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Model-based reinforcement learning (MBRL) is
believed to have much higher sample efficiency
compared with model-free algorithms by learning a
predictive model of the environment. However, the
performance of MBRL highly relies on the quality of
the learned model, which is usually built in a black-
box manner and may have poor predictive accuracy
outside of the data distribution. The deficiencies of
the learned model may prevent the policy from being
fully optimized. Although some uncertainty analysis-
based remedies have been proposed to alleviate this
issue, model bias still poses a great challenge for
MBRL. In this work, we propose to leverage the prior
knowledge of underlying physics of the environment,
where the governing laws are (partially) known.
In particular, we developed a physics-informed
MBRL framework, where governing equations and
physical constraints are used to inform the model
learning and policy search. By incorporating the
prior information of the environment, the quality
of the learned model can be notably improved,
while the required interactions with the environment
are significantly reduced, leading to better sample
efficiency and learning performance. The effectiveness
and merit have been demonstrated over a handful of
classic control problems, where the environments are
governed by canonical ordinary/partial differential
equations.

1. Introduction

Reinforcement learning (RL) is a class of artificial
intelligence (AI) techniques that train an Al agent
to learn the optimal control strategy by interacting
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with the surrounding environment. Over the past few years, with the rapid development
of deep learning (DL), deep reinforcement learning (DRL) techniques have been witnessing
tremendous success in a variety of applications. In particular, DRL has demonstrated superhuman
performance at playing Go [1,2] and Atari games from pixels [3]. Most recently, there has
been growing interest in applying DRL for dynamic control of complex physical systems, e.g.
laminar/turbulent flows [4-10], active matter [11], fish swimmers [12-14], unmanned aerial
vehicles [15-17] and robotics [18-20]. Moreover, people also applied DRL in passive control and
shape optimization [21,22].

In general, most state-of-the-art RL agents learn the desired tasks by gathering experience
directly from the environment. Namely, the optimal action strategy is derived by interacting with
the real physical system in a trial-and-error manner. This class of RL methods is known as model-
free reinforcement learning (MFRL). Owing to the ease of implementation and no need for prior
knowledge of the dynamic transitions, MFRL has been widely applied to many tasks, mainly
in playing computer games [3,23,24]. Despite their popularity, MFRL methods usually have low
sample efficiency, i.e. requiring a massive amount of interactions with the environment. Although
the low sample efficiency and slow convergence rate might be acceptable for training an agent
in gaming applications since the environment interactions are nearly costless, these shortcomings
will significantly limit the DRL applications for dynamic control of physical/mechanical systems
(e.g. flights or robotics). First, real-world interactions of a mechanical system can be very
expensive and time-consuming. For instance, considering a flow control problem with plasma
actuators, it is very costly or even infeasible to train a controller by conducting a huge amount
of wind tunnel experiments with enormous control trials, which is unlike training an Al
game agent that can be done by playing the computer games for a vast amount of times
(episodes). Second, the mechanical systems can be easily worn out from extensive action trials,
and thus the exploration of optimal control strategy in MFRL is highly restricted to avoid
possible damage to the system in real-world industry settings. Although the off-policy MFRL
algorithms with a replay buffer (e.g. deep Q-Networks [3] and their actor—critic (AC) extensions
[25-27]) can better use historical data than on-policy MFRL algorithms (e.g. trust region policy
optimization [28] and proximal policy optimization [29]), the data efficiency is still far from
sufficient.

One way to improve data efficiency is to augment the data collected from real-world
interactions with a learned transition model. This is the general idea of the other class of DRL
algorithms: model-based reinforcement learning (MBRL) [30,31]. Using a learned model to reason
about the future can avoid the irreversible consequence of trial-and-error in the real environment
and has great potential to significantly improve data efficiency, which is thus more appealing
in applications of complex mechanical systems. In addition, the learned transition model is
independent of rewards and thus can be transferred to other control problems in the same/similar
environments. Many existing MBRL methods rely on simple function approximators, such as
Gaussian process (GP), linear models and Gaussian mixture models [32-34]. However, the limited
expressibility of the simple models prevents them from handling high-dimensional problems
with complex dynamic transitions. Thanks to the rapid developments of deep learning, more and
more complex high-dimensional function approximators based on neural networks have been
applied to design more powerful MBRL algorithms. For example, Racaniere ef al. [35] proposed a
novel MBRL framework, Imagination-Augmented Agent (I2A), where the environment model
is constructed by a recurrent network architecture for generating imagined trajectories to
inform agent’s decisions. Kaiser et al. [36] presented a complete MBRL method (SimPLe) using
a convolutional neural network to successfully solve Atari games with significantly fewer
interactions than MFRL methods. Hafner et al. [37] developed the Deep Planning Network
(PlaNet) that learns the latent dynamics of the environment directly from images using a
variational autoencoder and a recurrent latent network. The effectiveness of PlaNet has been
demonstrated by successfully solving a number of continuous control tasks from pixels. Hafner
et al. [38] further extended the PlaNet by developing a novel AC based MBRL method (Dreamer),
which learns long-horizon behaviours from images purely by latent imagination. Dreamer has
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been evaluated on the DeepMind Control Suite and outperforms most state-of-the-art MBRL and
MERL algorithms in every aspect.

