
Temporal Siamese Networks for Clutter Mitigation Applied to
Vision-Based Quadcopter Formation Control

James Dunn1 and Roberto Tron2

Abstract— Convolutional neural networks applied to video
streams often suffer from short-lived misclassifications or false
alarms from clutter and noise. We introduce a novel network
training method based on the Siamese Networks technique
that mitigates short-lived false alarms in an Hourglass CNN
that segments out quadcopters in a live video stream. To
demonstrate this method in a real-world application in real-
time, we implement it as part of a quadcopter tracker for
vision-based formation control.

Quadcopter drone formation control is an important ca-
pability for fields like area surveillance, search and rescue,
agriculture, and reconnaissance. Of particular interest is for-
mation control in environments where wireless communications
and/or GPS may be either denied or not sufficiently accurate for
the desired application. Using vision to guide the quadcopters
addresses these situations, but computer vision algorithms are
often computationally expensive and suffer from high false
clutter detection rates. Our novel Siamese networks-based
clutter mitigation technique is a good way to mitigate this
clutter without added computational complexity at run-time.

We run our real-time implementation on a single-board
computer (ODROID XU4) with a standard webcam mounted
to a quadcopter drone. Flight tests in a motion capture volume
demonstrate successful formation control with two quadcopters
in a leader-follower setup.

I. INTRODUCTION
A. MOTIVATION

Quadcopter drones are ubiquitous in today’s market. They
are used for everything from filmmaking to search and
rescue. Their low cost and small size makes formations
of numerous quadcopters more feasible and also allows
amateur hobbyists to fly them. Unfortunately this also means
they have limited onboard processing capability and limited
onboard sensing capability.

Standard visual cameras are low-size, low-weight, and
low-cost sensors, which makes them ideal for mounting
onto quadcopter drones. Their video feeds contain a wealth
of information that can be used for object recognition and
navigation, much like how humans and other animals use
sight.

While video feeds are rich sources of information, process-
ing the video feed from a visual camera is processor-intensive

*DISTRIBUTION STATEMENT A. Approved for public release. Dis-
tribution is unlimited. This material is based upon work supported by the
United States Air Force under Air Force Contract No. FA8702-15-D-0001.
Any opinions, findings, conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views
of the United States Air Force.

1James Dunn is a graduate student in Electrical and Computer Engi-
neering, Boston University, 8 St Mary’s St, Boston, MA 02215, USA
jkdunn@bu.edu

2Roberto Tron is an Assistant Professor of Mechanical and Systems
Engineering, 8 St Mary’s St, Boston, MA 02215, USA tron@bu.edu

and error prone due to the volume of the datastream, short
latency requirements of quadcopter drone feedback control
(≤ 100 milliseconds), and clutter-rich environments of in-
terest. Processing the video feed onboard the quadcopters
themselves grants independence from a ground base-station
or a human operator, but presents a limitation on the available
processing power.

Standard approaches to quadcopter formation control rely
on either offboard processing, GPS, or wireless communica-
tion between the quadcopters [1] [2]. In many environments,
wireless communications and/or GPS may be denied or
not sufficiently accurate for the desired application. This is
common indoors and in military scenarios due to electronic
interference or jamming. A handful of recent studies use a
video feed to guide the formation control, but they rely on
fiducial markers to aid detection and localization [3] [4] [5]
[6] [7] [8] [9].

Our implementation does not rely on any of these, follow-
ing the lead of [10] and [11]. We use only the video feed
from the quadcopters’ onboard cameras, and process it with
an onboard ODROID XU4. We use a trained hourglass CNN
to generate a quadcopter/non-quadcopter segmentation for
each frame. We use the segmentation to localize the imaged
quadcopter, eliminating the need for fiducial markers. This
enables “non-cooperative” formation control. For example,
trailing or chasing a rogue quadcopter, or intentionally col-
liding with a quadcopter that poses a threat.

High false detection rates plague visual quadcopter de-
tection and localization, making stable flight difficult. In
our implementation, the naı̈ve trained hourglass CNN’s seg-
mentations suffer from false clutter detections that bias the
resulting quadcopter navigation solution.

B. SOLUTION

To address the poor localization resulting from high false
detection rates, we implement a novel method of mitigating
displaced false clutter detections during network training that
is based on the Siamese networks technique. Specifically,
during training we add a loss penalty when consecutive
frames have dissimilar segmentations. The network conse-
quently learns to avoid promoting image features that tend
to be short lived.

