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Abstract

Magnetic particle tracking is a recently developed technology that can measure the transla-

tion and rotation of a particle in an opaque environment like a turbidity flow and fluidized-bed

flow. The trajectory reconstruction usually relies on numerical optimization or filtering, which

involve artificial parameters or thresholds. Existing analytical reconstruction algorithms

have certain limitations and usually depend on the gradient of the magnetic field, which is

not easy to measure accurately in many applications. This paper discusses a new semi-ana-

lytical solution and the related reconstruction algorithm. The new method can be used for an

arbitrary sensor arrangement. To reduce the measurement uncertainty in practical applica-

tions, deep neural network (DNN)-based models are developed to denoise the recon-

structed trajectory. Compared to traditional approaches such as wavelet-based filtering,

the DNN-based denoisers are more accurate in the position reconstruction. However, they

often over-smooth the velocity signal, and a hybrid method that combines the wavelet and

DNN model provides a more accurate velocity reconstruction. All the DNN-based and wave-

let methods perform well in the orientation reconstruction.

1. Introduction

Optical-based particle tracking technologies provide crucial knowledge and experimental

guidance in the study of turbulence and complex flows [1, 2]. However, the advanced optical

approaches face severe problems and cannot be used in many opaque environments such as

granular motion and dense particulate flows. Missing the experimental guidance, to some

extent, retards the development of granular dynamics and multiphase flow theory. A group of

non-optical tracking methods is therefore developed, e.g., radioactive particle tracking (RPT)

and positron emission particle tracking (PEPT) [3–10], but they encounter new issues. For

instance, they require expensive equipment and special expertise for radioactive material oper-

ation. The magnetic resonant imaging (MRI) has a limited temporal resolution [11], which is

insufficient for high-speed motion measurements.
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A new magnetic particle tracking (MPT) technology has recently been developed to address

the issues facing the non-optical methods [12–20]. The working principle of MPT is to locate a

magnetic source according to its field, which is modeled as a dipole. The MPT has the follow-

ing advantages: 1) it is a safe technique involving no radiation; 2) it provides not only the trans-

lation but also the rotation information of a particle, which is critical to granular dynamics; 3)

it has a sufficient temporal resolution to measure high-speed flow; 4) it is cost-efficient as the

magnetometers and sensors are much less expensive than the equipment in other non-optical

approaches.

The key to the MPT method lies in the reconstruction of the position and orientation of a

magnetic dipole. In other words, given the measurements (B1, B2, . . .) at a few points (or field

gradient rB), what is the position x and moment m of the magnetic source? The dipole field

equation is B ¼
m0

4p

½3n�ðm�nÞ�m�

jxj3
, where n is the unit vector in the x direction. In experimental

applications, numerical optimization and filtering are widely used to calculate x and m, but

these methods can be time-consuming and usually rely on artificial parameters or thresholds

[12, 18, 20, 21]. In contrast, if the dipole field equation can be inverted, we can find a set of

analytical solutions x = x(B1, B2,. . .) and m = m(B1, B2,. . .), which provides an efficient way to

directly calculate x and m without any parameters. In the early stage, a group of researchers

developed the eigenvector method [22] and Nara method [23]. Later on, a scalar triangulation

and ranging (STAR) method was proposed for real-time magnetic target localization [24], and

this method was modified multiple times [25]. These analytical methods possess a clear physi-

cal meaning and have been used in practical problems. However, they involve the field gradi-

ent tensor rB, which casts special requirements on the magnetometer and the sensor

arrangement. In addition, the STAR method has a larger asphericity error [26, 27], and its

modifications may involve a complex sensor setup [28].

In order to provide an accurate reconstruction method, this paper describes a new analyti-

cal solution that can be used for an arbitrarily arranged 3-axis magnetometer array. The recon-

struction algorithm is accurate because it contains no assumptions other than the dipole

model. However, for reconstruction in practical applications, denoising is an indispensable

step since a real measurement contains uncertainty. The classic trajectory denoising

method uses linear filtering [19, 29]. Given the measured location y, the filtered position is

x(t) =
R
y(t − τ)K(τ)dτ, where K is an integration kernel (e.g., a Gaussian kernel). Although

this method is simple, the kernel used is fixed and cannot adapt to any temporal (or spatial)

variation. To take care of the variation, more sophisticated denoising algorithms based on

