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Abstract

Partial differential equations (PDEs) play a fundamental role in modeling and simulating problems across a wide range of
isciplines. Recent advances in deep learning have shown the great potential of physics-informed neural networks (PINNs) to
olve PDEs as a basis for data-driven modeling and inverse analysis. However, the majority of existing PINN methods, based
n fully-connected NNs, pose intrinsic limitations to low-dimensional spatiotemporal parameterizations. Moreover, since the
nitial/boundary conditions (I/BCs) are softly imposed via penalty, the solution quality heavily relies on hyperparameter tuning.
o this end, we propose the novel physics-informed convolutional-recurrent learning architectures (PhyCRNet and PhyCRNet-s)
or solving PDEs without any labeled data. Specifically, an encoder–decoder convolutional long short-term memory network
s proposed for low-dimensional spatial feature extraction and temporal evolution learning. The loss function is defined as
he aggregated discretized PDE residuals, while the I/BCs are hard-encoded in the network to ensure forcible satisfaction
e.g., periodic boundary padding). The networks are further enhanced by autoregressive and residual connections that explicitly
imulate time marching. The performance of our proposed methods has been assessed by solving three nonlinear PDEs (e.g.,
D Burgers’ equations, the λ-ω and FitzHugh Nagumo reaction–diffusion equations), and compared against the start-of-the-art
aseline algorithms. The numerical results demonstrate the superiority of our proposed methodology in the context of solution
ccuracy, extrapolability and generalizability.
2021 Elsevier B.V. All rights reserved.
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1. Introduction

Complex spatiotemporal systems, modeled by PDEs, are ubiquitous in many disciplines such as applied
mathematics, physics, biology, chemistry and engineering. Solving PDE systems has been a critical component
in the community of scientific computing. Since the analytical solutions are inaccessible to most of the physical
systems, numerical approaches have been extensively investigated and developed in recent decades, such as the
finite difference/element/volume methods [1] and isogeometric analysis (IGA) [2]. Although the classical numerical
methods that approximate the exact solutions with basis functions and unknown parameters can achieve great
accuracy for forward analysis, the computational demand remains a critical issue in applications of data assimilation
and inverse problems, e.g., due to the requirement of repeated forward simulations. In the meanwhile, inevitable
modeling errors and uncertainties are hard to adjust/mitigate in these intractable problems.

Alternatively, recent developments in deep learning shed new lights on surrogate modeling of nonlinear systems
for solving forward and inverse problems. The surrogate models leverage the powerful universal approximation
capacity of deep neural networks (DNNs) [3] which avoid repeated forward analyses and provide a promising
direction for data assimilation and inverse problems. Herein, the core and fundamental challenge for NN-based
approaches lies in how to effectively solve PDEs. Actually, dated back to last century, Lagaris et al. [4,5] have
already observed the similarities between spline-based numerical simulations and NN-based solutions for differential
equations, and proposed the pioneering work on NN as the basic approximation element where the parameters are
learnable by minimizing the physics-inspired error function. Over the past decade, thanks to the great advances in
deep learning, many attempts have been devoted to this resurgent topic, which have led to a proliferation of studies
in scientific machine learning [6–15] with growing attention on modeling and simulation of PDE systems. Latest
studies utilizing DNNs for modeling physical systems fall into two streams: continuous and discretized networks.
The representative work of continuous learning is physics-informed neural networks (PINNs) [9], introduced for
forward and inverse analysis of PDEs based on fully-connected DNNs. The general principle of PINNs inherits and
matures the previous NN-based scheme [4] with loss function consisting of PDE residuals, which facilitates DNNs
training in “small data” stage (e.g., small [16–22] or zero labeled datasets [23,24]). PINNs not only foster the current
success in simulating various PDE systems (e.g., fluid dynamics [25–28], solid mechanics [24,29] and stochastic
PDEs [30,31]), but also show remarkable applications to a broad spectrum of other disciplines, including blood flows
modeling [32,33], non-invasive inference [34–36], metamodeling of nonlinear structures [37,38], denoising [39],
PDE discovery [40] and many others. Despite the great success and promise, there exists one central issue of
scalability in the existing PINN framework: it is generally limited to low-dimensional parameterizations and less
capable of handling PDE systems whose behavior has sharp gradients (e.g., propagating fronts of waves) or complex
local morphology. The requirement of vast collocation points for PDE residuals may lead to huge computational
cost and cause slow convergence in training [41]. In addition, data-driven neural operators [42–45] also seek for the
nonlinear mapping from parametric DNNs to the numerical solution in a continuous setting. The infinite-dimensional
operator learning methods prevail over the tyranny of meshes/grids, but require a moderate amount of high-quality
training data and tend to be computational intensively.

A few very recent pilot studies show that physics-informed discrete learning schemes, e.g., convolutional neural
networks (CNNs), possess better scalability and faster convergence [12,41,46–49] for modeling PDE systems,
thanks to their light-weight architecture and strength of efficient filtering over the computational domain. For the
time-independent systems (e.g., steady-state PDEs), Zhu et al. [12,50] applied CNNs for surrogate modeling and
uncertainty quantification (UQ) of PDE systems in rectangular reference domain. Furthermore, PhyGeoNet [41] was
proposed for geometry-adaptively solving steady-state PDEs via coordinate transformation between the physical
and reference domains. On the other hand, for the time-dependent systems, the majority of the NN-based solutions
still focus on data-driven approaches in the regular/rectangle grid [51–54] or the irregular mesh [55–59]. Very
few research (e.g., the AR-DenseED method in [47]) explores the possibility of using discrete learning to solve
PDEs without any labeled data. Although the existing effort escapes the demanding requirement of high-quality
training data, it has not shown satisfactory performance in error propagation [47], due to the limitation of the basic
autoregressive (AR) process. In general, relevant studies on scalable discretized learning architectures for solving
spatiotemporal PDEs in “small data” regime remain limited in literature.