Despite the great promise, most commonly used MBRL approaches suffer from model
inaccuracy (i.e. model bias), preventing them from matching the success of their model-free
counterparts [30]. This is particularly true when it comes to learning complex dynamics with
high-capacity models (e.g. deep neural networks), which are prone to overfitting in data-sparse
and out-of-sample regimes [31]. In particular, the model bias can be significantly exacerbated
for predicting long rollout horizons because of the ‘compound error’ effect. To mitigate this
issue, rather than learning the transition deterministically, people built the dynamic models in
a probabilistic manner, where the unknown model bias is treated as the epistemic uncertainty
(i.e. model-form uncertainty) and can be modelled in several different ways. For example,
Depeweg et al. [39] employed Bayesian neural networks (BNNs) to learn the probabilistic
dynamic transition and update the policy over an ensemble of models sampled from the trained
BNNs. Kurutach et al. [40] proposed to use an ensemble of models to estimate the model-
form uncertainty and regularize the trust region policy optimization (TRPO). Nonetheless, the
model-form uncertainty is notoriously difficult to quantify, especially for black-box deep learning
models [41,42]. Most recently, a more promising strategy known as physics-informed deep
learning (PIDL) has attracted increasing attention in the scientific machine learning (SciML)
community, aiming to leverage both the advantages of deep learning and prior knowledge of
underlying physics to enable data-scarce learning. Instead of learning solely from labelled data,
the model training process is also guided by physics laws and knowledge, which could provide
rigorous constraints to the model output, alleviate overfitting issues, and improve the robustness
of the trained model in data-scarce and out-of-sample regimes. This idea has been recently
explored for solving PDEs or modelling complex physical systems. For example, researchers have
incorporated physical constraints (e.g. realizability, symmetry, invariance) into SciML models
to develop physics-informed, data-driven turbulence models [43—45]. People have also used
governing equations of the physical systems to inform or directly train deep neural networks,
i.e. physics-informed neural networks (PINNSs) [46], where the violation of the physical laws is
penalized by incorporating the equation residuals into the network loss function. This simple
idea has been applied in many scientific and engineering problems [47-51].

In this work, we leverage the idea of PIDL and propose physics-informed model-based
reinforcement learning (PIMBRL), an innovative MBRL framework for complex dynamic control
that incorporates the physical laws/constraints of the system to alleviate the issue of model bias,
reduce the real-world interactions and significantly improve the data efficiency. Specifically, a
novel autoencoding-based recurrent network architecture is constructed to learn the dynamic
transition in the Dyna-style MBRL framework [52], which is a commonly used MBRL formulation.
The governing physics of the environment are assumed to be known and are used to inform
the model learning and RL agent optimization. State-of-the-art off-policy AC algorithms, e.g.
Twin Delayed Deep Deterministic Policy Gradients (TD3) [26], are used for value/policy
optimization. We have demonstrated the effectiveness and merit of the proposed PIMBRL on
a few classic dynamic control problems, where the environments are governed by canonical
ordinary/partial differential equations (ODEs/PDEs), including cart-pole, pendulum, viscous
fluid dynamics governed by Burgers’ equation and chaotic/turbulent dynamics governed by
Kuramoto-Sivashinsky (KS) Equation. The performance of the proposed PiMBRL algorithms
is compared with their MBRL and MFRL counterparts, and significant improvements in terms
of sample efficiency and model accuracy are observed. The novel contributions of this work
are summarized as follows: (i) we propose a physics-informed model-based RL framework
based on a novel encoder—decoder recurrent network architecture; (ii) embed the physics of
the environment into the MBRL using discretized PIDL formulation [53]; (iii) demonstrate
the effectiveness of proposed methods on a variety of dynamic control problems, particularly
including nonlinear spatio-temporal chaotic systems, e.g. the KS equation, which exhibits a
wide range of dynamics from the steady to chaotic/turbulent regimes, shedding lights on
developing controllers for more challenging fluid systems governed by Navier-Stokes equations;
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(iv) compare the proposed method with state-of-the-art MBRL and MFRL in terms of accuracy
and sample complexity. This work is the first attempt to use physical laws to inform the MBRL
agent optimization to the best of the authors” knowledge.

The rest of the paper is organized as follows. The background of MFRL/MBRL and our
proposed PiIMBRL algorithms are introduced in §2. Numerical results on classic dynamic control
problems are presented and discussed in §3. The influence of model rollout length and accuracy
threshold is further discussed in §4. Finally, §5 concludes the paper.

2. Methodology

(a) Problem formulation and background

We consider dynamical systems equipped with localized control inputs (i.e. actuators)

S =T, 1)
where u(x, t) € R% denotes the state variable of the system in the spatial domain £2 and temporal
domain t € [0,T], a(x,t) € R represents the action variable (i.e. control inputs), and .7 (:) is a
nonlinear differential operator parametrized by p. In many cases, the systems can be assumed
to possess the Markov property, referred to as Markov Decision Processes (MDP). The discrete
form can be written as

upp1 = F(ut, at; 1), (2.2)

where the state 11 at next time ¢ + 1 only depends on the state #; and action a; at current time
step t, and the time-invariant transition dynamics F of the environment is a nonlinear differential
functional. In the optimal control problem, the goal is to find a series of action signals (a.k.a.,
policy ) that maximizes the expected return R(r),

T
R = B 1) 3)

where 7(u;) denotes the reward function of the state at time ¢, which is a signal to assess the control
agent locally. This optimal control problem can be solved by deep reinforcement learning (DRL),
either in a model-free or model-based manner.

