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significant yet challenging. In this work, we propose an innovative physics-constrained Bayesian
deep learning approach to reconstruct flow fields from sparse, noisy velocity data, where equation-
based constraints are imposed through the likelihood function and uncertainty of the
reconstructed flow can be estimated. Specifically, a Bayesian deep neural network is trained on

g‘jﬁiﬁgﬁ;luﬁon sparse measurement data to capture the flow field. In the meantime, the violation of physical laws

Denoising will be penalized on a large number of spatiotemporal points where measurements are not

Physics-informed neural networks available. A non-parametric variational inference approach is applied to enable efficient physics-

Bayesian learning constrained Bayesian learning. Several test cases on idealized vascular flows with synthetic
Navier-Stokes measurement data are studied to demonstrate the merit of the proposed method.

©2020 The Authors. Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and

Applied Mechanics. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Reconstruction of a flow field from limited and noisy meas- flow reconstruction (i.e., superresolution) methods can be or-

urements is of great significance yet challenging in many engin- ganized into two groups. (i) When large offline full-field flow

eering applications. For example, the rapid development in flow data sets are available, the coherent structures and correlation

magnetic resonance (MR) imaging techniques enables nonin- features of the fluid flow can be extracted, which will be utilized

vasive assessment of hemodynamic information for cardiovas-
cular research and healthcare [1]. However, the resolution and
signal-to-noise ratio (SNR) of MR images still remain the limit-
ing factors for clinical applications [2]. Similar scenarios can also
be found in monitoring wind farms or other aerodynamic sys-
tems, where measurement sensors (e.g., lidar) are usually placed
at sparse locations and thus the collected data are also sparse
and noisy [3].

Because of its wide range of applications, full-field recon-
struction of sparse, noisy flow data has become an active re-
search area and received a great deal of attention. In order to
compensate for the incompleteness and sparsity of the gappy

to reconstruct the high-resolution flow fields from sparse online
data. Proper orthogonal decomposition (POD) [4] or dynamic
mode decomposition (DMD) [5, 6] are commonly used for flow
feature extraction. For instance, gappy POD has been applied for
steady and unsteady flow-field reconstruction in various applic-
ations [7-12]. To overcome the linearity limitations of POD and
DMD, deep learning based approaches (e.g., autoencoder neur-
al networks) have been recently developed to extract nonlinear
latent representations of the flow field from massive offline data
[13]. As an alternative, sparsity-promoting representation tech-
niques, e.g., compressed sensing, have also been demonstrated

data, additional information is required, which can be obtained to be able to achieve the same goal more robustly when data is
either from an offline flow database or a physics-based model. noisy [14, 15]. All the algorithms described above rely on a large
Based on what type of information is incorporated, the existing number of flow datasets for offline "training", which might not
- be available in many cases. (ii) Instead of learning from the off-
* Corresponding author. line database, the other type of flow reconstruction methods
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fluid dynamics (CFD) model, which is able to provide full-field
flow predictions. The sparse measurement data can be fused in-
to the model-based predictions using data assimilation (DA)
techniques, e.g., ensemble Kalman filter, particle filters, or vari-
ational based DA techniques [16-21]. Nonetheless, physics-
based simulations are time-consuming in general while the DA
process usually involves numerous model evaluations, which
could be computationally prohibitive.

The recent advances of deep learning techniques for image
superresolution [22, 23] open up new avenues for developing ef-
ficient algorithms of flow reconstruction from limited measure-
ments. For example, neural networks (NN) have been used to
learn POD coefficients [24] or directly capture an end-to-end
mapping between the sparse measurements and the high-resol-
ution flow field [25]. However, the success of these deep learn-
ing models is mostly dependent on a sufficient amount of offline
training data, which, as mentioned above, are inaccessible in
many applications, e.g., superresolution for flow MR imaging. To
alleviate data sparsity, a physics-constrained deep learning
strategy has been proposed [26-29], where physical laws of a sys-
tem (e.g., Navier-Stokes equations in fluid mechanics) are lever-
aged to constrain the training process. Recently, this idea has at-
tracted increasing attention and its merits have been demon-
strated in solving a number of forward and inverse problems
governed by classic partial differential equations (PDEs). Not-
ably, the physics-informed neural networks (PINN) proposed by
Rassi et al. [26] were applied to reconstruct a flow field by assim-
ilating scalar concentration data of a flow field [30]. Sun et al.
[28] developed a PINN-based fluid surrogate model with en-
coded boundary conditions and demonstrated that the flow
solutions of parametric Navier-Stokes equations can be learned
without using any labeled training data. Although the physics-
constrained deep learning shows great promise for flow recon-
struction of limited data, the measurement noise associated with
the data and model-form uncertainties due to model inad-
equacy cannot be considered since the classic deep learning
models are usually formulated in a deterministic way. Research-
ers have recently started to explore the uncertainty quantifica-
tion (UQ) analysis of physics-constrained deep learning by us-
ing arbitrary polynomial chaos [31] and variational inference [27,
32, 33].

