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Abstract—This paper addresses the problem of navigation using
only relative directional measurements (i.e., relative distances are
unknown) with field of view constraints. We present a novel
navigation vector field for the bearing-based visual homing
problem with respect to static landmarks in 2-D and 3-D
environments. Our method employs two control fields that are
tangent and normal to ellipsoids having landmarks as their foci.
The tangent field steers the robot to a set of points where the
average of observed bearing vectors is parallel to the average of
the desired bearings. The normal field uses the angle between
different pairs of bearings as a proxy to adjust the robot’s distance
from the landmarks and to satisfy the field of view constraints.
Both fields are blended together to construct an almost globally
stable control law. Our method is straightforward to implement, as
it requires only comparisons between average bearings, and angles
of pairs of vectors. We provide simulations that demonstrate the
robustness of our approach on two systems: a double integrator,
and a unicycle.

Index Terms—visual homing, field of view constraint, bearing-
only navigation, navigation vector field

I. INTRODUCTION

Control in robotic systems is an ongoing research area.
One interesting problem is bearing-only navigation, which is
motivated by the use of vision sensors in robotics applications.
Vision sensors, such as monocular cameras, can provide
accurate bearing (relative direction) measurements, although
the corresponding distances are typically difficult to obtain with
comparable precision. In addition, vision sensors typically have
a limited field of view (FOV). These two limitations increases
the complexity of bearing-only navigation considerably.

The problem addressed here is visual homing: the task of
reaching a desired location using the bearing measurements of
fixed landmarks in the environment [7]. A practical application
of this problem is when a robot takes a picture of the
environment from a home location, moves to a new location,
and then needs to return to the home location using only
visual data from the camera. Existing methods can be divided
into gradient methods [4], [12], [22], image-based visual
servoing [3], [15], [20], and ad-hoc methods [1], [13], [14],
[16]. While gradient methods can achieve global stability
[22] without using range estimation (actual or estimated),
FOV constraints are not generally considered in any of these
methods, and it is common to assume omnidirectional vision
sensors. Notable exceptions are [17] where a homography-
based approach is given for keeping a single target in the
field of view of a unicycle with an onboard IMU and with
a camera attached to the body, and [4] where a navigation
function based approach was used but required planar targets
with known geometry.
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FOV constraints restrict the feasible locations for the moving
sensor carried by the robot, thus effectively creating obstacles
in the configuration space of the robot. To complete the
visual homing task the robot must avoid these obstacles to
not lose track of objects of interest; however, the locations
of such obstacles is not directly available to the robot, due
to lacking distance measurements. Many different methods
have been suggested for control-based obstacle avoidance,
some of which are potential methods [6], [10], navigation
functions [21], and harmonic functions [2], [11]. Potential
methods are prone to local minima; navigation functions are
free of local minima but are sensitive to the value of a
tuning parameter which is not known a priori, and harmonic
functions are usually computationally demanding and require
the location of the obstacles. An alternative approach is to
directly design a navigation vector field which encodes the
objectives (desired home location and FOV obstacle avoidance),
and is employed directly or indirectly in the control synthesis
step. This idea was used for obstacle avoidance in unicycles,
but with full information on the relative position of the robot
and obstacles [18], [19].
Our approach. We introduce two orthogonal flows that
respectively adjust the direction of the average of the bearings
and the angle between a pair of bearings. We then combine
these two flows into a navigation flow, which is used to
design controllers for solving the visual homing problem in
the presence of FOV constraints. Our approach is applicable
to both 2-D and 3-D environments, and presents almost-global
convergence for single integrators. We use this navigation
field to design controllers for damped double integrators and
unicycles. To the best of our knowledge, no other method exists
that tackles FOV constraints without knowledge about landmark
positions. Our approach does not rely on all of the bearings
directly, rather uses the normalized average of the bearings
and a single angle between two non-collinear bearings. We
assume that the camera on the robot can rotate independently
from the body and direction of motion of the robot, and we
model the field of view as a cone with angle less than π.
Additionally, we assume that the robot’s local reference frame
is axis-aligned with a fixed world frame (e.g., through a global
compass direction).

