hogan and S. P. Buerger, "Impedance and interaction control,"
Robotics and Automation Handbook, New York, CRC Press,
2005.

T. Tsumugiwa, R. Yokogawa, and K. Hara, "Variable impedance
control based on estimation of human arm stiffness for human-
robot cooperative calligraphic task," in IEEE International
Conference on Robotics and Automation (ICRA), Washington
D.C., USA, pp. 644-650, 2002.

E. Burdet, R. Osu, D. W. Franklin, T. Yoshioka, T. E. Milner, and
M. Kawato, "A method for measuring endpoint stiffness during
multi-joint arm movements," J Biomech, vol. 33, no. 12, pp. 1705-
9, Dec 2000.

E.J. Perreault, R.F. Kirsch, and P.E. Crago, “Effects of Voluntary
Force Generation on the Elastic Components of Endpoint
Stiffness,” Experimental Brain Research, vol. 141, pp. 312-323,
2001.

M. A. Krutky, R. D. Trumbower, and E. J. Perreault, “Influence
of environmental stability on the regulation of end-point
impedance during the maintenance of arm posture,” J.
Neurophysiol., vol. 109, no. 4, pp. 1045-1054, 2013.

H. Cho and J. Park, “Impedance Control with Variable Damping
for Bilateral Teleoperation under Time Delay,” JSME Int’l J.
Series C, vol. 48, no. 4, pp. 695-703, 2005.

D. Surdilovic, “Contact stability issues in position based
impedance control: Theory and experiments,” in Proc. IEEE Int.
Conf. Robotics and Automation, pp. 1675-1680, 1996.

C. Ott, A. Albu-Schaffer, A. Kugi, and G. Hirzinger, “On the
passivity-based impedance control of flexible joint robots,” IEEE
Transactions on Robotics, vol. 24, no. 2, pp. 416429, 2008.

G. Raiola, C. A. Cardenas, T. S. Tadele, T. De Vries, and S.
Stramigioli,“Development of a safety-and energy-aware
impedance controller for collaborative robots,” IEEE Robotics
and automation letters, vol. 3, no. 2, pp. 1237-1244, 2018.

H. Lee and N. Hogan, "Essential considerations for design and
control of human-interactive robots," in In Proc. 2016 IEEE
International Conference on Robotics and Automation (ICRA),
Stockholm, pp. 3069-3074, 2016.

F. Zahedi, T. Bitz, C. Phillips, and H. Lee, "Regulation of 2D Arm
Stability against Unstable, Damping-Defined Environments in
Physical Human-Robot Interaction," International Conference on
Intelligent Robots and Systems (IROS), 2020.

H. Gomi and R. Osu, "Task-dependent viscoelasticity of human
multijoint arm and its spatial characteristics for interaction with
environments," J Neurosci, vol. 18, no. 21, pp. 8965-78, 1998.

T. Bitz, F. Zahedi, and H. Lee, "Variable Damping Control of a
Robotic Arm to Improve Trade-off between Agility and Stability
and Reduce User Effort," in IEEE International Conference on
Robotics and Automation (ICRA), France, 2020.

J. Arnold, H. Hanzlick, and H. Lee, "Variable Damping Control
of the Robotic Ankle Joint to Improve Trade-off between
Performance and Stability," in IEEE International Conference on
Robotics and Automation (ICRA), Montreal, Canada, pp. 1699-
1704, 2019.

J. Arnold and H. Lee, " Variable Impedance Control for pHRI:
Impact on Stability, Agility, and Human Effort in Controlling a
Wearable Ankle Robot," IEEE Robotics and Automation Letters
(RA-L), vol. 6, no. 2, pp. 2429-2436, 2021.