In this work, a physics-constrained Bayesian neural network
(PC-BNN) is proposed for flow field reconstruction from sparse
and noisy measurements. In contrast to previous works, the
equation-constrained training is formulated in a Bayesian man-
ner, where the posterior distribution of the NN weights will be
obtained based on the likelihood function, which is defined by
the uncertainty from both measurement noise and model inad-
equacy. Specifically, the confidence of the physical/physiologic-
al constraints is modeled in a probabilistic way, being combined
with data uncertainty to form the likelihood function [34]. A non-
parametric variation inference algorithm, Stein variation gradi-
ent decent (SVGD) [35], is adopted to efficiently perform the
Bayesian learning with limited training overhead compared to
its deterministic version. The merit of the proposed method is
demonstrated on the reconstruction of idealized vascular flows
with sparse and noisy velocity data. The rest of the paper is or-
ganized as follows. The proposed physics-constrained Bayesian
neural network for flowfield reconstruction is introduced first.
Then numerical studies on test flows with two idealized vascular

geometries are presented. The roles of data and physical con-
straints in deep learning will be discussed. Finally, we will con-
clude the paper in the last paragraph.

The general idea of this work is to reconstruct a high-resolu-
tion flow field from low-resolution (sparse or possibly noisy)
measurement data based on deep neural networks (DNN). In-
stead of training the DNN on extra offline databases of high-res-
olution flow fields, physical/physiological principles are lever-
aged to constrain the learning process and provide additional in-
formation for super-resolution. Namely, a pointwise DNN mod-
el will be trained on sparse velocity data to capture the flow field.
In the meantime, the physical laws are imposed on a large num-
ber of spatiotemporal collocation points where measurements
are not available. Therefore, the trained DNN is a smooth func-
tion in spatiotemporal space and can reconstruct the flow field
with arbitrarily high resolution. The physics-constrained deep
learning is usually formulated as a deterministic optimization
problem, where a loss function is defined by combining both the
data mismatches and the residuals of governing equations of a
physical model, e.g., incompressible Navier-Stokes equations
for Newtonian flows [28, 30]. By minimizing the physics-in-
formed loss, the solution is expected to satisfy the physical mod-
el as well as match the training data. This formulation here is re-
ferred to as the deterministic physics-constrained deep learning.
However, when the physical model is not perfect and noisy data
are used, the prediction uncertainty regarding model inad-
equacy and measurement noise cannot be considered in such a
deterministic learning process. To address this issue, we de-
veloped a probabilistic physics-constrained Bayesian learning
framework, where the physics-constrained training is formu-
lated in a Bayesian way. Instead of defining the loss, a physics-
informed likelihood function is constructed, where the measure-
ment noise and equation residuals are modeled as random vari-
ables with specified distributions. Given the physics-informed
likelihood and specified prior information (DNN initialization),
the posterior distribution of the DNN weights can be computed
based on the Bayes's theorem. Considering the high dimension-
ality of DNN, variational inference (VI) is employed to enable
feasible Bayesian deep learning. All these components are de-
scribed further below.