The resulting trained network has exactly the same size
and shape as the original, but its trained parameters better
avoid false clutter detections. This minimizes the need for
computationally-expensive post-processing clutter mitigation
algorithms. This “temporal Siamese clutter mitigation” is not
limited to quadcopter segmentation or even Hourglass CNNs

- any application where the network output is expected to be
smooth in time can benefit from this method.

Using a binary quadcopter/non-quadcopter segmentation
requires assuming a physical size of the imaged quadcopter.
This is not a problem for a formation with friendly quad-
copters, but for non-friendly quadcopters we have to make
an educated guess. A quadcopter “make and model” classifi-
cation algorithm could be run in parallel to our segmentation
algorithm as a way to determine physical size. We leave the
implementation of such an algorithm to future studies.

Fig. 1. Two quadcopters with the associated video feed and heatmap from
the follower

II. BACKGROUND

A. Hourglass and Siamese Neural Networks

Hourglass CNNs, also known as U-networks, add upcon-
volution layers after conventional convolution and pooling
layers to generate full-resolution images as the network
output. Upconvolution layers learn blocks of weights that
attempt to accurately up-sample the data in the network
to a finer resolution. Hourglass CNNs also employ “skip
connections”, which copy the output of earlier layers into
the latter half of the network to aid in resolution enhance-
ment and prevent the vanishing gradients problem during
backpropagation.

Hourglass CNNs are primarily used for image segmen-
tation. They were first applied in the mid-1990’s by [12]
for text-vs-image segmentation. Since then, hourglass CNNs
have been used in a variety of contexts, including camera
pose estimation [13], human joint and pose localization [14]
[15], and tumor segmentation in medical imaging [16]. Li et.
al. [17] have a particularly relevant application of hourglass
CNNs: they utilize a “Contextual Hourglass Network” to
segment imagery taken from aerial platforms, but they don’t
use it for autonomous flight control and don’t apply the
Siamese-networks technique.

An common alternative to using an Hourglass CNN to
generate a quadcopter/non-quadcopter segmentation is to im-
plement a Haar Cascade-based network [18]. Haar classifiers
are fast and preform well detecting specific objects, but only
give a bounding-box rather than a full pixel-by-pixel segmen-
tation. For our application, having an accurate representation
of the quadcopter size gives us an accurate measure of range,

which a Haar-based classifier would not provide. Using a
segmentation also provides the framework for a more specific
drone “make and model” type of classifier.

The “Siamese networks” technique refers to running two
identical copies of the same neural network on different input
data, then making a comparison between the outputs of the
two networks. It was first developed by Bromley et. al. in
1994 [19] for the purpose of handwritten signature matching.

Siamese networks are commonly used for binary match/no
match decision making between the two inputs, such as
single-shot image recognition [20] and comparison of image
patches [21]. Bertinetto et. al. [22] implement a particularly
relevant Siamese network for tracking an object through a
video given just the localization of the object in the first
video frame. Other uses include calculating the similarity of
sentences [23] and scene detection in broadcast videos [24].

We use the Siamese networks technique to compare the
quadcopter likelihood heatmaps from temporally adjacent
video frames during training. Specifically, we penalize the
network for making the heatmaps from consecutive frames
different from one another. The result is that the network
learns to make heatmaps that are smoother in time, which
leads to less chattering in the estimated location of the
leader and thus less chatter in the movement of the follower.
This requires no additional processing during flight - the
benefits are embedded within the trained network. To our
knowledge, training an Hourglass CNN with this Siamese
networks technique has not been attempted before, and it is
the novel contribution of this study.

B. Vision-Based Quadcopter Formation Control

Formation control - moving robotic agents around while
maintaining their positions relative to one another - is a pop-
ular and useful research topic. Successful execution requires
some way of determining the relative position and motion of
the agents. This is usually done with wireless communication
between the agents and/or GPS, but as noted earlier these can
be unreliable.

Using vision to localize the quadcopters makes formation
control robust to unreliable communication links. The stan-
dard way of making visual localization of the quadcopters
easier is by attaching some sort of fiducial marker(s) to them.
The authors of [3] execute a leader-follower formation on
two quadcopter drones using bright colored infrared LEDs on
the leader to enable visual pose estimation. Similarly, in [4]
the authors use ultraviolet markers on the quadcopters to aid
localization. In [5], the authors implement formation control
with three quadcopter drones using onboard cameras. To ease
visual localization, each quadcopter has a large, uniquely-
colored fiducial disk mounted to it. The authors of [6] imple-
ment a vision-based method of quadcopter detection to feed
a leader-follower formation using Aruco fiducial markers to
ease visual localization. The authors of [7] and [8] implement
MAV swarm stabilization in an outdoor environment without
use of GPS or inter-MAV communication, and also use
fiducial markers on the quadcopters to aid localization. In

[9] the authors use concentric circle markers hanging under
each UAV.