(i) Value function, policy function and Bellman equation

Before putting forth the proposed DRL algorithms, we introduce several important concepts in
DRL, including value and policy functions and Bellman equation. Value functions are functions
of a state (or a state-action pair) that estimate the total return starting from that particular state
(state-action pair). Value function v(u) of a state u is known as state-value function, while value
function q(u, a) of a state-action pair (i, a) is known as action-value function. The state-value and
action-value functions are formally defined as

() =E {Z VFr () | =u} (2.40)
k=1
and
qu,a)=E |:Z Vo) | = u, a0 = ﬂ:| , (2.4b)
k=1

where y <1 is the discount rate. A policy function = maps states to actions (or probabilities of
actions). Namely, a policy function = can be defined either as a deterministic function (1) =a
or a probability measure 7 (au). Owing to the nature of MDP, value functions can be estimated
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Figure 1. (a,b) Schematics of model-free reinforcement learning (MFRL) and model-based reinforcement learning (MBRL).
(Online version in colour.)

recursively based on the Bellman equations [52]

v(u) = En [r(u, ar) + yv(uie)] (2.50)
U1~
and
g, a)= E |:1’(ut,ﬂt)+)/ E q(ut+1,at+1)], (2.5b)
U1 ~P A1~

where P = P(us41ut, ar) is the transition probability, describing the dynamics of the environment.

(ii) Model-free and model-based reinforcement learning

As mentioned earlier, RL aims to find a series of actions (i.e. optimal policy) that maximize the
total return by estimating the value and/or policy function based on the Bellman equation.
Depending on whether or not learning and using a model of the transition dynamics of
the environment, RL can be classified into two categories: model-free reinforcement learning
(MFRL) and model-based reinforcement learning (MBRL). In MFRL, the optimization process
is conducted by repeatedly interacting with the environment with a trial-and-error search, and
the model of the environment is not required (figure 1a). Namely, the state dynamics of the
environment are (partially) observed as exploring different policy strategies, and the best policy
will be identified after massive trials. MBRL, on the other hand, leverages a model F that
approximates the real environment 7 and predicts the dynamic transition (F iup, ap — up41),
which can be learned from the interactions with the real environment. The RL agent is then
optimized by the interactions not only with the real environment but also with the virtual
environment constructed by the model (figure 1b). The learned model F can be used for planning
with its gradient information (e.g. stochastic value gradients [54], guided policy search [55]) or
synthesizing imagined samples to augment real samples for better sample efficiency. The latter
is known as the Dyna-like MBRL [36,40,52,56] that can directly leverage cutting-edge MBRL
algorithms.

The algorithms of the DRL agent optimization can be grouped into three classes: (i) actor-only,
(ii) critic-only and (iii) actor-critic methods. Actor-only (i.e. policy-gradient) methods directly
optimize the policy function 7 (u; 6 ), which is often parametrized by a deep neural network by
calculating the policy gradient with respect to network parameters 6. The optimization can be
solved based on stochastic gradient descent (SGD) [57] or its variants [58-61]. Examples of policy-
gradient methods include REINFORCE [62], TRPO [28] and PPO [29]. Critic-only (value-based)
methods are a family of RL algorithms that learn an DNN-approximated value-action function
q(u,a;0,) based on the optimal Bellman equation. Examples include Q-Learning [63], DON
[3], Dueling DQN [64], etc. Since the optimization in critic-only methods is always performed
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Figure 2. Schematics of Dyna-style physics-informed model-based actor—critic algorithm. (Online version in colour.)

off-policy, they are more sample-efficient than the actor-only methods that are often on-policy.
However, since critic-only methods optimize the policy indirectly, they are less stable compared
with the actor-only methods. The AC methods learn a value function to support the policy
gradient optimization, and thus the AC family combines the strengths of both actor and critic
methods. As such, AC-based methods will be used in the proposed PiIMBRL for value/policy
optimization.

(b) Physics-informed model-based reinforcement learning

We propose a physics-informed model-based reinforcement learning (PiMBRL) framework,
where the physics knowledge (e.g. conservation laws, governing equations and boundary
conditions) of the environment is incorporated to inform the model learning and RL optimization.
In this work, we focus on the Dyna-style MBRL formulation with the off-policy AC-based
optimization. The proposed framework will retain the generality and optimality of model-free
AC-based DRL methods, while significantly reducing the real-world interactions by learning
a reliable environment model based on physics-informed discrete learning. Specifically, an
AC-based RL agent will be initialized and starts interacting with the real environment. State-
action data pairs and corresponding rewards (u, aj, u: 1 rf) are iteratively collected from the real
environment and saved into the real replay buffer #". These real samples are used to train the
actor-critic agent and the transition model simultaneously. The model is constructed by an auto-
encoding recurrent network, where boundary conditions (BCs) of the system are strictly encoded,
and the governing physics are imposed softly by minimizing the violation of the conservation
laws. Synthetic samples (u/;,u’:, u{ +1,1ft ) are generated by the model and are collected into the
imagined replay buffer 2/, which will be leveraged to augment the real samples for the RL
update. The model training, data generation, environment interaction and RL agent optimization
are conducted iteratively in an online manner. The overall schematic of the proposed PiMBRL
is shown in figure 2, and the detailed algorithm is given by algorithm 1. More details of AC
optimization and physics-informed model construction will be elaborated as follows.

n this paper, TD3 is used as a demonstration (details of the TD3 is given in algorithm 3), but other off-policy algorithms
such as Deep Deterministic Policy Gradient (DDPG) and Soft Actor—Critic (SAC) are also applicable.
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Algorithm 1. Physics-informed model-based reinforcement learning (PiMBRL).

1: Randomly initialize policy (actor) network 7 (u;6), value (critic) network(s) q(u, a;6,),
transition model F(u, a;0F), and replay buffers 2", 9 for real and fictitious environments.
2: Randomly initialize state u (or observed state u), reward rq, and done signal dy for real

environment.