As mentioned above, a DNN approximator f/(z,x) = [u’, P] is
constructed to capture the true pointwise flow solution
f(¢,x) = [@, P, where u, P represent velocity and pressure, and 6
represents DNN parameters (e.g., weights and bias). The train-
ing of this neural network relies on two pieces of information:
sparse (noisy) velocity data u? and a physical model of the fluid
system. The data-based loss component can be defined straight-
forwardly as the data mismatch, |u’-u“|, while the physics-
based loss component is built upon the fluid governing equa-
tions. Here, we model the fluid dynamics by a set of incompress-
ible Navier-Stokes equations with the Newtonian assumption,

V-u=0 , x,t€0Q,x[0,T],
Massconservation
Oou 1 )
Ru,P)=0:= 3 +u-Vju+ ;VP—vV u+b,=0,
Momentum conservation
X, t€Q,x[0,T],
M
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where R(u,P) represents the residual function of the
Navier-Stokes equations; ¢ and x are temporal and spatial
coordinates, respectively; p and v are density and viscosity of the
fluid, respectively; b, is the body force; To determine unique
flow solutions, proper initial (Z(u,P)=0) and boundary
conditions (B(u,P)=0) are required. The DNN-approximated
solutions [u’, P?] are also expected to comply with the physical
model, and thus the violation of the Eq. (1) will be penalized as
well. Hence, the physics-regularized loss function can be
defined as,

L) = |R@’, P + a0’ —u?, (2)

where all the derivative terms in R are computed using
automatic differentiation and A, is a trainable penalty
coefficient. The physics-constrained training is defined as a
constrained optimization problem,

0* = argmin L(6),
6

I, P u’) =0,
S.t.
B(t,x,P%,u’) =0,

t=0, inQ,, ®3)
on 042;.

To impose the initial and boundary conditions (IC&BC), two
strategies can be used: (i) IC&BC are formulated as additional
penalty terms into the loss function and imposed in a soft man-
ner, or (ii) they can be encoded into the DNN structure in a hard
manner as shown in Ref. [28]. In this work, the pressure
inlet/outlet boundary conditions will be enforced by construc-
tion while the no-slip wall boundary condition is imposed softly
to avoid involving additional networks for complex geometries.
In general, the data loss can only be computed on a handful of
points due to data sparsity, but the residual of the physical mod-
el will be penalized on a large number of points randomly selec-
ted from the physical domain. The Adam stochastic gradient
descent (SGD) algorithm [36] is used to solve this optimization
problem.

The deterministic formulation of physics-constrained DNN
has limitations when it comes to noisy data and imperfect phys-
ical models. To reflect uncertainties associated with the data and
model, a probabilistic formulation should be considered, where
the training is conducted in a Bayesian way. Namely, the DNN
f(¢,x) is initialized by specifying a prior distribution p(0) for net-
work parameters 6. By constructing the likelihood function
p(D,R|0) based on the sparse data D = {u”} and physical model
‘R =0, the posterior distribution p(6|D, R) can be obtained using
Bayes' rule,

p@1D,R) x pO)p(D,RIO). (4)

By sampling the posterior, the trained DNN can provide a mean
prediction as well as estimated uncertainties.

Although efficient Monte Carlo sampling approaches such as
Markov chain Monte Carlo (MCMC) are standard for Bayesian
inference and have been widely used to approximate the posteri-
or distribution, they are usually infeasible for an extremely high-
dimensional problem like DNN training, which may involve mil-
lions of parameters. VI, instead, recasts the Bayesian inference
as a deterministic optimization problem by minimizing the Kull-
back-Leibler (KL) divergence between a proposed distribution
q(0) and the target distribution (i.e., posterior distribution) as,

6" =argmin KL (¢(0)||p6D,R)) = argmin E,
6 6

q(0) )]
log(p(em,n) :

(5)

where E,(-) is the expectation with probability density . The KL
divergence is a measure of the discrepancy between two
probability distributions. Most often, the proposed density is
parameterized with a specified form of distributions. The
performance of the parametric VI largely depends on the
predefined family of distributions, which introduces
deterministic biases [37]. In this work, a non-parametric VI
method, SVGD [35], is adopted, which uses a set of n particles
{0}, to directly minimize the KL divergence without the need of
defining variational approximation family. The general idea is to
iteratively move the set of particles towards the posterior
distribution using the gradient ¢ of KL divergence gradient,
which is proved to be proportional to the kernelized Stein
operator within the unit ball of a reproducing kernel Hilbert
space (RKHS) [37]. Accordingly, the SVGD update equations are
given as,