A pair of recent studies, [10] and [11], use neural networks
to remove this reliance on fiducial markers like we do. This
makes it easier to implement with arbitrary quadcopters.
Not relying on fiducial markers also makes our approach
extensible to scenarios where the leader is non-cooperative,
such as seek-and-destroy or covert reconnaissance missions.

In [10] the authors train via simulation and implement with
hardware a vision-based and fiducial-free algorithm to guide
a drone swarm. They run flight tests with two quadcopters,
focusing on collision avoidance and cohesion rather than
rigid formation control. The primary difference between their
study and ours is their use of imitation learning to go directly
from camera images to velocity commands as the output
of the neural network. We use an Hourglass CNN’s output
heatmaps to explicitly localize the leader before applying
velocity commands. Consequently, with our approach the
quadcopters can move in a prescribed rigid formation that is
determined after network training, rather than just remaining
close to one another while avoiding collisions as is done in
[10].

In [11] the authors demonstrate MAV formation control
using an existing CNN that generates bounding boxes around
the detected MAVs. Like our study, they use a single onboard
camera, onboard processing, and a CNN in lieu of fiducial
markers. In contrast with our study, their detection CNN gen-
erates bounding boxes. Our CNN generates pixel-by-pixel
segmentations and takes advantage of the novel Siamese-
network clutter mitigation strategy. This has the benefit
of giving more accurate range estimations and improving
performance against clutter. It also lays the groundwork
for using the shape of the segmented quadcopter to aid in
identification for formations with more than two quadcopters.

III. METHODS

A. Data Collection

Training data was generated via greenscreen injection.
Specifically, the quadcopter was held by hand in front of
a greenscreen and moved around while a video was taken of
it. The greenscreen and skin pixels from the hand and arm
are removed in post-processing using their unique colors per
[25] and [26]. The resulting quadcopter pixel mask is used to
inject the quadcopter over a series of background videos. The
pixel mask is also used as ground truth in network training,
specifically as the pixel-by-pixel truth map that enables the
loss calculation in Equation 2.

The primary performance analysis and flight tests used
a network trained with background videos collected in
the Boston University robotics laboratory. We also ran a
secondary performance analysis, training the network with
background videos in a diverse outdoor environment. The
background videos include a number of challenging clutter
objects, including other non-quadcopter robots.

We applied standard data augmentation on the injected
quadcopter videos to expand the training set with represen-
tative images. We scale all images to 96 × 72 monochrome

pixels with 8-bit depth. We end up with a total of 210,688
monochrome 96 × 72 pixel images to train our Siamese-
Hourglass CNN as detailed in Section III-B.

B. Siamese Hourglass CNN

The heart of our quadcopter localization algorithm is
an hourglass CNN that generates heatmaps: pixel-by-pixel
quadcopter likelihood maps. We use a 4-layer hourglass
network, following the general architecture of [13]. See
Figure 2 for a diagram of the network architecture, and Table
I for a layer-by-layer breakdown.

TABLE I
HOURGLASS NETWORK LAYER-BY-LAYER BREAKDOWN

layer operation weight shape stride output shape
Input - - - 96×72
1 conv2d 5×5×1×32 1×1 96×72×32
1 relu - - 96×72×32
1 maxpool - 4×4 24×18×32
2 conv2d 5×5×32×64 1×1 24×18×64
2 relu - - 24×18×64
2 maxpool - 2×2 12×9×64
3 upconv2d 3×3×32×64 2×2 24×18×32
3 relu - - 24×18×32
3 skip connection - - 24×18×64
4 upconv2d 5×5×1×64 4×4 96×72
4 relu - - 96×72
Output - - - 96×72

Fig. 2. Diagram of the hourglass neural network architecture, from input
96×72 raw image Ft to output 96×72 heatmap Ht.

The primary reason for using the upsampling layers in
the latter half of the network is to enable an accurate
measurement of the area of the detected quadcopter and
thus an estimate of the range to it. If we were to omit the
upsampling layers - effectively using the CNN to directly
generate a coarse estimate of bearing - we would not get an
accurate range estimate.