The specific objective of this paper is to propose a novel physics-informed convolutional-recurrent learning
architecture (PhyCRNet) and its light-weight variant (PhyCRNet-s) for solving multi-dimensional spatiotemporal
PDEs without any labeled data. We do not attempt to compare our proposed methods with classical numerical
2
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solvers, but instead provide a spatiotemporal deep learning perspective for surrogate modeling of complex PDEs,
which can further serve as a basis approach for tackling challenges in data-enabled scientific computation such as
inverse problems and data assimilation especially in sparse and noisy data regimes. The contributions of our paper
are summarized as follows. First of all, the innovative PhyCRNet architecture combines the strengths of (1) an
encoder–decoder convolutional long short-term memory network (ConvLSTM) [60] that extracts low-dimensional
spatial features and learns their temporal evolution, (2) a global residual-connection that stringently maps the
time-marching dynamics of the PDE solution, and (3) high-order finite-difference-based spatiotemporal filtering
that accurately determines the essential PDE derivatives for constructing the residual loss function. Based on the
fundamental neural components of PhyCRNet, we also propose PhyCRNet-s which periodically skips the encoder
part in order to improve the computational efficiency. Secondly, hard-encoding of initial/boundary conditions (I/BCs)
into the networks is implemented. The hard-imposed physical constraints drastically promote the solution accuracy
on the boundaries. Finally, the numerical experiments ranging from nonlinear fluid dynamics to reaction–diffusion
(RD) systems are performed to validate the proposed approaches. The numerical results show the superiority of
PhyCRNet/PhyCRNet-s in the context of solution accuracy, extrapolability and generalizability in comparison with
two baseline models.

The rest of the paper is organized as follows, in addition to this Introduction section. Section 2 sets up the problem
of solving PDE systems using DNNs. In Section 3, we elaborate the general principle and network architectures
of PhyCRNet and PhyCRNet-s. In Section 4, we present the extensive numerical experiments and compare the
performance between our networks and baseline methods. Section 5 discusses the observations as well as the outlook
f our future study. Section 6 concludes the entire paper.

. Problem statement

Herein, we consider the general form of a set of multi-dimensional (n), nonlinear, coupled PDE systems in
arametric setting:

ut + F [u, u2, . . . ,∇xu,∇2
x u,∇xu · u, . . . ;λ] = 0, (1)

here u(x, t) ∈ Rn denotes the solution variable in the temporal domain t ∈ [0, T ] and the physical domain
; ut is the first-order time derivative term; ∇ represents the gradient operator with respect to x; F [·] is the

onlinear functional parameterized by λ. Additionally, the I/BCs have the form as I[u, ut ; t = 0, x ∈ Ω ] = 0
nd B[u,∇xu, . . . ; x ∈ ∂Ω ] = 0, where ∂Ω denotes the boundary of the spatial domain.

Our general goal is to develop DNN-based methods for forward analysis of spatiotemporal PDE systems given
n Eq. (1), which could serve as a basis for inverse problems when data is available (e.g., uncertainty quantification
nd data assimilation). More precisely, such networks will act as a new class of numerical solvers for various time-
ependent PDEs given specific I/BCs. The entire training stage is unsupervised, where we do not require any labeled
ata and merely utilize the physical laws (e.g., PDEs and I/BCs) as constraints. Besides, to portray better local details
n the solution, we discretize the physical domain and solve PDEs by employing (1) convolutional operators due
o its faster convergence and better accuracy compared with fully-connected neural networks according to previous
tudies [41,47,50] and (2) recurrent units for controlling error propagation. In this work, we mainly focus on regular
e.g., rectangular) physical domains, where both the spatial and temporal domains are discretized uniformly and
onvolutional filtering can be applied in nature. Our objective is to point-wisely approximate the discrete solution
eld uθ

= u(x, t; θ ), that satisfies Eq. (1) for specifically given I/BCs, where θ denotes the network trainable
arameters. Furthermore, we view the network training as an optimization process by minimizing the loss function
omposed of the discrete PDE residuals subjected to I/BCs. The details are described in Section 3.

. Methodology

In this section, two network architectures are proposed for solving spatiotemporal PDE systems. Based on the
olid mathematical foundation in sparse representation for PDEs [61], we attempt to extract the low-dimensional
patial features from dynamics and learn the temporal evolution on the compressed information through an encoder–
ecoder convolutional-recurrent scheme. The light-weight networks are built with the input of previous state variable
nd the output of quantities of interest (next state variable). Previously, Geneva and Zabaras [47] claimed that
ecurrent neural networks (e.g., long short-term memory) are powerful tools for predicting time-series whereas
rapped in the difficulty of training for solving PDEs. However, we show that, based on our network setting, such
n issue can be mitigated.
3
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3.1. ConvLSTM

ConvLSTM is a spatiotemporal sequence-to-sequence learning framework extended from long short-term
memory (LSTM) [62] and its variant LSTM encoder–decoder forecasting architecture [63,64], which hold the
strength of modeling the long-period dependencies that evolve in time. This great success comes from the distinctive
and innovative memory cell and gated scheme of LSTM. Essentially, the memory cell is updated through the input
and state information being accessed, accumulated and removed due to the delicate design of controlling gates.
Based on such setup, the notorious gradient vanishing problem of vanilla recurrent neural networks (RNNs) has
been relieved. It is also worthwhile to mention that a typical RNN model can be seen as a variant to a state–space
model with nonlinear activation functions incorporated [65,66]. Herein, LSTM, a special class of RNNs, acts as an
implicit numerical scheme for solving time-dependent differential equations.

The fundamental of ConvLSTM is to inherit the basic construction of LSTM (i.e., cells and gates) for controlling
the information flow, and to modify the fully-connected NNs (FC-NNs) in gated operations to CNNs considering
their better representational capability of spatial connections [60]. The graphic demonstration is presented in
Fig. 1(a). Let Xt denote the input tensor, and {ht , Ct } the hidden state and cell state to be updated at time t
respectively. Moreover, the ConvLSTM cell consists of four gate variables for input-to-state and state-to-state
transitions, including a forget gate ft , an input gate it , an internal cell C̃t and an output gate ot . In specific, due to the
sigmoid activation function σ (·) mapping outputs to values between 0 and 1, the forget gate layer adaptively clears
he memory information in the cell state Ct−1. The memory stored in cell state originates from the cooperation
etween the input gate layer and the internal cell state, where the internal cell state is a new cell candidate created
rom hyperbolic tangent activation layer (i.e., tanh(·)) and the input gate layer decides the information propagating
nto the cell state. Lastly, the output gate layer filters and regulates the cell state for the final output variable/hidden
tate. The mathematical formulations of updating ConvLSTM cells are expressed as:

it = σ (Wi ∗ [Xt , ht−1] + bi ), ft = σ (W f ∗ [Xt , ht−1] + b f ),

C̃t−1 = tanh(Wc ∗ [Xt , ht−1] + bc), Ct = ft ⊙ Ct−1 + it ⊙ C̃t−1,

ot = σ (Wo ∗ [Xt , ht−1] + bo), ht = ot ⊙ tanh(Ct ),

(2)

here ∗ is the convolutional operation and ⊙ denotes the Hadamard product; {Wi , W f , Wc, Wo} are the weight
arameters for the corresponding filters while {bi , b f , bc, bo} represent bias vectors.