07" =0 +e.(©)), (6)
where
1 n
¢0) = - ]; k(5,6 Vo (logp(HJ’.) + logp(D,RlH})) +Vpr k®©5,0)],
gradient repulsive force
™

where i represents particle index, ¢, is the step size at ¢ iteration,
and k(x,-) represents a positive definite kernel (e.g., radial basis
function (RBF) is used in current work). As a result, an ensemble
of DNNs corresponding to n parameter particles {6,}" are
trained by SVGD, where the "gradient” term moves the particles
towards high-density regions of the posterior and the "repulsive
force" term imposes diversity and avoids particle collapsing.
Compared to parametric VI methods, the particle-based SVGD is
able to capture multi-modal posteriors.

In realistic applications, a model only approximates reality
and has model-form errors. Hence, it is natural to formulate the
model constraints in a probabilistic way to reflect inadequacy of
amodel. Similar to the constrained Bayesian approach pro-
posed by Wu et al. [34], the physical equations R = 0 here are for-
mulated as soft constraints, being a part of the likelihood func-
tion. We assume that the residual of governing equations obey a
zero-mean Gaussian distribution,

p(RW’,P%)|6) ~N(0,Zp), (8

where covariance matrix X, is is control parameter reflecting our
confidence in the physical model. As the Navier-Stokes
equations well describe the fluid dynamics in general, a small
variance (o =107") is specified in this work. Nonetheless, in
practice, the physical model might be partially unknown or
some of the model coefficients are uncertain [38]. This model-
form uncertainty can also be characterized within the proposed
Bayesian learning framework. Namely, the hyperparameters of
the physical likelihood component (e.g., covariance matrix) are
treated as trainable parameters, whose posterior can then be
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learned during the training process. Without loss of generality,
the sparse observation data errors can be assumed to follow
zero-mean Gaussian distributions. Therefore, the log(likelihood)
function can be explicitly written as the sum of log data
likelihood and log equation likelihood,

log(likelihood) =logp(D|0,%Z) +log p(RI6,Zp), 9

where the data covariance matrix ¥, = diag(o,) are learnable
parameters, which can be learned from the data. The prior
distribution of the data variance o, is modeled as an inverse
Gamma distribution and the prior of DNN parameters are
assumed as a student's ¢-distribution. The physics-constrained
SVGD algorithm can be summarized in Algorithm 1.

Algorithm 1: Physics-constrained Stein variational gradient
descent
Result: DNN parameters 0 and learnable data variance ¥ ,.
Sample prior distributions for 8 and X, with »n particles;
fori=1:n,do
1. Calculate log posterior: L(9) =logp(0) +logp(Zp) +logp
(D10,%p) +log p(RI6, ZR);
2. Calculate the gradient V, by back-propagation;
3.Choose an appropriate kernel function k(9,-), and
calculate kernel Stein operator ¢, RBF kernel is used in
current work;
4. Update 0 and X, by stochastic gradient descent (e.g.,
Adam);
end

After training, the physics-constrained Bayesian DNN can be
used to reconstruct the flow field given sparse data and high-res-
olution coordinates by forward propagation. In the SVGD al-
gorithm, an ensemble of trained DNNs will be obtained from the
particle-based posterior approximation. Although the concrete
form of the posterior is unknown, the statistics of the flowfield
predictions can be estimated by the network ensemble using the
Monte Carlo method. For example, the mean velocity field u’ is
computed by,

' =Efux )]~ %Zu& x 1), (10)
i=1

where n is the number of DNNs indexed by 8,. The variance field
(reflecting reconstruction uncertainty) is computed based on the
law of total variance as shown in Ref. [39], where conditional
covariance is defined as,

Cov(u’[x, t, D) =, [Cov(u’|(x, t;w,0))]
+ COVW,U‘D {('E [COV(ll9 | (X, W, UD))] }
=E,, [Zp] +E, [0’ x, 1) "0’ (x, 1]
~E [0’ 0] E, [u'x, 1)]
= % i (sz +ul(x, Hul(x, t)T)

i=1
1 n 0 1 n 0 T
_ N;ui(x, ) N;ui(x, nl, (11)

where =i ~ p(Z,|D). With the defined mean and variance, a
probabilistic flow reconstruction result can be obtained.
Several flow cases with two idealized vascular geometries