Conversely, we choose to use a neural network only for
segmentation. We leave the explicit localization and quad-
copter velocity calculation to be done in post-processing.
Neural networks can be designed to directly calculate quad-
copter velocity commands from the video feed, as in [10].
Building the network in this way however means embedding
a choice of formation shape into the trained network. Ex-
iting the network after segmentation thus allows for more
flexibility with a single trained network.

The time-sequence of heatmaps output from the hour-
glass CNN suffer from short lived blobs of false-target
pixels. These false-target pixel blobs result in “chattering”

of the quadcopter localization, and consequently lead to non-
smooth flight controls. To address this chattering, we use the
Siamese networks technique in a novel way.

Fig. 3. Diagram of the Siamese hourglass neural network architecture

In broad terms, the “Siamese networks technique” in-
volves running two identical copies of the same network
simultaneously but with different input images, and then
comparing the output of the two networks to benefit the
desired application. In our specific implementation, we apply
the Siamese networks technique on consecutive temporal
frames of the training videos. We train the network output
from consecutive frames to be similar by adding the mag-
nitude of their difference to the final network loss term. We
call the average of this difference the “Siamese loss”. See
Figure 3 for a diagram of the full Siamese hourglass network
architecture used in this study.

Minimizing the Siamese loss teaches the network that
input images with minimal differences should have similar
resulting heatmaps. In particular, small motions of the target
and background should produce minimal differences in the
resulting heatmaps. This effect is similar to that of a temporal
smoothing function like a Kalman filter, but it works to
directly mitigate false clutter in the imagery rather than using
multiple measurements to average it away. The Siamese
technique tends to remove non-random and persistent clutter,
while the Kalman filter averages away randomly distributed
clutter and noise. The Siamese technique also runs on frames
one-at-a-time, while the Kalman filter relies on combining
multiple measurements.

The Siamese loss need-not be calculated between con-
secutive frames. For example, it can be calculated between
any two frames a set time apart from one another. Through
experimenting, we found that using frames up to approxi-
mately 0.12 seconds apart has comparable clutter mitigation
performance to using consecutive frames (0.04 seconds apart
in our implementation). We choose to use consecutive frames
for simplicity.

C. Heatmap Loss Term
The Siamese-Hourglass CNN’s objective function consists

of two terms: a “heatmap loss” LH
t that trains the network to

make output heatmaps that match the associated truth masks
from the greenscreen injections, and a “Siamese loss” LS

t that
trains the network to mitigate short-lived false alarm clusters
in the heatmaps.

Equations 1 through 3 show the calculation of the heatmap
loss term LH

t for a single 96×72 pixel input image at time t,
Ft. We start with the output of the hourglass neural network
described in Figure 2 and Table I, Ht = HCNN(Ft) :

Pt =

{
1, where Ht ≥ 1
Ht, otherwise

(1)

Mt =

{
1, where pixel is “target”
−w, where pixel is “background”

(2)

LH
t =−|Pt�Mt| (3)

Where:
• We cap the heatmap at 1 in Equation 1 to prevent

pixels with large heatmap values from dominating the
backpropogation gradients

• We use pixel-by-pixel truth from the greenscreen injec-
tion to generate Mt

• w is a weight (hyper-parameter) that penalizes false
positives. Nominally 0.01.

• The | · | operator means “average over all pixels”.
• The � operator denotes the Hadamard (pixel-by-pixel)

product
In short, a correctly identified quadcopter pixel decreases

LH
t by ≈ 1

N , and an incorrectly identified quadcopter pixel
increases LH

t by ≈ w
N .

D. Siamese Loss Term

For each training image Ft, we run the image taken
immediately before or after and with the same applied data
augmentations, Ft±1, through the neural network to generate
Pt±1. We randomize the choice of prior frame Ft−1 vs next
frame Ft+1 to avoid biasing the network to predict motion
in any one direction. We compare the heatmap from the
adjacent frame, Pt±1, to the heatmap of the frame of interest,
Pt, to calculate a single Siamese loss term, LS

t as follows:

LS
t = |(Pt−Pt±1)

2 | (4)

E. Objective Function and Training

The weighted sum of the heatmap loss and Siamese loss
terms forms the final loss, Lt per:

Lt = LH
t +wsLS

t (5)

Where:
• ws is a weight (a hyper-parameter), empirically selected

to maximize the network’s overall performance. Values
for ws ∈ [0.01,10.0] were tested. Larger ws tends to min-
imize false clutter detections away from the quadcopter,
and smaller ws tends to increase sharpness at quadcopter
edges. ws = 0.1 shows the best performance (see figure
6), and we use ws = 0.1 for all flight tests.

