
royalsocietypublishing.org/journal/rspa

Research
Cite this article: Liu X-Y, Wang J-X. 2021
Physics-informed Dyna-style model-based
deep reinforcement learning for dynamic
control. Proc. R. Soc. A 477: 20210618.
https://doi.org/10.1098/rspa.2021.0618

Received: 3 August 2021
Accepted: 18 October 2021

Subject Areas:
computational physics, artificial intelligence,
applied mathematics

Keywords:
reinforcement learning, physics-informed
neural networks, flow control,
Kuramoto–Sivashinsky

Author for correspondence:
Jian-Xun Wang
e-mail: jwang33@nd.edu

Physics-informed Dyna-style
model-based deep
reinforcement learning for
dynamic control
Xin-Yang Liu and Jian-Xun Wang

Department of Aerospace and Mechanical Engineering, College of
Engineering, University of Notre Dame, Notre Dame, IN, USA

J-XW, 0000-0002-9030-1733

Model-based reinforcement learning (MBRL) is
believed to have much higher sample efficiency
compared with model-free algorithms by learning a
predictive model of the environment. However, the
performance of MBRL highly relies on the quality of
the learned model, which is usually built in a black-
box manner and may have poor predictive accuracy
outside of the data distribution. The deficiencies of
the learned model may prevent the policy from being
fully optimized. Although some uncertainty analysis-
based remedies have been proposed to alleviate this
issue, model bias still poses a great challenge for
MBRL. In this work, we propose to leverage the prior
knowledge of underlying physics of the environment,
where the governing laws are (partially) known.
In particular, we developed a physics-informed
MBRL framework, where governing equations and
physical constraints are used to inform the model
learning and policy search. By incorporating the
prior information of the environment, the quality
of the learned model can be notably improved,
while the required interactions with the environment
are significantly reduced, leading to better sample
efficiency and learning performance. The effectiveness
and merit have been demonstrated over a handful of
classic control problems, where the environments are
governed by canonical ordinary/partial differential
equations.

1. Introduction
Reinforcement learning (RL) is a class of artificial
intelligence (AI) techniques that train an AI agent
to learn the optimal control strategy by interacting

2021 The Author(s) Published by the Royal Society. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1098/rspa.2021.0618&domain=pdf&date_stamp=2021-11-17
mailto:jwang33@nd.edu
http://orcid.org/0000-0002-9030-1733

2

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210618

..

with the surrounding environment. Over the past few years, with the rapid development
of deep learning (DL), deep reinforcement learning (DRL) techniques have been witnessing
tremendous success in a variety of applications. In particular, DRL has demonstrated superhuman
performance at playing Go [1,2] and Atari games from pixels [3]. Most recently, there has
been growing interest in applying DRL for dynamic control of complex physical systems, e.g.
laminar/turbulent flows [4–10], active matter [11], fish swimmers [12–14], unmanned aerial
vehicles [15–17] and robotics [18–20]. Moreover, people also applied DRL in passive control and
shape optimization [21,22].

In general, most state-of-the-art RL agents learn the desired tasks by gathering experience
directly from the environment. Namely, the optimal action strategy is derived by interacting with
the real physical system in a trial-and-error manner. This class of RL methods is known as model-
free reinforcement learning (MFRL). Owing to the ease of implementation and no need for prior
knowledge of the dynamic transitions, MFRL has been widely applied to many tasks, mainly
in playing computer games [3,23,24]. Despite their popularity, MFRL methods usually have low
sample efficiency, i.e. requiring a massive amount of interactions with the environment. Although
the low sample efficiency and slow convergence rate might be acceptable for training an agent
in gaming applications since the environment interactions are nearly costless, these shortcomings
will significantly limit the DRL applications for dynamic control of physical/mechanical systems
(e.g. flights or robotics). First, real-world interactions of a mechanical system can be very
expensive and time-consuming. For instance, considering a flow control problem with plasma
actuators, it is very costly or even infeasible to train a controller by conducting a huge amount
of wind tunnel experiments with enormous control trials, which is unlike training an AI
game agent that can be done by playing the computer games for a vast amount of times
(episodes). Second, the mechanical systems can be easily worn out from extensive action trials,
and thus the exploration of optimal control strategy in MFRL is highly restricted to avoid
possible damage to the system in real-world industry settings. Although the off-policy MFRL
algorithms with a replay buffer (e.g. deep Q-Networks [3] and their actor–critic (AC) extensions
[25–27]) can better use historical data than on-policy MFRL algorithms (e.g. trust region policy
optimization [28] and proximal policy optimization [29]), the data efficiency is still far from
sufficient.

One way to improve data efficiency is to augment the data collected from real-world
interactions with a learned transition model. This is the general idea of the other class of DRL
algorithms: model-based reinforcement learning (MBRL) [30,31]. Using a learned model to reason
about the future can avoid the irreversible consequence of trial-and-error in the real environment
and has great potential to significantly improve data efficiency, which is thus more appealing
in applications of complex mechanical systems. In addition, the learned transition model is
independent of rewards and thus can be transferred to other control problems in the same/similar
environments. Many existing MBRL methods rely on simple function approximators, such as
Gaussian process (GP), linear models and Gaussian mixture models [32–34]. However, the limited
expressibility of the simple models prevents them from handling high-dimensional problems
with complex dynamic transitions. Thanks to the rapid developments of deep learning, more and
more complex high-dimensional function approximators based on neural networks have been
applied to design more powerful MBRL algorithms. For example, Racanière et al. [35] proposed a
novel MBRL framework, Imagination-Augmented Agent (I2A), where the environment model
is constructed by a recurrent network architecture for generating imagined trajectories to
inform agent’s decisions. Kaiser et al. [36] presented a complete MBRL method (SimPLe) using
a convolutional neural network to successfully solve Atari games with significantly fewer
interactions than MFRL methods. Hafner et al. [37] developed the Deep Planning Network
(PlaNet) that learns the latent dynamics of the environment directly from images using a
variational autoencoder and a recurrent latent network. The effectiveness of PlaNet has been
demonstrated by successfully solving a number of continuous control tasks from pixels. Hafner
et al. [38] further extended the PlaNet by developing a novel AC based MBRL method (Dreamer),
which learns long-horizon behaviours from images purely by latent imagination. Dreamer has

3

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210618

..

been evaluated on the DeepMind Control Suite and outperforms most state-of-the-art MBRL and
MFRL algorithms in every aspect.

Despite the great promise, most commonly used MBRL approaches suffer from model
inaccuracy (i.e. model bias), preventing them from matching the success of their model-free
counterparts [30]. This is particularly true when it comes to learning complex dynamics with
high-capacity models (e.g. deep neural networks), which are prone to overfitting in data-sparse
and out-of-sample regimes [31]. In particular, the model bias can be significantly exacerbated
for predicting long rollout horizons because of the ‘compound error’ effect. To mitigate this
issue, rather than learning the transition deterministically, people built the dynamic models in
a probabilistic manner, where the unknown model bias is treated as the epistemic uncertainty
(i.e. model-form uncertainty) and can be modelled in several different ways. For example,
Depeweg et al. [39] employed Bayesian neural networks (BNNs) to learn the probabilistic
dynamic transition and update the policy over an ensemble of models sampled from the trained
BNNs. Kurutach et al. [40] proposed to use an ensemble of models to estimate the model-
form uncertainty and regularize the trust region policy optimization (TRPO). Nonetheless, the
model-form uncertainty is notoriously difficult to quantify, especially for black-box deep learning
models [41,42]. Most recently, a more promising strategy known as physics-informed deep
learning (PIDL) has attracted increasing attention in the scientific machine learning (SciML)
community, aiming to leverage both the advantages of deep learning and prior knowledge of
underlying physics to enable data-scarce learning. Instead of learning solely from labelled data,
the model training process is also guided by physics laws and knowledge, which could provide
rigorous constraints to the model output, alleviate overfitting issues, and improve the robustness
of the trained model in data-scarce and out-of-sample regimes. This idea has been recently
explored for solving PDEs or modelling complex physical systems. For example, researchers have
incorporated physical constraints (e.g. realizability, symmetry, invariance) into SciML models
to develop physics-informed, data-driven turbulence models [43–45]. People have also used
governing equations of the physical systems to inform or directly train deep neural networks,
i.e. physics-informed neural networks (PINNs) [46], where the violation of the physical laws is
penalized by incorporating the equation residuals into the network loss function. This simple
idea has been applied in many scientific and engineering problems [47–51].

In this work, we leverage the idea of PIDL and propose physics-informed model-based
reinforcement learning (PiMBRL), an innovative MBRL framework for complex dynamic control
that incorporates the physical laws/constraints of the system to alleviate the issue of model bias,
reduce the real-world interactions and significantly improve the data efficiency. Specifically, a
novel autoencoding-based recurrent network architecture is constructed to learn the dynamic
transition in the Dyna-style MBRL framework [52], which is a commonly used MBRL formulation.
The governing physics of the environment are assumed to be known and are used to inform
the model learning and RL agent optimization. State-of-the-art off-policy AC algorithms, e.g.
Twin Delayed Deep Deterministic Policy Gradients (TD3) [26], are used for value/policy
optimization. We have demonstrated the effectiveness and merit of the proposed PiMBRL on
a few classic dynamic control problems, where the environments are governed by canonical
ordinary/partial differential equations (ODEs/PDEs), including cart-pole, pendulum, viscous
fluid dynamics governed by Burgers’ equation and chaotic/turbulent dynamics governed by
Kuramoto–Sivashinsky (KS) Equation. The performance of the proposed PiMBRL algorithms
is compared with their MBRL and MFRL counterparts, and significant improvements in terms
of sample efficiency and model accuracy are observed. The novel contributions of this work
are summarized as follows: (i) we propose a physics-informed model-based RL framework
based on a novel encoder–decoder recurrent network architecture; (ii) embed the physics of
the environment into the MBRL using discretized PIDL formulation [53]; (iii) demonstrate
the effectiveness of proposed methods on a variety of dynamic control problems, particularly
including nonlinear spatio-temporal chaotic systems, e.g. the KS equation, which exhibits a
wide range of dynamics from the steady to chaotic/turbulent regimes, shedding lights on
developing controllers for more challenging fluid systems governed by Navier–Stokes equations;

4

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210618

..