time-frequency decomposition have been developed. The general process of these approaches

is twofold: (1) the original signal is transformed into the frequency domain, where the clean

signal and noise can be represented by sparsely distributed spectral coefficients; (2) then a

threshold scheme is applied to trim off noisy components, and the remaining are transferred

back into the time domain for signal reconstruction. Wavelet transform (WT) is one classic

example of time-frequency based methods and has been applied to a wide array of image

denoising problems due to its advantage in removing random noise and improving the signal-

to-noise ratio (SNR), even when noise and signal frequencies overlap [30]. Unfortunately, an

appropriate threshold scheme is often hard to determine in the presence of residual or drifting

noise [31]. Recent attempts for denoising problems focus on AI-based algorithms, which are

capable of suppressing drifting noise and capturing local features robustly given labeled train-

ing data. Vincent et al. [32] constructed a denoising auto-encoder (DAE) neural network, aim-

ing to find robust representations of features from noisy input data. Subsequent works are

dedicated in optimizing deep neural network (DNN) structures to achieve better performance

in handling complex noise and interference [33–36]. Representative network structures
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include fully-connected multilayer perceptron (MLP), convolutional neural networks (CNN),

and recurrent neural networks (RNN) such as long short-term memory (LSTM) net. The

CNN-based methods are typically implemented in an encoding-decoding fashion, where latent

features are first extracted by the encoder layers and details are then compensated by the

decoder layers to recover a clean version of the original signal [37]. Another popular trend is

to utilize RNN to preserve historical information and temporal coherence while denoising,

which is effective when handling sequential data, e.g., time series [38]. In this work, we design

a novel denoising algorithm by leveraging both unsupervised WT and supervised RNN models

with gated recurrent units (GRU), aiming to reduce the noise of the particle trajectory and ori-

entation time series. Using synthetic data, we evaluated the reconstruction performance by

comparing it with pure WT, CNN and GRU denoising methods.

The rest of the paper is organized as follows. We first describe the proposed 2D analytical

solution and generalize it to 3D in Section 2. Using synthetic data, we evaluate the reconstruc-

tion accuracy in Section 3 and then investigate the performance of the proposed denoising

scheme in Section 4, where artificial noises are considered. Finally, Section 5 concludes the

paper.

2. Analytical solution

2.1 The 2D solution

In this section, we first discuss the analytical solution to a restricted problem. In the simple

setup shown in Fig 1, there are two 3-axis magnetometers located at Point 0 and 1 with x0 = (0,

0, 0) and x1 = (L, 0, 0). They together provide six signals (B0x, B0y, B0z) and (B1x, B1y, B1z). The

magnetic particle moves on the x-y plane (z = 0), but its magnetic moment is 3D, m = (mx, my,

mz)
0. According to the dipole field model, the magnetic field strengths at x0 and x1 are

B x0;1

� �
¼

m0

4p

½3n�ðm�nÞ�m�

jx�x0; 1 j3
, where x is the magnet’s location, n is the normal vector in the x–xi direc-

tion (i = 0 or 1), m is the magnetic moment, and μ0 is the magnetic permeability. The dipole

field is exact for a uniform spherical magnetic bead, and it is a very good approximation for

the far field of non-spherical beads [39]. Since x–xi lies on the x-y plane and ni = (nix, niy, 0)0,

the magnetic field equation is

Bix

Biy

Biz

0

B
@

1

C
A ¼

m0

4p x � xij j
3

3nix mxnix þ myniy

� �
� mx

3niy mxnix þ myniy

� �
� my

�mz

0

B
B
B
@

1

C
C
C
A

ð1Þ

where the index i is 0 or 1.

Fig 1. The magnetometer arrangement.

https://doi.org/10.1371/journal.pone.0254051.g001
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To calculate m and x, the first step is to eliminate the nonlinear term |x − xi|3. Generally,

the z components (Bz and mz) are not zero. Thus, we can normalize the x and y equations

using the z component and define M = (Mx, My)’ = (mx /mz, my /mz)’ and Ti = (Tix, Tiy)’ = (Bix/
Biz, Biy/Biz)0. Hence, Ti = 3ni(M � ni) − M. The Bz = 0 case will be discussed later. Define a unit

vector ti in the x-y plane, ti = (−niy, nix, 0)0, so ti is normal to ni, i.e., ti � ni = 0. Now we decom-

pose the vector Ti to the ti and ni directions:

Ti � ni ¼ 3 ni � nið Þ M � nið Þ � M � ni ¼ 2M � ni ð2:1Þ

as n is a unit vector, and

Ti � ti ¼ �M � ti ð2:2Þ

Substitute the components of each vector, we obtain

Tix � 2Mx Tiy � 2My

Tiy þ My �Tix � Mx

 !