(i.e., stenosis and aneurysm bifurcation) are investigated to
demonstrate the performance of the proposed method for flow
reconstruction from sparse data. In this study, data are gener-
ated by sampling the fully-resolved CFD solutions on sparse loc-
ations. We begin our numerical experiments by reconstructing
the flow with noise-free data using deterministic physics-con-
strained (PC) deep learning (cases 1 & 2). Then we evaluate our
proposed PC-BNN on the same flow reconstruction problems
but with noisy data (cases 3 & 4). Both the reconstructed mean
flow fields and uncertainties for different data noise levels are in-
vestigated.

A fully-connected network structure of 3 layers and 20 neur-
ons per layer is built for all the flow cases. The Swish activation
function [40] is specified in each layer except the output one,
where a linear activation is applied. For both deterministic and
probabilistic formulations, the Adam optimizer is used for train-
ing, where the batch size and initial learning rate are set as 50
and 1x 107°, respectively. In the probabilistic formulation, the
prior of NN parameters 6 is given by a student's #-distribution
0 ~ St(@|u, A, v), where u=0,A =2ay, v = a,/ b,. The shape and rate
parameters a, and b, are specified as a, =1 and b, =0.04, re-
spectively. Furthermore, data uncertainties (noise) are assumed
homoscedastic, and thus the covariance matrix of data likeli-
hood is a diagonal matrix where the prior distribution of the di-
agonal term is assumed to be an inverse Gamma IG(8|a,, b;) with
a, =2 and b, =1x107%. The equation likelihood is assumed to
follow a Gaussian distribution with variance ¢*=1x10". To
perform SVGD, an ensemble of five NN samples are generated
based on the prior. The Bayesian DNN and physics-constrained
SVGD are implemented in the PyTorch platform [41]. The train-
ing of 6 x 10* SGD iterations is performed for deterministic cases,
while 1.2x10° SGD iterations for probabilistic cases, on an
NVIDIA GeForce RTX 2080 graphics processing unit (GPU) card.
The code and dataset for this work will become available at ht-
tps://github.com/Jianxun-Wang/Physics-constrained-Bayesian-
deep-learning upon publication.

Case 1: In case 1, we aim to reconstruct the flow field in an
idealized stenotic vessel from velocity data on very sparse loca-
tions (marked as "x" in Fig. 1a). As mentioned above the data are
generated directly from the CFD benchmark (Fig. 1a) without
adding any noise. Nonetheless, the data are too sparse to
provide sufficient information for flow reconstruction. As shown
in Fig. 1d, where the DNN is trained solely based on data, the re-
constructed flow is not physical at all and flow features at the
tapered region are distorted. If the training process is con-
strained by the divergence-free condition, i.e., continuity equa-
tion, the result can be significantly improved (e.g, flow speed de-
creasing due to increased radius can be observed in Fig. 1c), but
notable discrepancies still exist compared to the CFD bench-
mark. When the training is constrained by both continuity and
momentum equations (i.e., full Navier-Stokes equations) with
boundary conditions, the velocity contour of the reconstructed
flow field is almost identical to the CFD benchmark (see Fig. 1b).
The relative reconstruction errors from the purely data-based
learning,  divergence-free = constrained learning, and
Navier-Stokes constrained learning are 24.8%, 11.3%, and 5.6%,
respectively. The results showed here clearly demonstrate that
proper physical constraints can provide additional information
to compensate for data insufficiency and enable physical flow
reconstruction using limited measurements.
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model has a perfect "T" shape, where the flow starts from the
bottom of the vertical tube and goes out through two 90° bifurca-
tion arms, driven by a pressure drop AP =0.1. The dome at the

Case 2: To further demonstrate effectiveness of the physical
constraints for super-resolution, a more complex flow (i.e., flow
in an idealized aneurysm bifurcation) is considered here. The