(iv) compare the proposed method with state-of-the-art MBRL and MFRL in terms of accuracy
and sample complexity. This work is the first attempt to use physical laws to inform the MBRL
agent optimization to the best of the authors’ knowledge.

The rest of the paper is organized as follows. The background of MFRL/MBRL and our
proposed PiMBRL algorithms are introduced in §2. Numerical results on classic dynamic control
problems are presented and discussed in §3. The influence of model rollout length and accuracy
threshold is further discussed in §4. Finally, §5 concludes the paper.

2. Methodology

(a) Problem formulation and background
We consider dynamical systems equipped with localized control inputs (i.e. actuators)

du
dt

=F (u, a; μ), (2.1)

where u(x, t) ∈R
du denotes the state variable of the system in the spatial domain Ω and temporal

domain t ∈ [0,T], a(x, t) ∈R
da represents the action variable (i.e. control inputs), and F (·) is a

nonlinear differential operator parametrized by μ. In many cases, the systems can be assumed
to possess the Markov property, referred to as Markov Decision Processes (MDP). The discrete
form can be written as

ut+1 =F (ut, at; μ), (2.2)

where the state ut+1 at next time t + 1 only depends on the state ut and action at at current time
step t, and the time-invariant transition dynamics F of the environment is a nonlinear differential
functional. In the optimal control problem, the goal is to find a series of action signals (a.k.a.,
policy π) that maximizes the expected return R(π),

R(π) =
∫T

0
E

ut∼πt
[r(ut)], (2.3)

where r(ut) denotes the reward function of the state at time t, which is a signal to assess the control
agent locally. This optimal control problem can be solved by deep reinforcement learning (DRL),
either in a model-free or model-based manner.

(i) Value function, policy function and Bellman equation

Before putting forth the proposed DRL algorithms, we introduce several important concepts in
DRL, including value and policy functions and Bellman equation. Value functions are functions
of a state (or a state-action pair) that estimate the total return starting from that particular state
(state-action pair). Value function v(u) of a state u is known as state-value function, while value
function q(u, a) of a state-action pair (u, a) is known as action-value function. The state-value and
action-value functions are formally defined as

v(u) .=E

[∞∑
k=1

γ kr(ut+k)

∣∣∣∣∣ut = u

]
(2.4a)

and

q(u, a) .=E

[∞∑
k=1

γ kr(ut+k)

∣∣∣∣∣ut = u, at = a

]
, (2.4b)

where γ ≤ 1 is the discount rate. A policy function π maps states to actions (or probabilities of
actions). Namely, a policy function π can be defined either as a deterministic function π (u) = a
or a probability measure π (a|u). Owing to the nature of MDP, value functions can be estimated

5

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210618

..

RL control agent real environment

state
ut

r ft

t

xaction
at

ut−1, at−1 ut, at ut+1, at+1

ut ut+1
ut+2

u f
t

real environment

p(ut)

p(ut)

RL control agent

state
at

reward

state

transition model

t

x

state ut reward rt

state ut

state ut

reward rt

action at

action at

ut
action

(a) (b)

Wxh

hthT-n hT-1

WxhWxh

Why Why Why
Whh

Whh

Figure 1. (a,b) Schematics of model-free reinforcement learning (MFRL) and model-based reinforcement learning (MBRL).
(Online version in colour.)

recursively based on the Bellman equations [52]

v(ut) = Eπ
ut+1∼P

[r(ut, at) + γ v(ut+1)] (2.5a)

and

q(ut, at) = E
ut+1∼P

[
r(ut, at) + γ E

at+1∼π
q(ut+1, at+1)

]
, (2.5b)

where P =P(ut+1|ut, at) is the transition probability, describing the dynamics of the environment.

(ii) Model-free and model-based reinforcement learning

As mentioned earlier, RL aims to find a series of actions (i.e. optimal policy) that maximize the
total return by estimating the value and/or policy function based on the Bellman equation.
Depending on whether or not learning and using a model of the transition dynamics of
the environment, RL can be classified into two categories: model-free reinforcement learning
(MFRL) and model-based reinforcement learning (MBRL). In MFRL, the optimization process
is conducted by repeatedly interacting with the environment with a trial-and-error search, and
the model of the environment is not required (figure 1a). Namely, the state dynamics of the
environment are (partially) observed as exploring different policy strategies, and the best policy
will be identified after massive trials. MBRL, on the other hand, leverages a model F̃ that
approximates the real environment F and predicts the dynamic transition (F̃ : ut, at → ut+1),
which can be learned from the interactions with the real environment. The RL agent is then
optimized by the interactions not only with the real environment but also with the virtual
environment constructed by the model (figure 1b). The learned model F̃ can be used for planning
with its gradient information (e.g. stochastic value gradients [54], guided policy search [55]) or
synthesizing imagined samples to augment real samples for better sample efficiency. The latter
is known as the Dyna-like MBRL [36,40,52,56] that can directly leverage cutting-edge MBRL
algorithms.

The algorithms of the DRL agent optimization can be grouped into three classes: (i) actor-only,
(ii) critic-only and (iii) actor-critic methods. Actor-only (i.e. policy-gradient) methods directly
optimize the policy function π̃ (u; θπ), which is often parametrized by a deep neural network by
calculating the policy gradient with respect to network parameters θπ . The optimization can be
solved based on stochastic gradient descent (SGD) [57] or its variants [58–61]. Examples of policy-
gradient methods include REINFORCE [62], TRPO [28] and PPO [29]. Critic-only (value-based)
methods are a family of RL algorithms that learn an DNN-approximated value-action function
q̃(u, a; θq) based on the optimal Bellman equation. Examples include Q-Learning [63], DQN
[3], Dueling DQN [64], etc. Since the optimization in critic-only methods is always performed

6

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210618

..

actor π(u; qa)

u a

critic q(u, a; qc)

u
q

a

ut−1, at−1 ut, at ut+1, at+1

ut ut+1
ut+2

real environment

transition model

execute at

real replay buffer r

imagined replay buffer f

(ur
t , a

r
t , u

r
t+1, r

r
t)

physics constraints
(PDE/ODEs, BCs)

traintrain

(u f
t ,a

f
t , u

f
t+1

, r ft)

AC-based RL agent

train

train

Wxh

hthT–n hT–1

WxhWxh

Why Why Why

Whh
Whh

Figure 2. Schematics of Dyna-style physics-informed model-based actor–critic algorithm. (Online version in colour.)

off-policy, they are more sample-efficient than the actor-only methods that are often on-policy.
However, since critic-only methods optimize the policy indirectly, they are less stable compared
with the actor-only methods. The AC methods learn a value function to support the policy
gradient optimization, and thus the AC family combines the strengths of both actor and critic
methods. As such, AC-based methods will be used in the proposed PiMBRL for value/policy
optimization.

(b) Physics-informed model-based reinforcement learning
We propose a physics-informed model-based reinforcement learning (PiMBRL) framework,
where the physics knowledge (e.g. conservation laws, governing equations and boundary
conditions) of the environment is incorporated to inform the model learning and RL optimization.
In this work, we focus on the Dyna-style MBRL formulation with the off-policy AC-based
optimization. The proposed framework will retain the generality and optimality of model-free
AC-based DRL methods, while significantly reducing the real-world interactions by learning
a reliable environment model based on physics-informed discrete learning. Specifically, an
AC-based RL agent will be initialized and starts interacting with the real environment. State-
action data pairs and corresponding rewards (urt , a

r
t , u

r
t+1, rrt) are iteratively collected from the real

environment and saved into the real replay buffer D r. These real samples are used to train the
actor-critic agent and the transition model simultaneously. The model is constructed by an auto-
encoding recurrent network, where boundary conditions (BCs) of the system are strictly encoded,
and the governing physics are imposed softly by minimizing the violation of the conservation

laws. Synthetic samples (uft , a
f
t , u

f
t+1, rft) are generated by the model and are collected into the

imagined replay buffer D f , which will be leveraged to augment the real samples for the RL
update. The model training, data generation, environment interaction and RL agent optimization
are conducted iteratively in an online manner. The overall schematic of the proposed PiMBRL
is shown in figure 2, and the detailed algorithm is given by algorithm 1. More details of AC
optimization and physics-informed model construction will be elaborated as follows.

1In this paper, TD3 is used as a demonstration (details of the TD3 is given in algorithm 3), but other off-policy algorithms
such as Deep Deterministic Policy Gradient (DDPG) and Soft Actor–Critic (SAC) are also applicable.

7

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210618

..

Algorithm 1. Physics-informed model-based reinforcement learning (PiMBRL).

1: Randomly initialize policy (actor) network π (u; θπ), value (critic) network(s) q(u, a; θq),
transition model F̃ (u, a; θF), and replay buffers Dr,D f for real and fictitious environments.

