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ABSTRACT

High-resolution (HR) information of fluid flows, although preferable, is usually less accessible due to limited computational or experimental
resources. In many cases, fluid data are generally sparse, incomplete, and possibly noisy. How to enhance spatial resolution and decrease the
noise level of flow data is essential and practically useful. Deep learning (DL) techniques have been demonstrated to be effective for super-
resolution (SR) tasks, which, however, primarily rely on sufficient HR labels for training. In this work, we present a novel physics-informed
DL-based SR solution using convolutional neural networks (CNNs), which is able to produce HR flow fields from low-resolution (LR) inputs
in high-dimensional parameter space. By leveraging the conservation laws and boundary conditions of fluid flows, the CNN-SR model is
trained without any HR labels. Moreover, the proposed CNN-SR solution unifies the forward SR and inverse data assimilation for the scenar-
ios where the physics is partially known, e.g., unknown boundary conditions. A new network structure is designed to enable not only the
parametric SR but also the parametric inference for the first time. Several flow SR problems relevant to cardiovascular applications have been
studied to demonstrate the proposed method’s effectiveness and merit. A series of different LR scenarios, including LR input with Gaussian
noises, non-Gaussian magnetic resonance imaging noises, and downsampled measurements given either well-posed or ill-posed physics, are
investigated to illustrate the SR, denoising, and inference capabilities of the proposed method.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0054312

I. INTRODUCTION

High-resolution (HR) information of fluid flow is critical for reli-
able qualitative and quantitative analyses for fluid systems in aerody-
namics, mechanical, and biomedical engineering. Nonetheless, fluid
flow data are often sparse, incomplete, and noisy in real-life scenarios
due to the following reasons. First, flow data are typically spatiotempo-
ral fields in large scales, which poses significant challenges to data anal-

example, flow magnetic resonance imaging (MRI) has been widely
used to quantitatively study cardiovascular blood flow dynamics,””
but the spatial resolution and signal-to-noise ratio (SRN) of flow mag-
netic resonance (MR) data are far from sufficient, limiting their clinical
applications.” © Therefore, it is significant and imperative to enhance
the resolution and reduce the noise level, which is referred to as flow
data super-resolution and denoising. Moreover, fluid flow data, even

ysis, sharing, and visualization due to limited storage space and large
communication overhead. For example, the direct numerical simula-
tion (DNS) of wall-bounded turbulent flows at Reynolds number of
Re, = 10* can generate more than 20 TB files at each time step, and
the file size will increase exponentially as Re, grows.' Hence, scientists
could only afford to store a small fraction of data (e.g, temporally
sparse sequences, spatially downscaled volumes, or selectively variable
subsequences) for post hoc analysis. Second, the data resolution is
often constrained by the ability of the measurement techniques. For

with high spatiotemporal resolutions, are usually sparse in the parame-
ter space due to limited computational or experimental resources. For
example, a single run of fully resolved DNS of turbulent flows often
takes days or weeks on high-performance computing facilities.' It
becomes infeasible to perform massive queries in the parameter space
to explore many different boundaries, geometries, and operational
configurations for uncertainty quantification (UQ) and optimization.
In such scenarios, data super-resolution in the parameter space can be
treated as a cost-effective surrogate model that leverages the use of
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efficient low-resolution (LR) simulations or experiments. Scientists
can opt to run their simulations or experiments at a low resolution
and then upscale the results back to the target resolution, which will
significantly save cost and speed up the process of scientific investiga-
tion and discovery.

Various efforts have been devoted to enhancing the spatial or/
and temporal resolution of fluid flows. One type of approach focuses
on extracting the coherent structures and correlation features from an
existing HR database based on proper orthogonal decomposition
(POD),” "* dynamic mode decomposition (DMD),'”"" or other
sparsity-promoting representation techniques.'”'® However, these
approaches are limited by the linearity assumption made for the
reduced basis. The other types of super-resolution methods take
advantage of the computational fluid dynamics (CFD) model to pro-
vide full-field predictions instead of learning from the offline database.
The sparse LR data are fused into the CFD predictions using data
assimilation (DA) techniques, e.g., ensemble Kalman filter, particle fil-
ters, or variational DA algorithms.”’lj Nonetheless, physics-based
CFD simulations are time-consuming in general, while the DA process
usually involves numerous model evaluations, which could be compu-
tationally prohibitive.

The recent advances in machine learning (ML) and GPU com-
puting open up a promising revenue to tackle this challenge. In the
past few years, ML has been successfully applied in fluid dynamics,”**’
for example, for turbulence closure modeling,”” " inflow turbulence
generation,” " and fluid surrogate/reduced-order modeling,” " etc.
In particular, the growing success of deep learning (DL)-based image
super-resolution”® in computer vision inspires the application of deep
neural networks (DNN) for the flow field super-resolution and recon-
struction.”” *” Fukami et al.” " applied the convolutional neural net-
work (CNN) and hybrid downsampled skip-connection multiscale
(DSC/MC) models for super-resolving downsampled HR data of both
laminar and turbulent flows. To achieve a similar goal, Deng et al."'
applied generative adversarial networks (GAN), while Liu et al.*®
adopted multiple temporal paths convolutional neural network
(MTPC). Thuerey and co-workers designed a more complicated GAN
architecture by considering temporal coherence to up-sample 3D
volumetric turbulent smoke data,”” and they further improved the
scalability by decomposing the learning problem into multiple smaller
sub-problems.”” Bai et al*’ used a dictionary learning strategy to
super-resolve turbulent smoke flows in a variety of animation contexts.
Guo et al.*® designed DL-based spatial upscaling solutions of vector
fields for visualization purposes. Considering multi-scale features in
fluid dynamics, Liu et al."’ proposed a multi-resolution convolutional
autoencoder (MrCAE) super-resolution architecture to dynamically
capture different scaled flow features at different depths of the net-
work, where the multi-grid method and transfer learning techniques
are leveraged. Instead of using deep networks, Erichson et al.*’ pro-
posed to directly capture an end-to-end mapping between the sparse
measurements and the HR flow field using a shallow network. In the
context of biomedical imaging, Ferdian et al.”’ developed a DL model
for 4D flow MRI super-resolution, where CFD simulation data are
utilized as HR labels for training.

