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In  many  applications,  flow  measurements  are  usually  sparse  and  possibly  noisy.  The
reconstruction  of  a  high-resolution  flow  field  from  limited  and  imperfect  flow  information  is
significant  yet  challenging.  In  this  work,  we propose an innovative  physics-constrained Bayesian
deep learning approach to reconstruct flow fields from sparse, noisy velocity data, where equation-
based  constraints  are  imposed  through  the  likelihood  function  and  uncertainty  of  the
reconstructed  flow  can  be  estimated.  Specifically,  a  Bayesian  deep  neural  network  is  trained  on
sparse measurement data to capture the flow field. In the meantime, the violation of physical laws
will  be  penalized  on  a  large  number  of  spatiotemporal  points  where  measurements  are  not
available. A non-parametric variational inference approach is applied to enable efficient physics-
constrained  Bayesian  learning.  Several  test  cases  on  idealized  vascular  flows  with  synthetic
measurement data are studied to demonstrate the merit of the proposed method.
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Reconstruction of  a  flow  field  from  limited  and  noisy  meas-
urements is of great significance yet challenging in many engin-
eering applications. For example, the rapid development in flow
magnetic resonance  (MR)  imaging  techniques  enables  nonin-
vasive assessment  of  hemodynamic  information  for  cardiovas-
cular  research  and  healthcare  [1].  However,  the  resolution  and
signal-to-noise ratio  (SNR)  of  MR  images  still  remain  the  limit-
ing factors for clinical applications [2]. Similar scenarios can also
be found  in  monitoring  wind  farms  or  other  aerodynamic  sys-
tems, where measurement sensors (e.g., lidar) are usually placed
at  sparse  locations  and  thus  the  collected  data  are  also  sparse
and noisy [3].

Because of  its  wide  range  of  applications,  full-field  recon-
struction of  sparse,  noisy  flow  data  has  become  an  active  re-
search  area  and  received  a  great  deal  of  attention.  In  order  to
compensate  for  the  incompleteness  and  sparsity  of  the  gappy
data, additional information is required, which can be obtained
either  from  an  offline  flow  database  or  a  physics-based  model.
Based on what  type of  information is  incorporated,  the existing

flow reconstruction  (i.e.,  superresolution)  methods  can  be  or-
ganized  into  two  groups.  (i)  When  large  offline  full-field  flow
data  sets  are  available,  the  coherent  structures  and  correlation
features of the fluid flow can be extracted, which will be utilized
to reconstruct the high-resolution flow fields from sparse online
data.  Proper  orthogonal  decomposition  (POD)  [4]  or  dynamic
mode decomposition (DMD) [5, 6]  are commonly used for flow
feature extraction. For instance, gappy POD has been applied for
steady and unsteady flow-field reconstruction in various applic-
ations [7–12].  To overcome the linearity limitations of  POD and
DMD, deep learning based approaches (e.g., autoencoder neur-
al  networks)  have  been  recently  developed  to  extract  nonlinear
latent representations of the flow field from massive offline data
[13]. As  an  alternative,  sparsity-promoting  representation  tech-
niques,  e.g.,  compressed sensing,  have also been demonstrated
to be able to achieve the same goal  more robustly when data is
noisy [14, 15]. All the algorithms described above rely on a large
number  of  flow  datasets  for  offline  "training",  which  might  not
be available in many cases. (ii) Instead of learning from the off-
line  database,  the  other  type  of  flow  reconstruction  methods
takes  advantage  of  a  physics-based  model,  e.g.,  computational
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fluid  dynamics  (CFD)  model,  which  is  able  to  provide  full-field
flow predictions. The sparse measurement data can be fused in-
to  the  model-based  predictions  using  data  assimilation  (DA)
techniques, e.g.,  ensemble Kalman filter, particle filters, or vari-
ational  based  DA  techniques  [16–21].  Nonetheless,  physics-
based simulations are time-consuming in general  while  the DA
process  usually  involves  numerous  model  evaluations,  which
could be computationally prohibitive.