2: Randomly initialize state u0 (or observed state uo0), reward r0, and done signal d0 for real
environment.

3: for episode= 1,M do
4: for i= 0,T do
5: Execute action ai = π (u; θπ) in the real environment F ;
6: Save new data pair (uoi , ai, u

o
i+1, ri, di) to the real buffer Dr;

7: if episode ends then Reset the environment F ;
8: end if
9: end for

10: if sufficient (nsM) state-action pairs stored in the real buffer Dr then

11: Sample a batch of real state-action pairs, {(uoi , ai, uoi+1)}nbri=1 , from Dr

12: Update the transition model F̃ (u, a; θF) using the data loss LD on the batch Dr;
13: end if
14: if transition model meets the accuracy threshold (data loss LD < λ) then
15: for model prediction length = 1, lM do
16: Sample a batch of states {(uj+1)} from {Dr,D f }
17: Execute actions {aj+1 = π (uj+1; θπ)}

nbf
j=1 in transition model F̃ ;

18: Save new data pairs {(uoj+1, aj+1, uoj+2, rj+2, dj+2)}
nbf
j=1 to buffer D f ;

19: end for
20: end if
21: if enough (nsR) state-action pairs stored in {Dr,D f } then
22: Sample a batch of state-action pairs {(uok , ak ,uok+1)} from the fake buffer D f

23: Update model F̃ according to physical loss LE on sampled state-action pairs;
24: end if
25: Sample a batch of {(uol , al, uol+1, rl, dl)} from the augmented buffer {Dr,D f }
26: Update policy network π (u; θπ) and value network q(u,a; θ q) on the sampled state-

action pairs using off-policy algorithms1 (see algorithm 3 in appendix A).
27: end for

(i) Dyna-style model-based actor–critic optimization

We consider a generic Dyna-style model-based actor–critic optimization algorithm, which can
be easily adapted to any state-of-the-art off-policy AC methods, e.g. DDPG, TD3 or SAC.
As mentioned earlier, in the Dyna-style formulation, model is used to augment real samples,
and thus model-free AC-based optimization can be directly leveraged. For a AC-based RL
agent, two neural networks π̃ (u; θπ) and q̃(u, a; θq) are constructed to represent the policy and
value functions, respectively. Based on samples from both the real environment and virtual
environment simulated by the model, the policy network π̃ (u; θπ) is iteratively updated by

θk+1
π = θkπ + απ∇θπ

J(θkπ), (2.6)

where απ is the learning rate and ∇θπ
J(θπ) represents the policy gradient with respect to actor

network parameters θπ , which can be calculated based on the critic network

∇θπ
J(θkπ) =E

[T∑
t=0

∇θπ
log π̃ (ut; θkπ) · q̃(ut, at; θkq)

]
. (2.7)

The critic network q̃(u, a; θq) is optimized by minimizing the temporal difference (TD)-based loss
function

θ∗
q = arg min

θ q

||q′
t − q̃(ut, at; θq)||L2 , (2.8)

where || · ||L2 represent L2 norm and q′
t is estimated based on the optimal Bellman equation

q′
t = rt + γ q̃(ut+1, π̃ (ut+1; θπ); θq). (2.9)

8

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210618

..

convolutional
encoder

X +

s s
X

stanh X

tanh

LSTM Cell

X +

s s
X

stanh X

tanh

LSTM Cell LSTM Cell

X +

s s
X

stanh X

tanh

MLP
decoder

calculate physical loss

calculate data loss

output
input state
input action
latent state
output state
CNN filter

{ + / } =1, +1

Figure 3. Schematics of LSTM-based neural network architecture for transition model. (Online version in colour.)

(ii) Physics-informed learning architecture for transition dynamics

We develop a physics-informed recurrent neural network to learn the dynamics transition, aiming
to map the current states and actions to the states at the next control step (F̃ : ut, at → ut+1). To
better capture the spatiotemporal dependencies, a convolutional encoder, multi-layer perceptron
(MLP) decoder and long-short term memory (LSTM) blocks are used to build the learning
architecture. As shown in figure 3, the high-dimensional state vector (ut) at the current control
step is encoded into the latent space by a convolutional encoder. Together with the input actions
(at), the latent state vector is fed into the LSTM-based transition network, which outputs latent
intermediate transition states between the two control steps. After a multi-layer perceptron
(MLP) decoder, the latent outputs are decoded to the full-order physical states. The network is
trained based on both data and physics constraints. The data loss LD is defined by the mismatch
between the model prediction ũt+1 and labelled data ut+1 obtained from interactions with the real
environment

LD = 1
nb

nb∑
j=1

||ũ(j)
t+1 − u(j)

t+1||L2 , (2.10)

where nb is the batch size. The physical loss LE is constructed based on the conservation laws
of the system in their discretized form. The residuals of the governing equations is minimized on
multiple discrete spatio-temporal snapshots. To this end, the network outputs include the states at
N intermediate time steps ({ut+i/N}i=1,N) as well as the state at the next control step. The physical
loss is then obtained by taking the averaged residuals of the governing equations

LE = 1
N

N∑
i=1

nb∑
j=1

∥∥∥∥∥∥
dũ(j)

t+i/N

dt
− F (ũ(j)

t+i/N , at+i/N)nb

∥∥∥∥∥∥
L2

, (2.11)

where spatial derivatives in F are computed using high-order finite-difference-based spatial
filtering, and temporal derivatives dut+i/N/dt are approximated by forward Euler method.

3. Results
In this section, we test the proposed PiMBRL on a number of classic control problems that are
governed by ODEs or PDEs. The performance is compared against the baseline model-free and
model-based counterparts. The standard model-free TD3 algorithm is used as the MFRL baseline
(see algorithm 2 in appendix A), while the purely data-driven Dyna-like model-based TD3 is

9

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210618

..

deemed as the MBRL baseline. The hyperparameters used in the following experiments are
summarized by tables 1 and 2 in appendix A. Note that since this work aims to demonstrate
the merit of incorporating physics prior in MBRL, the comparison study is confined within the
MFBL, MBRL, and PiMBRL variants of the same policy optimization algorithm. The horizontal
comparisons among different MFRL/MBRL baselines have been studied in, e.g. refs of [65,66],
which is not the focus here.

(a) ODE governed environments
We first evaluate PiMBRL on two classic dynamic control benchmarks, Cart-Pole and Pendulum,
which are available in the OpenAI Gym environment. The physics of both systems are known,
which can be described by a set of ODEs. Since there is no spatial dependence and the dimension
of the system is low, we use a low-capacity two-layer MLP with 256 neurons per layer to directly
learning the transition dynamics ut+1 = F̃ (ut, at) and model rollout length (lM) is set equal to the
trajectory length.

(i) Cart-Pole

We start with the Cart-Pole benchmark problem (i.e. ‘CartPole-v0’ environment provided in
OpenAi gym), where a cart moves along a frictionless track with a pole attached to the top of
it via an unactuated joint, as shown in figure 4a. The control goal is to keep the pole from falling
over by acting a horizontal force on the cart. The reward is +1 for each time step as long as the
pole is upright and the cart remains in a certain region. The physics of this system is governed by

ẍ= f + mpθ̇
2 sin θ − mplθ̈

mp + mc

θ̈ = g sin θ − cos θ (f + mpθ̇
2 sin θ)/(mp + mc)

l(4/3 − (mp cos2 θ/(mc + mp)))
,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.1)

where x is the spatial coordinate of the cart, θ represents the angle of the pole from vertical, and f is
the force that the RL agent applies on the cart. mc,mp are the mass of the cart and pole, respectively.
One episode is considered to be ended if the pole deviates too much from vertical position (i.e.
|θ | > π/12) or the cart leaves the designated area (i.e. |x| > 2.4) or one episode has more than
200 control steps. The state observation of this environment is a four-dimensional vector, u=
(x, ẋ, θ , θ̇), while the action space is discrete, consisting of two valid values {−10, 10}. Each episode
begins at a random state u0 = (x0, ẋ0, θ0, θ̇0).

Figure 4b compares the performance curves of the MFRL, MBRL and PiMBRL. The proposed
PiMBRL reaches the total return of 200 only after about 3000 time steps in the real environment,
while the vanilla Dyna-like MBRL counterpart needs much longer to achieve so and its
performance is not stable as well. For the MFRL counterpart, the total return is still below 120 even
after 15 000 time steps. Although both MBRL and MFRL are able to achieve the same performance
with sufficient time steps, PiMBRL only uses about 45.2% and 9.7% time steps needed by its
MBRL and MFRL counterparts, respectively. Therefore, to achieve the same level of performance,
PiMBRL can significantly reduce the required number of interactions with the real environment,
compared with the original model-free TD3 (i.e. MFRL) and Dyna-like model-based TD3 (i.e.
MBRL).