Despite the great promise, the success of these DL models mainly
relies on a large amount of offline HR data as labels, which are inacces-
sible in many cases, e.g., super-resolution of 4D flow MR images.
Moreover, these recent data-driven upsampling approaches add visual

ARTICLE scitation.org/journal/phf

complexity to an LR input but cannot guarantee that the super-
resolved fields are faithful to the physical laws and principles. A more
promising strategy is to incorporate prior physics knowledge into deep
learning models to alleviate data requirements and improve learning
performance. This idea of physics-informed deep learning has been
recently explored for solving forward and inverse PDEs,”"”* surrogate
modeling,””">* and equation discovery.”* ** For flow reconstruction
and super-resolution, the divergence-free constraint for incompress-
ible flow is the most straightforward one to be imposed on the learned
solution, which can be done in a hard manner by either introducing
stream functions or using spectral methods.”**" ** Jiang et al.”’ pro-
posed a MeshfreeFlowNet for super-resolving of LR solution fields of
Rayleigh-Benard convection equations, where the training is regular-
ized by the governing PDEs. In a similar vein, Subramaniam et al.”’
utilized the mass and momentum conservation law to constrain the
training of a GAN for turbulence enrichment. Sun and Wang"* devel-
oped a Bayesian physics-informed neural network using
Navier-Stokes constrained Stein variational gradient descent to recon-
struct fluid flows from limited noisy measurements. These studies
have demonstrated the merits of introducing physics constraints.
However, technical challenges remain in developing effective physics-
informed DL models for super-resolution, especially for irregular
domain problems in label-scarce or label-free scenarios. Moreover,
when the physics is partially given (e.g., unknown boundary condi-
tions), how to efficiently assimilate data to recover unknown physics is
also challenging. This inverse problem can be traditionally solved by
CFD-based data assimilation techniques. For example, one can use
adjoint-based variational optimization to fit the CFD solutions to mea-
surement data,”” which, however, is highly code-intrusive and requires
iterative forward simulations of expensive CFD models. Another way
is the Bayesian data assimilation/optimization®*®” that searches for the
posterior distributions of the unknown physics using Bayes’ rule,
which also requires a massive amount of CFD simulations and is, thus,
infeasible in many practical scenarios. Physics-informed neural net-
works (PINNs)’" allows inference of unknowns, but it is usually non-
parametric and needs to be re-trained given a new LF input or a new
set of data, which is not effective for fast high-dimensional parametric
SR and inference.

To fill these gaps, we developed a novel physics-informed deep
learning framework for super-resolving and denoising LR noisy flow
fields with irregular geometries without HR data (labels) and inferring
unknown physics (e.g., boundary conditions) in a parametric setting.
The novel contributions of this paper are summarized as follows: (a)
we explored a deep learning solution for flow super-resolution without
relying on HR data for training given well-posed physics; (b) the pro-
posed method can simultaneously infer unknown conditions if the
physics is partially known (e.g., boundary conditions is unknown); (c)
a new hybrid CNN-MLP network structure is proposed to enable the
inference in a parametric setting, which, to the best of our knowledge,
is the first time to present a parametric inversion method; (d) the pro-
posed work leverages discretized physics-informed deep learning for
forward SR and inverse data assimilation without the need of penalty
coefficient tunning; (e) we demonstrated the effectiveness of the pro-
posed method on several fluid problems under a series of different LR
scenarios, including LR input with Gaussian, non-Gaussian MRI
noises, and downsampled measurements given either well-posed or ill-
posed physics, in high-dimensional parameter space.
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The rest of this paper is organized as follows: The methodology
of the proposed method is introduced in Sec. II. Numerical results of
several test cases, including vascular flow governed with known,
unknown, and parametric boundary conditions, are presented in Sec.
I11. To illustrate the model’s denoising capability, both Gaussian and
non-Gaussian noises (e.g., MRI noise) are studied. Section I'V discusses
the success and limitations of the proposed method. Finally, Sec. V
concludes this paper.

Il. METHODOLOGY
A. Overview

This work aims to reconstruct a high-resolution flow field from
the corresponding low-resolution (possibly noisy) data obtained either
by the low-fidelity simulations or measurements. Mathematically, this
process can be described by the following mapping:

S (¥ (¥ ), (1)

where W' denotes the low-resolution (LR) noisy velocity field on a

“h
coarse mesh (e.g., 4D flow MRI measurements), ¥ denotes the high-
resolution (HR) noise-free flow field, and p represents the vector of
physical parameters (e.g., geometry, inflow/outflow boundary condi-

- h
tions, and flow properties). In general, the dimension of ¥ is much

higher than that of ‘i’l and, thus, could reveal more details of the flow
field. We aim to develop a deep learning (DL) based SR solution,
where a CNN model S is trained to approximate this LR-to-HR map-
ping as S ~ S&°. Once fully trained, the CNN model can be used to
super-resolve any given LR data and generate the corresponding HR
noise-reduced flow solutions. In contrast to the previous works, the

Low-resolution
(LR)
noisy flow field -

(e.g., u, v)

- - - - Linear transform .
------- Conv+Relu M
—— Conv

L2 norm
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proposed SR-CNN will be trained purely based on physical laws with
strictly imposed boundary conditions and, thus, does not need any HR
data (i.e., labels). Moreover, the proposed learning framework is able
to assimilate sparse observation data, unifying the forward and inverse
modeling processes. Namely, when the underlying physics are partially
known (e.g., boundary condition or other physical parameters are
unknown), extra observations can be parametrically assimilated to
enable forward super-resolution and inverse determination of
unknowns simultaneously. The overall schematic of the proposed
physics-informed DL strategy for flow super-resolution is shown in
Fig. 1, and each component of the framework will be detailed in
Subsections [1 B-II F.

B. Learning architecture for super-resolution

A composite DL architecture is constructed (Fig. 1), which takes
the (possibly noisy) LR velocity fields as the input channels and produ-
ces HR flow solutions. A separate sub-CNN is designed to capture
each solution field individually, and thus the trainable network param-
eters are decoupled for different state variables with different magni-
tudes, facilitating multivariate learning. However, the network
predictions of solution variables (u, v, p) are coupled by the
Navier-Stokes equations during physics-informed network training.
This composite learning structure with decoupled sub-nets has been
demonstrated effective in enhancing the learning performance for
multivariate regression problems.””**” The composite DL model
consists of several convolutional decoders. Each of them has an identi-
cal structure of three hidden convolution layers, which is a classic
CNN structure for single image super-resolution (SISR).” Specifically,
the input layer is first up-sampled to the target resolution using the
bicubic interpolation and then goes through three convolution layers

High-resolution (HR),
denoised flow field

—

Decoding or IAssimilate LR data

downsampling I- / (Optional)
|}
/’//
’/
e ——
’/
7’
A Assimilate
Inferring unknown lsparse observations
physical parameters N
(e.0.BC) (Optional)

e —

| Physics-based
PDE loss

Navier-Stokes
residual fields
on reference domain

Hidden state (e.g~7 P)

~«—- Hard impose

% Sparse observation .
[ FDfilter
Trainable
O

Multilayer
perceptron |

Inferred unknown physical
parameters (e.g., BC)

Parametric Inference
of unknown physics (Optional)

Conv filter

FIG. 1. The schematic of physics-informed CNN for flow super-resolution (SR) and inverse data assimilation. The downsampled LR data can be leveraged and assimilated to

enable parametric inference.
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with trainable filters of size 5 x 5, where 2D convolution operations
with the padding of 2 and stride of 1 are applied. All the sub-nets are
trained simultaneously with a unified physics-informed loss function
as detailed in Sec. I C. The trainable parameters of the network are

initialized from a uniform distribution of &/ <71 / ﬁ, \ /ﬁ) , where

C;, is the number of input channels. The network’s hyper-parameters
are summarized in Table I. The same hyper-parameter setting is used
for all cases since we found that the model performance is insensitive
to the hyper-parameters.