The  recent  advances  of  deep  learning  techniques  for  image
superresolution [22, 23] open up new avenues for developing ef-
ficient algorithms of  flow reconstruction from limited measure-
ments.  For  example,  neural  networks  (NN)  have  been  used  to
learn  POD  coefficients  [24]  or  directly  capture  an  end-to-end
mapping between the sparse measurements and the high-resol-
ution  flow  field  [25]. However,  the  success  of  these  deep  learn-
ing models is mostly dependent on a sufficient amount of offline
training  data,  which,  as  mentioned  above,  are  inaccessible  in
many applications, e.g., superresolution for flow MR imaging. To
alleviate  data  sparsity,  a  physics-constrained  deep  learning
strategy has been proposed [26–29], where physical laws of a sys-
tem (e.g., Navier–Stokes equations in fluid mechanics) are lever-
aged to constrain the training process. Recently, this idea has at-
tracted increasing  attention  and  its  merits  have  been  demon-
strated  in  solving  a  number  of  forward  and  inverse  problems
governed by  classic  partial  differential  equations  (PDEs).  Not-
ably, the physics-informed neural networks (PINN) proposed by
Rassi et al. [26] were applied to reconstruct a flow field by assim-
ilating  scalar  concentration  data  of  a  flow  field  [30].  Sun  et  al.
[28] developed  a  PINN-based  fluid  surrogate  model  with  en-
coded  boundary  conditions  and  demonstrated  that  the  flow
solutions of parametric Navier–Stokes equations can be learned
without  using  any  labeled  training  data.  Although  the  physics-
constrained deep  learning  shows  great  promise  for  flow  recon-
struction of limited data, the measurement noise associated with
the data  and  model-form  uncertainties  due  to  model  inad-
equacy  cannot  be  considered  since  the  classic  deep  learning
models are usually formulated in a deterministic way. Research-
ers have  recently  started  to  explore  the  uncertainty  quantifica-
tion (UQ)  analysis  of  physics-constrained  deep  learning  by  us-
ing arbitrary polynomial chaos [31] and variational inference [27,
32, 33].

In this work, a physics-constrained Bayesian neural network
(PC-BNN) is  proposed for  flow field reconstruction from sparse
and  noisy  measurements.  In  contrast  to  previous  works,  the
equation-constrained training is formulated in a Bayesian man-
ner,  where  the  posterior  distribution  of  the  NN  weights  will  be
obtained  based  on  the  likelihood  function,  which  is  defined  by
the uncertainty from both measurement noise and model inad-
equacy. Specifically, the confidence of the physical/physiologic-
al constraints is modeled in a probabilistic way, being combined
with data uncertainty to form the likelihood function [34]. A non-
parametric variation  inference  algorithm,  Stein  variation  gradi-
ent  decent  (SVGD)  [35],  is  adopted  to  efficiently  perform  the
Bayesian  learning  with  limited  training  overhead  compared  to
its  deterministic  version.  The  merit  of  the  proposed  method  is
demonstrated  on  the  reconstruction  of  idealized  vascular  flows
with sparse  and noisy  velocity  data.  The rest  of  the paper  is  or-
ganized as  follows.  The proposed physics-constrained Bayesian
neural  network  for  flowfield  reconstruction  is  introduced  first.
Then numerical studies on test flows with two idealized vascular

geometries are  presented.  The  roles  of  data  and  physical  con-
straints in deep learning will  be discussed.  Finally,  we will  con-
clude the paper in the last paragraph.