II. NOTATION AND PRELIMINARIES
We denote the dimension of the workspace by d ∈ {2, 3}.

The bearing measurement is a unit vector given by:

u(a,b)
.
=

b− a

‖b− a‖ , (1)

where a,b ∈ Rd are distinct. We denote the cardinality of a
discrete set P as |P|, and the boundary of a continuous set
Q as ∂Q. The identity matrix is denoted by Id ∈ Rd×d, the



d-dimensional unit sphere by Sd, the Minkowski sum by ⊕,
and proportionality by ∝. We use ](u1,u2) to denote the
(non-oriented) angle in radians between two vectors u1,u2. A
projection matrix P(v) ∈ Rd×d for v ∈ Rd is defined by:

P(v)
.
= Id −

vvT

‖v‖2 ; (2)

P(v) is symmetric, positive semidefinite, with a zero eigen-
value corresponding to v, while other eigenvalues are one.

Given k fixed and distinct points P = {pi}ki=1 in Rd, we
define the distance function ϑP(x)

.
=
∑k
i=1‖x − pi‖ to be

the sum of distances from x to all points in P . We have the
following facts regarding the function ϑP .

Definition 1. A k-ellipsoid is the set of points over which
ϑP(·) is equal to a constant r, and points in P are called foci.
Equivalently, it is the boundary of the set-valued map:

Q(r) = {x ∈ Rd : ϑP(x) ≤ r} . (3)

Lemma 1. The Jacobian of a unit vector z = g(x)
‖g(x)‖ ∈ Rd

with respect to x ∈ Rd is given by: ‖g(x)‖−1P(g(x)) ∂g∂x .

Proof. Since ∂z
∂x = ‖g(x)‖−1 ∂g∂x+‖g(x)‖−3ggT

∂g
∂x , the proof

is complete by collecting ‖g(x)‖−1 and ∂g
∂x .

Lemma 2. The Hessian of ϑP is positive semidefinite, and is
positive definite if all points in P are not collinear.

Proof. We have ∂ϑP
∂x = −∑k

i=1 u(x,pi), H(x)
.
= ∂2ϑP

∂x2 =∑k
i=1

P(u(x,pi))
‖x−pi‖ . Since H is the sum of positive semidefinite

projection matrices, H is also positive semidefinite. Moreover,
we have wTHw = 0 for some w, and hence H is positive
semi-definite if and only if each term in the sum has the same
eigenvector with zero eigenvalue, i.e., all the points in P ∪ x
are collinear. In all other cases, H is positive definite.

A point p ∈ Rd is said to be a geometric median of P if
p ∈ argminx ϑP(x). We have ∂ϑP

∂x (p) = 0 if p /∈ P .

Lemma 3 ([23]). The geometric median of P is unique, unless
all points in P are collinear and k is even.

Definition 2. The normalized vector field f(·) is denoted as
f◦

.
= f
‖f‖ , with f◦ = 0 if ‖f‖ = 0 or f is undefined.

III. BEARING-ONLY NAVIGATION

The goal in the visual homing problem is to steer a robot to
a desired location x∗ ∈ Rd, specified by a set of (measured)
desired relative bearings with respect to some fixed landmarks
in the environment with unknown locations. In addition, the
robot can only measure its relative bearings of the landmarks.
More formally, assuming there are a total of k landmarks
P = {pi ∈ Rd}ki=1 present with k ≥ 2, the desired bearings
are given by {u∗i }ki=1 where u∗i

.
= u(x∗,pi), and measured

relative bearings are given by {ui}ki=1 where ui
.
= u(x,pi)

and x ∈ Rd is the current location of the robot.
In the presence of FOV restrictions and absence of infor-

mation about landmark locations, the robot must be able to
maintain its sight over the landmarks and use the measured
bearings to reach the goal position. Losing sight of them might

make it hard to recover as the robot has to readjust its position
to some feasible location, but finding such position requires
some knowledge over the whereabouts of P . To avoid this
dilemma, we enforce the following conditions:

](ui,uj) ≤ φFOV, ∀i, j ∈ {1, . . . , k} . (4)

The constraints in (4) ensure that all the landmarks remain in
the visual field of the robot’s camera, modeled as a cone with
angle φFOV < π. This can be summarized as x(t) /∈ ⋃i,j Oij
for all t, where Oij is a field of view obstacle set defined as:

Oij .
= {x ∈ Rd : ](ui,uj) > φFOV}. (5)

Using this definition, we rewrite the problem statement as:

Problem 1. Given a set of desired bearings {u∗i }ki=1 of k ≥ 2
fixed landmarks P , find a controller that steers the robot to
the desired position where ui = u∗i , ∀i using only bearing
measurements {ui}ki=1 while avoiding all Oij sets.

We make these assumptions in solving this problem: 1) The
robot carries a rotating camera, e.g. a conventional camera
mounted on a servo motor, which rotates freely from the
movement of robot. 2) The robot has perfect knowledge of
orientation, i.e. it knows the orientations of its body frame and
the camera with respect to some global frame and hence the
measured current bearings and desired bearings are all given
in a common orientation frame. 3) The measured bearings are
always correctly matched with the corresponding landmarks.

In this section, we introduce two vector fields we use to
respectively adjust the robot’s distance from the landmarks
and direction of the average bearing vector. Later, we combine
them into our navigational vector field and use it for control
synthesis. We also provide analysis on the performance of this
field when the last two assumptions are not met.

A. Normal Flow

To avoid losing track of the landmarks, we require that
the robot avoid entering obstacle sets Oij . Instead of directly
enforcing this, we achieve this by forcing the robot to stay in
a safe set. We use the fact that the goal position x∗ is feasible
w.r.t. (4) and the pairwise angles between the desired bearings,
i.e. ](u∗i ,u

∗
j ), are all less than φFOV. We define desired safe

sets as regions where the view angle of landmarks is less than
or equal to the desired view angle given by desired bearings:

D∗ij
.
={x ∈ Rd : ](ui,uj) ≤ ](u∗i ,u

∗
j )}, D∗

.
=
⋂
i,j

D∗ij . (6)

By definition, the set D∗ and obstacle sets Oij are disjoint and
therefore staying in D∗ will guarantee FOV obstacle avoidance.
This notion is depicted in Fig. 1a for d = 2. For d = 3, Oij
and D∗ij can be visualized by revolving their 2-D version about
the line intersecting with pi and pj .

Moreover, it follows that x∗ ∈ D∗. In fact, since x∗ is located
on the boundary of D∗ij and D∗ is formed by the intersection
of such sets, we have x∗ ∈ ∂D∗. This fact motivates the design
of a vector field that converges to ∂D∗. For this purpose, we



define the normalized sum of the current and desired bearings
by:

v(x)
.
=

∑k
i=1 ui

‖∑k
i=1 ui‖

, v∗
.
=

∑k
i=1 u

∗
i

‖∑k
i=1 u

∗
i ‖

= v(x∗). (7)

Notice that v is a vector field and v∗ is a fixed vector.

Remark 1. The vector v is defined everywhere, except at the
landmarks (i.e. x = pi where ui is undefined), and where the
gradient of ϑP is zero (−∑k

i=1 ui = 0), which happens at
the geometric median of the landmarks. The geometric median
is a unique point unless k is even and all foci are collinear
(e.g. an ellipse), then v is not defined on the line segment that
contains the two middle foci (Lemma 3).

We also define δij to be the difference of the cosine of the
current and desired bearings of landmarks pi and pj :

δij(x)
.
= uT

i uj − u∗Ti u∗j . (8)

Note that D∗ij can be redefined as {x ∈ Rd : δij(x) ≥ 0}.
Now, we present our normal field fn as:

fn(x)
.
= sign(δı̂̂)v, (9)

where indices ı̂ and ̂ are chosen as:

ı̂, ̂
.
= argmin

i,j
u∗i 6=u∗j

δij . (10)

The condition u∗i 6= u∗j in (10) excludes the case where
x∗,pi,pj are collinear, in which case the D∗ij becomes degen-
erate (the line containing pi and pj except the line segment
pi-pj). In practice, this means landmarks are occluding each
other, and it would be impossible to differentiate them.