C. Physics-informed training
The composite network S° needs to be trained in order to
approximate the LR-to-HR mapping S as
¥ = S ~ s b we, ©)
which is an optimization problem traditionally solved based on a large

amount of labeled data. Namely, when a set of n" LR/HR data pairs

Al oAbt
{¥,, ¥, }}4, are available, the network trainable parameters W* can
be optimized by iteratively minimizing the mismatch between the

CNN predictions S”(‘i’f) and the HR labels ‘i',h as follows:

nh
o R N TP
w :argmmZHS (P, W) -V, ng’ (3)
LA

data—based loss: £

where || - ||, denotes the L, norm over the entire domain Q,.
However, this data-driven training process requires enormous labeled
data (i.e., HR samples), which are usually less accessible and way more
expensive to acquire than the input data (i.e., LR samples). In many
cases, the HR labels are not even available at all due to the resolution
limit of the measurement techniques. In this work, we try to tackle this
challenge and develop a CNN-SR solution without relying on HR data
as training labels. A physics-informed learning strategy is adopted to
enable label-free training in data-sparse/absent scenarios. The general
idea is to leverage the (partially) known physics of the fluid flow (e.g.,
conservation laws and boundary conditions) to drive the CNN train-
ing such that the super-resolved flow information is learned from the
flow governing equations instead of massive HR labels. Here, we con-
sider fluid problems governed by the steady incompressible
Navier-Stokes equations parameterized by u,

V-u=0
1 2 : (4)
(u-V)u+;Vp—1/V u+br=0 inQ,,

in€,
A pi) =0:=

TABLE I. Hyper-parameters of the sub-CNN.

No. of No. of hidden
Learning rate  hidden layers channels Optimizer
1073 3 [16,32,16] Adam”’
Padding size Strides Kernel size Non-linearity
2 1 5%5 ReLU"™

scitation.org/journal/phf

where u is the velocity, p is the pressure, and v and by represents the
viscosity and body force of the fluid flow, respectively. The flow solu-
tions can be uniquely determined with given boundary condition
(BC), #(u,p;p) = 0,0n0Q,. Since the CNN super-resolved flow
fields should satisfy the governing equations, the training can be recast
as a constrained optimization problem by minimizing the PDE
residuals,

»
7
- . ~ 1
W' = argmin,,. Z ||Q(Sf(‘l’i; WC)) lle,
i=1
PDE—based loss: £

s.t. %’(SC(‘i‘i; we); y) = 00ondQ,

©)

where ‘i’f = u(X"; ;) is the LR velocity field discretized on a coarse
mesh X' and ‘i’f = [w(X" 1), p(X5 1))" = SC(‘i‘i; W¢) is the
CNN super-resolved flow fields on a fine mesh A". To evaluate the
PDE residuals on the discretized domain, we use convolution opera-
tions with the finite difference filters to compute the derivative terms
in Eq. (4), and the details are given in Appendix A. The boundary con-
dition is strictly enforced into the CNN architecture, where the bound-
ary operator 4 is discretized and imposed on the CNN-SR predictions
in a hard manner using padding operations.”* In contrast to the tradi-
tional label-based data-driven approach, the number nﬁ of training
samples is not constrained by the availability of HR data. Hence, the
training space can be freely explored with a large number of LR data

‘i‘i, which are assumed to be very cheap to obtain. Moreover, the LR
data can be further leveraged to facilitate the SR and inference.
Namely, the CNN-SR output can assimilate the LR data to reversely
determine unknown parameters (e.g., BCs) in a parametric manner
(as shown in Fig. 1). However, the LR-data should only be assimilated
strictly if the LR data are noise-free; otherwise, the network may tend
to overfit the data noise. As an alternative, the CNN-SR output can be
downsampled via the pooling or encoding process to build an LR data
loss, which can assimilate LR data softly.

D. Assimilate sparse observation data for partially
known physics

It is commonly known that the flow physics is governed by the
Navier-Stokes equations 2(u, p; u) = 0, but some of the physical
parameters g, such as inlet profiles or fluid properties, are unknown in
many cases. On the other hand, it is possible to access additional
observation data, which, however, is often spatially sparse and/or indi-
rect to the quantity of interest. For example, the 3D full-field velocity
information is obtained using 4D flow MRI techniques in cardiovascu-
lar applications, but the spatial resolution and SNR are unsatisfied and
need enhancement.” More accurate flow field data can be observed by
2D PC-MRI, which is only available on a limited number of 2D slices.
The proposed physics-informed CNN-SR framework can naturally
leverage these additional sparse observations to enable both forward
super-resolution and inverse parameter determination in a unified
manner. Here, we introduce a novel approach of assimilating addi-
tional sparse observation data to infer the under-determined physical
conditions/parameters u* C p. First, the unknowns (e.g., Dirichlet
boundary conditions) are parameterized as a trainable vector u*, which
are incorporated into the SR learning architecture either through the
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equation-based loss function or strictly imposed boundary conditions.
Second, the sparse observations Y% are assimilated into the network
in a hard manner, where the CNN-SR predictions are strictly enforced
to be equal to the data at sparse locations by constructing the model
output ¥ as

}-520(\],:) _ ]_-520(\i;’:) % 0+ Yobs7 (6)

where ¥ is the CNN-SR raw output and F*2° : ¥ — Y indicates the
state-to-observable map. Therefore, the constrained optimization for
PDE-driven training is recast as

(S W)

)

Q

mq
7,C .
W, u = argming. E

i=1

PDE—based loss: £ (7)
%’(SC(‘i’i; We); y,-) = 00ondQ,
s.t.
]:520 (Sc(\i;f Wc)) o Yohs =0,

where both the network parameter vector W* and physical parameter
vector u; are inferred simultaneously via Adam optimizer. It worth
mentioning that the proposed “hard” DA approach is based on the
assumption that the observation data are relatively precise. When
assimilating very noisy observations, the penalty-based “soft”
approach used in the PINN”' should be employed to avoid overfitting
the data noise.