3: for episode=1,M do

4 fori=0,T do

5: Execute action a; = 7 (u; 0) in the real environment F;

6: Save new data pair (4}, a;,uj,,7i,d;) to the real buffer 7';

7 if episode ends then Reset the environment F;

8 end if

9: end for
10: if sufficient (1), ) state-action pairs stored in the real buffer 2" then
11: Sample a batch of real state-action pairs, {(?, a;, u?,,)},"% , from @
12: Update the transition model F(u, a;0r) using the data loss Lp on the batch 2";
13: end if
14: if transition model meets the accuracy threshold (data loss Lp < 1) then
15: for model prediction length =1, do
16: Sample a batch of states {(u;1)} from {2", 78]

n
17: Execute actions {aj11 = 7 (uj+1; 0,,)}/.2 in transition model F;
n
18: Save new data pairs {(u;’H, aji1, u;7+2, Ti+2, dj+2)}/:bfl to buffer Z;
19: end for
20: end if
21: if enough (nSR) state-action pairs stored in {Z", 2’} then
22: Sample a batch of state-action pairs {(u, ar, u; )} from the fake buffer 7
23: Update model F according to physical loss Ly on sampled state-action pairs;
24: end if
25: Sample a batch of {(u], a;, ulq, r1,dp)} from the augmented buffer {2", 178}
26: Update policy network 7 (u; 6, ) and value network g(u, a;0,;) on the sampled state-
action pairs using off-policy algorithms!' (see algorithm 3 in appendix A).

27: end for

(i) Dyna-style model-based actor—critic optimization

We consider a generic Dyna-style model-based actor—critic optimization algorithm, which can
be easily adapted to any state-of-the-art off-policy AC methods, e.g. DDPG, TD3 or SAC.
As mentioned earlier, in the Dyna-style formulation, model is used to augment real samples,
and thus model-free AC-based optimization can be directly leveraged. For a AC-based RL
agent, two neural networks 7 (u;0) and q(u, a;0,) are constructed to represent the policy and
value functions, respectively. Based on samples from both the real environment and virtual
environment simulated by the model, the policy network 7 (u; 6 ;) is iteratively updated by

051 = 05 o vy J(6F), (2.6)

where «; is the learning rate and Vjy_J(65) represents the policy gradient with respect to actor
network parameters 6, which can be calculated based on the critic network

T
Vo, J05) =T | Vo, log 7 (us; 6%) - Gus, ar; 0) | . 2.7)
t=0

The critic network g(u, a;04) is optimized by minimizing the temporal difference (TD)-based loss
function

0; = argominl |9 — q(ue, at; 0,)11,, (2.8)
q
where || - ||z, represent L2 norm and g; is estimated based on the optimal Bellman equation

Gy =1t + yq(up1, 7 (41;07);0,). (2.9)
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(ii) Physics-informed learning architecture for transition dynamics

We develop a physics-informed recurrent neural network to learn the dynamics transition, aiming
to map the current states and actions to the states at the next control step (.7-' sug, ar —> upg1). To
better capture the spatiotemporal dependencies, a convolutional encoder, multi-layer perceptron
(MLP) decoder and long-short term memory (LSTM) blocks are used to build the learning
architecture. As shown in figure 3, the high-dimensional state vector (u;) at the current control
step is encoded into the latent space by a convolutional encoder. Together with the input actions
(a), the latent state vector is fed into the LSTM-based transition network, which outputs latent
intermediate transition states between the two control steps. After a multi-layer perceptron
(MLP) decoder, the latent outputs are decoded to the full-order physical states. The network is
trained based on both data and physics constraints. The data loss Lp is defined by the mismatch
between the model prediction i1;41 and labelled data ;41 obtained from interactions with the real
environment

Z [ (2.10)

where ny, is the batch size. The physical loss Lg is constructed based on the conservation laws
of the system in their discretized form. The residuals of the governing equations is minimized on
multiple discrete spatio-temporal snapshots. To this end, the network outputs include the states at
N intermediate time steps ({141;/n}i=1,n) as well as the state at the next control step. The physical
loss is then obtained by taking the averaged residuals of the governing equations

N m (])
Z 3 ”’/ N FG) e avin)™ | (2.11)
i=1 j=1 L

2

where spatial derivatives in F are computed using high-order finite-difference-based spatial
filtering, and temporal derivatives du; /N /dt are approximated by forward Euler method.

3. Results

In this section, we test the proposed PIMBRL on a number of classic control problems that are
governed by ODEs or PDEs. The performance is compared against the baseline model-free and
model-based counterparts. The standard model-free TD3 algorithm is used as the MFRL baseline
(see algorithm 2 in appendix A), while the purely data-driven Dyna-like model-based TD3 is

81901207 Lk Y 205§ 20ig edsy/jeuinof/ioBulysiigndiaaposiefos



deemed as the MBRL baseline. The hyperparameters used in the following experiments are
summarized by tables 1 and 2 in appendix A. Note that since this work aims to demonstrate
the merit of incorporating physics prior in MBRL, the comparison study is confined within the
MFBL, MBRL, and PiMBRL variants of the same policy optimization algorithm. The horizontal
comparisons among different MFRL/MBRL baselines have been studied in, e.g. refs of [65,66],
which is not the focus here.