�
nix

niy

 !

¼ 0

If this equation has a non-zero solution, the coefficient matrix must have a zero determi-

nant. Hence,

Tix � 2Mxð Þ Tix þ Mxð Þ þ Tiy � 2My

� �
Tiy þ My

� �
¼ 0

After rearranging, we get

1

4
Tix þ Mix

� �2

þ
1

4
Tiy þ Miy

� �2

¼
9

16
T2

ix þ T2

iy

� �
ð3Þ

Note that the values of T components are known and fixed in a measurement, and M is

unknown. Eq 3 describes two circles for i = 0 and 1. The radius is 3

4
T2

ix þ T2
iy

� �1=2

and the cen-

ter is at (–Tix/4, –Tiy/4), as illustrated in Fig 2.

Fig 2. Two circles described by Eq 3. The joints are candidate solutions to M.

https://doi.org/10.1371/journal.pone.0254051.g002
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These two circles have two joints, one of which is the solution M. Based on the geometric

relationship, we can get two candidate solutions:

M ¼

mx

mz

my

mz

0

B
B
@

1

C
C
A ¼

M�
x

M�
y

 !

�
S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T0x � T1xð Þ
2

þ T0y � T1y

� �2
r

T0y � T1y

�T0x þ T1x

 !

ð4Þ

where S ¼

1

2
T2

0x þ T2
1x þ T2

0y þ T2
1y þ T0x þ T1xð ÞM�

x � 4M�2
x þ T0y þ T1y

� �
M�

y � 4M�
y2

h i1=2

; M�
x ¼

T0x�T1xð ÞD� T0y�T1yð ÞE
T0x�T1xð Þ2þ T0y�T1yð Þ 2

and M�
y ¼

T0y�T1yð ÞDþ T0x�T1xð ÞE

T0x�T1xð Þ2þ T0y�T1yð Þ 2
. Here, D ¼ T2

1y � T2
0y þ T2

1x � T2
0x and

E = (T0xT1y − T1xT0y)/4.

Finally, we need to choose the correct solution from the two possible results. To proceed,

selecting one solution M, we can obtain tan θ0 = (T0y −My)/(T0x −Mx) and tan θ1 = (T1y −
My)/(T1x −Mx). Here θi is the angle between ni and the x-axis (Fig 1). Consequently, the mag-

net’s position is

x ¼ L tan y1=ð tan y1 � tan y0Þ ð5:1Þ

y ¼ tan y0 � x ð5:2Þ

Hence, the position x = (x, y, 0)’, and the magnitude |x − xi|3 can be determined. Thereafter,

the z-component equations B0z = −μ0mz/4π|x − x0|
3 and B1z = −μ0mz/4π|x − x1|

3 provide two

possible mz’s with corresponding (mx, my)’ = mz�M. If the selected M is wrong, the two mz’s

calculated using B0z and B1z do not match and this solution should be discarded. In addition,

if the magnitude of m is known, we can also determine the correct solution by comparing the

magnitude of reconstructed m with the known value.

Now, we discuss the mz = 0 case. The above reconstruction algorithm can be written briefly

as functions x = x(B0, B1) and m = m(B0, B1). They are finite for any mz = ± ε, where 0 < ε
<< 1. As continuous functions that describe a physical trajectory, the left and right limits

must be equal, limB0z!0� ; B1z!0�x B0;B1ð Þ ¼ limB0z!0þ ; B1z!0þxðB0;B1Þ. In other words, the

B0z = B1z = 0 case is a removable singularity of the function. In real applications, the probability

of measuring an exact zero mz is practically zero, so the above solution works for nearly all

measurements.