E. Parametric data assimilation and inference

Parametric deep learning solutions are attractive since the fast
online inference speed of the DNN model can be leveraged for real-
time predictions when the input LR and flow conditions/parameters
are changed. However, it is impossible to conduct parametric SR when
the physics is ill-posed (e.g., unknown boundary conditions). Namely,
the inference should be formulated in a parametric setting as well
along with the forward SR. To enable parametric data assimilation and
inference, we propose a novel network structure that hybrids a multi-
layer perceptron (MLP) and CNN (Fig. 1). The unknown physical
parameters g introduced in Sec. I D become the output of the MLP

model 7 : ‘i’i»—m,,

-1
w=T(¥;Wh, (8)
where W is the MLP network parameter vector. Substitution Eq. (8)
into Eq. (7), we have the new constrained optimization as

»
7

~c ~ 1 .
W', W =argminy. . E

i=1

%(SC(‘i‘i; W), Z(¥; WI))

I

Q

PDE—basedloss: £* )
B( S0 we), Z(¥ W) =00no0,,

s.t. .
]:520 (SC(‘Fi; Wc)) _ Yobs — 07

the two networks are trained together by the unified physics-informed
loss function. Once the model is sufficiently trained, it can parametri-
cally infer the unknown physics and, meanwhile, super-resolve the
flow field simultaneously.

scitation.org/journal/phf

F. Coordinate transformation for irregular domain

A general limitation of CNNs is that they can only handle prob-
lems defined on rectangular domains with uniform grids since the con-
volution operations are originally designed for processing images
described on uniform meshes. However, the geometries in most scien-
tific applications are complex and irregular (e.g., subject-specific vessel
geometries in cardiovascular applications). In order to perform
physics-informed super-resolution on non-rectangular domains, we
adopt the geometry-adaptive CNN formation proposed by Gao et al.,”
where the elliptic coordinate transformation is utilized to reformulate
the PDE-constrained learning from the irregular physical domain
(x € ) to the regular reference domain (¢ € €,). Particularly, the
one-to-one coordinate transformation map G : Q, — Q, is numeri-
cally obtained by solving an elliptic problem, e.g., diffusion equations.
The Jacobians of the map G are then computed to convert differential
operators from the physical domain to the reference domain,

e - @@
@@ - (@)

where coordinates of physical domain and reference domain are

(10b)

x = [x,y]" and & = [¢, 5], respectively; | = 3—2% — 3—”;3—{ is the deter-

Iy ox.
98 op
precomputed and remain constant for given G. Using elliptic coordi-
nate transformation, the PDE-based loss function is reformulated on
the reference domain, and thus the classic CNN backbone can be

directly used for irregular geometries. For more details, see Ref. 68.

lll. RESULT
A. Overview

minant of the Jacobian matrix and metrics %, and g—’c‘ can be

We demonstrate the physics-informed CNN-SR analysis on sev-
eral internal flow cases relevant to cardiovascular applications. The LR
input will be denoised and enhanced to the high-resolution field for
both non-parametric (SR with a specific LR input) and parametric (SR
with a set of different LR inputs that lie in a high-dimensional space)
scenarios. We first study the flow field in a 2D vascular domain with a
non-parametric setting, where the governing PDEs and boundary con-
ditions are well defined. Moreover, we also investigate the scenario
that the flow physics is partially known (e.g., the inlet boundary condi-
tion is unknown) to demonstrate the CNN-SR solution of unifying
forward and inverse problems with additional observation data. Then,
we present the parametric SR analysis for internal flows with a param-
eterized inlet velocity profile in a high-dimensional parameter space.
Finally, we show the parametric SR and inference for internal flows in
an idealized aneurysm geometry with parameterized inlet velocity pro-
files in a high-dimensional parameter space.

1. Synthesis of low-resolution, noisy data

Synthetic LR data are generated from finite volume (FV)-based
CFD simulations on coarse meshes. The simulated LR velocity fields
are corrupted by artificial measurement noises. The following two
types of noise models are considered: (1) Gaussian noise and (2) non-
Gaussian flow MRI noise.
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* Gaussian noise model: The LR velocity field W' is corrupted by
an independent and identically distributed (i.i.d.) Gaussian noise
factor € ~ N(0,1) as

‘i’l:‘l’l~(1+ce), (11)

where the parameter ¢ € [0, 1] controls the noise level.

* Non-Gaussian MRI noise model: To mimic the LR data
obtained from the flow MRI, the five-point balanced phase-
contrast method”” is employed to encode the CED velocity field
into the phase space by § = F(¥'), where S is a complex matrix
of five column vectors. Different levels of complex Gaussian
noise are added to the complex data, and the synthetic noisy MR
flow field can be then obtained via the inverse five-point map
F () following Ref. 4,

o c
S=S+—|¥| I(e; + &i),
V2 (12)

¥ =),

where i is the imaginary unit, €;, &, " A'(0,1), and ¢ € [0, 1] con-
trols the noise level. The Gaussian noise imposed in the phase
space will become highly non-Gaussian once being mapped back
to the physical velocity space, For more details of the forward
and inverse five-point maps F(-) and F ' (-), see Refs. 4, 72, and
references therein.

2. Cases setup

To evaluate the CNN-SR performance, we generate high-resolution
CFD data (W) as the reference. Moreover, the upsampled results
from the bicubic interpolation will also be computed for comparison.
Both the LR and HR CFD simulations are conducted using
OpenFOAM,”” an open-source C+4+- library for FV simulations. The
relative error metric e is defined as

(13)

of the

Specifically, the FV solutions steady incompressible
Navier-Stokes equations are solved using the semi-implicit method
for pressure linked equation (SIMPLE) algorithms,”* where the Rhie
and Chow interpolation with collocated grids is adopted to prevent
the pressure-velocity decoupling.”” The nonlinear convection term is
discretized based on the Gauss theorem with the second-order
bounded linear upwind interpolation (ie, Gauss linearUpwind
Scheme in OpenFOAM), and the diffusion term is discretized using
the central Gauss linear interpolation with the explicit non-orthogonal
correction for surface normal gradients (i.e., Gauss linear corrected).
The physics-informed CNN-SR model is implemented in PyTorch,
and training is conducted on an NVIDIA GeForce RTX 2080
Graphics Processing Unit (GPU) card. The training histories for all
the test cases are summarized in Fig. 20 of Appendix C.

B. Non-parametric super-resolution and inference

The proposed physics-informed CNN-SR model is constructed
to super-resolve the LR flow field in a non-parametric setting. Namely,
the DL model is trained to learn the LR-to-HR map,

scitation.org/journal/phf

S: (‘i’l; y)|—>(‘i’h; u), where the physical parameter u is fixed. A 2D
laminar flow with an irregular vascular geometry is investigated, as
shown in Fig. 2. The flow starts at the bottom edge (i.e., inlet) and
moves out at the upper edge (i.e., outlet), where the non-slip wall
boundary condition is imposed on the left and right boundaries. The
LR data are obtained from a coarse mesh of 126 cells, while the HR
target mesh has 3773 cells. The CNN-SR will take the LR data as the
input and spatially generates refined data by 30x.