The sign of δı̂̂ determines whether the robot is in D∗ or
not. If δı̂̂ < 0, then the robot is outside of at least one of the
pairwise safe sets D∗ij and therefore is not in D∗. Otherwise if
δı̂̂ ≥ 0, we have x ∈ D∗, with equality holding on ∂D∗. The
normal field fn moves the robot away from the landmarks if
the robot is not in D∗, and moves it towards the landmarks if
the robot is in the interior of D∗ (see Fig.1b and Fig.1c).

Theorem 1. The normal flow fn(x) converges to ∂D∗.
Proof. Take the Lyapunov function Vn = 1

2‖
∑k
i=1 ui‖2. By ex-

panding Vn, we get Vn = k
2 +
∑
i<j u

T
i uj , which is the sum of

cosine of pairwise angles between the bearings with k
2 . Hence,

∂Vn

∂x = −∑i<j

( P(ui)
‖x−pi‖uj +

P(uj)
‖x−pj‖ui

)
. As ∀w : P(w)w =

0, we have ∂Vn

∂x = −∑i<j(
P(ui)
‖x−pi‖ +

P(uj)
‖x−pj‖ )(ui + uj) =

− 1
2 (
∑k
i=1

P(ui)
‖x−pi‖ )(

∑k
i=1 ui). By factoring out the Hessian

(Lemma 2), we get V̇n = ∂Vn

∂x

T
ẋ = − 1

2

(∑k
i=1 ui

)T
Hẋ. If

δı̂̂ > 0 and hence ẋ = v, we have V̇n < 0 almost everywhere
(except at geometric median or if all landmarks are collinear)
and decrease in Vn means an overall increase in the pairwise
angles. The opposite is true for δı̂̂ < 0. In addition, ∂D∗ is a
bounded and closed surface, hence following fn (which adjusts
ϑP and spans entire Rd) eventually leads to ∂D∗.

Despite the overall reduction of pairwise angles when the
robot moves away from landmarks, if the robot has a small

field of view (i.e. φFOV is small) and starts outside of D∗ and
very close to landmarks, it might briefly enter an obstacle
set on its way towards D∗. Even if this happens, one remedy
would be to keep moving away in the same direction until the
landmarks are back in sight.

B. Tangential Flow

We previously defined the safe set D∗ and the normal field
fn which converges to ∂D∗ containing x∗. Here we introduce

p1

p2

p3
x

x∗

O12

D∗
12

(a) Obstacle set O12 for φFOV ∈ { 3π
8
, 7π

8
} and the desired safe

set D∗
12. Boundaries are shown in black.

(b) f◦
n(x), k = 2 (c) f◦

n(x), k = 3

(d) f◦
t (x), k = 2

p

(e) f◦
t (x), k = 3

Figure 1: (a) shows the current and goal positions x,x∗, three
landmarks ( ), and the O12 and D∗12 sets. In (b)-(c) the normal
flow f◦n and the set D∗ are shown for two and three landmarks,
and in (d)-(e) the tangential flow f◦t and the isonormal curves
ξv∗ and ξ−v∗ are observed. The goal position x∗ is at the
intersection of the ∂D∗ set and the ξv∗ curve. Since there
are an even number of collinear landmarks in (d), geometric
median is not unique and is shown by the line segment p1-p2.
In (e) geometric median is unique and is shown by p .



a complementary field which also contains x∗ as an equilibrium
point. The tangential field ft is defined as:

ft(x) = −P(v)v∗. (11)

Contrary to fn, ft keeps the value of ϑP fixed.

Lemma 4. The two vector fields ft and fn are orthogonal
and integral curves of ft lie on k-ellipsoids.