2.2 From 2D to 3D

The above 2D analytical solution can be generalized to 3D with an arbitrary sensor arrange-

ment. As shown in Fig 3, the magnet is located on the x’-y’ plane, which has a β angle from the

X-Y plane in the 3D space. The x’ and X axes overlap. The angle β is regarded as a parameter to

be determined later. If we rotate the frame of reference from XYZ to Xy’z’, the 3D reconstruc-

tion reduces to the 2D problem. After the rotation, the magnetometer readings become

B0 ¼ B0 bð Þ ¼ R bð Þ � B ¼

1 0 0

0 cos b �sin b

0 sin b cos b

0

B
@

1

C
A �

BX

BY

BZ

0

B
@

1

C
A ð5Þ
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Substituting B’ into the 2D solutions (Eqs 3 and 4), we can reconstruct the status of the

magnet with the parameter β: x’ = x’(B’) = f(B, β) and m’ = m’(B’) = g(B, β). Then, the position

and moment in the original XYZ frame is

x ¼ R�1 � x0 ¼ R�1 � fðB; bÞ ð6:1Þ

m ¼ R�1 � m0 ¼ R�1 � gðB; bÞ ð6:2Þ

Finally, we need to determine the parameter β by substituting x and m to the dipole equa-

tion. Define h B; bð Þ ¼
m0

4p

3n� m�nð Þ�m½ �

jx�x0; 1 j3
, where x and m are functions of B and the unknown param-

eter β, the dipole equation becomes

0 ¼ jjB � h B; bð Þjj
2

ð7Þ

On the right hand side, the field strength B is known. Recall that the 2D solution contains

two possible results, so the ||B–h|| curves may include two branches, but only one of them

reaches zero. Fig 4 shows a sample curve of ||B–h|| as a function of β.

The function h is highly non-linear, but it contains only one variable, as B are known.

Therefore, it is actually efficient to solve Eq 7 using Newton’s method in a practical problem,

and the reconstructed position in a previous step (a known β) can be used as the initial estima-

tion for the next time step.

For a 3D problem with an arbitrary 3-axis-sensor arrangement (each magnetometer should

measure all three components of B), we can apply the above method to any pair of sensors and

calculate the averaged reconstruction. In other words, if there are N magnetometers, they form

N

2

 !

pairs. Each pair produces an x and m. The final reconstruction can be obtained by

averaging x and m, which reduces errors in the results. Ideally, the uncertainty decreases as
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N N�1ð Þ=2
p at a large N. This is better than the methods in literature, where the uncertainties

scales as 1ffiffiffi
N

p . However, the reconstruction speed of our method is lower.

3. Trajectory reconstruction

3.1 Trajectory generation and reconstruction

In this section, we will investigate the reconstruction accuracy using synthetic trajectories. The

MPT method can be used to study, e.g., fluidization, where collisions among particles can be

intense and hard to measure. Therefore, we design the trajectories to contain random turns

Fig 3. The 3D setup and coordinate definition.

https://doi.org/10.1371/journal.pone.0254051.g003

PLOS ONE Semi-analytical and AI-based MPT reconstruction algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0254051 July 9, 2021 6 / 18

https://doi.org/10.1371/journal.pone.0254051.g003
https://doi.org/10.1371/journal.pone.0254051


and sudden velocity changes. Fig 5a shows one sample trajectory section in a 3D space. The

domain is a cube with the boundary size L = 0.1 m. One magnetometer is located as the origin

and the other is at (L, 0, 0). The directions of the sensors are aligned with the frame of refer-

ence (XYZ). This setup has been plotted in Fig 3. Given the trajectory, we can simulate the

magnetometer readings using the dipole model. Since real measurements always contain

uncertainty, we model the field noise using a Gaussian distribution,

Bx;y;or z ¼ B̂x;y;or zð1 þ εÞ

where B̂ is the ground truth obtained from the synthetic trajectory, and ε is a random variable

with zero-mean normal distribution. Here we investigate a series of noise levels, beginning

with ε = 0 (no noise) to std(ε) = 0.01, 0.03, 0.05, 0.1, . . . 0.3, where std means the standard

deviation.