.2. Pixel shuffle

Widely adopted in super-resolution tasks, pixel shuffle is an efficient operation to conduct the sub-pixel
onvolutions [67] in purpose of upscaling the low-resolution (LR) feature maps into the high-resolution (HR)
utputs. The basic principle of pixel shuffle is described in Fig. 1(b). Let us consider a LR feature tensor of shape
C × r2, H, W ), where C denotes the number of channels, {H, W } refer to the height and width respectively,
nd r is the upscaling factor. Straightforwardly, it realigns the elements in LR tensor to a HR tensor of shape
C, H × r, W × r ).

Through a simple and fast operation, pixel shuffle maintains the satisfactory reconstruction accuracy in image and
ideo super-resolution tasks without high computational and memory cost. There are two tricks contributing to the
fficiency. Firstly, we can implement the sub-pixel convolution in the last layer for the spatial upscaling. It has lower
omputational complexity compared with other classical upscaling methods (e.g., deconvolution [68]) which always
eed more layers to reach expected resolution. Secondly, before the upsampling layer, all the feature extraction layers
re based on the LR tensors where smaller filter can be employed. Beyond that, another advantage of pixel shuffle is
hat it introduces fewer checkerboard artifacts compared with deconvolution [69]. Hence, we consider pixel shuffle
peration as a preferable upsampling strategy in the network conception described in Section 3.3. Specifically,
hanks to pixel shuffle for upscaling LR latent features to HR outputs, we can model the temporal evolution on LR
ynamics by using ConvLSTM, which remarkably improves the computational efficiency and relieve the memory

urden especially for large-scale tasks.

4



P. Ren, C. Rao, Y. Liu et al. Computer Methods in Applied Mechanics and Engineering 389 (2022) 114399
Fig. 1. The graphic illustration of network components.

3.3. Network architecture: PhyCRNet

In this part, we present the architecture of PhyCRNet, comprised of an encoder–decoder module, residual
connection, autoregressive (AR) process and filtering-based differentiation. The framework is shown in Fig. 2. The
encoder includes three convolutional layers for learning low-dimensional latent features from the input state variable
ui (i = 0, 1, . . . , T −1), where T denotes the total number of time steps. We apply ReLU as the activation function
for the convolutional layers. Then ConvLSTM layers act as the temporal propagator on the low-resolution latent
features with the initial hidden/cell states starting at rest (e.g., C0 = 0 and h0 = 0). Modeling the essential dynamics
on low-dimensional variables is capable of capturing the temporal dependency accurately and, meanwhile, helps
alleviate the memory burden. Another strength of using LSTM comes from the hyperbolic tangent function for
the output state, which holds smooth gradient curve and also pushes the values to be between −1 and 1. Thus,
after establishing the convolutional-recurrent scheme in the center, we directly reconstruct the low-resolution latent
space to the high-resolution quantities based on an upsampling operation. In particular, the sub-pixel convolution
layer (i.e., pixel shuffle) is applied due to its preferable efficiency and reconstruction accuracy with fewer artifacts
compared with deconvolution. In the end, we add another convolutional layer for scaling the bounded output
back to the original magnitude of interest. There is no activation function behind this scaling layer. Besides, it
is worthwhile to mention that we do not consider batch normalization [70] in PhyCRNet in view of the limited
amount of input variables and its deficiency to super-resolution [71]. As a substitute, we train the network with
weight normalization [72] for training acceleration and better convergence [71].

Inspired by the forward Euler scheme, we append a global residual connection between the input state variable
u and the output variable u . The learning process at time instant t is formulated as u = u + δt ·NN [u ; θ ],
i i+1 i i+1 i i

5
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Fig. 2. The network architecture of PhyCRNet. The variables C and h are cell state and hidden state of ConvLSTM. u0 is the known state
variable (i.e., IC). “BC Encoding” means hard enforcement of BCs on the learned output variables after each training epoch, which serves
for differentiation. Besides, θ denotes the unknown trainable parameters in PhyCRNet.

where NN [·] denotes the trained network operator and δt is the time interval. The output state variable ui+1 at
ime instant ti switches into the input variable at ti+1. Actually, such input–output flow can be seen as a simple AR
rocess (i.e., AR(1)).

Hence, not only do we have temporal evolution in the central latent representation, but also build the propagation
n the input and output at each time instant. Moreover, the introduction of ConvLSTM can also help moderate the
igorous time-stepping issues, where larger time intervals may be adopted compared with traditional numerical
ethods (see Section 4). Here, u0 is the given IC, and u1, u2, . . . , uT are the discrete solution variables to be

redicted. Next, the remaining challenge is how to calculate the derivative terms. We apply the gradient-free
onvolutional filters to represent the discrete numerical differentiation in order to approximate the derivative terms
f interest [12,41]. For example, the finite-difference-based filters we considered in this paper are the second-order
see Eq. (3)) and fourth-order central difference schemes (see Eq. (4)) to compute temporal and spatial derivatives,
espectively, given by

Kt = [−1, 0, 1] ×
1

2δt
, (3)

Ks =

⎡⎢⎢⎢⎢⎣
0 0 −1 0 0
0 0 16 0 0
−1 16 −60 16 −1
0 0 16 0 0
0 0 −1 0 0

⎤⎥⎥⎥⎥⎦ ×
1

12(δx)2 . (4)

here δt and δx denote the time spacing and spatial mesh size. Note that the derivatives on the boundaries
annot be computed directly due to the intrinsic deficiency of finite difference methods. The risk of losing
ifferential information on the boundaries can be mitigated by designated padding mechanism (e.g., periodic

adding) introduced in Section 3.5.