(a) ODE governed environments

We first evaluate PIMBRL on two classic dynamic control benchmarks, Cart-Pole and Pendulum,
which are available in the OpenAl Gym environment. The physics of both systems are known,
which can be described by a set of ODEs. Since there is no spatial dependence and the dimension
of the system is low, we use a low-capacity two-layer MLP with 256 neurons per layer to directly

learning the transition dynamics u1 = F(us, a;) and model rollout length (Ij) is set equal to the
trajectory length.

(i) Cart-Pole

We start with the Cart-Pole benchmark problem (i.e. ‘CartPole-v0” environment provided in
OpenAi gym), where a cart moves along a frictionless track with a pole attached to the top of
it via an unactuated joint, as shown in figure 44. The control goal is to keep the pole from falling
over by acting a horizontal force on the cart. The reward is +1 for each time step as long as the
pole is upright and the cart remains in a certain region. The physics of this system is governed by

i=f+mpé2 sin® — mylo

my + me

. 3.1)
. gsing — cosO(f + my6sin6)/(my + my)

1(4/3 — (my cos? 0 /(mc + mp)))

7

where x is the spatial coordinate of the cart, 6 represents the angle of the pole from vertical, and f is
the force that the RL agent applies on the cart. 11, m,, are the mass of the cart and pole, respectively.
One episode is considered to be ended if the pole deviates too much from vertical position (i.e.
|60] > /12) or the cart leaves the designated area (i.e. |x| >2.4) or one episode has more than
200 control steps. The state observation of this environment is a four-dimensional vector, u =
(x,%,0,0), while the action space is discrete, consisting of two valid values {—10, 10}. Each episode
begins at a random state 1o = (xg, Xo, 6o, 6p).

Figure 4b compares the performance curves of the MFRL, MBRL and PiMBRL. The proposed
PiMBRL reaches the total return of 200 only after about 3000 time steps in the real environment,
while the vanilla Dyna-like MBRL counterpart needs much longer to achieve so and its
performance is not stable as well. For the MFRL counterpart, the total return is still below 120 even
after 15 000 time steps. Although both MBRL and MFRL are able to achieve the same performance
with sufficient time steps, PIMBRL only uses about 45.2% and 9.7% time steps needed by its
MBRL and MFRL counterparts, respectively. Therefore, to achieve the same level of performance,
PiMBRL can significantly reduce the required number of interactions with the real environment,
compared with the original model-free TD3 (i.e. MFRL) and Dyna-like model-based TD3 (i.e.
MBRL).

(i) Pendulum

The second test case is the Pendulum-v0 available in the OpenAi gym. In this environment
(figure 5a), one end of the pendulum is fixed, while the other end can swing freely. & denotes the
angle of the pendulum from vertical position. The state contains the angle and its time derivative,
ie. u=(0,6). In each episode, the pendulum starts from a random state ug € (—1,1) x (—1,1).
Besides, the angular velocity is constrained as 6 €[-8,8], and any 6 out of this range will be
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(b) RL Performance. (Online version in colour.)
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Figure 5. (a) Schematic diagram of pendulum environment. (b) Performance curve of PiIMBRL versus standard model-free TD3
(MFRL) and Dyna-like model-based TD3 (MBRL) in the pendulum environment. The solid lines indicate averaged returns of 100
randomly selected test episodes, while the shaded area represents the return distribution of all test samples. (a) Pendulum,
(b) RL performance. (Online version in colour.)

capped by the boundary value (—8 or 8). The dynamics of the pendulum system is governed by,

. 3g . 3
=-= —T 2
== sin@+m)+—5T, (3.2)

where ¢ =10 is the acceleration of gravity, T € [-2,2] denotes the torque that the agent applies to
the pendulum, =1 and m =1 are the length and mass of the pendulum, respectively. The control
goal here is to swing the pendulum up and make it stays upright, meanwhile consuming as less
energy as possible. To achieve this, the reward function is defined as

r=—6%—10.16% — 0.001T>. (3.3)

The performance curve is shown in figure 5b. After about 3000 time steps, both the PIMBRL
and MBRL achieve averaged total return of —200 with reduced uncertainty. By contrast, the
total return of the MFRL largely fluctuates and the average value remains less than —800.
Although PiMBRL shows greater sample efficiency over the MFRL baseline, it does not show
a notable advantage over the MBRL counterpart in the Cart-Pole case. This might be due to the
following two factors. First, compared with the Cart-Pole problem, the dynamics of the pendulum
environment is easier for the model to learn, since the observation space is much smaller than
that of the Cart-Pole environment (two dimensions versus four dimensions). Second, the model
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Figure 6. Histograms of the prediction errors of the transition models for the pendulum environment, (a) trained with physics-
informed loss in PIMBRL and (b) trained with the data loss only in MBRL. (Online version in colour.)

network is benefited less from the physical loss, since when the state 6 exceeds the limits [—8, 8]
and capped by the boundary value, the governing equation (3.2) is no longer satisfied.

Figure 6 compares the histograms of the prediction errors of the models trained by PiMBRL
and MBRL, respectively. Figure 6a shows the prediction error of the model trained with the
physics-informed loss (equation loss + data loss), while figure 6b shows the model prediction
error in MBRL where only the labelled data are used for training. Although the model does
achieve higher accuracy on average without using physics constraints (see two sub-figures in
the left column), in the out-of-sample regime (away from the training set), the physics-informed
model shows better performance and robustness (see two sub-figures in the right column).
Overall, the models in both PIMBRL and MBRL are learned sufficiently well to achieve a roughly
similar RL performance.