Proof. Since vTP(v) = vT(Id−vvT) = 0, we have fT
n ft =

0 everywhere. Moreover, ft is always orthogonal to v and
therefore orthogonal to the gradient of ϑP(x), ergo moving
with ft does not change ϑP , hence the claim. While fn is
always parallel to the gradient of ϑP(x) and therefore normal
to k-ellipsoids, ft is always tangent to k-ellipsoids.

Plots of the normalized tangential field are given in Fig-
ures 1d-1e, which shows that the flows lie on 2-ellipsoids
(i.e. ellipses) and 3-ellipsoids. Additionally, ft circumvents
the landmarks instead of directly passing between them. This
behavior is useful for avoiding FOV obstacles sets.

Here we show that ft yields convergence of v to v∗. Later,
we investigate its equilibrium points and their properties.

Theorem 2. The flow ẋ = ft(x) leads to convergence of v to
v∗ almost globally.

Proof. Take Vt = 1
2‖v − v∗‖2 as a Lyapunov func-

tion. Using the chain rule, ∂Vt

∂x = (v − v∗)T ∂v∂x and
∂v
∂x = ‖∑k

i=1 ui‖−1P(
∑k
i=1 ui)

∂
∑k

i=1 ui

∂x (Lemma 1). From

Lemma 2, we have ∂
∑k

i=1 ui

∂x = −H, where H is the Hessian
of ϑP . Also from (2) we have P(

∑k
i=1 ui) = P(v). Hence,

V̇t =
∂Vt

∂x ẋ = ‖∑k
i=1 ui‖−1(v − v∗)TP(v)HP(v)v∗. Since

vTP(v) = 0 and P(·) is symmetric, we can simplify the
expression for V̇t as V̇t = −‖∑k

i=1 ui‖−1fT
t Hft. Using

Lemma 2, if H is positive definite we have V̇ < 0 whenever
ft 6= 0. If H is positive semidefinite, v is also parallel to
all bearings and the zero eigenvector of H, and because ft is
orthogonal to v (see Lemma 4) we again have V̇ < 0. However,
we have ft = 0 if v = ±v∗. This means that any point x0

with v(x0) = −v∗ is an unstable equilibrium point of ft.

To find the equilibrium points of ft, we need to find points
where v(x) = ±v∗, since P(v∗)v∗ = P(−v∗)v∗ = 0. We
will show that such points form two curves {ξv∗ , ξ−v∗}, which
we call isonormal curves, and they start from a/the geometric
median point of the foci and move away from the foci such
that they intersect with any k-ellipsoid only once.

Proposition 1. Let ξv0
= {x ∈ Rd : v(x) = v0} be the set

of points where v is equal to a value v0 ∈ Sd−1. Then:
1) ξv0

is a 1-D open curve.
2) Focus pi belongs to ξv0

if v0 ∈ Ui, where

Ui .= {
e

‖e‖ : e ∈
∑
j 6=i

u(pi,pj)⊕ Sd−1}. (12)

3) Every point in ξv0
\ P is regular.

Proof. The proof is based on compactness and strict convexity
of the set S = Q(r) [8, Proposition 4]. Considering only
hyperplanes with normal vector v0 toward the inside of S

p1p2

p3

p4

p

Figure 2: Multiple confocal 4-ellipsoids in 2-D with various
isonormal curves ξv0

corresponding to v0 = [cos(θ), sin(θ)]T

for θ ∈ { iπ18}35i=0. Point p is the geometric median of foci.

(opposite of gradient of ϑP ), for a given r the hyperplane
is tangent at exactly one point on S; equivalently stated,
the Gauss map [5] of S (i.e. ∂S 7→ Sd−1) is surjective.
Uniqueness of the normal vector v0 on S implies that ξv0

intersects with any k-ellipsoid (∂S) at a single point. Starting
from rmin = minx ϑP(x) which happens at a/the geometric
median point, as r → ∞ the set ξv0

traces a curve which
we now show to be regular everywhere except at the foci.
Let ζ(r) ∈ ξv0

represent the point on ∂S with v(ζ) = v0

and ϑP(ζ) = r. By definition, for all r we have η(r) .
=∑k

i=1 u(ζ(r),pi) ∝ v0, and therefore ∂
∂rη = ∂η

∂ζ
∂ζ
∂r ∝ v0.