6
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Fig. 3. The network architecture of PhyCRNet-s. T is the cycle index of skipping-encoder.

3.4. Efficient network architecture: PhyCRNet-s

To further improve the computational efficiency, we propose the second network architecture: PhyCRNet-s. We
keep the majority of neural components in PhyCRNet, except skipping the encoder part periodically and setting a
different input flow. Here we introduce a cycle index of skipping-encoder T (T ≤ T ) for removing the redundant
computation of the encoder. For instance, we have the HR input at time instant 0 and T − 1 (i.e., u0 and uT −1)
where the encoder part of PhyCRNet is implemented, whereas the LR output feature from ConvLSTM is directly
transmitted to the next step as LR input during the time period [1, T −2]. The graphic illustration of skipping-encoder
scheme is shown in Fig. 3. Since the encoder–decoder component shares the same learnable parameters and is not
involved in temporal evolution, it is derived that the sparse residual dynamics has been learned in ConvLSTM.
Namely, at time instant ti , ConvLSTM works as a sparse dynamics propagator between the LR input feature Xi and
the LR output variable Xi+1. Then Xi+1 can be naturally regarded as the LR input at time instant ti+1. Similarly,
such a construction also implicates the forward Euler scheme on sparse dynamics: Xi+1 ≈ Xi + δt ·NN c[Xi ; θ

c]
where NN c[·], denotes the ConvLSTM network and θ c is its corresponding trainable parameters.

Although it brings a more light-weight architecture, this skipping-encoder scheme may cause approximation error
in the temporal propagation. To seek for a tradeoff between accuracy and efficiency, we tend to set T as a relatively
small value in case of error accumulation. The selection of T is empirically discussed in Section 4.7.

3.5. Hard imposition of I/BCs

The motivation of hard imposition of I/BCs is to prompt a well-posed optimization problem when training the
network, which contributes to the improvement of solution accuracy and the facilitation of convergence [41,73,74].
Furthermore, the general philosophy behind it is to strictly integrate the known information of I/BCs into the
network. Note that the IC can be easily imposed through the residual connection shown in Figs. 2 and 3. Since
the solution field is uniformly discretized, it is suitable to apply padding for message passing pixel-wisely. For
Dirichlet BCs, the known constants on the boundaries can be rigorously incorporated into the state variables via
time-invariant padding operation. For Neumann BCs, ghost elements [1] are necessary for forcible satisfaction
beyond the boundaries, whose values can be approximately inferred with finite difference. Herein, the relationship
between ghost nodes and internal nodes is time-invariant, but the values for padding change during the training
process. The idea of hard imposition of I/BCs is illustrated in Fig. 4.

Specifically, we consider solving PDEs with periodic Dirichlet BCs in this work. Hence, the periodic padding
(also known as circular padding) is introduced here for handling the constant copy of boundary values. The boundary

padding operation aims to ensure that the minimization of PDE residuals proceeds in the entire solution domain

7
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Fig. 4. A graphic demonstration of hard imposition of BCs into the network. For the Dirichlet BCs (left figure), the constant nodes are
padded on the boundaries. For the Neumann BCs (right figure), the ghost nodes are padded with values derived from internal field. Moreover,
we implement the hard enforcement of BCs before the convolution operations both in the learning process and the differentiation.

without sacrificing any boundary nodes. Here we extend the periodic padding to all the feature maps produced
by convolutional operations including those in ConvLSTM. We find it helps boost the solution accuracy on the
boundaries compared with zero-padding. In addition, the periodic padding will be implemented twice on the
boundaries when applying the fourth-order finite-difference-based filtering for differentiation.

3.6. Physics-informed loss function

Thanks to the hard enforcement of I/BCs, we only need to construct the loss function based on the governing
PDEs. Firstly, we define the PDE residual R(x, t; θ) given by

R(x, t; θ ) := uθ
t + F [uθ ,∇xuθ ,∇2

x uθ , . . . ;λ], (5)

which is exactly the left-hand-side of Eq. (1) with quantities of interest learned by the network. Furthermore, the
shared network parameters θ can be trained by minimizing the loss function L(θ ), which is equivalent to the mean
of squares of the PDE residuals over the spatiotemporal discretization. Taking a two-dimensional PDE system as
an example, L(θ ) can be expressed as

L(θ ) =
1

nmT

n∑
i=1

m∑
j=1

T∑
k=1

∥R(xi , y j , tk; θ )∥2
2, (6)

here n and m denote the height and width in the spatial grid, T is the total number of time steps, and ∥·∥2 denotes
2 norm.

. Numerical experiments

In this section, we evaluate the performance of our proposed methods on three nonlinear PDE systems, and
ompare them with two baseline algorithms: the vanilla PINN approach [9] and the AR-DenseED model [47].
hese numerical experiments cover the Burgers’ equations and two RD systems (i.e., λ-ω and FitzHugh–Nagumo
quations) in 2D domains with periodic BCs. The specific experiments include three groups: (1) comparing the
olution accuracy and extrapolability of PhyCRNet with baseline algorithms; (2) testing the generalization ability
f PhyCRNet to different ICs; (3) comparing the performance between PhyCRNet and PhyCRNet-s. For all of
hese experiments, the spatial resolutions of input and output state variables are set as 128 × 128. All the numerical
mplementations in this paper are coded in Pytorch [75] and performed on a NVIDIA Tesla V100 GPU card (32G)
n a standard workstation.1

1 Source codes/datasets are available on GitHub at https://github.com/isds-neu/PhyCRNet upon publication.
8
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4.1. Network setup

Herein, we consider the same network setting, of PhyCRNet and PhyCRNet-s, for all PDE cases. The encoder
consists of three convolutional layers with 8, 32, 128 units respectively, using 4 × 4 kernels and a stride of 2. The
periodic padding is applied to all convolutional operations. Afterwards, one ConvLSTM layer is merged on the
latent space with cell/hidden states of 128 nodes. The convolutional operations in ConvLSTM have 3 × 3 kernels
and a stride of 1. For the scaling layer before the output, we use a larger kernel (5 × 5) and the same stride
in consideration of filtering on high-resolution spatial features. The upsampling factor for pixel-shuffle is 8. The
networks are trained by the stochastic gradient descent Adam optimizer [76]. We train PhyCRNet for 10,000 epochs
based on a shorter period of evolution, e.g., T/3 ∼ 2T/3.