Fig 5b and 5c show a sample of reconstructed position x and orientation mx. At the zero

noise level, our method in Section 2 can reconstruct the position and orientation of a magnet

with no error. The zero-noise reconstructed trajectory overlaps the ground truth curve. As

the measurement noise increases, the reconstruction error increases. For example, when

Fig 4. A sample curve illustrates the relationship between ||B–h|| and β.

https://doi.org/10.1371/journal.pone.0254051.g004
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Fig 5. a) A sample synthetic trajectory that contains sudden velocity changes and turns. The arrows indicate the magnetic moment direction. b)

The original and reconstructed positions at various noise levels. The unit of x is meter. c) The ground truth and reconstructed orientations. Here

the orientation is normalized using the magnitude |m|. d) The position errors at various noise levels. The error is normalized using the

measurement domain size L. e) The orientation errors at different noise levels. The error is normalized using |m|.

https://doi.org/10.1371/journal.pone.0254051.g005
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std(ε) = 0.05, the reconstructed positions deviate from the ground truth significantly. We

define the position error as the mean deviation normalized by the measurement domain size,

meanð x̂ � xj jÞ=L. Fig 5d shows the position error’s dependence on the measurement noise,

which is nearly a straight line. For a typical sensor noise level of 3%, the reconstruction error is

roughly 3–4% of the domain size, which is consistent with the filtering method [20]. The ori-

entation reconstruction error, defined as meanð m̂ � mj jÞ=jmj, is shown in Fig 5e.

3.2 Propagation of uncertainty

The reconstruction error is highly inhomogeneous in the spatial and orientation domain. This

is caused by the propagation of error in the reconstruction. To provide a clear explanation, we

differentiate Eq 1, dBi ¼
@Bi
@xj

dxj þ
@Bi
@mk

dmk. Written in a matrix format, we have δB = PδV. δB =

(δB0x, δB0y, δB0z, δB1x, δB1y, δB1z)
0 can be regarded as the measurement noise and δV = (δx, δy,

δz, δmx, δmy, δmz)
0 is the reconstruction error, where prime means array transpose. The entry

in the matrix P is Pij ¼
@Bi
@xj

(for j � 3) or
@Bi
@mj

(for j � 4), which is a function of x and m recon-

structed using the B. Define the invert of P as W = P–1, we obtain δV = WδB. The position

reconstruction error is therefore

dx ¼ W1dB

and the orientation error is

dm ¼ W2dB

where W1 is the first three rows of W, and W2 is the 4th-6th rows. The maximum ||δx|| can

hence be estimated as,

j dxj jjmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dB0 � W 0

1
W1 � dB

p
� s1j dBj jj ð8:1Þ

where σ1 is the square root of the maximum eigenvalue of W 0
1
W1. A similar argument shows

that the max ||δm|| is

j dmj jjmax � s2j dBj jj ð8:2Þ

where σ2 is the square root of the maximum eigenvalue of W 0
2
W2. The coefficient σ1 and σ2

characterizes the propagation of error in the reconstruction.

To illustrate the spatial distribution of the error propagator, we select a specific case, in

which the magnetic moment is |m| = 0.001Am2 and it points at the (1, 1, 1) direction. The

noise level of B measurements in a L = 0.1 m domain is in the order of micro Tesla (μT). Fig 6

shows σ1 and σ2 on a sample plane (z = 0 plane). Note that we present σ1 and σ2 with their met-

ric units because the B vary significantly and normalization with one factor can be misleading.

The results suggest that there are a few regions with high σ1 and σ2 values. Physically, in these

regions, the magnetic field strength B are insensitive to at least one component of x or m. As a

result, the matrix P becomes nearly singular and the eigenvalues σ1 and σ2 become very large.

Hence, if the particle trajectory passes through these regions, the uncertainty is larger, which

can be manifested as a burst of reconstruction error. In real applications, this error can be

removed using more magnetometers in an array.

4. Denoising using wavelet transform and deep neural network

To examine the performance of WT and AI-based denoisers, we utilize them to process 2000

Lagrangian trajectories that are reconstructed from synthetic signals with 3% random noise.