We train and analyze using standard 4-fold cross validation
on the 210,688 post augmentation video frames. Care was
taken to ensure that augmented versions of the same raw

input frame all stayed within the same fold to prevent cross-
contamination of train and test sets.

We use Tensorflow’s built-in ADAM optimizer [27] on
the loss Lt from (5) to perform backpropogation and network
weight training. We ran 194 training epochs over 60,000
iterations (512 images/batch, 158,016 training images/fold).
Examination of the train and test loss vs number of epochs
showed convergence.

F. Flight Controls

We upload the trained Siamese-Hourglass CNN onto the
follower’s ODROID XU4. The ODROID XU4 streams video
frames, Ft, from its attached USB video camera through the
trained network in real time to generate heatmaps Ht. Note
that the real-time calculation of Ht does not depend on the
prior or next frame Ft±1, because the Siamese loss term is
only used for training.

We apply a minimum threshold hm to the heatmap Ht to
mitigate spurious clutter and noise, and then calculate the
centroid pixel (mathematical first moment) ct as:

H∗t =

{
Ht, where Ht ≥ hm

0, otherwise
(6)

ct =
∑

Nx
i=1 ∑

Ny
j=1 xH∗t [x]
N

(7)

Where:
• x is the 2-D pixel index

(i
j

)
in H∗t

• N is the number of pixels in the heatmap. Nominally
Nx×Ny = 96×72 = 6912.

Likewise, we calculate the area of the thresholded heatmap
as a fraction of the frame’s area, At:

H+
t =

{
1, where Ht ≥ hm

0, otherwise
(8)

At = |H+
t | (9)

We convert the centroid ct and area At into a 3D position st
of the leader using the known camera field of view (37◦-by-
28◦) and an assumed size of the leader quadcopter. We run st
through a standard Kalman filter to smooth out the position
estimate and enable coasting of the Kalman state when the
leader leaves the follower’s field of view. The Kalman filter is
computationally inexpensive and complements the network’s
embedded clutter mitigation well.

We then use the Kalman-filtered position of the leader
st to determine the location that the follower needs to fly
to in order to maintain the desired formation. We call this
the “desired setpoint”. We employ an attractive quadratic
potential with a 16 cm diameter dead zone and maximum
speed of 0.2 m/s to calculate the velocity commands that
move the follower toward the desired setpoint.

The quadratic potential was chosen for simplicity - other
controllers would also suffice and result in slightly different
flight profiles. The size of the dead zone was chosen to
minimize erratic motions during flight (“chattering”).

The formation control applied in this study does not
account for or require knowing the orientation of the lead
quadcopter. The quadcopter detection algorithm does not
provide a means to determine orientation.

IV. FLIGHT TEST SETUP

For flight testing, we use a pair of functionally-identical
custom-built quadcopters. The quadcopters measure 50cm
× 50cm × 15cm (including propellers) with a mass of 1.1
kilograms. They are built from mostly commercial-off-the-
shelf (COTS) parts, plus some 3D printed custom frame
components.

Each quadcopter uses a 3DR Pixhawk Mini flight con-
troller and a single-board ODROID XU4 computer running
Ubuntu 16.04 with ROS Kinetic. A standard USB color
webcam is mounted to the front of the follower and cap-
tures low-resolution monochrome video. The leader flies a
scripted path. Software implementation is in Python using
the MAVROS, OpenCV, and Tensorflow libraries.

Flight tests are executed in the Boston University Robotics
Laboratory, which is outfitted with a 44-camera Optitrack
motion capture system for real-time tracking of the quad-
copters for analysis and flight safety.

V. EXPERIMENTAL RESULTS

A. Siamese-Hourglass CNN Performance

We start with some example images run through the
hourglass CNN to show the segmentation algorithm in action.
Figure 4 shows some examples of input images Ft with their
output heatmaps Ht and a color-coded map of the pixel-by-
pixel predictions vs truth.

We use the following standard definitions:

• True positives: Pixels classified as part of a quadcopter
that are part of a quadcopter

• False positives: Pixels classified as part of a quadcopter
that are actually background

• False negatives: Pixels classified as background that are
actually part of a quadcopter

• True negatives: Pixels classified as background that are
background

Figure 5 shows four example images next to their respec-
tive pixel-by-pixel prediction vs truth maps, with and without
using the Siamese technique when training the CNN. Notice
how the Siamese technique mitigates the misplaced red blobs
of false positives. This is the primary benefit of including the
Siamese loss during training.