.1.1. Baseline model setup
The training implementations of baselines are based on the reasonable neural architectures and training efforts

imilar to our proposed methods for fair comparison. Besides, we apply the same network parameters of the baselines
o solve all PDE systems. We mainly compare the solution snapshots between PhyCRNet and PINN as a typical case
f discrete and continuous learning, and compare the error propagation among PhyCRNet, PINN and AR-DenseED.

The PINN model has 4 fully-connected layers, each with 80 nodes. A total of 1.62 × 105 collocation points
are used to evaluate the total loss function (e.g., PDE residual loss + I/BC loss), trained by 1 × 104 epochs using
Adam followed by up to 1 × 105 epochs with the L-BFGS optimizer [77]. More details on the selection of hyper-
parameters of PINN is provided in Appendix A. For the AR-DenseED method which incorporates the AR process
into the DenseNet architecture [78], we leverage the open source code and network parameter setting in [47]. The
AR-DenseED model is constitutive of an encoding convolutional block, single dense block and a decoding block of
different dense layers {4, 3, 4}, respectively. The growth rate is set as 4. We encode a 2D input variable consisting
of five previous time-steps to latent features of half spatial dimensionality of input, and then latent features are
decoded to the prediction of next time-step. In addition, we train the network for 1000 epochs using Adam with
exponential decay rate of 0.995 after pre-training.

4.1.2. Evaluation metrics
To evaluate the solution accuracy produced by all the NN-based solvers, we assess the full-field error propagation

in two phases: training and extrapolation. The definition of the full-field error ϵτ at time τ is defined as the
accumulative root-mean-square error (a-RMSE) given by

ϵτ =

√ 1
Nτ

Nτ∑
k=1

∥u∗(x, tk) − uθ (x, tk)∥2
2

mn
, (7)

where Nτ is the total number of time steps within [0, τ ], and u∗(x, tk) is the reference solution.

4.2. 2D Burgers’ equations

We firstly consider a 2D fluid dynamics problem, the famous Burgers’ equations, given in the following tensor
form:

ut + u · ∇u − ν∆u = 0, (8)

where u = {u, v} denotes the fluid velocities; ν is the viscosity coefficient; ∆ is the Laplacian operator. The 2D
Burgers’ equations describe the complex interaction of nonlinear convection and diffusion processes with possible
shock behaviors, which usually acts as a benchmark model for comparing different computational algorithms.
Herein, we choose ν = 0.005 and the spatial domain size as x ∈ [0, 1] [47] for performance comparison.

Moreover, the IC is generated from a Gaussian random field with periodic BCs using the open source code
in [54]: u0 ∼ N (0, 625(−∆ + 25I)−2). The ground truth reference solution is calculated using a high-order finite
difference method with the 4th-order Runge–kutta time integration (δt = 1 × 10−4). While for the PhyCRNet,
we choose a relatively larger time interval δt = 0.002 over the discretized domain considering the implicit time
marching in ConvLSTM. The empirical results show that the time step size of PhyCRNet can be approximately
9
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Fig. 5. Comparison of solution accuracy and extrapolability between PhyCRNet and PINN for the 2D Burgers’ equations. Four representative
time instants are chosen for training (t = 1.0, 2.0) and extrapolation (t = 3.0, 4.0) phases. Err (ours) and Err (PINN) refer to the difference
in the entire domain between ground truth reference and prediction by these two approaches.

at least 2 times of maximal δt of traditional finite difference methods. Moreover, we train PhyCRNet to obtain the
numerical solution of the Burgers’ equations for 1000 time steps within the duration of [0, 2]. The training time is
24 h. Furthermore, based on the trained model, we predict the solution for another 1000 time steps (within time
[2, 4]) to test the extrapolability of our proposed method. The learning rate starts at 6 × 10−4 and decays every 50
epochs by 1%.

The solution snapshots predicted by PhyCRNet and PINN are shown in Fig. 5 in comparison with the ground
truth reference, and the loss history is included in Appendix B. In particular, we select four representative snapshots
in the training and extrapolation phases at t = 1.0, 2.0 and t = 3.0, 4.0 respectively for illustration. The solution
error propagation with time for both methods is presented in Fig. 8(a). Firstly, it can be seen in Fig. 5 that the trained
and extrapolated results using PhyCRNet both possess excellent agreement with the reference solution, while the
PINN results fail to match the ground truth. In particular, we observe that most of the error field from PhyCRNet is
close to zero, whereas the outcome of PINN exhibits much larger error especially on the boundaries (due to “soft”
imposition of I/BCs). Secondly, the error propagation in Fig. 8(a) further validates the superior solution accuracy
of PhyCRNet with a-RMSE always below 0.01. PhyCRNet holds similar performance with PINN in training but
leads in extrapolation, and prevails AR-DenseED both in training and extrapolation by two orders of magnitude.
The result of AR-DenseED here turns out to be unsatisfactory on account of longer time evolution and larger
spatial discretization compared to the 2D Burgers’ case in [47]. The reason behind this phenomenon lies in the
network designing of AR-DenseED only relying on fully-connected convolutional operations, which lacks sufficient
expressiveness on explicit temporal propagation. Besides, the error propagation curve of PhyCRNet remains flattened
along with time marching. The minor discrepancy between training and extrapolation shows the great potential of
PhyCRNet for solution generalization.

In addition, PhyCRNet can be flexibly modified (e.g., the grid size δx and the time spacing δt) in order to handle
the 2D Burgers’ equations with different viscosity coefficients. For instance, for larger Reynolds numbers, we can
correspondingly increase the grid size and reduce the time spacing size to guarantee the convergence. Note that the
discretization requirement of PhyCRNet is less strict than that of traditional finite difference methods due to the
implicit time marching scheme of our framework. Moreover, we also provide a convergence study on the grid sizes

(i.e., 32, 64 and 128) to investigate their effects to the performance of PhyCRNet Appendix C.
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Fig. 6. Comparison of solution accuracy and extrapolability between PhyCRNet and PINN for the λ-ω RD equations. Four representative
time instants are chosen for training (t = 2.5, 5.0) and extrapolation (t = 7.5, 10.0) phases. Err(ours) and Err(PINN) refer to the difference
in the entire domain between ground truth reference and these predicted by two DNN-based approaches.