(ii) Pendulum

The second test case is the Pendulum-v0 available in the OpenAi gym. In this environment
(figure 5a), one end of the pendulum is fixed, while the other end can swing freely. θ denotes the
angle of the pendulum from vertical position. The state contains the angle and its time derivative,
i.e. u= (θ , θ̇). In each episode, the pendulum starts from a random state u0 ∈ (−1, 1) × (−1, 1).
Besides, the angular velocity is constrained as θ̇ ∈ [−8, 8], and any θ̇ out of this range will be

10

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210618

..

mc

mp

f

l

av
er

ag
e

re
tu

rnq

0 3000 6000 9000
time steps

MFRL

MBRL

PiMBRL

12 000 15 000

50

150

200

100

(a) (b)

Figure 4. (a) Schematic diagram of the Cart-Pole environment. (b) Performance curve of PiMBRL versus standard model-free
TD3 (MFRL) and Dyna-like model-based TD3 (MBRL) in Cart-Pole environment. The solid lines indicate averaged returns of 100
randomly selected test episodes, while the shaded area represents the return distribution of all test samples. (a) Cart-Pole,
(b) RL Performance. (Online version in colour.)

l

T

av
er

ag
e

re
tu

rn

q

0 10 000
–2000

–1500

–1000

–500

0

20 000 30 000
time steps

40 000 50 000

(a) (b)

MFRL
MBRL
PiMBRL

Figure 5. (a) Schematic diagram of pendulum environment. (b) Performance curve of PiMBRL versus standard model-free TD3
(MFRL) and Dyna-like model-based TD3 (MBRL) in the pendulum environment. The solid lines indicate averaged returns of 100
randomly selected test episodes, while the shaded area represents the return distribution of all test samples. (a) Pendulum,
(b) RL performance. (Online version in colour.)

capped by the boundary value (−8 or 8). The dynamics of the pendulum system is governed by,

θ̈ = −3g
2l

sin (θ + π) + 3
ml2

T, (3.2)

where g= 10 is the acceleration of gravity, T ∈ [−2, 2] denotes the torque that the agent applies to
the pendulum, l= 1 and m= 1 are the length and mass of the pendulum, respectively. The control
goal here is to swing the pendulum up and make it stays upright, meanwhile consuming as less
energy as possible. To achieve this, the reward function is defined as

r= −θ2 − 0.1θ̇2 − 0.001T2. (3.3)

The performance curve is shown in figure 5b. After about 3000 time steps, both the PiMBRL
and MBRL achieve averaged total return of –200 with reduced uncertainty. By contrast, the
total return of the MFRL largely fluctuates and the average value remains less than –800.
Although PiMBRL shows greater sample efficiency over the MFRL baseline, it does not show
a notable advantage over the MBRL counterpart in the Cart-Pole case. This might be due to the
following two factors. First, compared with the Cart-Pole problem, the dynamics of the pendulum
environment is easier for the model to learn, since the observation space is much smaller than
that of the Cart-Pole environment (two dimensions versus four dimensions). Second, the model

11

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210618

..

500

15

10

5

0

400

300

200

100

0
0

1200
15

10

5

0

800

400

0

0.02 0.04 0.06 0.08
absolute model prediction error absolute model prediction error

0.10

0 0.02 0.04 0.06 0.08
absolute model prediction error

0.10

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

absolute model prediction error
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

(a)

(b)

Figure 6. Histograms of the prediction errors of the transitionmodels for the pendulum environment, (a) trainedwith physics-
informed loss in PiMBRL and (b) trained with the data loss only in MBRL. (Online version in colour.)

network is benefited less from the physical loss, since when the state θ̇ exceeds the limits [−8, 8]
and capped by the boundary value, the governing equation (3.2) is no longer satisfied.

Figure 6 compares the histograms of the prediction errors of the models trained by PiMBRL
and MBRL, respectively. Figure 6a shows the prediction error of the model trained with the
physics-informed loss (equation loss + data loss), while figure 6b shows the model prediction
error in MBRL where only the labelled data are used for training. Although the model does
achieve higher accuracy on average without using physics constraints (see two sub-figures in
the left column), in the out-of-sample regime (away from the training set), the physics-informed
model shows better performance and robustness (see two sub-figures in the right column).
Overall, the models in both PiMBRL and MBRL are learned sufficiently well to achieve a roughly
similar RL performance.

(b) PDE governed environments
Unlike the environments that can be described by ODEs, the systems governed by PDEs are
much more complicated in terms of the dimension of spatiotemporal solution space, dramatically
increasing the level of difficulty in learning the dynamic model as well as the policy and value
functions. In this section, we evaluate the proposed PiMBRL structure on two continuous control
problems in the environments governed by Burgers’ equation and KS equation, respectively. The
length of each control step (i.e. refresh rate) is set at the order of 10−1 second based on common
flow sensor response time [67]. The learned transition model is only used to predict a limited
rollout length (lM) in each trajectory to control the model error accumulation, making it remain at
a relatively low level.

12

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210618

..

(i) Burgers’ equation

For the first PDE-based control problem, we consider a one-dimensional Burgers’ equation with
periodic boundary condition,

∂u
∂t

+ u
∂u
∂x

= ν
∂2u
∂x2 + f (x, t), x ∈ [0, l], t ∈ [0, 2π], (3.4)

where x is the spatial coordinate, ν = 0.01 is the kinematic viscosity, and f (x, t) denotes the source
term, defined as

f (x, t) = a1(t) exp
[(

−15
(x
l

− 0.25
))2

]
+ a2(t) exp

[(
−15

(x
l

− 0.75
))2

]
(3.5)

with the control parameters a= (a1, a2) ∈ [−0.025, 0.075]2.
The control problem is defined as training the RL agent to match a reference trajectory. Namely,

the RL agent is trained to find the optimal strategy of controlling the source term with two control
parameters a1, a2, in order to match a predefined reference trajectory profile ure,

ure(x, t) = 0.05 sin t + 0.5, t ∈ [0, 2π]. (3.6)

Each episode starts from a randomly generated initial condition,

u(x, 0) = 0.2 c exp
[(

−5
(x
l

− 0.5
))2

]
+ 0.2 (1 − c)

(
0.5 sin 4π

x
l

+ 0.5
)

, (3.7)

where c is randomly sampled from a uniform distribution on [0, 1). That is, the trained RL is
expected to finally match the reference trajectory, starting from any randomly generated initial
state by equation (3.6). The observation is set as the discrepancy between the PDE state and
reference state at the same control step uo = u − ure. The environment is simulated numerically
based on the finite difference methods, where the convection term and diffusion term are
discretized by the second-order upwind scheme and the fourth-order central difference scheme,
respectively. Euler method is used for the time integration. The simulated environment is defined
on a spatial mesh of 150 grid points and the numerical time step is set as 0.01. The control signal
is applied every 500 numerical steps and one episode contains 60 control steps. The reward
function is defined as −10||uo||L2 . Without the RL training, random control signals are applied
to the system, and the corresponding spatiotemporal state surface u is shown in figure 7a. We can
see that the state surface is unsmooth, and a large discrepancy remains between the uncontrolled
state with the reference state. Figure 7c shows one of the test episodes controlled by the trained
PiMBRL agent. The corresponding actions and rewards are given in figure 7d. Although the initial
state is far from the reference, the controlled surface gradually approaches and finally matches the
reference state after t= 40. The corresponding action curves are smooth, suggesting that the RL
agent successfully learns an effective control strategy.

Figure 8 shows the performance curves of the PiMBRL, MBRL, MFRL tested on 100 randomly
selected initial conditions. The PiMBRL reaches the total return of 0.1 only after 800 time steps,
while it takes the MBRL about 1300 time steps to achieve a similar level of performance. The
MFRL counterpart cannot reach the same level of performance within 1400 time steps. Again, our
PiMBRL shows significant advantages in terms of sample efficiency, since it only uses about 65%
of time steps required by MBRL and 46.7% time steps required by MFRL to achieve the control
goal.

(ii) Kuramoto–Sivashinsky equation

In the last case, we evaluate the proposed PiMBRL on the control of a nonlinear, chaotic
dynamic system governed by the one-dimensional KS equation, which is more challenging. The
system governed by the KS equation often exhibits spatio-temporally chaotic or weakly turbulent
behaviour, and thus the KS equation is widely used as a model system for turbulence study [68].
In this case, the KS environment is controlled by four actuators distributed equally in space to

13

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210618

..

0.6

0.075

(a) (b)

(c) (d)

0.050

0.025

0

–0.025

–0.2

–0.4

–0.6

–0.5

0

–1.0

–1.5

0.050

0.075

0.025

0 10 20 30 40 50

a1
a2

a1
a2

60
control steps

0 10 20 30 40 50 60
control steps

re
w

ar
d

re
w

ar
d

m
ag

ni
tu

de
 o

f
co

nt
ro

l p
ar

am
et

er
s

m
ag

ni
tu

de
 o

f
co

nt
ro

l p
ar

am
et

er
s

state
reference

state
reference

0.5

0.4

0.3

0.2

60
40

20
0

0
50

100

150
x

0
50

100

150
x

t

60
40

20
0 t

u

0.1

0.5

0.4

0.3

0.2

u

Figure 7. Results of one test episode (a) with random control signals and (c) with trained RL controller. The corresponding
actions and reward curves of the (b) uncontrolled episode and (d) RL controlled episode. (a) Uncontrolled, (b) uncontrolled
actions and rewards, (c) controlled, (d) controlled actions and rewards. (Online version in colour.)

0

–20

–40

–60

–80

200 400

MFRL
MBRL

PiMBRL

600 800
time steps

1000 1200 1400

av
er

ag
e

re
tu

rn

Figure 8. Performance curve of PiMBRL versus standard MFRL andMBRL in the Burgers’ equation environment. The solid lines
indicate averaged returns of 100 test episodes, while the shaded area represents the return distribution of all test samples.
(Online version in colour.)

minimize the energy dissipation and total input power. The physics of this system is governed by
the KS equation

∂u
∂t

+ ∂2u
∂x2 + ∂4u

∂x4 + u
∂u
∂x

= f (x, t), x ∈ [0, l], t ∈ [0, ∞), (3.8)

14

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210618

..