1. Known boundary condition

We first consider a non-parametric scenario with well-posed
physics, where both the governing PDEs (i, incompressible
Navier-Stokes equations) and boundary conditions are well defined.
In particular, the inlet boundary condition is known as a constant pro-
file u = [0, 1] and the outlet is defined by Vu - n = 0 and p =0, where
n is the local wall-normal vector. The density p is 1, and the viscosity
v is 0.01. Figure 3 shows the CNN-SR velocity fields from the LR data
with a 100% Gaussian noise (¢ = 1.0). Due to the mesh coarseness, the
LR field presents a mosaic pattern and provides very limited informa-
tion. The SR solution directly upsampled by the bicubic interpolation
is unsatisfactory since the large Gaussian noise makes the bicubic-SR
solution highly unphysical. In contrast, the CNN-SR solution well
agrees with the HR reference data (truth). The flow details of the
boundary layer and velocity development can be accurately captured,
where the large Gaussian noises are significantly reduced. The relative
error of the CNN-SR field is 0.067, which is an order lower than that
of the bicubic-SR result (0.520). The pointwise error maps are given in
Appendix D [Fig. 21(a)]. It shows that the CNN-SR solution has less
error than the bicubic-SR one over the entire domain. Then, we also
examine the velocity along the streamwise centerline and the wall
shear stress (WSS) predicted by CNN-SR and bicubic-SR models, as
shown in Fig. 4. The bicubic-SR results have a notably large discrep-
ancy compared to the CFD reference, while the CNN-SR results agree
with the CFD reference very well.

For the experiment with artificial MRI noises shown in Fig. 5, the
LR velocity field becomes even more unphysical, and the flow infor-
mation is overwhelmed by the large non-Gaussian MRI noises. Using
bicubic interpolation does not show any improvement. Compared to
the HR reference, the bicubic-SR velocity field barely captures any

0 0.1 023 0 0.1 023
X X

(a) (b)

FIG. 2. (a) Coarse mesh and (b) fine mesh [the low-resolution mesh (126 cells)
and high-resolution mesh (3773 cells)]. The LR input data are refined by 30x.
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FIG. 3. The super-resolved results of the LR input with the 100% Gaussian noise (c = 1.0). The relative errors of the bicubic-SR and CNN-SR fields are 0.520 and 0.067,

respectively.
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FIG. 4. The super-resolved centerline velocity and WSS results of the LR input with the 100% Gaussian noise (c = 1.0).

flow physics and has a large relative error of 0.617. However, the
CNN-SR model, informed by the Navier-Stokes equations, can largely
remove the MRI noises and generate an accurate super-resolved veloc-
ity field with a relative error of 0.066. By further investigating the
pointwise error maps [Fig. 21(b)], we can see that the bicubic-SR solu-
tion becomes worse, while in the CNN-SR model, the performance
remains the same as that with Gaussian noise. For the centerline veloc-
ity and WSS predictions (Fig. 6), the CNN-SR solution almost overlaps
the CFD reference, which is much better than bicubic-SR results. The
encouraging results show great promise of the proposed method for
enhancing the spatial resolution of 4D flow MRI, for which the HR
labels are often unavailable (see Table IT).

Input ]u|1 ;

0.3 034 i
. 7 . 7 ‘
0.9 St/ [F 09

. 0.2

0.1+

0.0 -

00 02
X X

Bicubic |u|
1.3

2. Unknown boundary condition

In this subsection, we demonstrate the capability of unifying the
super-resolution and data assimilation for the situation where the
physics is ill-posed (e.g., unknown boundary conditions), but addi-
tional sparse observation data are available. This scenario is quite com-
mon in cardiovascular applications. The 4D flow MRI techniques
enable noninvasive and in vivo measurements of full-field blood flow
information, whose spatial resolution, however, is too low to perform
any quantitative analysis. Although the Navier-Stokes equations can
be used to refine the LR data, the boundary conditions (e.g., inlet
velocity field and outlet pressure distributions) are often not available
in clinical practice. On the other hand, some sparse high-fidelity

CNN  |u Truth |u
1.3 1.3
0.3 0.3
0.9 0.9
0.2
06> 0.6
03 017 0.3
0.0 0.0- 0.0
00 0.2 00 0.2
X X

FIG. 5. The super-resolved results of the LR input with the 100% MRI noise (c = 1.0). The relative errors of bicubic-SR and CNN-SR fields are 0.617 and 0.066, respectively.
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FIG. 6. The super-resolved centerline velocity and WSS results of the LR input with the 100% MRI noise (¢ = 1.0), where BC is given.

TABLE II. Summary of quantitative error analysis for non-parametric cases with the well-defined boundary conditions.

100% Gaussian noise 100% MRI noise
SR model Velocity error WSS error SR model Velocity error WSS error
CNN-SR 6.67 x 1072 1.32 x 107! CNN-SR 6.66 x 1072 1.33 x 107!
Bicubic-SR 52 x 107! 1.67 Bicubic-SR 6.17 x 107! 1.47

observations can be obtained by the 2D phase contrast MRI (PC-MRI)
on a few 2D slices, which can be assimilated to infer the unknown
boundaries. To mimic this scenario, we conduct a numerical experi-
ment with the same setting as above, where the synthetic LR data cor-
rupted by 100% MRI noises are super-resolved using the
Navier-Stokes-informed CNN. In contrast to the previous example, we
here assume that the true inlet velocity profile u = [0, 100x(0.2 — x)]

Input |u\ Bicubic \u!
1.00 1.00

is unknown, but more accurate velocity observations are given only
on four slices (~2% of mesh grids), as an analog of the sparse 2-D
PC-MRI data (see Fig. 7). Since the inlet boundary is discretized by 45
stencils and no prior correlation structure is imposed, we are solving
a 45-dimensional inverse problem [i.e., the network directly searches
the true inlet in the entire 45-dimensional space (R*)]. It can be
seen that not only the LR noisy flow field has been super-resolved to

Truth |u\1 00

37 . 0.3
0.3 0.75 0.75 0.75
> 02 : 0.50 050 > 92 0.50
0.1+ 0.25 025 0.171 0.25
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0.0 0.2 0.0 0.2 0.0 0.2
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X