The general idea of this work is to reconstruct a high-resolu-
tion  flow  field  from  low-resolution  (sparse  or  possibly  noisy)
measurement data  based  on  deep  neural  networks  (DNN).  In-
stead of training the DNN on extra offline databases of high-res-
olution flow  fields,  physical/physiological  principles  are  lever-
aged to constrain the learning process and provide additional in-
formation for super-resolution. Namely, a pointwise DNN mod-
el will be trained on sparse velocity data to capture the flow field.
In the meantime, the physical laws are imposed on a large num-
ber  of  spatiotemporal  collocation  points  where  measurements
are not available. Therefore, the trained DNN is a smooth func-
tion  in  spatiotemporal  space  and  can  reconstruct  the  flow  field
with  arbitrarily  high  resolution.  The  physics-constrained  deep
learning  is  usually  formulated  as  a deterministic optimization
problem, where a loss function is defined by combining both the
data  mismatches  and  the  residuals  of  governing  equations  of  a
physical  model,  e.g.,  incompressible  Navier–Stokes  equations
for  Newtonian  flows  [28, 30].  By  minimizing  the  physics-in-
formed loss, the solution is expected to satisfy the physical mod-
el as well as match the training data. This formulation here is re-
ferred  to  as  the deterministic  physics-constrained  deep  learning.
However, when the physical model is not perfect and noisy data
are used,  the  prediction  uncertainty  regarding  model  inad-
equacy and measurement noise cannot be considered in such a
deterministic learning  process.  To  address  this  issue,  we  de-
veloped  a probabilistic  physics-constrained  Bayesian  learning
framework, where  the  physics-constrained  training  is  formu-
lated  in  a  Bayesian  way.  Instead  of  defining  the  loss,  a  physics-
informed likelihood function is constructed, where the measure-
ment noise and equation residuals are modeled as random vari-
ables  with  specified  distributions.  Given  the  physics-informed
likelihood  and  specified  prior  information  (DNN  initialization),
the posterior distribution of the DNN weights can be computed
based on the Bayes's theorem. Considering the high dimension-
ality  of  DNN,  variational  inference  (VI)  is  employed  to  enable
feasible Bayesian  deep  learning.  All  these  components  are  de-
scribed further below.

fθ(t ,x)= [uθ,P θ]

f̃(t ,x)= [ũ, P̃ ] u,P θ

ud

∥∥uθ −ud
∥∥

As mentioned above, a DNN approximator  is
constructed  to  capture  the  true  pointwise  flow  solution

,  where  represent  velocity  and  pressure,  and 
represents DNN  parameters  (e.g.,  weights  and  bias).  The  train-
ing  of  this  neural  network  relies  on  two  pieces  of  information:
sparse (noisy) velocity data  and a physical model of the fluid
system. The data-based loss component can be defined straight-
forwardly  as  the  data  mismatch, ,  while  the  physics-
based loss  component  is  built  upon  the  fluid  governing  equa-
tions. Here, we model the fluid dynamics by a set of incompress-
ible Navier–Stokes equations with the Newtonian assumption,

R(u,P )= 0 :=



∇·u= 0︸ ︷︷ ︸
Massconservation

, x, t ∈Ω f × [0,T ],

∂u

∂t
+ (u ·∇)u+ 1

ρ
∇P −ν∇2u+b f = 0︸ ︷︷ ︸

Momentum conservation

,

x, t ∈Ω f × [0,T ],

(1)
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R(u,P )
t x

ρ ν

b f

I(u,P )= 0
B(u,P )= 0

[uθ,P θ]

where  represents  the  residual  function  of  the
Navier–Stokes  equations;  and  are  temporal  and  spatial
coordinates, respectively;  and  are density and viscosity of the
fluid,  respectively;  is  the  body  force;  To  determine  unique
flow  solutions,  proper  initial  ( )  and  boundary
conditions  ( )  are  required.  The  DNN-approximated
solutions  are  also  expected  to  comply  with  the  physical
model, and thus the violation of the Eq. (1) will  be penalized as
well.  Hence,  the  physics-regularized  loss  function  can  be
defined as,

L(θ)= ∥∥R(uθ,P θ)
∥∥+λd

∥∥uθ −ud
∥∥ , (2)

R
λd

where  all  the  derivative  terms  in  are  computed  using
automatic  differentiation  and  is  a  trainable  penalty
coefficient.  The  physics-constrained  training  is  defined  as  a
constrained optimization problem,

θ∗ = argmin
θ

L(θ),

s.t.

{
I(x,P θ,uθ)= 0, t = 0, inΩ f ,

B(t ,x,P θ,uθ)= 0, on ∂Ω f .

(3)

To impose the initial and boundary conditions (IC&BC), two
strategies  can  be  used:  (i)  IC&BC  are  formulated  as  additional
penalty terms into the loss function and imposed in a soft man-
ner, or (ii) they can be encoded into the DNN structure in a hard
manner  as  shown  in  Ref.  [28].  In  this  work,  the  pressure
inlet/outlet boundary  conditions  will  be  enforced  by  construc-
tion while the no-slip wall boundary condition is imposed softly
to  avoid  involving  additional  networks  for  complex  geometries.
In general,  the data  loss  can only  be computed on a  handful  of
points due to data sparsity, but the residual of the physical mod-
el will be penalized on a large number of points randomly selec-
ted  from  the  physical  domain.  The  Adam  stochastic  gradient
descent  (SGD)  algorithm  [36]  is  used  to  solve  this  optimization
problem.