We see that −H(ζ)∂ζ needs to be proportional to v0, or
equivalently ∂ζ ∝ −H(ζ)−1v0. Regularizing with respect to
r, we get ∂ζ∂r = −H(ζ)−1v0(η

TH(ζ)−1v0)
−1. This derivative

exists everywhere except at foci. Hence, ξv0
is a curve that

is regular everywhere except at foci. Furthermore, the set Ui
contains the limit points of v(x) as x→ pi.

Figures 1d and 1e have the ξv∗ , ξ−v∗ curves for k = 2, 3.
Fig. 2 depicts these curves for different unit vectors v0 with
k = 4. See [8, Fig. 2] for a similar plot for k = 3.

Remark 2. Since the unstable equilibrium points of ft lie on
the ξ−v∗ curve, ft is almost globally stable, except on the 1-D
set ξ−v∗ which has a Lebesgue measure zero.

C. Combined Flow

We use the normalized fields f◦n,f
◦
t instead of fn,ft as

their directions carry useful information while we manually
set the magnitudes. Our goal is to build a combined field f
from f◦n,f

◦
t that converges to the intersection of ∂D∗ and ξv∗

which is x∗. We achieve this by a linear combination:

f(x)
.
= gt(x)f

◦
t (x) + gn(x)f

◦
n(x) , (13)
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(d) Double integrator, λ0 = λ0 = 1,
λ0 = 0.7, α = 1

4

Figure 3: In (a)-(b)-(c), trajectories of a double integrator and a unicycle and f(x) are given with respect to 3 landmarks from
different starting points in 2D and 3D. The goal positions are located at x∗ = [2, 1]T and x∗ = [2, 1, 2]T. In (d), blue and cyan
trajectories are convergent to x∗ = [1, 1]T and two other points at the intersection of ∂D∗ and ξṽ∗+ , ξṽ∗- , due to {0,±π6 } radian
tilt in the respective orientation frames. Purple trajectories correspond to six possible pairwise permutations of two of the
bearings due to landmark mismatch, which all end on ξv∗ and outside of the obstacle sets, but not on x∗.

where gt, gn : Rd 7→ R are non-negative gain functions.

Theorem 3. The flow f almost globally converges to x∗ if
gt + gn = 0 only at x∗ and

√
1 +

g2n
g2t

cos(φFOV + φ0) > −1
where φ0 = arctan( gngt ).

Proof. From Theorem 2, V̇t ∝ −fT
t Hf . Defining ri as ri

.
=

‖x−pi‖ and expanding H,f , we get V̇t ∝ −(
∑k
i=1 r

−1
i ft−∑k

i=1
uT

i ft
ri

ui)
Tf = gt‖ft‖

(∑k
i=1 r

−1
i ((uT

i f
◦
t )

2 − 1)
)
+

gn‖ft‖
(∑k

i=1 r
−1
i (uT

i f
◦
t )(u

T
i f
◦
n)
)

which further simplifies to
V̇t ∝ −gt‖ft‖

∑k
i=1 r

−1
i

(
1 − (uT

i f
◦
t )

2 − gn
gt
(uT
i f
◦
t )(u

T
i f
◦
n)
)
.

Since bearings are contained in a cone, we have |uT
i f
◦
n| ≥

cos(φFOV
2 ) and uT

i f
◦
t ≤ sin(φFOV

2 ), which gives 1− (uT
i f
◦
t )

2 −
gn
gt
(uT
i f
◦
t )(u

T
i f
◦
n) ≥ 1−sin2(φFOV

2 )− gn
gt

sin(φFOV
2 ) cos(φFOV

2 ) =

1
2 (1+cos(φFOV)− gn

gt
sin(φFOV)) =

1
2 (1+

√
1 +

g2n
g2t

cos(φFOV+

φ0)) where φ0 = arctan( gngt ). Hence, it suffices for V̇t < 0 to

have
√
1 +

g2n
g2t

cos(φFOV + φ0) > −1. Even if this is not met
and gnf

◦
n momentarily increases Vt, the gtf◦t is eventually

able to compensate thanks to its global stability. Moreover,
since ft keeps ϑP fixed, the flow gnf

◦
n converges to ∂D∗.