4.3. λ-ω RD equations

The second example considered here is a λ-ω RD system in a 2D domain, which is widely known for its
representation of multi-scale phenomenon for chemical and biological processes, e.g., turbulent behavior and self-
organized patterns. Specifically, the two coupled nonlinear PDEs with the formation of spiral wave patterns are
expressed as:

ut = 0.1∆u + λ(r )u − ω(r )v,

vt = 0.1∆v + ω(r )u + λ(r )v,
(9)

where u and v are two field variables; r = u2
+v2; λ and ω are two real functions given by λ = 1−r2 and ω = −r2,

respectively. The reference solution was generated using a spectral method [79] in the domain of [−10, 10] for 801
time steps (δt = 0.0125). We train the model for 200 time steps with time duration of [0, 5], and perform the
inference for [5, 10], where δt = 0.025. The learning rate is set as 5 × 10−4 and decays by 2% every 100 epochs.

The solution snapshots predicted by PhyCRNet and PINN, compared with the ground truth reference, are shown
in Fig. 6. Given the simplicity of periodic patterns, both PhyCRNet and PINN produce good result in the training
phase. We consider this phenomena coming from the truth that the portraits of this specific λ-ω RD system are simple
and smooth, where the continuous approximation of solution by PINN plays a positive role. However, PINN yields
large error on the boundaries and does not extrapolate well even for such simple patterns. On the contrary, PhyCRNet
performs robustly with much smaller distributed errors even in the extrapolation phase. Moreover, Fig. 8(b) depicts
the error propagation for PINN, AR-DenseED and PhyCRNet, where we observe that PhyCRNet outperforms both
PINN and AR-DenseED with up to one order of magnitude smaller error.

4.4. FitzHugh–Nagumo RD equations

The final example aims to further test the capability of PhyCRNet for solving PDEs. Herein, we consider an
explicable and mathematical portrait of neural excitation, namely, FitzHugh–Nagumo (FN) RD equations, written
11
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Fig. 7. Comparison of solution accuracy and extrapolability between PhyCRNet and PINN for the FitzHugh–Nagumo RD Equations. Four
representative time instants are chosen for training (t = 2.16, 4.32) and extrapolation (t = 6.48, 8.64) phases. Err(ours) and Err(PINN) refer
to the difference in the entire domain between ground truth reference and these predicted by two DNN-based approaches.

as:

ut = γu∆u + u − u3
− v + α,

vt = γv∆v + β(u − v),
(10)

where u and v are two interactive components; γu = 1 and γv = 100 are diffusion coefficients, while α = 0.01
denotes the external stimulus and β = 0.25 is the coefficient for reaction terms. With different diffusion and reaction
coefficients, we can simulate varying neuron activities. The IC is generated by drawing random samples from a
Gaussian distribution and the ground truth solution is produced by finite difference with the 4th-order Runge–Kutta
time integration, in 2D domain Ω = [0, 128] with δt = 2 × 10−4. We attempt to train PhyCRNet to solve this
PDE for 750 time steps with δt = 0.006 (i.e., time duration [0, 4.5]), and use the trained model to extrapolate the
solution in [4.5, 9]. The learning rate is set as 5 × 10−5 and the decaying coefficient is 0.995 for every 50 epochs.

The solution snapshots predicted by PhyCRNet and PINN are shown in Fig. 7, along with the ground truth
reference and error maps. It is notable that the FN system demonstrates more complex and interactive patterns
compared with the previous two examples. Herein, PhyCRNet presents outstanding goodness of fit with the ground
truth both in training and extrapolation, whereas PINN can barely simulate parts of the dynamical patterns.
Moreover, the PhyCRNet error maps exhibit almost perfect results that are close to zeros, especially for the
field variable v. The relatively large errors mainly cluster on propagating wave fronts (e.g., mid-right locations).
Nevertheless, considering the complex patterns of this PDE system, this kind of error is negligible. Moreover, it is
rather challenging to capture the contours of the evolutionary dynamics, especially for the long-term modeling of
DNN-based approaches. Note that although PhyCRNet is inspired from the forward Euler scheme which usually
does not present such overshooting solutions, it is quite different from the traditional forward simulation due to the
nonlinearity of NNs.

For the error propagation shown in Fig. 8(c), PhyCRNet surpasses PINN and AR-DenseED up to two orders of
magnitude. The a-RMSE of PhyCRNet increases mildly along with time but always keeps at a low level (i.e., 10−2),
while the errors of PINN and AR-DenseED rise to the magnitude of 1. Noteworthy, the error propagation in

PhyCRNet extrapolation is relatively larger compared with the training phase, primarily due to the complicated
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Fig. 8. Comparison of error propagation between PhyCRNet and PINN for three PDE systems. The curves in blue and orange areas present
error propagation in the training and extrapolation phases, respectively. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

interaction between the field components (e.g., with sharp propagating wave fronts). This problem can be alleviated
by involving a longer time duration in training such that richer dynamics is captured.

In general, PhyCRNet is highly capable of learning the spatiotemporal dependencies of PDE systems, ranging
from fluid dynamics to RD systems. The salient outcomes of solution accuracy and extrapolation capability
demonstrate PhyCRNet to be a novel and powerful method to solve complex multi-dimensional PDEs.

4.5. Generalization to different ICs

Theoretically, an ideal DNN-based solver should be capable of providing accurate solutions given any IC for a
specific PDE. However, PINN fails to generalize to different ICs due to the intrinsic limitation of softly incorporating
I/BCs into loss functions. Our proposed method (i.e., PhyCRNet/PhyCRNet-s) can generalize well outside the
13
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Fig. 9. Four randomly generated ICs.

training phase, with respect to the system parameters and spatiotemporal discretization. This prominent strength
comes from the architectural design of our networks, especially the AR input–output flow and hard-imposition of
I/BCs.