16

40x

64

16

40x

64

16

40x

64

16

40x

64
0 100 200

t
300 400

2

1

0

–1

–2

Figure 9. Contours of spatio-temporal state u of four randomly selected episodes. The top one is an uncontrolled episode,while
the other three are controlled by the trained RL agent. (Online version in colour.)

where u is the state variable, and f represents the source term (i.e. actuator) defined by

f (x, t) =
4∑

i=1

ai(t) e−(x−xi)2/2
√

2π
, (3.9)

where xi ∈ {0, l/4, l/2, 3l/4} is the spatial locations of the actuator, and a= {ai(t)}i=1,2,3,4 ∈
[−0.5, 0.5]4 defines the control parameters. To achieve the control goal, the reward function is
defined as follows:

r= − 1
Tl

∫ t0+T

t0

∫ l

0

⎛
⎝

(
∂2u
∂x2

)2

+
(

∂u
∂x

)2
+ uf

⎞
⎠ dxdt, (3.10)

where T is the time length of one control step. The environment is simulated numerically based
on the finite difference method, where the convection term is discretized by the second-order
upwind scheme, the second and fourth derivatives are discretized by the sixth-order central
difference scheme, and the fourth-order Runge–Kutta scheme is used for time integration with
time stepping size of 0.001 on the one-dimensional domain l= 8π discretized by a mesh of 64
grid points. Each control step contains 250 numerical steps, and one episode consists of 400
control steps. Each episode starts with a random initial condition sampled from the attractor
of the unforced KS equation. Figure 9 shows the spatiotemporal states of four test episodes
with randomly sampled initial states. The top one is an uncontrolled episode, where nonlinear
chaotic behaviour is developed along the time axis. By contrast, the ‘turbulence’ in the other
three episodes controlled by the agent can be quickly stabilized after 200 time steps, showing the
effectiveness of the PiMBRL controller.

Figure 10 shows the performance curve of PiMBRL versus that of the MFRL. It is clear
that the PiMBRL agent reaches higher averaged total returns with fewer time steps than the
MFRL counterpart does. The PiMBRL performance curve is consistently above that of the MFRL
approach, and meanwhile, less uncertainty is observed. As shown by figure 10b, MFRL needs
more than 400 000 time steps to barely reach the return level of −55, deemed as the threshold
level of an acceptable policy in KS environments. In stark contrast, the PiMBRL agent only uses
about 15% of the time steps required by its MFRL counterpart to reach the averaged total return
of −55. As for the uncertainty region, both the lower and upper envelopes of the PiMBRL (blue
region) are notably higher than those of the MFRL (red region) at almost every time step. In this

15

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210618

..

0
(a) (b)

0

–100
–30

–60

–90

–120

–150

–200

–300

av
er

ag
e

re
tu

rn

av
er

ag
e

re
tu

rn

–400

–500

–600
0 50 000 100 000

time steps
150 000 200 000 250 000 100 000 200 000 300 000

time steps
400 000

MFRL
PiMBRL

Figure 10. Performance curve of PiMBRL versus MFRL and MBRL in KS equation environment. Solid lines shows the average
return of all the test episodeswhile the shaded area represents the distribution range of the 200 test episodes. (a) 0 to 2.5 × 105

time steps, (b) 1.0 × 106 to 4.0 × 106 time steps. (Online version in colour.)

1750

1500

1250

1000

750

500

250

0
0 0.2 0.4 0.6

mean squared error of model prediction
0.8 1.0 0 0.2 0.4 0.6

mean squared error of model prediction
0.8 1.0

only data losswith physical loss

Figure 11. Histograms of the prediction errors (MSE) of the transition models for the KS system, (a) trained with physics-
informed loss in PiMBRL, and (b) trained with the data loss only in MBRL. Both are trained on the same real buffer with 105

time steps stored. (Online version in colour.)

case, a model-free fine-tuning approach [69] is applied when the average return is above −55 to
further improve the PiMBRL performance. This is because when the RL agent is trained to achieve
a high accuracy level, the model-based exploration does not help too much while the model bias
becomes the bottleneck. At this point, the RL agent can be fine-tuned by interacting with the real
environment without using the model [69]. As such, the PiMBRL and MFRL performance curves
will eventually converge to each other with a large number of training time steps.

The MBRL result is not plotted here because the accuracy (LD) of the learned model purely
based on labelled data does not meet the accuracy threshold λ = 0.01, and thus the MBRL
performance curve is identical to that of the MFRL counterpart. In contrast to the ODE-based
pendulum system shown above, the spatiotemporal dynamics of the chaotic system is much
more challenging for the model to learn purely based on the limited amount of labelled data.
Incorporating physics constraints can significantly help this scenario and improve the model
learning performance. This can be clearly seen in figure 11, where the comparison of model
prediction errors of PiMBRL (a) and MBRL (b) are shown. The mean squared error distribution of
the model trained based on the physics-informed loss is much less than that of the model trained
purely based on the labelled data.

16

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210618

..

2.5

0u

I M
 =

 3
–2.5

2.5

0u

I M
 =

 8

–2.5

2.5

0u

I M
 =

 4
0

–2.5

2.5

0u

I M
 =

 1
20

–2.5

0 25
x

50 0 25
x

50

model environment

0 25
x

50

Figure 12. Model predicted snapshots of the KS environment with different rollout lengths compared with the true
environment at three randomly selected initials. (Online version in colour.)

4. Discussion

(a) Influence of model rollout length
The rollout length of the model is important to the RL performance. On the one hand, a long-
term model prediction could help the agent see ‘deeper and further’, improving the exploration
rate and increasing the sample efficiency in the Dyna-like MBRL framework. On the other hand,
accurately predicting a long trajectory is always challenging due to the error accumulation
effect, and inaccurate prediction data could be harmful to the RL training, which is a trade-off.
Figure 12 shows the model prediction performance for the KS environment with four different
rollout lengths (lM = 3, 8, 40, 120). For all three randomly selected initials, we can see that the
states predicted by the model agree well with the ground truth when the rollout length is small
(lM ≤ 8). However, large discrepancies can be observed when lM ≥ 40 and the model predictions
significantly deviate from the ground truth when the rollout length is 120.

We are more interested in how the model rollout length affects the PiMBRL performance, so
we investigated the influence of four different rollout lengths on the reward curves. The case
setting is the same as that used in §3b(ii) except for the rollout length, and the RL performance
is evaluated on 200 randomly generated episodes. Figure 13 shows the performance curves
of PiMBRL with different model prediction lengths. As expected, the RL performance slightly
deteriorates if the rollout length of the model is either too short or too long. For the four rollout
lengths (lM = 3, 8, 40, 120), the RL agent achieves the best performance with lM = 8 at almost any
stage of the entire training process. When lM ≤ 8 or lM ≥ 8, the RL convergence speed is relatively
slow before entering the fine-tuning stage due to the trade-off between exploration and model
bias. However, even after the model-free fine tuning, the RL agent with a longer rollout length
(lM ≥ 40) still suffers from the low-quality model prediction data and is very difficult to be further
improved (see the comparison of the green and blue curves in figure 13).

17

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210618

..

0(a)

(b) (c)

–100

–100

av
er

ag
e

re
tu

rn

–200

–200

–250

–150

av
er

ag
e

re
tu

rn

–50

–100

–200

–250

–150
av

er
ag

e
re

tu
rn

–50

–300

–400

–500
0

time steps
50 000

20 000 40 000 60 000
time steps

80 000 100 000 200 000 300 000
time steps

400 000

100 000 150 000 200 000 250 000

MFRL

MFRL

IM = 3
IM = 8

IM = 8

fine tune
threshold

fine tune
threshold

IM = 40

IM = 40

IM = 120

Figure 13. Performance curves of PiMBRLwith four differentmodel rollout lengths comparedwithMFRL base line. (b) Zoom-in
view of the dashed box. (c) Zoom-in view of the range between 1 × 105 and 4 × 105 time steps. (Online version in colour.)

(b) Influence of model accuracy threshold
In model-based RL, the transition model is trained along with the RL agent (i.e. value and policy
networks) from scratch, and the model-generated data usually can be effectively used once the
model is trained to reach a certain level of accuracy. As mentioned above, we use the model
accuracy threshold parameter (λ) to determine when the model-predicted data should be used
for the RL training. Here, we would like to study how this parameter of λ affects the PiMBRL
performance.

Using the KS environment as an example, figure 14 shows the performance curves of PiMBRL
with three different threshold values, i.e. λ = 0.02, 0.01, 0.005. Overall, the influence of λ values on
the final performance of the RL agent is negligible since all cases converge to the same level of
total return. This is because the model is trained together with the RL agent and can be improved
over the entire RL training process. Actually, with the same amount of training time steps in the
real environment, the models can reach a similar accuracy level regardless of threshold values λ.
However, the RL agent with a relatively large threshold value (λ = 0.02) performs slightly better
and has a relatively faster convergence rate at the early stage of the training (time step 40 000–
60 000). A higher threshold allows the agent to access more data generated by the model earlier,
which leads to a better exploration rate and thus slightly higher sample efficiency (figure 14b).

(c) Limitations and perspectives
Compared with MFRL algorithms, MBRL is believed to have higher sample efficiency and thus
more attractive to application scenarios where repeatedly interacting with the real environment
is costly or impossible. However, for certain cases where the environment interactions are cheap
and fast (e.g. via high-frequency sensors), MFRL could be more efficient than its Dyna-MBRL

18

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210618

..