While there is not a unique way to design these functions
depending on the desired behaviour, we suggest these criteria:

1) The field f◦t is always active.
2) If x /∈ D∗, move towards ∂D∗ by activating f◦n .
3) If x ∈ D∗, activate f◦n only if v is close to v∗.

The reason behind delayed activation of f◦n when the robot is
in D∗ is that staying on ∂D∗ might take the robot too close
to the landmarks and cause collision, whereas staying on a
k-ellipsoid in D∗ ensures a minimum distance (see Fig. 1).

For smooth transitions, we use the smooth bump function:

bε(x)
.
=


0 x < 0

3ε−2x2 − 2ε−3x3 0 ≤ x ≤ ε
1 ε < x

(14)

where ε is a design parameter. Our suggested functions are:

gt(x)
.
= min(1,

√
1− vTv∗) (15a)

gn(x)
.
= max(0,vTv∗)bε(δı̂̂) + bε(−δı̂̂) . (15b)

The function gt is: 1) equal to one when ](v,v∗) ≥ π
2 ,

2) less than one when ](v,v∗) < π
2 , which slows down the

convergence to v∗ as v→ v∗. The function gn: 1) pushes the
robot away if δı̂̂ is negative by bε(−δı̂̂), 2) attracts it towards
the foci by bε(δı̂̂) cos(](v,v∗)) once ](v,v∗) < π

2 . Using a
bump function will smoothen the transition of the normal flow
at ∂D∗. We choose ε such that ε < minp,q u

∗T
p u∗q − cos(φFOV)

to ensures that the smooth transition phase never falls in the ob-
stacle set Oı̂̂. For such pair p̂, q̂ with τ = u∗Tp̂ u∗q̂ − cos(φFOV),
we have bε(−δp̂q̂) = 1 if −τ < δpq ≤ −ε.
Remark 3. While the visual homing approaches typically
require all of the desired bearings, f can be utilized using
only the unit vector v∗ ∈ Sd−1 (containing d− 1 parameters)
and the angle between the bearings of two of the desired
landmarks (i.e. ](u∗i ,u

∗
j )). These d parameters produce a

minimal representation of the home location x∗ (See Fig. 1e).

D. Failure Analysis
Landmark mismatch: As ft only requires v,v∗ and these

are obtained from unordered sums over the bearings (7),
both v,v∗ can be computed without directly associating each
bearing ui with its corresponding u∗i . For fn, however, correct
associations are needed for calculating {δij} and δı̂̂. If bearings
are mismatched, the convergent point x̃∗ still lies on ξv∗ as ft
remains the same, but x̃∗ 6= x∗ if ı̂ or ̂ is mismatched near x̃∗.
Point x̃∗ is not inside of obstacle sets nonetheless since the
angle between any pair of desired bearings is less than φFOV.

Occlusion: If sight over some of the landmarks is lost due
to occlusion, the combined flow of the remaining landmarks
remains convergent to x∗ (See Fig. 1 for k = 3, 2). Notice that
ft only needs a single landmark, but fn needs at least two.



Orientation bias: If there is bias in the orientation estimate
of the robot with respect to a global frame in which {u∗ij} are
expressed, the bearing measurements ũij are corrupted by a
rotation R̃ ∈ SO(d) such that ũij = R̃uij . In this case, the
combined flow is convergent to the intersection of ∂D∗ and
ξṽ∗ , where R̃ṽ∗ = v∗ or ṽ∗ = R̃Tv∗.

IV. APPLICATIONS BEYOND SINGLE
INTEGRATORS

Following [18], we propose control laws for double integrator
and unicycle dynamics. We empirically show via simulations
the convergence of these applied control laws. A full theoretical
convergence analysis (e.g. the basin of attraction of initial
conditions) is left out of the scope of this paper.