FIG. 7. The super-resolved results of the LR input with the 100% MRI noise (c = 1.0), where inlet boundary is unknown. The sparse velocity observations (on ~2% of mesh
grids) are assimilated to infer the inlet velocity profile (a 45-dimensional field).
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be in good agreement with the HR reference (e =0.029), but also the
unknown inlet velocity profile (a 45-dimensional field) can be accu-
rately recovered in a unified manner (see Table I1T). However, it also
can be noticed that the inferred inlet profile slightly deviates from the
ground truth near the wall, which might be due to following potential
reasons: (1) the velocity value near the wall is relatively small, and
thus the inference accuracy is accordingly low since the network opti-
mization is conducted in an averaged manner (L2 norm); (2) the gra-
dient is relatively large near the wall, where the inference
performance typically downgrades; (3) the observation data are
obtained from the finite volume (FV)-based simulation (OpenFOAM).
However, the finite difference (FD) method is used to construct the
physics-informed loss function. The inconsistency between FV and FD
scheme is exaggerated near the boundary and then contributes to the
inference discrepancy. We examined the pointwise error maps for
bicubic-SR and CNN-SR solutions in Fig. 21(c), which indicates that
the CNN-SR result is still very accurate even if the boundary condition
is not given. For the predictions of centerline velocity and WSS (Fig. 8),
the CNN-SR significantly outperforms the bicubic-SR in terms of accu-
racy. Note that we have tested many different realizations of the data
noise, and the performance remains the same. Moreover, the minimum
measurement data required to infer the inlet depends on the sensor
placement. Based on our test, if sensors are randomly placed, observa-
tion data on at least 2% — 7% of total grid points can uncover the
unknown boundary condition.

C. Parametric super-resolution and inference

The proposed CNN-SR solution can be applied for flow super-
resolution in the parametric setting, leveraging the powerful interpola-
tory capability of DL models in high-dimensional parameter space.
Namely, the DL model is trained to capture the operator,

TABLE Ill. Summary of quantitative error analysis for the non-parametric case with
ill-posed physics.
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scitation.org/journal/phf

S: (‘i’l; y)|—>(‘i’h; u), where the physical parameters pu could vary in
a high-dimensional space. Even with physical parameter p being

unknown, the DL models can be trained as S: ‘i’l»—>‘i’h and

7.¥- . For both situations, once fully trained, the CNN-SR model
can be treated as a cost-effective surrogate model that takes the LR
data to produce HR solutions and much more reliable than the
bicubic-SR model. Since the low-fidelity simulations or experiments
are relatively cheap to conduct, the trained CNN-SR surrogate could
significantly facilitate many query applications, e.g., uncertainty propa-
gation, optimization, and sample-based Bayesian inference.

1. Parametric super-resolution with well-posed physics

To demonstrate parametric SR capability, we consider internal
flows with spatially varying inflow boundary conditions (including
non-zero secondary flow). The CNN-SR is trained to refine the LR
flow fields by 400x. As shown in Fig. 9, the inlet velocity field u(x) is
set on the left edge (x = 0), while the zero-pressure outlet is prescribed
on the right edge (x=1). Both the top and bottom edges
(y = 0,y = 1) are set as non-slip walls. The density p is 1, and the vis-
cosity v is 0.01. Each component of the inlet velocity field
(u = [u(x),v(x)]") is modeled by a scalar stationary Gaussian
process,

1
0.8
0.6
0.4
0.2

>

00 02040608 1 00 02040608 1

100% MRI noise T xz
SR model Velocity error WSS error Unknown inlet (a) (b)
CNN-SR 29 %1072 1.32x 107" 6.21 x 1072 FIG. 9. (a) Coarse mesh and (b) fine mesh [the low-resolution input mesh
Bicubic-SR 7.9 x 107! 3.09 Unavailable (10 x 10) and the high-resolution output mesh (200 x 200)]. The LR data will be
refined by 400 x.
Velocity Along Centerline Left Wall Shear Stress Right Wall Shear Stress
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FIG. 8. The super-resolved centerline velocity and WSS results of the LR input with the 100% MRI noise (¢ = 1.0), where BC is unknown.
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f(x) -~ 973'(0, K(x7x’)), K(x, x/) — g2 exp<|x2—lzx’|

> ’ in 6Szinlet

14
where K(x, x’) is the exponential kernel function and  and & repre(sen)t
the homogeneous length scale and standard deviation of the Gaussian
random field. Here, we set the length scale /=0.1 and the standard
deviation ¢ = 0.33. To represent the Gaussian process in a compact
form, we use Karhunen-Loeve (KL) expansion,

nE—00

scitation.org/journal/phf

where 4 and ¢(x) are eigenvalues and eigenfunctions of the kernel,
respectively, and ; are uncorrelated random variables with zero mean
and unit variance. We further truncate the KL expansion with a finite
number (1, = 10) of basis to capture 96% energy of the random field.
The streamwise velocity field (1) and the transverse velocity field (v)
are defined as

u(x) =14 f(x), v(x)=f(x). (16)

Hence, the inlet boundary condition is parameterized by a 20-
dimensional parameter vector,

|u]

= Z \/j'_id’i(x)wi’ (15)
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FIG. 10. The CNN-SR results of noisy-free LR data on a subset of testing inlet samples randomly drawn from the Gaussian process.

Phys. Fluids 33, 073603 (2021); doi: 10.1063/5.0054312
Published under an exclusive license by AIP Publishing

33, 073603-10


https://scitation.org/journal/phf

Physics of Fluids ARTICLE

n= [(,017 ...,(,Ozo]T S RZ(), (17)

where ;,...,m19 parameterize the streamwise velocity and
11, ..., Wy are for the transverse velocity field. The first 10 KL modes
are shown in Fig. 19.

The CNN-SR model is trained on 15 inlet samples randomly
drawn from the Gaussian process defined by Eq. (14), where the PDE-
based loss function is minimized with 10° iterations. Once the CNN-
SR model is trained, it can super-resolve the LR flow fields of these 15
inlet samples and be used as a surrogate model to rapidly refine any
LR data with unseen inlets in the 20-dimensional parameter space. To
evaluate the model’s generalizability, we generate 985 new testing
inlets that are unseen during the training. Figure 10 shows the CNN-
SR results of 16 samples randomly selected from the test set, where
noise-free LR data are used as the input. Though without any noise,
the LR data contain very limited flow information because of the mesh
coarseness (10 x 10). Both bicubic interpolation and trained CNN-SR
model can spatially refine the LR data by 400x and show improve-
ments. However, the CNN-SR results reveal more flow details and
have better agreement with the HR reference. Specifically, the bound-
ary layer in the CNN-SR model can be captured more accurately than
the bicubic-SR model does. Figure 11 shows the WSS along the bottom
wall from both CNN-SR and bicubic-SR models. It is clear that the
CNN-SR model outperforms the bicubic-SR model and agrees with
the ground truth very well. This is also true for the upper wall. The

scitation.org/journal/phf

error maps (Fig. 22) also indicate that, in the near-wall region, the
error of the bicubic-SR solution is always significantly greater than
that of the CNN-SR solution. However, for the centerline velocity, the
SR performance is comparable for CNN-SR and bicubic-SR models
when LR data do not contain any noise.