We evaluate the generalization performance of our model using the FN RD equations under four different ICs, as
shown in Fig. 9. These four ICs are randomly sampled from Gaussian distribution with mean and standard deviation
as 0 and 0.1, respectively. Compared with the extrapolation in Section 4.4, we consider inferring a longer temporal
evolution (i.e., 4500 time instants referring to the time duration [0, 27]) for all these IC scenarios. The testing results
are presented in Fig. 10, where we select four typical snapshots (i.e., t = 4.32, 8.64, 12.96, 17.28) of both u and v
for illustration in comparison with the ground truth. All of the predicted results reveal the excellent abilities of our
model to capture the evolutionary patterns and portray the local details. The positive evidence is also observed in
error propagation described in Fig. 11(a). The error variances share similar tendency which increase smoothly and
slowly, and are bounded below 0.04. Overall, these evaluation experiments suggest our model learns the underlying
physical laws well and generalize to different ICs robustly.

4.6. Ablation study

To justify the effectiveness of our designed frameworks, we implement an ablation study on PhyCRNet by
solving the 2D Burgers’ equations. Apart from the encoder–decoder, the rest of the network architecture consists of
ConvLSTM, residual connection, input–output autoregressive (AR) scheme and filtering-based differentiation. Here
we mainly investigate the contributions of AR scheme and global residual connection. The experimental setting
includes three architectures: full PhyCRNet, PhyCRNet without AR scheme and PhyCRNet without global residual
connection. We apply the unified training efforts for performance evaluation, which is exactly same in Section 4.2.
The comparison result is described in Fig. 11(b). The structure of PhyCRNet without AR scheme works worst,
obtaining larger errors by nearly two orders of magnitude compared with PhyCRNet. Additionally, PhyCRNet
without the global residual connection also exhibits inferior performance both in the training and extrapolation
stages, compared with the full model. Therefore, these two ablation experiments validate the significance and
indispensability of AR scheme and global residual connection.

4.7. Comparison between PhyCRNet and PhyCRNet-s

Our idea of physics-informed convolutional-recurrent networks enjoys prominent flexibility in the architecture
designing, where PhyCRNet and PhyCRNet-s are both proposed. More precisely, PhyCRNet is a special class
of PhyCRNet-s with T = 0. The skip-encoder strategy with respect to different T can effectively provide a
balance/tradeoff between accuracy and efficiency.

In this part, we investigate the effects of hyper-parameter T to the performance of network architectures,
considering the 2D Burgers’ equations as a testing example. Herein, we select four different architectural structures
with T = {0, 10, 50, 100} respectively, and keep other neural components fixed. All of the four experiments here
undergo the same training procedures, which include 10,000 epochs using Adam after pre-training with the learning
rate starting at 6 × 10−4 and decaying every 50 epochs by 1%.

The evaluation results are presented in Table 1 and Fig. 11(c). Herein, we define a relative full-field error with
respect to the ground truth, in order to assess the model performance in training and extrapolating stages. As
shown in Table 1, the general trend is that with the parameter T increasing, the training effort (i.e., computational

time) decreases mildly and the solution errors both in training and extrapolation grow. However, there is also one

14



P. Ren, C. Rao, Y. Liu et al. Computer Methods in Applied Mechanics and Engineering 389 (2022) 114399

4

Fig. 10. Generalization for four testing ICs of FN RD equations. Four representative time instants are chosen (i.e., t =

.32, 8.64, 12.96, 17.28).

Table 1
Performance comparison between PhyCRNet and PhyCRNet-s.

Model Time [s]/epoch Training error [%] Extrapolating error [%]

PhyCRNet 8.64 0.83 3.40
PhyCRNet-s (T = 10) 8.18 1.28 2.97
PhyCRNet-s (T = 50) 8.04 2.09 3.93
PhyCRNet-s (T = 100) 7.94 2.94 7.52

surprising observation that PhyCRNet works inferiorly than PhyCRNet-s (T = 10) in the extrapolation, though
leads in training solution accuracy. We think the reason behind this interesting phenomenon is that a small T
helps relax the model training, which enhances the extrapolation ability. Moreover, the details of error propagation
described in Fig. 11(c) further validates the significant result. In the training phase, the model with smaller T
behaves more excellent. Nevertheless, when extrapolating relatively more time steps, PhyCRNet becomes weaker
against (T = 10). Therefore, we conclude that a reasonably small T contributes to the balance between accuracy

and efficiency as well as the robustness for extrapolation.
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Fig. 11. (a) Error propagation for generalization testing at different ICs. t is time duration ([0, 27]). (b) Ablation study on neural architectures
of PhyCRNet. (c) Error propagation of PhyCRNet (i.e., T = 0) and PhyCRNet-s (i.e., T = {10, 50, 100}) frameworks.

5. Discussion

In this section, we aim to make a comprehensive and comparative discussion between our discrete methods
and the standard continuous approaches (i.e., PINNs), as well as provide future perspectives based on the current
investigation. Prior studies [9,18] have shown the great potential of PINNs for forward and inverse analysis of
spatiotemporal PDEs, but the comparison against discrete methods are still lacking. Generally, there are two
distinctive aspects, mainly covering mesh requirement and encoding of I/BCs.

First of all, as a continuous learning method, PINNs hold the apparent strength of meshfree, while our PhyCRNet
and PhyCRNet-s frameworks rely on prescribed spatiotemporal mesh and are limited to regular grids. However,
thanks to the emerging geometric learning methods (e.g., graph neural networks [80–84]), we can extend the
current architectures to irregular meshes/grids, making them more versatile. Besides, due to the way of functional
approximation with global basis, PINNs are dedicated for “global learning” which helps capture the general

dynamical patterns of nonlinear PDE systems. Discrete learning methods focus on local features within the physical
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domains because of the employment of convolutional kernels, which provides a more reliable way of capturing local
morphology in the PDE solution.