fθ(t ,x) p(θ)
θ

p(D,R|θ) D = {ud }
R= 0 p(θ|D,R)

The  deterministic  formulation  of  physics-constrained  DNN
has limitations when it comes to noisy data and imperfect phys-
ical models. To reflect uncertainties associated with the data and
model, a probabilistic formulation should be considered, where
the  training  is  conducted  in  a  Bayesian  way.  Namely,  the  DNN

 is initialized by specifying a prior distribution  for net-
work  parameters .  By  constructing  the  likelihood  function

 based on the sparse data  and physical model
, the posterior distribution  can be obtained using

Bayes' rule,

p(θ|D,R)∝ p(θ)p(D,R|θ). (4)

By sampling the posterior, the trained DNN can provide a mean
prediction as well as estimated uncertainties.

q(θ)

Although efficient Monte Carlo sampling approaches such as
Markov  chain  Monte  Carlo  (MCMC)  are  standard  for  Bayesian
inference and have been widely used to approximate the posteri-
or distribution, they are usually infeasible for an extremely high-
dimensional problem like DNN training, which may involve mil-
lions  of  parameters.  VI,  instead,  recasts  the  Bayesian  inference
as a deterministic optimization problem by minimizing the Kull-
back–Leibler  (KL)  divergence  between  a  proposed  distribution

 and the target distribution (i.e., posterior distribution) as,

θ∗ = argmin
θ

KL
(
q(θ)||p(θ|D,R)

)= argmin
θ

Eq

[
log

(
q(θ)

p(θ|D,R)

)]
,

(5)

Eq(·) q

n
{θi }ni=1

ϕ

where  is the expectation with probability density . The KL
divergence  is  a  measure  of  the  discrepancy  between  two
probability  distributions.  Most  often,  the  proposed  density  is
parameterized  with  a  specified  form  of  distributions.  The
performance  of  the  parametric  VI  largely  depends  on  the
predefined  family  of  distributions,  which  introduces
deterministic  biases  [37].  In  this  work,  a  non-parametric  VI
method,  SVGD  [35],  is  adopted,  which  uses  a  set  of  particles

 to directly minimize the KL divergence without the need of
defining variational approximation family. The general idea is to
iteratively  move  the  set  of  particles  towards  the  posterior
distribution  using  the  gradient  of  KL  divergence  gradient,
which  is  proved  to  be  proportional  to  the  kernelized  Stein
operator  within  the  unit  ball  of  a  reproducing  kernel  Hilbert
space (RKHS) [37]. Accordingly, the SVGD update equations are
given as,

θt+1
i = θt

i +ϵtϕ(θ
t
i ), (6)

where

ϕ(θ)= 1

n

n∑
j=1

k(θt
j ,θ)∇θt

j

(
logp(θt

j )+ logp(D,R|θt
j )

)︸ ︷︷ ︸
gradient

+∇θt
j
k(θt

j ,θ)︸ ︷︷ ︸
repulsive force

 ,

(7)

i ϵt t
k(x, ·)

n {θi }ni=1

where  represents particle index,  is the step size at  iteration,
and  represents a positive definite kernel (e.g.,  radial basis
function (RBF) is used in current work). As a result, an ensemble
of  DNNs  corresponding  to  parameter  particles  are
trained by SVGD, where the "gradient" term moves the particles
towards high-density regions of the posterior and the "repulsive
force"  term  imposes  diversity  and  avoids  particle  collapsing.
Compared to parametric VI methods, the particle-based SVGD is
able to capture multi-modal posteriors.