The reconstruction follows the two-magnetometer setting illustrated in Fig 3.
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4.1 AI- and WT-based denoising method

Two types of DNN structures (i.e., CNN and GRU) are studied for developing the AI-based

denoiser. The first proposed denoising method is based on a CNN autoencoder, which con-

tains two 1-D convolutional layers encoding the noisy signal into the latent space and two 1-D

deconvolution layers decoding the latent signal to the denoised one after a linear layer. Each

convolution/deconvolution layer has a kernel size of 3×1 and stride size of one, followed by a

rectified linear unit (ReLU) activation function to account for nonlinearity (more details can

be found in Table 1). The convolutional and deconvolutional layers have symmetric parame-

ters such that the output has the same dimension as the input. The noisy trajectory data are fed

into the CNN autoencoder with a size of 500×3. The denoised signals can be obtained by the

forward evaluation of the network after sufficient training. The second AI-based model uses

GRU to preserve the long-term memory of the sequence data. After conducting our prelimi-

nary studies on the synthetic data, the GRU is chosen over the LSTM because GRU achieves a

Fig 6. The distributions of a) σ1 and b) σ2, which characterize the reconstruction error in position and orientation, respectively. The unit of σ1 is

[mm/μT] and that of σ2 is [Am2/μT]. Here L = 0.1 m, |m| = 0.001Am2 and pointing at the (1, 1, 1) direction.

https://doi.org/10.1371/journal.pone.0254051.g006

Table 1. DNN structure.

DNN type Layers Characteristics

CNN Convolution layer 1d Kernel size = 3, stride = 1, input feature = 3, output feature = 12

ReLU -

Convolution layer 1d Kernel size = 3, stride = 1, input feature = 12, output feature = 48

ReLU -

Deconvolution layer 1d Kernel size = 3, stride = 1, input feature = 48, output feature = 12

ReLU -

Deconvolution layer 1d Kernel size = 3, stride = 1, input feature = 12, output feature = 9

ReLU -

Linear layer Input feature = 9, output feature = 3

GRU GRU layer Input feature = 3, output feature = 9

GRU layer Input feature = 9, output feature = 9

Linear layer Input feature = 9, output feature = 3

https://doi.org/10.1371/journal.pone.0254051.t001
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close performance to LSTM with less trainable parameters, hence higher efficiency. The DNN

within the denoiser starts with two GRU layers stacked together, which convert three channels

into nine channels in the hidden layer, and ends with a linear layer that reduces the dimension

back to three channels. The input data structure and implementation of the GRU-based model

are identical to that in the aforementioned CNN-based model. More details about the GRU

parameters can be found in Table 1. Both DNN-based denoisers are implemented in PyTorch,

which is an open-source python platform for machine/deep learning.

As mentioned, a synthetic dataset of 2000 trajectories is built for training and testing the

DNN-based denoiser. The whole dataset contains 2000 samples, each of which has recon-

structed results with artificial noise introduced by the synthetic sensor and the corresponding

clean signal as ground truth. The datasets are divided into 1800 samples for training and 200

samples for testing. The training dataset is split into mini batches with a size of 200, which is

randomly shuffled, for the neural network to update the model parameters in each epoch.

Both CNN and GRU models are trained on an NVIDIA GTX2080Ti GPU using the Adam

optimizer with a constant learning rate of 0.001. Each training needs at least 1200 epochs to

converge, which takes roughly 0.5 hours on the single GPU. For example, the CNN can achieve

a root mean square error (RMSE) of 0.0021 after 1200 epochs of training which takes about

0.58 hours.

In addition, a WT denoising method is also developed for comparison purpose, which is

based on the discrete wavelet transformation (DWT) described as follow,

X kð Þ ¼
Xþ1

n¼�1
xðjÞgðCj � kÞ ð9Þ

where X(k) are the DWT coefficients, x(j) and g(j) represent the input signal and wavelet filters

respectively, k is the shift coefficient, and C is the scaling factor (normally chosen as 2). The

WT model uses VisuShrink [40], which applies a global threshold defined as g
ffiffiffiffiffiffiffiffiffiffiffiffi
2logQ

p
, where

γ and Q denote the noise variance and number of signal elements (or image pixel), respec-

tively. VisuShrink threshold is renowned for its capability of removing Gaussian noise with

high probability and therefore widely applied in image denoising problems. Our WT model

adopts Coiflet wavelet basis function with wavelet level set to five and uses soft threshold

mode. The WT transformation is implemented by using scikit-image [41] in python and

applied on the synthetic data regarding each time series as a 1D image. Note that, different

from the AI-based denoisers, which require the clean signals as labeled data to learn from, the

WT-based denoiser directly rejects noise in the given signal without any labels. However, as

mentioned above, the WT-based approaches have difficulties dealing with residual noises,

and it is hard to specify appropriate filter banks and suitable hyperparameters that work for all

samples.