Secondly, the enforcement of I/BCs significantly affects the solution accuracy of PDEs, especially on the
boundaries. For PINNs, the soft imposition of I/BCs, which is presented as a penalty factor in loss function, requires
massive hyper-parameter tuning for the optimal weight of I/BC loss component. Usually, such a soft strategy cannot
guarantee the solution accuracy on the boundaries, and fail to generalize to different ICs as discussed in Section 4.
On the other hand, for our discrete approaches, it is easy and suitable to rigorously incorporate the discrete boundary
values into the network via an intrinsic padding scheme, which painlessly and remarkably promotes the solution
accuracy on the boundaries. In addition, instead of integrating IC loss into the loss function, we define the IC
as the first input state variable for the network, which makes generalization to different IC scenarios achievable.
Apart from the I/BCs, the known conservation laws (e.g., mass conservation) can also be enforced simultaneously
if applicable. For example, strict enforcement of mass conservation can be realized by applying a stream function
as the solution variable in the network for fluid dynamics. Besides, it is more significant and realistic to design a
BC encoding strategy for handling various BCs. The idea is to utilize parametric learning, where parametric BCs
are encoded to serve as an additional input to the network.

6. Conclusion

Solving PDEs is fundamental to a wide range of scientific computational problems, where physics-informed
DNNs show promise to tackle relevant challenges especially in inverse problems and data assimilation. The majority
of existing methods may suffer from issues of scalability, error propagation and generalization. This motivates us
to develop a novel PhyCRNet/PhyCRNet-s architecture as a universal model for solving spatiotemporal PDEs.
The hard enforcement of I/BCs via designated padding prompts a well-posed optimization problem in network
training, improves the solution accuracy and facilitates convergence. Finally, we validate the excellent performance
of our proposed methods in solution accuracy, extrapolability, and generalizability. These proposed networks have
promising potential to serve as a reliable surrogate model for data assimilation and inverse analysis of physical
systems where data is scarce and noisy, which will be demonstrated in the next step of our study.

However, we also see several limitations of the current PhyCRNet and aim to discuss the future research
perspectives here. Firstly, our current networks can be naturally extended to tackle irregular spatial domains by
incorporating graph neural networks, as well as modified from forward Euler scheme to high-order difference
strategy (e.g., high-order Runge–Kutta scheme) for more accurate temporal evolution modeling. Secondly, for
second-order PDEs with ut t in the PDEs, we can turn the equations to a state–space PDE system, e.g., by introducing
n additional state variable z = ut and then zt = ut t . These second-order PDE tasks are thus simplified to the

first-order time derivative problem with the solution variable of [u, z]T discussed in this paper. Thirdly, another
limitation is that our discretization for the physical domain is fixed which is used mainly for Eulerian dynamics.
We will investigate the learnable and adaptive mesh approach for Lagrangian systems in the future. Additionally, it
is also worthwhile to explore the potential of PhyCRNet in a variational form for solving PDEs since many existing
investigations have proven the effectiveness of variational deep learning approaches [20,85,86].
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Fig. A.1. The convergence study on the number of collocation points for PINNs.

ppendix A. Clarification on the hyper-parameters for PINNs

We provide all of the training details and justify the selection of the hyper-parameters for PINNs in this paper,
ncluding the determination of collocation points and the weighting coefficients for I/BCs. Firstly, we generate the
ollocation points with Latin hypercube sampling (LHS) in the spatiotemporal domain. Moreover, the number of
ollocation points K is set as 1.62 × 105 in this paper after empirical trials. A convergence test is performed to
nsure the number of collocation points for PINN is sufficient. The alternative numbers are

√
2K and K/

√
2. All

of the numerical experiments here are tested on 2D Burgers’ equations. As shown in Fig. A.1, the network with
K collocation points performs best, and the increase of collocation points (i.e.,

√
2K ) has no positive effects on

the improvement of solution accuracy and extrapolation due to the optimization issue. Besides, PINNs with fewer
collocation points (i.e., K/

√
2) also show the inferior performance than the network with K collocation points

in error propagation, which is induced by the insufficient expressiveness of the PDE manifold. Hence, we set the
number of collocation points as K for PINN experiments in this paper.

In addition, the training process consists of 1 × 104 iterations with Adam optimizer and a maximum 1 × 105

iterations with L-BFGS until convergence. The initial learning rate is set to be 0.001 and multiplied by 0.97 every
200 iterations, and we employ Xavier initialization for the initialization of the network parameters (i.e., weights
and biases). Moreover, the number of collocation points are 16,384 (i.e., 1282) for the IC and 4.8 × 104 for the

C. Regarding the weighting coefficients in L = Lphy + λ1 · LIC + λ2 · LBC [9], we set λ1 = 10 and λ2 = 10
or the I/BC loss components, respectively. They are selected through the grid search with λ1 ∈ {1, 10, 100} and
λ2 ∈ {0.1, 1, 10}. The center of the grid (λ1, λ2) = (10, 1) is chosen so that each loss component has the same scale
before the training.

Appendix B. Loss history

The loss histories of training on three PDEs are similar. Therefore, we select 2D Burgers’ equations as the
representative case for exhibiting the convergence histories of PINNs and PhyCRNet (see Fig. B.2). Here the training
loss of PINNs is smaller than that of PhyCRNet due to two reasons: (1) The number of collocation points used
in PINNs is smaller than the grid size of PhyCRNet, which facilitates the convergence of PINNs; (2) The training
epoch of PINNs is much more than that of PhyCRNet. Thus, we observe a longer history of loss decreasing in
PINNs. Nevertheless, both methods achieve satisfactory solution accuracy in the training phase (see Fig. 8(a) for
example).

Appendix C. Convergence study on grid sizes

For discrete learning methods, it is significant to conduct the convergence study on the sensitivity of grid sizes.
Herein, by testing on 2D Burgers’ equations, we investigate the performance of PhyCRNet with the grid sizes δx as
32, 64 and 128 respectively. As shown in Fig. C.3, we observe that the PhyCRNet frameworks with δx = 128 and
δx = 64 have very close performance on error propagation though the network with δx = 64 shows the slightly
weaker capability on solution accuracy. However, the PhyCRNet with δx = 32 presents unsatisfactory results due
to the coarse discretization. Overall, from coarse grids to fine meshes, the numerical results exhibit a convergent

tendency at δx = 128.
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Fig. B.2. Training loss of PINNs and PhyCRNet for testing on 2D Burgers’ equations.

Fig. C.3. The convergence study on grid sizes of PhyCRNet.
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