R= 0

In  realistic  applications,  a  model  only  approximates  reality
and has model-form errors. Hence, it is natural to formulate the
model constraints in a probabilistic way to reflect inadequacy of
a model.  Similar  to  the  constrained  Bayesian  approach  pro-
posed by Wu et al. [34], the physical equations  here are for-
mulated as  soft  constraints,  being a  part  of  the  likelihood func-
tion. We assume that the residual of governing equations obey a
zero-mean Gaussian distribution,

p(R(uθ,P θ)|θ)∼N (0,ΣR), (8)

ΣR

σ= 10−4

where covariance matrix  is is control parameter reflecting our
confidence  in  the  physical  model.  As  the  Navier–Stokes
equations  well  describe  the  fluid  dynamics  in  general,  a  small
variance  ( )  is  specified  in  this  work.  Nonetheless,  in
practice,  the  physical  model  might  be  partially  unknown  or
some  of  the  model  coefficients  are  uncertain  [38].  This  model-
form uncertainty can also be characterized within the proposed
Bayesian  learning  framework.  Namely,  the  hyperparameters  of
the physical  likelihood component  (e.g.,  covariance matrix)  are
treated  as  trainable  parameters,  whose  posterior  can  then  be
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learned  during  the  training  process.  Without  loss  of  generality,
the  sparse  observation  data  errors  can  be  assumed  to  follow
zero-mean Gaussian distributions. Therefore, the log(likelihood)
function  can  be  explicitly  written  as  the  sum  of  log  data
likelihood and log equation likelihood,

log(l ikel ihood)= logp(D|θ,ΣD)+ logp(R|θ,ΣR), (9)

ΣD = diag(σD)

σD

where  the  data  covariance  matrix  are  learnable
parameters,  which  can  be  learned  from  the  data.  The  prior
distribution  of  the  data  variance  is  modeled  as  an  inverse
Gamma  distribution  and  the  prior  of  DNN  parameters  are
assumed  as  a  student's t-distribution.  The  physics-constrained
SVGD algorithm can be summarized in Algorithm 1.

Algorithm  1: Physics-constrained  Stein  variational  gradient
descent

θ ΣDResult: DNN parameters  and learnable data variance .
θ ΣD nSample prior distributions for  and  with  particles;

i = 1 : ntfor  do
L(θ)= logp(θ)+ logp(ΣD)+ logp

(D|θ,ΣD)+ logp(R|θ,ΣR)
　1.  Calculate  log  posterior: 

  ;
∇θ　2. Calculate the gradient  by back-propagation;

k(θ, ·)
ϕ

　3. Choose  an  appropriate  kernel  function ,  and
   calculate kernel  Stein operator ,  RBF kernel  is  used in
   current work;

θ ΣD　4.  Update  and  by  stochastic  gradient  descent  (e.g.,
  Adam);

end

uθ

After training, the physics-constrained Bayesian DNN can be
used to reconstruct the flow field given sparse data and high-res-
olution coordinates  by  forward  propagation.  In  the  SVGD  al-
gorithm, an ensemble of trained DNNs will be obtained from the
particle-based  posterior  approximation.  Although  the  concrete
form  of  the  posterior  is  unknown,  the  statistics  of  the  flowfield
predictions can be estimated by the network ensemble using the
Monte Carlo method. For example, the mean velocity field  is
computed by,

uθ = E [u(x, t )]≈ 1

N

n∑
i=1

uθi (x, t ), (10)

n θiwhere  is the number of DNNs indexed by . The variance field
(reflecting reconstruction uncertainty) is computed based on the
law  of  total  variance  as  shown  in  Ref.  [39],  where  conditional
covariance is defined as,

Cov(uθ|x, t ,D)=Ew,σD

[
Cov(uθ|(x, t ;w,σD))

]
+Covw,σD

{
(E

[
Cov(uθ|(x, t ;w,σD))

]}
=EσD [ΣD ]+Ew

[
uθ(x, t )⊤uθ(x, t )

]
−Ew

[
uθ(x, t )

]
E⊤
w

[
uθ(x, t )

]
≈ 1

N

n∑
i=1

(
ΣDi

+uθ
i (x, t )u

θ
i (x, t )

⊤)
−

(
1

N

n∑
i=1

uθ
i (x, t )

)(
1

N

n∑
i=1

uθ
i (x, t )

)⊤
, (11)

Σi
D ∼ p(ΣD |D)where .  With  the  defined  mean  and  variance,  a

probabilistic flow reconstruction result can be obtained.
Several  flow  cases  with  two  idealized  vascular  geometries

(i.e.,  stenosis  and  aneurysm  bifurcation)  are  investigated  to
demonstrate  the  performance  of  the  proposed  method  for  flow
reconstruction from  sparse  data.  In  this  study,  data  are  gener-
ated by sampling the fully-resolved CFD solutions on sparse loc-
ations.  We  begin  our  numerical  experiments  by  reconstructing
the  flow  with  noise-free  data  using  deterministic  physics-con-
strained (PC) deep learning (cases 1 & 2). Then we evaluate our
proposed  PC-BNN  on  the  same  flow  reconstruction  problems
but  with noisy  data (cases  3  & 4).  Both the reconstructed mean
flow fields and uncertainties for different data noise levels are in-
vestigated.