We calculate Siamese Hourglass CNN performance met-
rics by aggregating the predictions for every pixel in the
data set and using 4-fold cross validation. Figure 6 shows
precision/recall (P/R) curves for the trained Hourglass CNN
with and without applying the Siamese loss term Ls

t during
training. P/R curves are plotted using different values for the
Siamese loss weight ws. Values for the Siamese loss weight
ws ∈ [0.01,10.0] were tested, and we plot P/R curves for
ws = [0.05,0.1,0.2].

Fig. 4. Example images run through the hourglass CNN and the pixel-by-
pixel calls vs truth

Fig. 5. Example frames showing the benefit of using the Siamese technique

Including the Siamese loss during training clearly im-
proves detection performance. Values for ws in the neigh-
borhood of 0.1 all show similar performance, with ws = 0.1
performing slightly better near the operating point of interest.
The blue diamond in Figure 6 is the operating point on the
ws = 0.1 curve that we use for flight tests.

As evidenced by our choice of operating point on the P/R
curve, we leverage the Siamese networks technique to trade
a few true positives for a large reduction in false positives.
False positives are detrimental to our flight control, especially
when they are located far from the actual position of the
leader. The small loss to recall is of little consequence for
well-resolved quadcopters.

Fig. 6. P/R curves with Siamese Loss term Ls
t with different Siamese

weights ws. The blue diamond marks the operating point (determines the
heatmap threshold hm = 0.85) used in flight tests.

To check that the Siamese hourglass segmentation extends
to alternate environments, we trained and tested with a
background video taken outdoors with a mix of trees, cars,
and buildings. We used greenscreen quadcopter injections
and 4-fold cross validation as we did with the laboratory
background videos. Figure 7 shows some example frames
and figure 8 shows the corresponding P/R curves with and
without applying the Siamese technique during training.

B. Flight Test Results

We show the results of two flight tests, one where the
quadcopters trace out a vertical circle and one where they
trace out a pyramid-esque shape. Videos for these flights and
others are included in the supplementary files for this article.
Figure 9 shows plots of the track error (distance between
follower’s actual position and its desired setpoint) and 3D
positions for one cycle through each motion.

Across a larger set of flight tests, our average track error
was 30 cm. This is the superposition of the 16 cm dead
zone in the quadratic potential, the 18 cm average error in
the follower’s ability to measure the position of the leader,
and similar error in the Pixhawk flight controller’s ability to
accurately fly the commanded trajectory. The largest track
errors occur when the leader executes a high-acceleration
maneuver. Similarly, the smallest track errors occur during
near constant-velocity flight.

Fig. 7. Example video frames from an alternative complex outdoor
environment with their corresponding pixel-by-pixel calls vs truth with and
without applying the Siamese technique during training.

Fig. 8. Precision/Recall curves for the outdoor city environment. Showing
only the final ws = 0.1 curve and the curve without the Siamese technique
for clarity.

Fig. 9. Track error vs time and position of both quadcopters vs time

Our quadcopter detection, tracking, and velocity control
program runs at 24.0± 3.4Hz on the onboard ODROID
XU4’s CPU. We chose a video resolution of 96 × 72 to
achieve 24 Hz. We use the full field of view of the camera.
This setup allows reliable formation control for quadcopters
¡ 4 meters apart. Beyond 4 meters, the quadcopter is not
well resolved. Running at larger ranges would require finer
resolution. Running with a GPU would make this possible
in real time - this is left to a follow-on study.

VI. CONCLUSIONS

We have introduced a novel neural network training
method that mitigates persistent false clutter detections com-
mon in CNN video processing. This method takes inspiration
from the Siamese networks technique, penalizing the net-
work’s loss for generating dissimilar consecutive heatmaps.

We have implemented this “temporal Siamese clutter mit-
igation” in a fiducial-free vision-based quadcopter formation
control guidance algorithm. Our successful leader-follower
quadcopter formation control flight tests using this method
show track errors of 30 cm: less than the size of the
quadcopters themselves. Video processing was done in real
time at 24Hz onboard the quadcopter’s ODROID-XU4’s
CPU. This capability makes formation control possible in
the presence of electronic jamming, indoors, or anywhere
else that GPS and/or wireless communications are denied.