Fig. 1. Comparison of a the CFD benchmark (ground truth) with deterministic flow reconstruction results by b Navier-Stokes constrained
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end of the input tube represents an idealized terminal an-
eurysm. The data were obtained by probing the CFD velocity
field on only six slices, which are very sparse in general (see Fig.
2a). Following the physics-constrained learning, where the wall
boundary condition is enforced softly, the reconstructed velo-
city and pressure fields (see Fig. 2b) agree well with the CFD
benchmark. For the sake of comparison, the purely data-based
learning results are also presented in Fig. 2c, where the recon-
structed velocity fields significantly differ from the CFD bench-
marks. It is worthwhile to note that the purely data-based DNN
fails to reconstruct the pressure field since no pressure data are
used for training. However, the physics-constrained DNN can
reasonably capture the general patterns of pressure field be-
cause of the constraints on the relation between pressure and
velocity, imposed by the Navier-Stokes equations. Quantitat-
ively, the relative reconstruction errors (| foyn — fernl/|ferpl) in
u,v, and p from the purely data-based DNN are 35.1%,40.5%,
and 69.9%, respective, while for Navier-Stokes constrained
learning, the relative errors can be reduced to 13.7%,12.1%, and
12.8%. These comparisons show that the PC-NN remarkably im-
proves the reconstruction accuracy for velocity, and it also can
infer the pressure field with the same level of accuracy, where no
data are used for training.

Case 3: In the two cases presented above, the flow fields are
reconstructed from noise-free data based on deterministic phys-
ics-constrained learning. However, when the data are not only
sparse but also noisy, the uncertainty due to measurement
noises should be reflected in the reconstructed flow. Hence, PC-
BNN is trained on the sparse, noisy data to enable robust flow re-
construction with quantified uncertainties. The same flow in
Case 1 is reconstructed but with noisy data sampled from the
CFD benchmark solutions that are corrupted by Gaussian noises
of different levels. Similarly, the noisy flow is "observed" only at a
few locations indicated by "x". Figure 3 shows the flow recon-
struction results by PC-BNN, while the purely data-based solu-
tion is also plotted for comparison. We can see that the flow field
corrupted by 10% Gaussian noise becomes unsmooth (Fig. 3a),
and the purely data-based flow estimation (Fig. 3b) fails to cap-

0.050
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—-0.050
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Corruptcd CFD and data locations
¢ 0.12
0.050 | um—— | 0.10
0 - 0.06
—0.025 0.04
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0 02 04 06 08 10
PC-BNN mean

ture any physical flow patterns. The relative reconstruction error
increases to 83.3% (Fig. 1d). This is expected since the data are
lack of both quantity and quality. In contrast, the mean-field of
the reconstructed flow by PC-BNN (Fig. 3c) is in a good agree-
ment with the CFD benchmark (Fig. 1a) and the noise can be
notably reduced as well. The relative error of the mean recon-
structed field is reduced from 83.3% to 6.9% by introducing the
Navier-Stokes equation constraint. Moreover, the uncertainty of
the reconstructed flow can be reasonably estimated as shown by
the standard deviation (std) field in Fig. 3d. We have studied the
reconstruction performance given different data noise levels
(5%,10%,15%), and the prediction results and uncertainties are
summarized in Table 1. The reconstruction error of the purely
data-based DNN remarkably increases with increased data
noise. Although the accuracy of the PC-BNN predictions also
slightly decreases with the increased noise level, the perform-
ance is still satisfactory and flow physics can be captured reason-
ably well. It is important to note that the mean and maximum
std of the reconstructed field also increases as the data noise be-
comes larger, demonstrating that the uncertainty of the recon-
structed results can be well estimated by the PC-BNN, which re-
flects the effect of data noises.

Case 4: Lastly, the PC-BNN is applied to reconstruct the bi-
furcation flow from noisy, sparse data. Gaussian noises with dif-
ferent variances are added onto the CFD solution and six sec-
tions of the corrupted flow data (see Fig. 4) are used for training.
Figure 4a shows the corrupted CFD solution and marks the loca-
tions of training data by "x". For the purely data-based learning,
the reconstruction result by noisy data is much worse than that
using noise-free data, which is expected (see Fig. 4b).In con-
trast, the PC-BNN still accurately captures the flow field and the
mean velocity contour shown in Fig. 4c agrees with the CFD
benchmark in Fig. 2a. Furthermore, the reconstruction uncer-
tainty introduced by data noise can be reflected by the std field
in Fig. 4d. The uncertainty is large at the left outlet region, indic-
ating that the prediction at this area has low fidelity. Similarly,
the performance of the PC-BNN on the data with different noise
levels are studied, and the reconstruction accuracy and uncer-
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Fig. 3. a Comparison of reconstruction results of the stenotic flow with sparse, noisy data (10% noise) between b purely data-based DNN pre-
diction and ¢ mean velocity field reconstructed by PC-BNN. The uncertainty of PC-BNN based flow reconstruction (i.e., standard deviation