1×10−3

θ

θ ∼ St(θ|µ,λ,ν) µ= 0,λ= 2a0,ν= a0/b0

a0 b0 a0 = 1 b0 = 0.04

(β|a1,b1)
a1 = 2 b1 = 1×10−6

σ2 = 1×10−4

6×104

1.2×105

A fully-connected network structure of 3 layers and 20 neur-
ons per layer is  built  for all  the flow cases.  The Swish activation
function  [40]  is  specified  in  each  layer  except  the  output  one,
where a  linear  activation is  applied.  For  both deterministic  and
probabilistic formulations, the Adam optimizer is used for train-
ing,  where  the  batch  size  and  initial  learning  rate  are  set  as  50
and ,  respectively.  In  the  probabilistic  formulation,  the
prior  of  NN  parameters  is  given  by  a  student's t-distribution

, where . The shape and rate
parameters  and  are  specified  as  and , re-
spectively. Furthermore, data uncertainties (noise) are assumed
homoscedastic, and  thus  the  covariance  matrix  of  data  likeli-
hood is a diagonal matrix where the prior distribution of the di-
agonal term is assumed to be an inverse Gamma IG  with

 and .  The  equation  likelihood  is  assumed  to
follow  a  Gaussian  distribution  with  variance .  To
perform  SVGD,  an  ensemble  of  five  NN  samples  are  generated
based on the prior. The Bayesian DNN and physics-constrained
SVGD are implemented in the PyTorch platform [41]. The train-
ing of  SGD iterations is performed for deterministic cases,
while  SGD  iterations  for  probabilistic  cases,  on  an
NVIDIA GeForce RTX 2080 graphics processing unit (GPU) card.
The code and dataset  for  this  work will  become available  at  ht-
tps://github.com/Jianxun-Wang/Physics-constrained-Bayesian-
deep-learning upon publication.

24.8% 11.3% 5.6%

Case  1: In  case  1,  we aim to  reconstruct  the  flow field  in  an
idealized stenotic  vessel  from velocity  data on very sparse loca-
tions (marked as "x" in Fig. 1a). As mentioned above the data are
generated  directly  from  the  CFD  benchmark  (Fig.  1a)  without
adding  any  noise.  Nonetheless,  the  data  are  too  sparse  to
provide sufficient information for flow reconstruction. As shown
in Fig. 1d, where the DNN is trained solely based on data, the re-
constructed  flow  is  not  physical  at  all  and  flow  features  at  the
tapered region  are  distorted.  If  the  training  process  is  con-
strained by  the  divergence-free  condition,  i.e.,  continuity  equa-
tion, the result can be significantly improved (e.g, flow speed de-
creasing due to increased radius can be observed in Fig. 1c), but
notable discrepancies  still  exist  compared  to  the  CFD  bench-
mark.  When  the  training  is  constrained  by  both  continuity  and
momentum  equations  (i.e.,  full  Navier–Stokes  equations)  with
boundary  conditions,  the  velocity  contour  of  the  reconstructed
flow field is almost identical to the CFD benchmark (see Fig. 1b).
The  relative  reconstruction  errors  from  the  purely  data-based
learning,  divergence-free  constrained  learning,  and
Navier–Stokes constrained learning are , ,  and ,
respectively.  The  results  showed  here  clearly  demonstrate  that
proper  physical  constraints  can  provide  additional  information
to  compensate  for  data  insufficiency  and  enable  physical  flow
reconstruction using limited measurements.
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Case 2: To further demonstrate effectiveness of  the physical
constraints for super-resolution, a more complex flow (i.e.,  flow
in  an  idealized  aneurysm  bifurcation)  is  considered  here.  The

90◦

∆P = 0.1

model  has  a  perfect  "T"  shape,  where  the  flow  starts  from  the
bottom of the vertical tube and goes out through two  bifurca-
tion arms,  driven by  a  pressure  drop .  The dome at  the
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Fig. 1.   Comparison of a the CFD benchmark (ground truth) with deterministic flow reconstruction results by b Navier–Stokes constrained
DNN, c divergence-free constrained DNN, and d purely data-based DNN for a stenotic flow.
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Fig. 2.   Comparison of a CFD benchmark (with locations of labelled data) with deterministic flow reconstruction by b physics-constrained DNN
and c purely data-based DNN for an aneurysm bifurcation flow.