0

–100

–100

–150

–200

–50
av

er
ag

e
re

tu
rn

av
er

ag
e

re
tu

rn

–200

–300

–400

–500
0 50 000 100 000 150 000

time steps time steps
200 000

l = 0.02
l = 0.01
l = 0.005

250 000 20 000 40 000 60 000

Figure 14. Performance curves of PiMBRL with three different model accuracy threshold values λ = 0.02, 0.01, 0.005, where
(a) is the full view of the entire training history and (b) shows the zoom-in view of the dashed box area in (a). (a) Full view,
(b) zoom-in view. (Online version in colour.)

counterpart since it does not suffer from model-bias issues. Moreover, deploying multiple
controllers in parallel using a multi-agent setting may also have the potential to alleviate the
sample complexity issues in MFRL, particularly for systems with strong invariance [70].

This work tackles the challenges in MBRL from a different angle. The main contribution lies
in incorporating prior knowledge into model learning to constrain model bias for the Dyna-
style MBRL structure, and significant improvements have been demonstrated on several classic
control problems. Nonetheless, the current development has several limitations. First, although
the proposed PiMBRL has been tested on several classic control problems for proof-of-concept,
further studies are still needed to fill gaps for ultimately solving complex real-world challenges,
e.g. three-dimensional turbulence control. Second, this work focuses on systems with well-posed
physics (i.e. systems with known governing equations and physical parameters). However, for
some systems whose underlying physics remains unknown or too complex to be expressed
as explicit PDEs/ODEs, the PiMBRL in its current form is not directly applicable, and further
extensions are needed. For example, one common scenario is that the governing equations are
known, but parameters are not given. In this case, the PiMBRL can be extended by assimilating
data collected from interactions with the environment to infer the unknown parameters during
the training, since physics-informed networks are good at solving both forward and inverse
problems in a unified manner [48,71]. A more challenging scenario is that the system’s governing
equations are not known explicitly. In this case, the proposed framework can also be extended to
discover the explicit equation forms by coupling the sparsity-promoting learning techniques. For
example, the pointwise PINN has been combined with library-based sparse regression techniques
to discover explicit equation forms from sparse and noise observations [72].

Lastly, we acknowledge that we have not conducted a throughout, comprehensive parametric
study, which is not the focus of this work. There are many factors that can be studied in the future
to further improve the performance. For example, the current PiMBRL is built upon TD3, but the
proposed framework is generic and can be coupled with other policy learning algorithms, e.g.
DDPG and SAC. Moreover, the generic RL hyperparameters remain the same for all test cases
and have not been fine-tuned. Adaptive parameter tuning for a specific application may be able
to further improve the performance.

5. Conclusion
In this work, we presented an innovative model-based reinforcement learning framework
(PiMBRL) for dynamic control, which leverages the physical laws and constraints of the
environment to alleviate the model-bias issue and significantly improve the sample efficiency.
In particular, an autoencoding-based recurrent network structure is devised to learn the

19

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210618

..

spatiotemporal dynamics of the environments. The merit and effectiveness of the proposed
PiMBRL framework have been demonstrated over a set of classic dynamic control problems,
where the environments are governed by canonical ODEs or PDEs, including viscous Burgers’
equations and KS equations with chaotic behaviours. Compared with the model-free or purely
data-driven model-based reinforcement learning counterparts, our PiMBRL shows a significant
improvement in model predictive accuracy and RL sample efficiency. Moreover, the effects of
different hyper-parameters used in PiMBRL (e.g. model rollout length lM and model accuracy
threshold λ) are studied, and how these parameters affect the RL performance is discussed.

Data accessibility. The data that support the findings of this study will be openly available in GitHub at https://
github.com/Jianxun-Wang/PIMBRLuponpublication.
Authors’ contributions. X.-Y.L.: participated in the design of the study, implemented the entire framework, carried
out all numerical experiments and drafted the manuscript. J.-X.W.: conceived of the study, drafted and revised
the manuscript, and supervised the project.
Competing interests. We declare we have no competing interests.
Funding. This work is funded by the National Science Foundation under award nos. CMMI-1934300 and OAC-
2047127 and start-up funds from the College of Engineering at University of Notre Dame.
Acknowledgements. The authors thank two anonymous reviewers for their insightful comments and suggestions
to improve the quality of this work.

Appendix A

(a) Twin-delayed deep deterministic policy gradient (TD3)

Algorithm 2. Model-free twin-delayed deep deterministic policy gradient (TD3).

1: Initialize policy (actor) network π (u; θπ), value (critic) networks q1(u, a; θ q1), q2(u, a; θ q2),
empty the replay buffer Dr and reset the environment F .

2: Make a copy of policy and value networks as target networks πtarg ← π , qtarg,1 ← q1,
qtarg,2 ← q2

3: for time steps t= 1,N do
4: Execute action ai = π (u; θπ) in the environment F ;
5: Save new data pair (uoi , ai, u

o
i+1, ri, di) to buffer Dr;

6: if episode ends then Reset the environment F ;
7: end if
8: if t mod update_every== 0 then
9: if enough state-action pairs stored in {Dr,D f } then

10: for k= 1, IRL do
11: Sample J state-action pairs {(uoj , aj,uoj+1, rj, dj)} from buffer Dr

12: Compute target

Qj = rj + γ (1 − dj) min
i=1,2

{
qtarg,i(uoj+1, πtarg(uoj+1))

}

13: Update value networks via gradient descent,

∇θqi

1
J

J∑
j=1

[
qi(uoj ,aj) − Qj

]2
, i= 1, 2

14: if k mod 2 == 0 then
15: Update policy network via gradient descent:

∇θπ

1
J

J∑
j=1

q1(uoj , π (uoj))

16: Update target networks:

θ qtarg,i ← ρθ qtarg,i + (1 − ρ)θ qi , i= 1, 2

θπtarg ← ρθπtarg + (1 − ρ)θπ

17: end if
18: end for
19: end if
20: end if
21: end for

https://github.com/Jianxun-Wang/PIMBRL upon publication
https://github.com/Jianxun-Wang/PIMBRL upon publication

20

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210618

..

Algorithm 3. TD3-based policy and value network update algorithm used in MBRL/PiMBRL.

1: With buffer Dr, and D f , policy network π (u; θπ), value networks q1(u, a; θ q1), q2(u, a; θ q2)
and their corresponding target networks πtarg, qtarg,1, qtarg,2

2: for k= 1, IRL do
3: Sample J state-action pairs {(uoj , aj, uoj+1, rj, dj)} from buffer {Dr,D f }
4: Compute target

Qj = rj + γ (1 − dj) min
i=1,2

{
qtarg,i(uoj+1, πtarg(uoj+1))

}

5: Update value networks by gradient descent:

∇θqi

1
J

J∑
j=1

[
qi(uoj ,aj) − Qj

]2
, i= 1, 2

6: if k mod 2 == 0 then
7: Update policy network by gradient descent:

∇θπ

1
J

J∑
j=1

q1(uoj , π (uoj))

8: Update target networks:

θqtarg,i ← ρθ qtarg,i + (1 − ρ)θ qi , i= 1, 2

θπtarg ← ρθπtarg + (1 − ρ)θπ

9: end if
10: end for

(b) Hyper-parameter settings

Table 1. Generic hyper-parameters of TD3 algorithm.

parameter discount rate γ PD IRL policy and Q-value network optimizer

value 0.99 2 50 Adam

(0.977 in KS)

parameter polyakρ action noise replay buffer size policy and Q-value network learning rate
. .

value 0.995 20% 5 × 105 1 × 10−3
. .

Table 2. Hyper-parameters of PiMBRL (§3).

environment
model accuracy
threshold LD

model rollout
length lM

maximum episode
length nsM

Cart-Pole 1 × 10−4 200 (full length) 200 800
. .

Pendulum 1 × 10−2 200 (full length) 200 6000
. .

Burgers’ 1 × 10−2 1 60 120
. .

KS 1 × 10−2 3 400 6000

environment RL batch size model batch size update every nsR. .

Cart-Pole 128 200 128 1000
. .

Pendulum 128 200 128 12 000
. .

Burgers’ 120 120 120 120
. .

KS 128 400 400 12 000
. .

21

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210618

..

References
1. Silver D et al. 2017 Mastering the game of go without human knowledge. Nature 550, 354–359.