When the LR data contain noises, the superiority of the CNN-SR
solution becomes more significant compared to the bicubic interpola-
tion. To demonstrate this merit, we conduct another numerical experi-
ment, where the LR data are corrupted with 20% Gaussian noise (noise
level ¢=0.2). The CNN-SR model is trained on the LR data by resam-
pling the noise at every iteration to recognize the noisy inputs. Figure 12
shows the super-resolution results of noisy LR data. It is apparent that
the bicubic-SR velocity fields are visually unphysical by directly interpo-
lating the data noises. The SR performance of the physics-informed
CNN model still remains excellent as it accurately refined the spatial res-
olution of the LR data by 400, and the SR results agree with the HR
reference very well on all testing samples. The error maps (Fig. 23) show
that, although the noise influences both models, the CNN-SR model has
better accuracy, particularly for the near-wall region. This can also be
observed in the WSS comparisons (Fig. 13), where CNN-SR notably
outperforms the bicubic model, showing the robustness.

Figure 14 shows the mean relative errors vs LR data noise levels
for both CNN-SR and bicubic-SR results over 985 testing samples. We
can see the SR performance of bicubic interpolation remarkably deteri-
orates as the input noise level increases. When the LR data contain

== = CNN === Bjcubic == CFD
2.00{F ~

WSS

FIG. 11. The SR bottom WSS results of noise-free LR data on a subset of testing inlet samples randomly drawn from the Gaussian process.
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FIG. 12. The CNN-SR results of noisy LR data on a subset of testing inlet samples randomly drawn from the Gaussian process.

100% noises, the naive bicubic interpolation completely fails as the rel-
ative error grows up to nearly 50%. In comparison, CNN-SR solutions
are less sensitive to the growth of data noise. Although showing a simi-
lar trend, the CNN-SR solutions’ relative error remains small (less
than 20%), even if the data noise level reaches to 100%.

The computational costs of a single model evaluation for the HR
CFD and CNN-SR models are listed in Table IV. For a single run on
each parameter point, the speedup of the CNN-SR model is more than
3000 times compared to the CFD simulation. It shows the potential of
using the CNN-SR model as a surrogate for massive queries in the

high-dimensional input space, which could enable or facilitate
ensemble-based uncertainty quantification or inverse optimization.

D. Parametric super-resolution and inference
with ill-posed physics

Finally, we demonstrate parametric SR solutions where boundary
conditions are unknown and can be recovered simultaneously. Similar
to the non-parametric case in Sec. 111 B 2, the model will leverage sparse
or LR data to deal with ill-posed physics. However, compared to the
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FIG. 14. (a) Velocity and (b) wall shear stress. The relative errors of CNN and Bicubic SR results of LR inputs with different noise levels over 985 testing samples.

TABLE IV. Computational costs of the online evaluation of the HR CFD and CNN-
SR models.

HR CFD CNN
Wall-clock time (s) 4 1.189 x 1073
Hardware Intel Xeon(R) Gold 6138 GeForce RTX 2080
Speedup 3364

non-parametric example, a more challenging task here is to parametri-
cally infer unknown BCs given different LR inputs. It is noteworthy that
HR labels are still not available, but the trained model is expected to
super-resolve any new LR flow fields and rapidly recover unknown BCs
accordingly. In this case, the flow in an idealized aneurysm geometry is
studied. The LF input is obtained by downsampling the HF solution
data (Fig. 15). Only 7% of the HR grid points are downsampled to
form the LF data. The inlet velocity field u(x) = [0,v(x)] is
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FIG. 15. (a) Coarse mesh and (b) is fine mesh. The downsampled coarse mesh as the input mesh has 169 points, and the high-resolution output mesh has 2401 points. The
LR input data are refined by 15x.
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FIG. 16. The CNN-SR and bicubic-SR results of downsampled LR data on a subset of testing inlet samples randomly drawn from the Gaussian process.
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prescribed on the bottom edge (y =0), while the zero-pressure out-
let is prescribed on the top edge (y = 1). The left and right edges are
set as non-slip walls. The streamwise inlet profile v(x) is unknown,
which will be modeled as a Gaussian process (GP) combined with a
parabolic profile,

v(x) = GP(0,K) — 4(x — 0.5)(x + 0.5),

x — |

_ 2
Kx,x)=0 exp( o7

) in 8(Zinleh (18)
where the hyperparameters of the exponential kernel function is set as
1=0.2 and ¢ = 0.3. Similarly, we use the KL expansion [Eq. (15)] to
represent this stochastic field with 10 truncated modes (covers over
99% energy). Namely, the unknown inlet BC is parameterized by a
10-dimensional vector, u = [, ..., 9] C R, An MLP model is
applied to parametrically infer the unknown vector for different LR
inputs. The MLP contains three identical hidden layers, each of which
has 100 neurons. The CNN-MLP SR model is trained on 250 inlet
samples with 3500 epochs. Once being fully trained, the model not
only can super-resolve the LR fields but also can infer the correspond-
ing unknown inlet profiles given any randomly sampled LR data from
the high-dimensional parameter space. To test the generalizability, we
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generate 2500 new testing samples. Figure 16 shows the SR results of
16 samples randomly selected from the test set. Although the contours
generated by bicubic-SR model look reasonably similar to the refer-
ence, the pointwise error maps shown in Fig. 24 clearly indicate that
the bicubic-SR model contains a relatively large error, particularly in
the near-wall region. In contrast, the errors of CNN-SR results are
very low over all test samples. Figure 17 shows that the CNN-SR
model can accurately capture the WSS and significantly outperforms
the bicubic-SR model. Finally, we examine the performance of recov-
ering unknown boundary conditions in the parametric setting. Figure
18 shows that all the unknown inlet profiles are precisely inferred and
agree with the truth very well (Table V).

IV. DISCUSSION

This work proposed a general label-free physics-informed deep
learning-based SR framework that can handle various SR applications. It
is the first time to comprehensively study SR in many different scenarios,
such as LR inputs with Gaussian noise, non-Gaussian noise, or down-
sampled measurements, given either well-posed physics or ill-posed
physics. The key novelty of the proposed method is that it unifies forward
SR and inverse data assimilation in a parametric setting. Namely, once
fully trained, the model can rapidly super-resolve any newly provided LR
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FIG. 17. The left wall shear stress of CNN-SR and bicubic-SR results on a subset of testing inlet samples randomly drawn from the Gaussian process. It is also true for the

right wall shear stress.
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FIG. 18. The inferred unknown inlet boundary conditions on a subset of testing samples randomly drawn from the Gaussian process. Note that the bicubic-SR model is not

able to infer the unknowns.

field and infer the corresponding unknown boundary condition without
the need to re-train the network, enabling real-time online applications.
Although showing great promise, the current framework has several lim-
itations and technical challenges. We list the current limitations and also
provide our perspective on how to improve in future work. (1) This
paper is focused on the steady-state problem. However, the cardio-
vascular flow is usually unsteady in practice. To handle dynamic flow
SR problems, the standard forward/backward Euler or Runge-Kutta
methods can be used to formulate temporal derivatives.”” Also, more
advanced learning architectures should be designed based on sequen-
tial neural nets such as convolutional long short term memory

TABLE V. Summary of quantitative error analysis for the parametric case with ill-
posed physics.