L.N. Sun and J.X. Wang / Theoretical & Applied Mechanics Letters 10 (2020) 161-169 165



(| fDNN − fCFD |/| fCFD |
)

u,v, P 35.1%,40.5%
69.9%

13.7%,12.1%
12.8%

end of  the  input  tube  represents  an  idealized  terminal  an-
eurysm.  The  data  were  obtained  by  probing  the  CFD  velocity
field on only six slices, which are very sparse in general (see Fig.
2a).  Following the physics-constrained learning,  where the wall
boundary condition  is  enforced  softly,  the  reconstructed  velo-
city  and  pressure  fields  (see Fig.  2b)  agree  well  with  the  CFD
benchmark.  For  the  sake  of  comparison,  the  purely  data-based
learning  results  are  also  presented  in Fig.  2c, where  the  recon-
structed velocity  fields  significantly  differ  from  the  CFD  bench-
marks.  It  is  worthwhile to note that the purely data-based DNN
fails to reconstruct the pressure field since no pressure data are
used  for  training.  However,  the  physics-constrained  DNN  can
reasonably capture  the  general  patterns  of  pressure  field  be-
cause  of  the  constraints  on  the  relation  between  pressure  and
velocity, imposed  by  the  Navier–Stokes  equations.  Quantitat-
ively,  the  relative  reconstruction  errors  in

 and  from  the  purely  data-based  DNN  are ,
and ,  respective,  while  for  Navier–Stokes  constrained
learning, the relative errors can be reduced to , and

. These comparisons show that the PC-NN remarkably im-
proves  the  reconstruction  accuracy  for  velocity,  and  it  also  can
infer the pressure field with the same level of accuracy, where no
data are used for training.

10%

Case 3: In the two cases presented above, the flow fields are
reconstructed from noise-free data based on deterministic phys-
ics-constrained  learning.  However,  when  the  data  are  not  only
sparse  but  also  noisy,  the  uncertainty  due  to  measurement
noises should be reflected in the reconstructed flow. Hence, PC-
BNN is trained on the sparse, noisy data to enable robust flow re-
construction  with  quantified  uncertainties.  The  same  flow  in
Case  1  is  reconstructed  but  with  noisy  data  sampled  from  the
CFD benchmark solutions that are corrupted by Gaussian noises
of different levels. Similarly, the noisy flow is "observed" only at a
few  locations  indicated  by  "x". Figure  3 shows the  flow  recon-
struction results  by  PC-BNN,  while  the  purely  data-based  solu-
tion is also plotted for comparison. We can see that the flow field
corrupted  by  Gaussian  noise  becomes  unsmooth  (Fig.  3a),
and the purely data-based flow estimation (Fig. 3b) fails to cap-

83.3%

83.3% 6.9%

5%,10%,15%

ture any physical flow patterns. The relative reconstruction error
increases  to  (Fig.  1d).  This  is  expected  since  the  data  are
lack of  both quantity  and quality.  In contrast,  the mean-field of
the  reconstructed  flow  by  PC-BNN  (Fig.  3c) is  in  a  good  agree-
ment  with  the  CFD  benchmark  (Fig.  1a)  and  the  noise  can  be
notably reduced  as  well.  The  relative  error  of  the  mean  recon-
structed  field  is  reduced  from  to  by  introducing  the
Navier–Stokes equation constraint. Moreover, the uncertainty of
the reconstructed flow can be reasonably estimated as shown by
the standard deviation (std) field in Fig. 3d. We have studied the
reconstruction  performance  given  different  data  noise  levels
( ),  and  the  prediction  results  and  uncertainties  are
summarized  in Table  1.  The  reconstruction  error  of  the  purely
data-based  DNN  remarkably  increases  with  increased  data
noise.  Although  the  accuracy  of  the  PC-BNN  predictions  also
slightly decreases  with  the  increased  noise  level,  the  perform-
ance is still satisfactory and flow physics can be captured reason-
ably  well.  It  is  important  to  note  that  the  mean  and  maximum
std of the reconstructed field also increases as the data noise be-
comes larger,  demonstrating  that  the  uncertainty  of  the  recon-
structed results can be well estimated by the PC-BNN, which re-
flects the effect of data noises.