(b) PDE governed environments

Unlike the environments that can be described by ODEs, the systems governed by PDEs are
much more complicated in terms of the dimension of spatiotemporal solution space, dramatically
increasing the level of difficulty in learning the dynamic model as well as the policy and value
functions. In this section, we evaluate the proposed PIMBRL structure on two continuous control
problems in the environments governed by Burgers” equation and KS equation, respectively. The
length of each control step (i.e. refresh rate) is set at the order of 10! second based on common
flow sensor response time [67]. The learned transition model is only used to predict a limited
rollout length (1) in each trajectory to control the model error accumulation, making it remain at
a relatively low level.
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(i) Burgers’ equation

For the first PDE-based control problem, we consider a one-dimensional Burgers’ equation with
periodic boundary condition,

ou n ou

auZ =

ot ax
where x is the spatial coordinate, v = 0.01 is the kinematic viscosity, and f(x, t) denotes the source
term, defined as

Fx, ) =ar(t) exp [(—15 (% - 0.25))2] +ax(t) exp [(—15 (% - o.75)>2] (3.5)

82
vé +f(o b, xel01], tel0,2x], (3.4)

with the control parameters a = (a1, a2) € [—0.025, 0.075]%.

The control problem is defined as training the RL agent to match a reference trajectory. Namely,
the RL agent is trained to find the optimal strategy of controlling the source term with two control
parameters a1, ap, in order to match a predefined reference trajectory profile uye,

Ure(x,t)=0.05sint + 0.5, te€[0,2x]. (3.6)

Each episode starts from a randomly generated initial condition,

u(x, 0) = 0.2 cexp [(—5 (% - 0.5))2] +02(1—0) (0.5 sin 47% +05), 3.7)

where ¢ is randomly sampled from a uniform distribution on [0,1). That is, the trained RL is
expected to finally match the reference trajectory, starting from any randomly generated initial
state by equation (3.6). The observation is set as the discrepancy between the PDE state and
reference state at the same control step u° =u — u,,. The environment is simulated numerically
based on the finite difference methods, where the convection term and diffusion term are
discretized by the second-order upwind scheme and the fourth-order central difference scheme,
respectively. Euler method is used for the time integration. The simulated environment is defined
on a spatial mesh of 150 grid points and the numerical time step is set as 0.01. The control signal
is applied every 500 numerical steps and one episode contains 60 control steps. The reward
function is defined as —10||u°||r,. Without the RL training, random control signals are applied
to the system, and the corresponding spatiotemporal state surface u is shown in figure 7a. We can
see that the state surface is unsmooth, and a large discrepancy remains between the uncontrolled
state with the reference state. Figure 7c shows one of the test episodes controlled by the trained
PiMBRL agent. The corresponding actions and rewards are given in figure 7d. Although the initial
state is far from the reference, the controlled surface gradually approaches and finally matches the
reference state after t =40. The corresponding action curves are smooth, suggesting that the RL
agent successfully learns an effective control strategy.

Figure 8 shows the performance curves of the PIMBRL, MBRL, MFRL tested on 100 randomly
selected initial conditions. The PIMBRL reaches the total return of 0.1 only after 800 time steps,
while it takes the MBRL about 1300 time steps to achieve a similar level of performance. The
MERL counterpart cannot reach the same level of performance within 1400 time steps. Again, our
PiMBRL shows significant advantages in terms of sample efficiency, since it only uses about 65%
of time steps required by MBRL and 46.7% time steps required by MFRL to achieve the control
goal.

(ii) Kuramoto—Sivashinsky equation

In the last case, we evaluate the proposed PiMBRL on the control of a nonlinear, chaotic
dynamic system governed by the one-dimensional KS equation, which is more challenging. The
system governed by the KS equation often exhibits spatio-temporally chaotic or weakly turbulent
behaviour, and thus the KS equation is widely used as a model system for turbulence study [68].
In this case, the KS environment is controlled by four actuators distributed equally in space to
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minimize the energy dissipation and total input power. The physics of this system is governed by
the KS equation

ou  0%u  9*u

ou
A1 PG A4 .= t/ /l/t 7 7 .
o + ) + Py +u3x flx,t), xe[0,1], t 0, 00) (3.8)
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where u is the state variable, and f represents the source term (i.e. actuator) defined by

4 gD e~ —x)?/2
fr,h=>" al(t)eT (3.9)

i=1
where x;€{0, [/4,1/2, 31/4} is the spatial locations of the actuator, and a={a;(f)}i=1234 €
[—0.5,0.5]* defines the control parameters. To achieve the control goal, the reward function is

defined as follows: s
1 to+T pl 82 9 2
r=—m L JO 3—;2‘ + (?Z) +uf | dxdt, (3.10)
0

where T is the time length of one control step. The environment is simulated numerically based
on the finite difference method, where the convection term is discretized by the second-order
upwind scheme, the second and fourth derivatives are discretized by the sixth-order central
difference scheme, and the fourth-order Runge-Kutta scheme is used for time integration with
time stepping size of 0.001 on the one-dimensional domain / =8 discretized by a mesh of 64
grid points. Each control step contains 250 numerical steps, and one episode consists of 400
control steps. Each episode starts with a random initial condition sampled from the attractor
of the unforced KS equation. Figure 9 shows the spatiotemporal states of four test episodes
with randomly sampled initial states. The top one is an uncontrolled episode, where nonlinear
chaotic behaviour is developed along the time axis. By contrast, the ‘turbulence” in the other
three episodes controlled by the agent can be quickly stabilized after 200 time steps, showing the
effectiveness of the PIMBRL controller.