A. Double Integrator Control Synthesis
We assume the following linear system dynamics:

ẍ = −λ0ẋ+ µ, µ = αf(x), (16)

where x ∈ Rd is the position, α > 0 is a constant, and
λ0 > 0 is a damping coefficient. An appropriate choice of λ0
is necessary to alleviate overshoots.

B. Unicycle Control Synthesis
Instead of f we use f◦ as a navigation function, which

suggests the suitable direction to follow, and requires manual
setting of the velocities (as in [18]). For the state variables
q = [xT, θ ]T ∈ R3 consisting of the position x ∈ R2 and the
orientation θ, the equations of motion are:

q̇ = [ cos(θ) sin(θ) 0 ]Tυ + [ 0 0 1 ]Tω , (17)

where υ, ω ∈ R are linear and angular velocities of the robot
with respect to its body-fixed frame. Given the following:

υ = kυ
(√

1− vTv∗ + |δı̂̂|
)

(18a)

ω = −kω(θ − ψ) + ψ̇ (18b)

as suggested control law, ψ .
= arctan(f◦2 , f

◦
1 ) is the orientation

of f◦(x) at current position and kυ, kω are positive gains.
In (18a), the velocity is positive everywhere except at x∗,
and (18b) yields exponential convergence of θ to ψ.

V. SIMULATION RESULTS
We present simulation results for the visual homing problem

for unicycles in 2D and double integrators in 2D and 3D. In
Fig. 3, the trajectories from control laws in (16) and (18) are
plotted from different initial states. See [9] for more results.

VI. CONCLUSIONS
We presented a novel navigational vector field suitable for

controlling double integrators and unicycles for the visual
homing problem. Our vector field works with a minimal
representation of the home location, and is almost globally
stable while respecting field of view constraints. An interesting
future direction is to use our vector field in the formation
control problem along with control barrier functions. Another
direction is finding a feasible point to gain back vision over
landmarks when robot hits an FOV obstacle.
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[17] G. López-Nicolás, N. R. Gans, S. Bhattacharya, C. Sagues, J. J. Guerrero,
and S. Hutchinson. Homography-based control scheme for mobile robots
with nonholonomic and field-of-view constraints. IEEE Transactions on
Systems, Man, and Cybernetics, Part B (Cybernetics), 40(4):1115–1127,
2009.

[18] D. Panagou. Motion planning and collision avoidance using navigation
vector fields. In 2014 IEEE International Conference on Robotics and
Automation (ICRA), pages 2513–2518. IEEE, 2014.

[19] D. Panagou. A distributed feedback motion planning protocol for multiple
unicycle agents of different classes. IEEE Transactions on Automatic
Control, 62(3):1178–1193, 2016.

[20] N. P. Papanikolopoulos and P. K. Khosla. Adaptive robotic visual
tracking: Theory and experiments. IEEE Transactions on Automatic
Control, 38(3):429–445, 1993.

[21] E. Rimon and D. E. Koditschek. Exact robot navigation using artificial
potential functions. Departmental Papers (ESE), page 323, 1992.

[22] R. Tron and K. Daniilidis. An optimization approach to bearing-only
visual homing with applications to a 2-d unicycle model. In 2014 IEEE
International Conference on Robotics and Automation (ICRA), pages
4235–4242. IEEE, 2014.

[23] Y. Vardi and C.-H. Zhang. The multivariate l1-median and associated data
depth. Proceedings of the National Academy of Sciences, 97(4):1423–
1426, 2000.


	INTRODUCTION
	NOTATION AND PRELIMINARIES
	BEARING-ONLY NAVIGATION
	Normal Flow
	Tangential Flow
	Combined Flow
	Failure Analysis

	APPLICATIONS BEYOND SINGLE INTEGRATORS
	Double Integrator Control Synthesis
	Unicycle Control Synthesis

	SIMULATION RESULTS
	CONCLUSIONS
	References