(doi:10.1038/nature24270)
2. Silver D et al. 2018 A general reinforcement learning algorithm that masters chess, shogi, and

Go through self-play. Science 362, 1140–1144. (doi:10.1126/science.aar6404)
3. Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D, Riedmiller M. 2013

Playing Atari with deep reinforcement learning. (http://arxiv.org/abs/1312.5602)
4. Rabault J, Kuchta M, Jensen A, Réglade U, Cerardi N. 2019 Artificial neural networks trained

through deep reinforcement learning discover control strategies for active flow control. J. Fluid
Mech. 865, 281–302. (doi:10.1017/jfm.2019.62)

5. Ghraieb H, Viquerat J, Larcher A, Meliga P, Hachem E. 2021 Single-step deep reinforcement
learning for open-loop control of laminar and turbulent flows. Phys. Rev. Fluids 6, 053902.
(doi:10.1103/PhysRevFluids.6.053902)

6. Ren F, Rabault J, Tang H. 2021 Applying deep reinforcement learning to active flow control in
weakly turbulent conditions. Phys. Fluids 33, 037121. (doi:10.1063/5.0037371)

7. Fan D, Yang L, Wang Z, Triantafyllou MS, Karniadakis GE. 2020 Reinforcement learning for
bluff body active flow control in experiments and simulations. Proc. Natl Acad. Sci. USA 117,
26 091–26 098. (doi:10.1073/pnas.2004939117)

8. Bucci MA, Semeraro O, Allauzen A, Wisniewski G, Cordier L, Mathelin L. 2019 Control
of chaotic systems by deep reinforcement learning. Proc. R. Soc. A 475, 20190351.
(doi:10.1098/rspa.2019.0351)

9. Beintema G, Corbetta A, Biferale L, Toschi F. 2020 Controlling Rayleigh–Bénard convection
via reinforcement learning. J. Turbul. 21, 585–605. (doi:10.1080/14685248.2020.1797059)

10. Garnier P, Viquerat J, Rabault J, Larcher A, Kuhnle A, Hachem E. 2021 A review
on deep reinforcement learning for fluid mechanics. Comput. Fluids 225, 104973.
(doi:10.1016/j.compfluid.2021.104973)

11. Falk MJ, Alizadehyazdi V, Jaeger H, Murugan A. 2021 Learning to control active matter.
(http://arxiv.org/abs/2105.04641)

12. Gustavsson K, Biferale L, Celani A, Colabrese S. 2017 Finding efficient swimming strategies
in a three-dimensional chaotic flow by reinforcement learning. Eur. Phys. J. E 40, 1–6.
(doi:10.1140/epje/i2017-11602-9)

13. Verma S, Novati G, Koumoutsakos P. 2018 Efficient collective swimming by harnessing
vortices through deep reinforcement learning. Proc. Natl Acad. Sci. USA 115, 5849–5854.
(doi:10.1073/pnas.1800923115)

14. Zhu Y, Tian F-B, Young J, Liao JC, Lai JCS. 2021 A numerical study of fish adaption behaviors
in complex environments with a deep reinforcement learning and immersed boundary–lattice
Boltzmann method. Sci. Rep. 11, 1–20. (doi:10.1038/s41598-020-79139-8)

15. Hwangbo J, Sa I, Siegwart R, Hutter M. 2017 Control of a quadrotor with reinforcement
learning. IEEE Rob. Autom. Lett. 2, 2096–2103. (doi:10.1109/LRA.2017.2720851)

16. Wada D, Araujo-Estrada SA, Windsor S. 2021 Unmanned aerial vehicle pitch control using
deep reinforcement learning with discrete actions in wind tunnel test. Aerospace 8, 18.
(doi:10.3390/aerospace8010018)

17. Deng Y, Liu T, Zhao D. 2021 Event-triggered output-feedback adaptive tracking control of
autonomous underwater vehicles using reinforcement learning. Appl. Ocean Res. 113, 102676.
(doi:10.1016/j.apor.2021.102676)

18. Bhagat S, Banerjee H, Ho Tse ZT, Ren H. 2019 Deep reinforcement learning for soft, flexible
robots: brief review with impending challenges. Robotics 8, 4. (doi:10.3390/robotics8010004)

19. Nagabandi A, Konolige K, Levine S, Kumar V. 2020 Deep dynamics models for learning
dexterous manipulation. In Conf. on Robot Learning, Proc. of Machine learning Research, 16–18
November, pp. 1101–1112. New York, NY: PMLR.

20. Li T, Lambert N, Calandra R, Meier F, Rai A. 2020 Learning generalizable locomotion skills
with hierarchical reinforcement learning. In 2020 IEEE Int. Conf. on Robotics and Automation
(ICRA), pp. 413–419. IEEE.

21. Hachem E, Ghraieb H, Viquerat J, Larcher A, Meliga P. 2021 Deep reinforcement
learning for the control of conjugate heat transfer. J. Comput. Phys. 436, 110317.
(doi:10.1016/j.jcp.2021.110317)

http://dx.doi.org/10.1038/nature24270
http://dx.doi.org/10.1126/science.aar6404
http://arxiv.org/abs/1312.5602
http://dx.doi.org/10.1017/jfm.2019.62
http://dx.doi.org/10.1103/PhysRevFluids.6.053902
http://dx.doi.org/10.1063/5.0037371
http://dx.doi.org/10.1073/pnas.2004939117
http://dx.doi.org/10.1098/rspa.2019.0351
http://dx.doi.org/10.1080/14685248.2020.1797059
http://dx.doi.org/10.1016/j.compfluid.2021.104973
http://arxiv.org/abs/2105.04641
http://dx.doi.org/10.1140/epje/i2017-11602-9
http://dx.doi.org/10.1073/pnas.1800923115
http://dx.doi.org/10.1038/s41598-020-79139-8
http://dx.doi.org/10.1109/LRA.2017.2720851
http://dx.doi.org/10.3390/aerospace8010018
http://dx.doi.org/10.1016/j.apor.2021.102676
http://dx.doi.org/10.3390/robotics8010004
http://dx.doi.org/10.1016/j.jcp.2021.110317

22

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210618

..

22. Viquerat J, Rabault J, Kuhnle A, Ghraieb H, Larcher A, Hachem E. 2021 Direct
shape optimization through deep reinforcement learning. J. Comput. Phys. 428, 110080.
(doi:10.1016/j.jcp.2020.110080)

23. Botvinick M, Ritter S, Wang JX, Kurth-Nelson Z, Blundell C, Hassabis D. 2019 Reinforcement
learning, fast and slow. Trends Cogn. Sci. 23, 408–422. (doi:10.1016/j.tics.2019.02.006)

24. Hessel M et al. 2018 Rainbow: combining improvements in deep reinforcement learning. In
Proc. of the AAAI Conf. on Artificial Intelligence, vol. 32. Menlo Park, CA: AAAI.

25. Lillicrap TP, Hunt JJ, Pritzel A, Heess N, Erez T, Tassa Y, Silver D, Wierstra D. 2015 Continuous
control with deep reinforcement learning. (http://arxiv.org/abs/1509.02971)

26. Fujimoto S, Hoof H, Meger D. 2018 Addressing function approximation error in actor-critic
methods. In Int. Conf. on Machine Learning, pp. 1587–1596. New York, NY: PMLR.

27. Haarnoja T, Zhou A, Abbeel P, Levine S. 2018 Soft actor-critic: off-policy maximum entropy
deep reinforcement learning with a stochastic actor. In Int. Conf. onMachine Learning, pp. 1861–
1870. New York, NY: PMLR.

28. Schulman J, Levine S, Abbeel P, Jordan M, Moritz P. 2015 Trust region policy optimization.
In Int. Conf. on machine learning, pp. 1889–1897. New York, NY: PMLR.

29. Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O. 2017 Proximal policy optimization
algorithms. (http://arxiv.org/abs/1707.06347)

30. Moerland TM, Broekens J, Jonker CM. 2020 Model-based reinforcement learning: a survey.
(http://arxiv.org/abs/2006.16712)

31. Plaat A, Kosters W, Preuss M. 2020 Model-based deep reinforcement learning for high-
dimensional problems, a survey. (http://arxiv.org/abs/2008.05598)

32. Deisenroth M, Rasmussen CE. 2011 Pilco: A model-based and data-efficient approach to
policy search. In Proc. of the 28th Int. Conf. on machine learning (ICML-11), pp. 465–472. Citeseer.

33. Tassa Y, Erez T, Todorov E. 2012 Synthesis and stabilization of complex behaviors through
online trajectory optimization. In 2012 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,
pp. 4906–4913. Piscataway, NJ: IEEE.

34. Levine S, Koltun V. 2013 Guided policy search. In Int. Conf. on machine learning, pp. 1–9. PMLR.
35. Racanière S et al. 2017 Imagination-augmented agents for deep reinforcement learning. In

Proc. of the 31st Int. Conf. on Neural Information Processing Systems, pp. 5694–5705. New York,
NY: Curran Associates.

36. Kaiser L et al. 2020 Model based reinforcement learning for Atari. In Int. Conf. on Learning
Representations. See https://openreview.net/forum?id=S1xCPJHtDB.

37. Hafner D, Lillicrap T, Fischer I, Villegas R, Ha D, Lee H, Davidson J. 2019 Learning latent
dynamics for planning from pixels. In Int. Conf. on Machine Learning, pp. 2555–2565. PMLR.

38. Hafner D, Lillicrap T, Ba J, Norouzi M. 2020 Dream to control: Learning behaviors by latent
imagination. In Int. Conf. on Learning Representations. See https://openreview.net/forum?
id=S1lOTC4tDS.

39. Depeweg S, Hernández-Lobato JM, Doshi-Velez F, Udluft S. 2016 Learning and policy search
in stochastic dynamical systems with Bayesian neural networks. (http://arxiv.org/abs/1605.
07127).