Parametric SR and inference

SR model Velocity error WSS error Unknown inlet
CNN-SR 1.39 x 1072 1.65 x 1072 3.82 x 1072
Bicubic-SR 1.01 x 1071 7.2 x 107! Unavailable

(convLSTM) networks ® or transformer.”” (2) Although the elliptic
coordinate transformation enables the CNN-SR model to work on
simple irregular domains. It is still very challenging to tackle more
complex geometries, e.g., 3D patient-specific geometries. This limita-
tion potentially can be addressed by leveraging geometric deep learn-
ing techniques, e.g., graph convolutional neural networks.”’ (3) The
current framework cannot accurately recover the hidden pressure
field because of the implicit coupling of pressure and velocity (i.e., the
pressure appears as a source term in the momentum equations). The
governing equation needs to be reformulated to strongly couple the
pressure and velocity predictions based on, e.g., elliptic equation of
pressure’’ and Rich—-Chow interpolation.””

V. CONCLUSION

In this paper, we proposed a novel physics-informed deep learn-
ing solution for the spatial super-resolution of flow fields. Leveraging
the physical laws and boundary conditions of fluid flows, the training
of the CNN-SR model only needs LR samples instead of its HR coun-
terparts as labels. Once sufficiently trained, the CNN-SR model can
produce the spatially refined flow field, given a noisy LR input in the
parameter space. When the flow boundary conditions are unknown,
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the proposed framework can naturally assimilate additional sparse
observation data to simultaneously enable forward SR and inverse deter-
mination of unknown boundary conditions parametrically. The effective-
ness and merit of the proposed CNN-SR model have been demonstrated
on a number of non-parametric and parametric spatial flow SR problems

scitation.org/journal/phf

APPENDIX A: CONVOLUTION OPERATORS FOR
GRADIENT AND LAPLACIAN TERMS

The convolution filters for gradient and Laplacian terms are
stored as 4D tensors shown as below:

relevant to cardiovascular applications, where both downsampled input

0O 0 0 0 O
or input with Gaussian and non-Gaussian MRI noises are investigated. 0 0 00 0
In particular, we demonstrated that the CNN-SR model, by training on Ou - 1
. ) : ~ filter = 1 -8 0 8 —1 x ——, (Al)
only 15 LR input samples, is able to accurately refine the spatial resolu- Ox 0 0 00 0 120x
tion by 400 for the flow fields with any new inlet BCs sampled in the 0 0 00 0
20-dimensional parameter space (u € IR*). Compared to the standard
SR approach based on the bicubic interpolation, the CNN-SR model 00 1 00
shows significantly higher accuracy and robustness. Compared to the ou 00 -8 00 1
standard FV simulation, the single sample speedup is more than 10° E» filter = 00 0 00 X oy’ (A2)
times, showing its potential for many-query applications. The current 00 8 00 y
work is only focused on the spatial super-resolution for 2D flow fields. 00 -1 00
Future work will extend the framework for both spatial and temporal
super-resolution of unsteady fluid flows in 3D complex domains. and
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FIG. 19. The first 10 KL modes of the Gaussian random fields for the spatially varying inlet boundary conditions.
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APPENDIX B: THE KL MODES FOR THE SPATIALLY VARYING INLETS

The first 10 KL modes of the Gaussian random fields for the spatially varying inlet boundary conditions (see Fig. 19).
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FIG. 20. Training histories for nonparametric and parametric super-resolution cases: (a) nonparametric (BC known, Gauss), (b) nonparametric (BC known, MRI), (c) nonpara-
metric (BC unknown, MRI), (d) parametric (BC known, noise-free), (€) parametric (BC known, Gauss), and (f) parametric (BC unknown, downsampled LF).

APPENDIX C: PHYSICS-INFORMED TRAINING HISTORY

Figure 20 shows learning histories of all test cases.

Bicubic Error CNN Error Bicubic Error CNN Error Bicubic Error CNN Error

(a) (b) (©)

FIG. 21. Pointwise error maps of non-parametric CNN-SR and bicubic-SR velocities, where (a) LR with the 100% Gaussian noise and known BC, (b) LR with the 100%
Gaussian noise and known BC, and (c) LR with the 100% MRI noise and unknown BC.

Phys. Fluids 33, 073603 (2021); doi: 10.1063/5.0054312 33, 073603-18
Published under an exclusive license by AIP Publishing


https://scitation.org/journal/phf

Physics of Fluids ARTICLE

scitation.org/journal/phf

=

0.5 05

0.0

1.0

0.5

0.0 0.0 == g i 0.0

FIG. 22. Pointwise error maps of parametric CNN-SR and bicubic-SR velocities with noise-free LR data on the test set of inlets randomly drawn from the Gaussian process
(parametric square-duct case).

APPENDIX D: POINTWISE ERROR MAP COMPARISONS BETWEEN CNN-SR AND BICUBIC-SR RESULTS

Pointwise error maps of non-parametric CNN-SR and bicubic-SR velocities, where (a) LR with the 100% Gaussian noise and known
BC, (b) LR with the 100% Gaussian noise and known BC, and (c) LR with the 100% MRI noise and unknown BC. Pointwise error maps of
parametric CNN-SR and bicubic-SR velocities with noise-free LR data on the test set of inlets randomly drawn from the Gaussian process
(parametric square-duct case). Pointwise error maps of parametric CNN-SR and bicubic-SR velocities with noisy LR data on the test
set of inlets randomly drawn from the Gaussian process (parametric square-duct case). Pointwise error map of CNN-SR and bicubic-

SR results with downsampled LR data on a subset of testing inlet samples randomly drawn from the Gaussian process (parametric
aneurysm case).
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FIG. 23. Pointwise error maps of parametric CNN-SR and bicubic-SR velocities with noisy LR data on the test set of inlets randomly drawn from the Gaussian process (para-
metric square-duct case).
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FIG. 24. Pointwise error map of CNN-SR and bicubic-SR results with downsampled LR data on a subset of testing inlet samples randomly drawn from the Gaussian process

(parametric aneurysm case).
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The data that support the findings of this study are openly
available in GitHub at https://github.com/Jianxun-Wang/PICNNSR.
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