We define a metric to describe the relative noise strength, referred to as noise level (N),

N ¼
j Xnoisy � Xclean

�
�
�

�
�
�j

j Xcleanj jj
ð10Þ

where Xnoisy and Xclean represent the noisy and clean signals, respectively. Considering that the

noisy signal has large fluctuations of high frequency, a second metric is introduced to evaluate

the extent of fluctuation in the following form,

Nf ¼
j _Xnoisy � _X clean

�
�
�

�
�
�j

j _X clean

�
�

�
�j

ð11Þ
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where _X represents the forward finite difference of a time series X. Note that if X represents

the velocity, _X is the acceleration. The performance of a denoising model can be characterized

by the signal improvement ratio,

I ¼
Nnoisy � Ndenoised

Nnoisy
� 100% ð12Þ

Due to significant noise level in velocity, the signal is plotted in the symmetric pseudo log-

scale to resize the continuous real value space of velocity axis,

f xð Þ ¼ sign xð Þ � logð1 þ x=10CÞ ð13Þ

where C determines the lowest resolution of the velocity axis.

4.2 Denoising results

We utilize the above methods to denoise the position, velocity, and orientation of the magnetic

particle. The denoiser performance is illustrated using two typical samples in the testing data-

set (Figs 7 and 8). The ground truth is also plotted for comparison. The signals in both time

and frequency domains are studied to evaluate the degrees of noise reduction and oversmooth-

ing. For the position, all the proposed models provide results in good agreement with the

ground truth. AI-based denoising methods display better performance than WT models when

handling noise with large magnitude. However, large deviations from the ground truth still

exist at some time intervals. The noise level and performance metrics are listed in Table 2. The

CNN- and GRU-based algorithms outperform the WT model in terms of noise level, fluctua-

tion level, as well as signal improvement ratio. Moreover, the GRU-based model suppresses

both the noise and fluctuation better than the CNN-based model, which can be attributed to

the inherent advantage of capturing long-term memory of sequential data. The Fast Fourier

Transform (FFT) plots show that both the CNN and GRU-based models can significantly

reduce the high-frequency noise of the trajectory signals; however, notable noisy components

across the entire frequency domain still remain. In comparison, the WT method suppresses

much less high-frequency noises. To further enhance the performance, a hybrid method is

developed: first the WT filtering is used to preprocess the signal and reduce the noise, and

then the GRU is applied on the filtered results to obtain the final velocity. By combining WT

and GRU methods, the hybrid model yields the best denoised trajectory signal with a fre-

quency distribution nearly identical to the ground truth. Hence the hybrid model stands out

for denoising the position signal.

The magnitude of velocity obtained from the noisy signal is 100 times larger than that of

the clean signal. This poses a great challenge to velocity denoising, especially for the AI- based

models because the magnitude of the true velocity signal is too small to be distinguished from

numerical error. Surprisingly both AI-based models have lower noise and fluctuation levels as

shown in Table 2. Figs 7 and 8 rectify our observation by showing that the AI-based models

fail to capture the shape of the clean velocity signal in both samples. This indicates that the

DNN model alone may not be able to reduce the noise without trimming off the velocity sig-

nal, which is a limitation of the neural network approach when directly applied on highly

noisy data without any preprocessing (e.g., wavelet filtering). On the other hand, the WT

method correctly captures the shape of the clean signal but fails to reduce large fluctuations in

certain regions (Figs 7c and 8c). According to Figs 7d and 8d and Table 2, the hybrid model

successfully attenuates the velocity fluctuations while retaining the shape of the signal. Note

that the trajectories studied here are reconstructed using the 2-sensor setup. The burst of error

issue as explained in Section 3.2 exists in these trajectories. Using more magnetic sensors can
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help completely remove the large fluctuation in certain regions and improve the accuracy. In

addition, there still exist discrepancies between the shape of the denoised velocity and the

clean signal in certain locations (e.g., the left end of velocity plot in Fig 7d), partially due to the

fact that the velocity of synthetic trajectories contains Heaviside step functions. The discrepan-

cies can be improved by modifying the preprocessing algorithm and increasing the depth of

the DNN, which requires more training data and longer time. Moreover, it can be observed

that the GRU-based model significantly oversmoothes the velocity signals, while the perfor-

mance of the WT method is case-dependent. For sample 1, the WT model well recovers the

frequency distribution at low frequency (<60 Hz), but it significantly deviates from the ground

truth at higher frequencies (>60 Hz), indicating poor denoising performance. For sample 2,

the WT-denoised result shows a good agreement with the ground truth. The hybrid model,