Figure 10 shows the performance curve of PIMBRL versus that of the MFRL. It is clear
that the PIMBRL agent reaches higher averaged total returns with fewer time steps than the
MEFRL counterpart does. The PIMBRL performance curve is consistently above that of the MFRL
approach, and meanwhile, less uncertainty is observed. As shown by figure 10b, MFRL needs
more than 400000 time steps to barely reach the return level of —55, deemed as the threshold
level of an acceptable policy in KS environments. In stark contrast, the PIMBRL agent only uses
about 15% of the time steps required by its MFRL counterpart to reach the averaged total return
of —55. As for the uncertainty region, both the lower and upper envelopes of the PIMBRL (blue
region) are notably higher than those of the MFRL (red region) at almost every time step. In this
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informed loss in PiMBRL, and (b) trained with the data loss only in MBRL. Both are trained on the same real buffer with 10°
time steps stored. (Online version in colour.)

case, a model-free fine-tuning approach [69] is applied when the average return is above —55 to
further improve the PIMBRL performance. This is because when the RL agent is trained to achieve
a high accuracy level, the model-based exploration does not help too much while the model bias
becomes the bottleneck. At this point, the RL agent can be fine-tuned by interacting with the real
environment without using the model [69]. As such, the PIMBRL and MFRL performance curves
will eventually converge to each other with a large number of training time steps.

The MBRL result is not plotted here because the accuracy (Lp) of the learned model purely
based on labelled data does not meet the accuracy threshold A =0.01, and thus the MBRL
performance curve is identical to that of the MFRL counterpart. In contrast to the ODE-based
pendulum system shown above, the spatiotemporal dynamics of the chaotic system is much
more challenging for the model to learn purely based on the limited amount of labelled data.
Incorporating physics constraints can significantly help this scenario and improve the model
learning performance. This can be clearly seen in figure 11, where the comparison of model
prediction errors of PIMBRL (a) and MBRL (b) are shown. The mean squared error distribution of
the model trained based on the physics-informed loss is much less than that of the model trained
purely based on the labelled data.
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4. Discussion

(a) Influence of model rollout length

The rollout length of the model is important to the RL performance. On the one hand, a long-
term model prediction could help the agent see ‘deeper and further’, improving the exploration
rate and increasing the sample efficiency in the Dyna-like MBRL framework. On the other hand,
accurately predicting a long trajectory is always challenging due to the error accumulation
effect, and inaccurate prediction data could be harmful to the RL training, which is a trade-off.
Figure 12 shows the model prediction performance for the KS environment with four different
rollout lengths (Ip; =3, 8,40,120). For all three randomly selected initials, we can see that the
states predicted by the model agree well with the ground truth when the rollout length is small
(Im < 8). However, large discrepancies can be observed when Ij; > 40 and the model predictions
significantly deviate from the ground truth when the rollout length is 120.

We are more interested in how the model rollout length affects the PIMBRL performance, so
we investigated the influence of four different rollout lengths on the reward curves. The case
setting is the same as that used in §3b(ii) except for the rollout length, and the RL performance
is evaluated on 200 randomly generated episodes. Figure 13 shows the performance curves
of PIMBRL with different model prediction lengths. As expected, the RL performance slightly
deteriorates if the rollout length of the model is either too short or too long. For the four rollout
lengths (Ip1 = 3,8,40,120), the RL agent achieves the best performance with [y =8 at almost any
stage of the entire training process. When Ij; < 8 or I > 8, the RL convergence speed is relatively
slow before entering the fine-tuning stage due to the trade-off between exploration and model
bias. However, even after the model-free fine tuning, the RL agent with a longer rollout length
(Im = 40) still suffers from the low-quality model prediction data and is very difficult to be further
improved (see the comparison of the green and blue curves in figure 13).
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(b) Influence of model accuracy threshold

In model-based RL, the transition model is trained along with the RL agent (i.e. value and policy
networks) from scratch, and the model-generated data usually can be effectively used once the
model is trained to reach a certain level of accuracy. As mentioned above, we use the model
accuracy threshold parameter (1) to determine when the model-predicted data should be used
for the RL training. Here, we would like to study how this parameter of A affects the PIMBRL
performance.

Using the KS environment as an example, figure 14 shows the performance curves of PIMBRL
with three different threshold values, i.e. A =0.02,0.01,0.005. Overall, the influence of A values on
the final performance of the RL agent is negligible since all cases converge to the same level of
total return. This is because the model is trained together with the RL agent and can be improved
over the entire RL training process. Actually, with the same amount of training time steps in the
real environment, the models can reach a similar accuracy level regardless of threshold values A.
However, the RL agent with a relatively large threshold value (A = 0.02) performs slightly better
and has a relatively faster convergence rate at the early stage of the training (time step 40 000
60000). A higher threshold allows the agent to access more data generated by the model earlier,
which leads to a better exploration rate and thus slightly higher sample efficiency (figure 14b).

(c) Limitations and perspectives

Compared with MFRL algorithms, MBRL is believed to have higher sample efficiency and thus
more attractive to application scenarios where repeatedly interacting with the real environment
is costly or impossible. However, for certain cases where the environment interactions are cheap
and fast (e.g. via high-frequency sensors), MFRL could be more efficient than its Dyna-MBRL
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counterpart since it does not suffer from model-bias issues. Moreover, deploying multiple
controllers in parallel using a multi-agent setting may also have the potential to alleviate the
sample complexity issues in MFRL, particularly for systems with strong invariance [70].