The following are potential follow up studies, each with
their own inherent challenges. Performance in a more diverse
set of environments (including outdoors) with different quad-
copters could be investigated. Using the ODROID XU4’s
GPU to run the Siamese Hourglass CNN in real time, or
simply implementing it on a different single-board computer
could also boost the video resolution beyond 96×72 and
improve tracking results. Additional cameras and/or a fisheye
lens could be used to enlarge the quadcopters’ field of regard.
Formation control with more than 2 quadcopters could be
attempted. Modifications to the CNN architecture, including
processing multiple frames at-a-time, could be tested.

REFERENCES

[1] P. T. Nathan, H. A. F. Almurib, and T. N. Kumar, “A
review of autonomous multi-agent quad-rotor control
techniques and applications,” in 2011 4th International
Conference on Mechatronics (ICOM), 2011, pp. 1–7.

[2] Z. Hou, W. Wang, G. Zhang, and C. Han, “A survey on
the formation control of multiple quadrotors,” in 2017
14th International Conference on Ubiquitous Robots
and Ambient Intelligence (URAI), 2017, pp. 219–225.

[3] K. E. Wenzel, A. Masselli, and A. Zell, “Visual
tracking and following of a quadrocopter by another
quadrocopter,” in 2012 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, Oct. 2012,
pp. 4993–4998. DOI: 10 . 1109 / IROS . 2012 .
6385635.

https://doi.org/10.1109/IROS.2012.6385635
https://doi.org/10.1109/IROS.2012.6385635

[4] V. Walter, N. Staub, A. Franchi, and M. Saska, “Uvdar
system for visual relative localization with application
to leader–follower formations of multirotor uavs,”
IEEE Robotics and Automation Letters, vol. 4, no. 3,
pp. 2637–2644, Jul. 2019, ISSN: 2377-3774. DOI: 10.
1109/LRA.2019.2901683.

[5] R. Tron, J. Thomas, G. Loianno, J. Polin, V. Kumar,
and K. Daniilidis, “Vision-based formation control
of aerial vehicles,” English (US), in RSS Robotics
Science and Systems, Jul. 2014.

[6] M. B. Vankadari, K. Das, and S. Kumar, “Au-
tonomous leader-follower architecture of a.r. drones
in gps constrained environments,” in Proceedings of
the Advances in Robotics, ser. AIR ’17, New Delhi,
India: Association for Computing Machinery, 2017,
ISBN: 9781450352949. DOI: 10.1145/3132446.
3134915. [Online]. Available: https : / / doi .
org/10.1145/3132446.3134915.

[7] M. Saska, “Mav-swarms: Unmanned aerial vehicles
stabilized along a given path using onboard rela-
tive localization,” in 2015 International Conference
on Unmanned Aircraft Systems (ICUAS), Jun. 2015,
pp. 894–903. DOI: 10 . 1109 / ICUAS . 2015 .
7152376.

[8] M. Saska, T. Báča, J. Thomas, J. Chudoba, L. Preucil,
T. Krajnı́k, J. Faigl, G. Loianno, and V. Kumar,
“System for deployment of groups of unmanned mi-
cro aerial vehicles in gps-denied environments us-
ing onboard visual relative localization,” Autonomous
Robots, vol. 41, Apr. 2016. DOI: 10 . 1007 /
s10514-016-9567-z.

[9] T. Krajnı́k, M. A. Nitsche, J. Faigl, P. Vanek, M.
Saska, L. Preucil, T. Duckett, and M. Mejail, “A
practical multirobot localization system,” Journal of
Intelligent and Robotic Systems, vol. 76, pp. 539–562,
2014.

[10] F. Schilling, J. Lecoeur, F. Schiano, and D. Floreano,
“Learning vision-based flight in drone swarms by
imitation,” IEEE Robotics and Automation Letters,
vol. PP, pp. 1–1, Aug. 2019. DOI: 10.1109/LRA.
2019.2935377.

[11] M. Vrba and M. Saska, “Marker-less micro aerial
vehicle detection and localization using convolutional
neural networks,” IEEE Robotics and Automation Let-
ters, vol. 5, no. 2, pp. 2459–2466, 2020.

[12] K. Nakamura, J. Hao, S. Yamamoto, and T. Itoh,
“Document image segmentation into text, continuous-
tone and screened-halftone region by the neural net-
works.,” in IAPR Workshop on Machine Vision Appli-
cations, 1996, pp. 450–453.