Fig 7. Comparison of the performance of a) CNN, b) GRU, c) WT, d) WT+GRU (hybrid model) on Sample 1 randomly drawn from the testing

dataset.

https://doi.org/10.1371/journal.pone.0254051.g007
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Fig 8. Comparison of the performance of a) CNN b) GRU c) WT d) WT+GRU (hybrid model) on Sample 2 randomly drawn from the testing

dataset.

https://doi.org/10.1371/journal.pone.0254051.g008

Table 2. Denoising models comparison.

Data Noise

measurement

Original CNN Improvement

CNN

GRU Improvement

GRU

WT Impro-vement

WT

WT

+GRU

Improvement WT

+GRU

Position Noise level 0.038 0.014 64.3% 0.013 65.3% 0.015 60.5% 0.010 74.5%

Fluctuation level 36.32 4.924 86.4% 3.25 91.1% 6.758 81.4% 1.094 97.0%

Velocity Noise level 36.322 0.79 97.8% 0.79 97.8% 5.904 83.7% 0.570 98.4%

Fluctuation level 152.50 1.096 99.3% 1.001 99.3% 16.273 89.4% 1.043 99.3%

Orientation Noise level 0.056 0.024 57.3% 0.043 22.4% 0.028 50.4% 0.025 54.7%

Fluctuation level 4.37 0.70 83.9% 1.54 64.7% 1.514 65.3% 0.443 89.8%

https://doi.org/10.1371/journal.pone.0254051.t002
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though slightly oversmoothes the velocity signals, outperforms the method by GRU or WT

model alone.

In terms of the orientation signal, all proposed models suppress the noise well, among

which the CNN-based model has the best denoising performance. Interestingly, the denoising

performance of the GRU-based model has been surpassed by the WT model. This is because

the overall noise magnitude is small and large noise occasionally spikes up in random loca-

tions, which might confuse the GRU from a time sequence point of view. It is worth noting

that the hybrid model has the best denoising performance for all variables (positions, velocity,

and orientation) compared to AI-based models or the WT model, especially for velocity where

a large noise magnitude is present.

5. Summary

This paper presents an analytical solution to the magnet particle positioning problem. Specifi-

cally, we can calculate the 3D position and orientation of a magnetic source based on the field

vectors B at a few points, which are measured using 3-axis magnetometers. The solution allows

us to develop a reconstruction algorithm for 3D particle tracking, which provides a novel

approach to detect the flow in an opaque environment such as fluidized bed or turbidity flow.

With zero noise, the reconstruction is exact. As the measurement noise increases, the mean

reconstruction error grows linearly. For the two-magnetometer setup, the average position

error is 3–4%, and orientation error is 5%, given that the measurement noise is 3%. The inves-

tigation of uncertainty propagation shows that at the same level of noise, the reconstruction

error is highly non-homogeneous in the space and orientation domain, due to the high non-

linearity of the magnetic dipole equation. The burst of error in certain regions can result in

severe problems in denoising. Using more sensors can reduce the error.

In order to improve the reconstruction accuracy in practical scenarios where measurement

noise is inevitable, we employ the CNN, GRU and WT-based methods to denoise the position,

velocity, and orientation signals. All these methods lead to a significant improvement in the

reconstruction accuracy. In the regions where the error is extremely large, the AI-based mod-

els provide better trajectory reconstruction. However, pure AI-based models fail to capture the

shape of the velocity signals because the noise is 100 times larger than the true velocity magni-

tude. In contrast, the wavelet method can roughly capture the trend of the true velocity signal

with a few exceptions. Therefore, we develop a hybrid approach that preprocesses the sequence

by filtering out high-frequency noise with WT and then denoises the signal using GRU. The

performance of the hybrid method outperforms the other denoisers in velocity denoising.

Finally, all the methods perform well in the orientation denoising, and the CNN and hybrid

models are slightly better. From the FFT analysis, we observe that the AI-based methods (GRU

and CNN) tend to oversmooth the velocity signals, while the hybrid model can better capture

the frequency distribution for most cases. In general, the hybrid method combining WT and

GRU shows the best performance.
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