40. Kurutach T, Clavera I, Duan Y, Tamar A, Abbeel P. 2018 Model-ensemble trust-region policy
optimization. In Int. Conf. on Learning Representations. See https://openreview.net/forum?
id=SJJinbWRZ

41. Abdar M et al. 2021 A review of uncertainty quantification in deep learning: techniques,
applications and challenges. Inf. Fusion 76, 243–297. (doi:10.1016/j.inffus.2021.05.008)

42. Wang J-X, Roy CJ, Xiao H. 2018 Propagation of input uncertainty in presence of model-form
uncertainty: a multifidelity approach for computational fluid dynamics applications. ASCE-
ASME J. Risk and Uncert. Eng. Syst. Part B Mech. Eng. 4, 011002. (doi:10.1115/1.4037452)

43. Wang J-X, Wu J-L, Xiao H. 2017 Physics-informed machine learning approach for
reconstructing Reynolds stress modeling discrepancies based on DNS data. Phys. Rev. Fluids
2, 034603. (doi:10.1103/PhysRevFluids.2.034603)

44. Ling J, Kurzawski A, Templeton J. 2016 Reynolds averaged turbulence modelling
using deep neural networks with embedded invariance. J. Fluid Mech. 807, 155–166.
(doi:10.1017/jfm.2016.615)

45. Duraisamy K, Iaccarino G, Xiao H. 2019 Turbulence modeling in the age of data. Annu. Rev.
Fluid Mech. 51, 357–377. (doi:10.1146/annurev-fluid-010518-040547)

http://dx.doi.org/10.1016/j.jcp.2020.110080
http://dx.doi.org/10.1016/j.tics.2019.02.006
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/2006.16712
http://arxiv.org/abs/2008.05598
https://openreview.net/forum?id=S1xCPJHtDB
https://openreview.net/forum?id=S1lOTC4tDS
https://openreview.net/forum?id=S1lOTC4tDS
http://arxiv.org/abs/1605.07127
http://arxiv.org/abs/1605.07127
https://openreview.net/forum?id=SJJinbWRZ
https://openreview.net/forum?id=SJJinbWRZ
http://dx.doi.org/10.1016/j.inffus.2021.05.008
http://dx.doi.org/10.1115/1.4037452
http://dx.doi.org/10.1103/PhysRevFluids.2.034603
http://dx.doi.org/10.1017/jfm.2016.615
http://dx.doi.org/10.1146/annurev-fluid-010518-040547

23

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210618

..

46. Raissi M, Perdikaris P, Karniadakis GE. 2019 Physics-informed neural networks: a deep
learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. J. Comput. Phys. 378, 686–707. (doi:10.1016/j.jcp.2018.10.045)

47. Sun L, Gao H, Pan S, Wang J-X. 2020 Surrogate modeling for fluid flows based on physics-
constrained deep learning without simulation data. Comput. Methods Appl. Mech. Eng. 361,
112732. (doi:10.1016/j.cma.2019.112732)

48. Gao H, Sun L, Wang J-X. 2021 Super-resolution and denoising of fluid flow using physics-
informed convolutional neural networks without high-resolution labels. Phys. Fluids 33,
073603. (doi:10.1063/5.0054312)

49. Arzani A, Wang J-X, D’Souza RM. 2021 Uncovering near-wall blood flow from sparse data
with physics-informed neural networks. Phys. Fluids 33, 071905. (doi:10.1063/5.0055600)

50. Sahli Costabal F, Yang Y, Perdikaris P, Hurtado DE, Kuhl E. 2020 Physics-informed neural
networks for cardiac activation mapping. Front. Phys. 8, 42. (doi:10.3389/fphy.2020.00042)

51. Rao C, Sun H, Liu Y. 2021 Physics-informed deep learning for computational elastodynamics
without labeled data. J. Eng. Mech. 147, 04021043. (doi:10.1061/(ASCE)EM.1943-7889.0001947)

52. Sutton RS, Barto AG. 2018 Reinforcement learning: an introduction. Cambridge, MA: MIT press.
53. Gao H, Sun L, Wang J-X. 2021 PhyGeoNet: physics-informed geometry-adaptive

convolutional neural networks for solving parameterized steady-state PDEs on irregular
domain. J. Comput. Phys. 428, 110079. (doi:10.1016/j.jcp.2020.110079)

54. Heess N, Wayne G, Silver D, Lillicrap T, Erez T, Tassa Y. 2015 Learning continuous
control policies by stochastic value gradients. In Advances in Neural Information Processing
Systems (eds C Cortes, N Lawrence, D Lee, M Sugiyama, R Garnett), vol. 28.
New York, NY: Curran Associates, Inc. (https://proceedings.neurips.cc/paper/2015/file/
148510031349642de5ca0c544f31b2ef-Paper.pdf)

55. Levine S, Abbeel P. 2014 Learning neural network policies with guided policy search under
unknown dynamics. In Advances in neural information processing systems (eds Z Ghahramani,
M Welling, C Cortes, N Lawrence, KQ Weinberger), vol. 27, pp. 1071–1079. Red Hook, NY:
Curran Associates.

56. Luo Y, Xu H, Li Y, Tian Y, Darrell T, Ma T. 2018 Algorithmic framework for model-based deep
reinforcement learning with theoretical guarantees. (http://arxiv.org/abs/1807.03858)

57. Amari S. 1967 A theory of adaptive pattern classifiers. IEEE Trans. Electron. Comput. EC-16,
299–307. (doi:10.1109/PGEC.1967.264666)

58. Konečnáżş J, Richtárik P. 2013 Semi-stochastic gradient descent methods. (http://arxiv.org/
abs/1312.1666)

59. Johnson R, Zhang T. 2013 Accelerating stochastic gradient descent using predictive variance
reduction. Adv. Neural Inf. Process. Syst. 26, 315–323.

60. Defazio A, Bach F, Lacoste-Julien S. 2014 SAGA: a fast incremental gradient method with
support for non-strongly convex composite objectives. In Advances in neural information
processing systems (eds Z Ghahramani, M Welling, C Cortes, N Lawrence, KQ Weinberger),
pp. 1646–1654. Red Hook, NY: Curran Associates.

61. Schmidt M, Le Roux N, Bach F. 2017 Minimizing finite sums with the stochastic average
gradient. Math. Programm. 162, 83–112. (doi:10.1007/s10107-016-1030-6)

62. Williams RJ. 1992 Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Mach. Learn. 8, 229–256. (doi:10.1007/BF00992696)

63. Watkins CJCH, Dayan P. 1992 Q-learning. Mach. Learn. 8, 279–292. (doi:10.1007/BF00992698)
64. Wang Z, Schaul T, Hessel M, Hasselt H, Lanctot M, Freitas N. 2016 Dueling network

architectures for deep reinforcement learning. In Proc. of the 33rd Int. Conf. onMachine Learning,
pp. 1995–2003 (eds MF Balcan, K Weinberger), vol. 48. New York, NY: PMLR.

65. Janner M, Fu J, Zhang M, Levine S. 2019 When to trust your model: model-based policy
optimization. (http://arxiv.org/abs/1906.08253)

66. Wang T, Bao X, Clavera I, Hoang J, Wen Y, Langlois E, Zhang S, Zhang G, Abbeel P, Ba J. 2019
Benchmarking model-based reinforcement learning. (http://arxiv.org/abs/1907.02057)

67. Wiklund D, Peluso M. 2002 Quantifying and specifying the dynamic response of flowmeters.
Technical Papers-ISA 422, 463–476.

68. Cvitanović P, Davidchack RL, Siminos E. 2010 On the state space geometry of the
Kuramoto–Sivashinsky flow in a periodic domain. SIAM J. Appl. Dyn. Syst. 9, 1–33.
(doi:10.1137/070705623)

http://dx.doi.org/10.1016/j.jcp.2018.10.045
http://dx.doi.org/10.1016/j.cma.2019.112732
http://dx.doi.org/10.1063/5.0054312
http://dx.doi.org/10.1063/5.0055600
http://dx.doi.org/10.3389/fphy.2020.00042
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0001947
http://dx.doi.org/10.1016/j.jcp.2020.110079
https://proceedings.neurips.cc/paper/2015/file/148510031349642de5ca0c544f31b2ef-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/148510031349642de5ca0c544f31b2ef-Paper.pdf
http://arxiv.org/abs/1807.03858
http://dx.doi.org/10.1109/PGEC.1967.264666
http://arxiv.org/abs/1312.1666
http://arxiv.org/abs/1312.1666
http://dx.doi.org/10.1007/s10107-016-1030-6
http://dx.doi.org/10.1007/BF00992696
http://dx.doi.org/10.1007/BF00992698
http://arxiv.org/abs/1906.08253
http://arxiv.org/abs/1907.02057
http://dx.doi.org/10.1137/070705623

24

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210618

..

69. Nagabandi A, Kahn G, Fearing RS, Levine S. 2018 Neural network dynamics for model-based
deep reinforcement learning with model-free fine-tuning. In 2018 IEEE Int. Conf. on Robotics
and Automation (ICRA), pp. 7559–7566. IEEE.

70. Belus V, Rabault J, Viquerat J, Che Z, Hachem E, Reglade U. 2019 Exploiting locality
and translational invariance to design effective deep reinforcement learning control of the
1-dimensional unstable falling liquid film. AIP Adv. 9, 125014. (doi:10.1063/1.5132378)

71. Gao H, Zahr MJ, Wang J-X. 2021 Physics-informed graph neural galerkin networks: a unified
framework for solving pde-governed forward and inverse problems. (http://arxiv.org/abs/
2107.12146)

72. Chen Z, Liu Y, Sun H. 2021 Physics-informed learning of governing equations from scarce
data. Nat. Commun. 12, 1–13.

http://dx.doi.org/10.1063/1.5132378
http://arxiv.org/abs/2107.12146
http://arxiv.org/abs/2107.12146

	Introduction
	Methodology
	Problem formulation and background
	Physics-informed model-based reinforcement learning

	Results
	ODE governed environments
	PDE governed environments

	Discussion
	Influence of model rollout length
	Influence of model accuracy threshold
	Limitations and perspectives

	Conclusion
	Twin-delayed deep deterministic policy gradient (TD3)
	Hyper-parameter settings

	References