field) is shown in panel d.
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Table 1 Mean errors and uncertainties of reconstructed u velocity fields from sparse, noisy data using PC-BNN. Note that both the error and std
are normalized by the corresponding CFD benchmark solution.

Reconstructed u velocity field of stenotic flow

Level of noise

5% noise

10% noise

15% noise

Data only
PC-BNN
Data only
PC-BNN
Data only
PC-BNN

Relative mean error
0.623
0.041
0.833
0.069
0.941
0.100

Uncertainty (mean/max std)

Not applicable

0.038/0.076

Not applicable

0.050/0.083

Not applicable

0.064/0.125

Reconstructed u velocity field of bifurcation flow

Level of noise

5% noise

10% noise

15% noise

Data only
PC-BNN
Data only
PC-BNN
Data only
PC-BNN

Relative mean error
1.000
0.132
1.000
0.126
1.000

0.173

Uncertainty (mean/max std)

Not applicable

0.046/0.210

Not applicable

0.062/0.253

Not applicable

0.067/0.325
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Fig. 5. Test error histories of the physics-constrained learning with and without using training data. The mean square errors (MSE) of u (left), v

(middel), and p (right) predictions are compared.

tainty are summarized in Table 1. The same trend as shown in
Case 3 can be found: the mean reconstruction error and uncer-
tainty will increase as the noise grows. The results from both
Cases 3 & 4 show that the proposed PC-BNN can accurately re-
construct a high-resolution flow field from sparse and noisy
data, and the prediction uncertainty can also be estimated.

In this work, the numerical results have demonstrated that a
high-resolution flow field can be recovered following physics-
constrained learning with sparse data and known physical con-
straints (i.e., Navier-Stokes equations). However, a previous
work [28] in the context of surrogate modeling has shown that
flow solutions of the Navier-Stokes equations can be obtained
from physics-constrained deep learning even without any
labeled data if the boundary conditions are imposed properly.
Therefore, it is interesting to know what benefit can be gained by
introducing additional sparse labeled data into PDE-con-
strained learning. Taking the stenotic flow as an example, we
conducted a comparison study between the data-free PDE-con-
strained learning and weakly data-based (i.e., sparse data-
based) PDE-constrained learning, where boundary conditions
are both imposed softly with a penalty parameter A = 0.1. Figure 5
shows the histories of test errors for velocity and pressure versus
the number of training epochs. The test error of the weakly data-
based learning (red dashed line) decreases much faster than that
of the data-free learning (blue solid line). With the same num-
ber of training epochs, the prediction error from sparse data-
based, physics-constrained learning is about one order of mag-
nitude lower than purely physics-constrained learning without
any labeled data. The comparison indicates that adding some
labeled data would further improve the equation-constrained
learning, which is consistent with the intuition since more in-
formation is used for the neural network training.

The objective of this work is to reconstruct a high-resolution
flow field from sparse and possibly noisy data. To achieve this
goal, we proposed a physics-constrained Bayesian deep learn-
ing framework, where the likelihood function is constructed
based on the measurement uncertainty and model inadequacy.
Stein variation gradient descent is used to enable efficient
Bayesian learning. The proposed approach is able to reconstruct
the flow field with estimated uncertainties particularly when
data are corrupted with measurement noise. Numerical experi-
ments were conducted on a number of flow reconstruction cases
with idealized vascular geometries, where synthetic data are
used to evaluate the performance of the proposed method. We
have demonstrated that the constraints of a physical model can
significantly improve the reconstruction results from limited

clean data. When the data are noisy, our proposed PC-BNN can
accurately predict the mean flow field, meanwhile reasonably
estimate the prediction uncertainties corresponding to different
data noise levels.
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