This work tackles the challenges in MBRL from a different angle. The main contribution lies
in incorporating prior knowledge into model learning to constrain model bias for the Dyna-
style MBRL structure, and significant improvements have been demonstrated on several classic
control problems. Nonetheless, the current development has several limitations. First, although
the proposed PIMBRL has been tested on several classic control problems for proof-of-concept,
further studies are still needed to fill gaps for ultimately solving complex real-world challenges,
e.g. three-dimensional turbulence control. Second, this work focuses on systems with well-posed
physics (i.e. systems with known governing equations and physical parameters). However, for
some systems whose underlying physics remains unknown or too complex to be expressed
as explicit PDEs/ODEs, the PIMBRL in its current form is not directly applicable, and further
extensions are needed. For example, one common scenario is that the governing equations are
known, but parameters are not given. In this case, the PIMBRL can be extended by assimilating
data collected from interactions with the environment to infer the unknown parameters during
the training, since physics-informed networks are good at solving both forward and inverse
problems in a unified manner [48,71]. A more challenging scenario is that the system’s governing
equations are not known explicitly. In this case, the proposed framework can also be extended to
discover the explicit equation forms by coupling the sparsity-promoting learning techniques. For
example, the pointwise PINN has been combined with library-based sparse regression techniques
to discover explicit equation forms from sparse and noise observations [72].

Lastly, we acknowledge that we have not conducted a throughout, comprehensive parametric
study, which is not the focus of this work. There are many factors that can be studied in the future
to further improve the performance. For example, the current PIMBRL is built upon TD3, but the
proposed framework is generic and can be coupled with other policy learning algorithms, e.g.
DDPG and SAC. Moreover, the generic RL hyperparameters remain the same for all test cases
and have not been fine-tuned. Adaptive parameter tuning for a specific application may be able
to further improve the performance.

5. Conclusion

In this work, we presented an innovative model-based reinforcement learning framework
(PiMBRL) for dynamic control, which leverages the physical laws and constraints of the
environment to alleviate the model-bias issue and significantly improve the sample efficiency.
In particular, an autoencoding-based recurrent network structure is devised to learn the
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spatiotemporal dynamics of the environments. The merit and effectiveness of the proposed
PiMBRL framework have been demonstrated over a set of classic dynamic control problems,
where the environments are governed by canonical ODEs or PDEs, including viscous Burgers’
equations and KS equations with chaotic behaviours. Compared with the model-free or purely
data-driven model-based reinforcement learning counterparts, our PIMBRL shows a significant
improvement in model predictive accuracy and RL sample efficiency. Moreover, the effects of
different hyper-parameters used in PIMBRL (e.g. model rollout length I); and model accuracy
threshold 1) are studied, and how these parameters affect the RL performance is discussed.
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Appendix A
(@) Twin-delayed deep deterministic policy gradient (TD3)

Algorithm 2. Model-free twin-delayed deep deterministic policy gradient (TD3).

1: Initialize policy (actor) network 7 (u; ), value (critic) networks g1 (u, a;0,,), q2(u,a;04, ),
empty the replay buffer 2" and reset the environment F.
2: Make a copy of policy and value networks as target networks Tharg < T, Qrarg1 < 41,
Qtarg,2 <— 42
3: for time steps t =1,N do
4 Execute action a; = 7 (#;0) in the environment F;
5 Save new data pair (4}, a;, u},,7i,d;) to buffer 2";
6: if episode ends then Reset the environment F;
7: end if
8: if t mod update_every ==0 then
9 if enough state-action pairs stored in {2", 2/} then
10 fork=1,I; do
11

Sample ] state-action pairs {(u;?, aj, u}JH, 7j,d;)} from buffer 2"
12: Compute target
Q=1 ¥ (L= ) min [ g (0,1, s (0,) |
13: Update value networks via gradient descent,
1 / 0 2 i
Vo 1 L [ata)-q] . i=12
j=1
14: if k mod 2==0 then
15: Update policy network via gradient descent:
1J
Vo § D000, 7))
j=1

16: Update target networks:

0‘7[nrg,i - po’?mrg,t + (1 - ’0)0’71" i=1,2

0”*“"&' <« Ponmrg +(1—p)or
17: end if
18: end for
19: end if
20: end if

21: end for
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Algorithm 3. TD3-based policy and value network update algorithm used in MBRL /PiMBRL.

1: With buffer @', and &/, policy network 7 (u; 6, ), value networks g1 (1, a; 04, ), qo(u, a; 0,12)
and their corresponding target networks g, Giarg,1, qrarg2

2: fork=1,Iz; do

3: Sample | state-action pairs {(u]q, aj, "74-1' 7j,d;)} from buffer (2", 2f}

4 Compute target

Q=1+ (1 = di) min {0, i)
5: Update value networks by gradient descent:
1< . 2 ‘
Vog, 7 > [qi(u]'/uf) - Qj] ;o i=12
j=1

6: if k mod 2 == 0 then
7: Update policy network by gradient descent:

Vo,

S~ =

]
3w, 7))
j=1

8: Update target networks:
Odtargi < POttargi (1= p)by;, i=12

07rmyg < POty + (1 — p)b
9:  endif
10: end for

(b) Hyper-parameter settings

Table 1. Generic hyper-parameters of TD3 algorithm.

parameter discount rate y Pp policy and Q-value network optimizer
value 0.99 2 50 Adam
(0.977in KS)

parameter polyak o action noise policy and Q-value network learning rate

model accuracy model rollout maximum episode
environment threshold Ly length /s length

Cart-Pole 1% 10~ 200 (full length) 200 800

environment RL batch size model batch size update every N,
Cart-Pole 128 200 128 1000
T g g o
Burgers .......................... g g o
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