[13] I. Melekhov, J. Ylioinas, J. Kannala, and E. Rahtu,
“Image-based localization using hourglass networks,”
in The IEEE International Conference on Computer
Vision (ICCV) Workshops, Oct. 2017.

[14] S.-E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh,
“Convolutional pose machines,” in Proceedings of the

IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 4724–4732.

[15] A. Newell, K. Yang, and J. Deng, “Stacked hour-
glass networks for human pose estimation,” in Euro-
pean conference on computer vision, Springer, 2016,
pp. 483–499.

[16] E. Benson, M. P. Pound, A. P. French, A. S. Jackson,
and T. P. Pridmore, “Deep hourglass for brain tumor
segmentation,” in Brainlesion: Glioma, Multiple Scle-
rosis, Stroke and Traumatic Brain Injuries, A. Crimi,
S. Bakas, H. Kuijf, F. Keyvan, M. Reyes, and T. van
Walsum, Eds., Cham: Springer International Publish-
ing, 2019, pp. 419–428, ISBN: 978-3-030-11726-9.

[17] P. Li, Y. Lin, and E. Schultz-Fellenz, Contextual
hourglass network for semantic segmentation of high
resolution aerial imagery, 2018. arXiv: 1810.12813
[cs.CV].

[18] P. Viola and M. Jones, “Rapid object detection using
a boosted cascade of simple features,” in Proceed-
ings of the 2001 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition. CVPR
2001, vol. 1, 2001, pp. I–I.

[19] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and
R. Shah, “Signature verification using a “siamese”
time delay neural network,” in Advances in neural
information processing systems, 1994, pp. 737–744.

[20] G. Koch, R. Zemel, and R. Salakhutdinov, “Siamese
neural networks for one-shot image recognition,” in
ICML deep learning workshop, vol. 2, 2015.

[21] S. Zagoruyko and N. Komodakis, “Learning to com-
pare image patches via convolutional neural net-
works,” in The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Jun. 2015.

[22] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi,
and P. H. S. Torr, “Fully-convolutional siamese net-
works for object tracking,” in Computer Vision –
ECCV 2016 Workshops, G. Hua and H. Jégou,
Eds., Cham: Springer International Publishing, 2016,
pp. 850–865, ISBN: 978-3-319-48881-3.

[23] J. Mueller and A. Thyagarajan, “Siamese recurrent
architectures for learning sentence similarity,” in Thir-
tieth AAAI Conference on Artificial Intelligence, 2016.

[24] L. Baraldi, C. Grana, and R. Cucchiara, “A deep
siamese network for scene detection in broadcast
videos,” arXiv preprint arXiv:1510.08893, 2015.

[25] V. Vezhnevets, V. Sazonov, and A. Andreeva, “A
survey on pixel-based skin color detection techniques,”
Mar. 2004.

[26] P. Kakumanu, S. Makrogiannis, and N. Bourbakis, “A
survey of skin-color modeling and detection methods,”
Pattern Recognition, vol. 40, pp. 1106–1122, Mar.
2007. DOI: 10.1016/j.patcog.2006.06.010.

[27] D. P. Kingma and J. Ba, “Adam: A method for
stochastic optimization,” International Conference on
Learning Representations, 2014.

https://doi.org/10.1109/LRA.2019.2901683
https://doi.org/10.1109/LRA.2019.2901683
https://doi.org/10.1145/3132446.3134915
https://doi.org/10.1145/3132446.3134915
https://doi.org/10.1145/3132446.3134915
https://doi.org/10.1145/3132446.3134915
https://doi.org/10.1109/ICUAS.2015.7152376
https://doi.org/10.1109/ICUAS.2015.7152376
https://doi.org/10.1007/s10514-016-9567-z
https://doi.org/10.1007/s10514-016-9567-z
https://doi.org/10.1109/LRA.2019.2935377
https://doi.org/10.1109/LRA.2019.2935377
https://arxiv.org/abs/1810.12813
https://arxiv.org/abs/1810.12813
https://doi.org/10.1016/j.patcog.2006.06.010

	INTRODUCTION
	MOTIVATION
	SOLUTION

	BACKGROUND
	Hourglass and Siamese Neural Networks
	Vision-Based Quadcopter Formation Control

	Methods
	Data Collection
	Siamese Hourglass CNN
	Heatmap Loss Term
	Siamese Loss Term
	Objective Function and Training
	Flight Controls

	FLIGHT TEST SETUP
	Experimental Results
	Siamese-Hourglass CNN Performance
	Flight Test Results

	CONCLUSIONS