Case  4: Lastly, the  PC-BNN is  applied to  reconstruct  the  bi-
furcation flow from noisy, sparse data. Gaussian noises with dif-
ferent variances  are  added  onto  the  CFD  solution  and  six  sec-
tions of the corrupted flow data (see Fig. 4) are used for training.
Figure 4a shows the corrupted CFD solution and marks the loca-
tions of training data by "x". For the purely data-based learning,
the reconstruction result  by noisy data is  much worse than that
using  noise-free  data,  which  is  expected  (see Fig.  4b). In  con-
trast, the PC-BNN still accurately captures the flow field and the
mean  velocity  contour  shown  in Fig.  4c agrees  with  the  CFD
benchmark  in Fig.  2a. Furthermore,  the  reconstruction  uncer-
tainty introduced by data noise can be reflected by the std field
in Fig. 4d. The uncertainty is large at the left outlet region, indic-
ating  that  the  prediction  at  this  area  has  low  fidelity.  Similarly,
the performance of the PC-BNN on the data with different noise
levels are  studied,  and  the  reconstruction  accuracy  and  uncer-
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Fig. 3.   a Comparison of reconstruction results of the stenotic flow with sparse, noisy data (10% noise) between b purely data-based DNN pre-
diction and c mean velocity field reconstructed by PC-BNN. The uncertainty of PC-BNN based flow reconstruction (i.e., standard deviation
field) is shown in panel d.
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Table 1   Mean errors and uncertainties of reconstructed u velocity fields from sparse, noisy data using PC-BNN. Note that both the error and std
are normalized by the corresponding CFD benchmark solution.

Reconstructed u velocity field of stenotic flow

Level of noise Relative mean error Uncertainty (mean/max std)

5% noise
Data only 0.623 Not applicable

PC-BNN 0.041 0.038/0.076

10% noise
Data only 0.833 Not applicable

PC-BNN 0.069 0.050/0.083

15% noise
Data only 0.941 Not applicable

PC-BNN 0.100 0.064/0.125

Reconstructed u velocity field of bifurcation flow

Level of noise Relative mean error Uncertainty (mean/max std)

5% noise
Data only 1.000 Not applicable

PC-BNN 0.132 0.046/0.210

10% noise
Data only 1.000 Not applicable

PC-BNN 0.126 0.062/0.253

15% noise
Data only 1.000 Not applicable

PC-BNN 0.173 0.067/0.325
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Fig. 4.   a Comparison of reconstruction results of the bifurcation flow with sparse, noisy data (10% noise) between b purely data-based DNN
prediction and c mean velocity field reconstructed by PC-BNN. The uncertainty of PC-BNN based flow reconstruction (i.e., standard deviation
field) is shown in panel d.
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tainty  are  summarized  in Table  1.  The  same  trend  as  shown  in
Case 3 can be found: the mean reconstruction error and uncer-
tainty  will  increase  as  the  noise  grows.  The  results  from  both
Cases 3 & 4 show that the proposed PC-BNN can accurately re-
construct  a  high-resolution  flow  field  from  sparse  and  noisy
data, and the prediction uncertainty can also be estimated.

λ= 0.1

In this work, the numerical results have demonstrated that a
high-resolution  flow  field  can  be  recovered  following  physics-
constrained learning with sparse data and known physical con-
straints  (i.e.,  Navier–Stokes  equations).  However,  a  previous
work  [28]  in  the  context  of  surrogate  modeling  has  shown  that
flow  solutions  of  the  Navier–Stokes  equations  can  be  obtained
from  physics-constrained  deep  learning  even  without  any
labeled  data  if  the  boundary  conditions  are  imposed  properly.
Therefore, it is interesting to know what benefit can be gained by
introducing  additional  sparse  labeled  data  into  PDE-con-
strained  learning.  Taking  the  stenotic  flow  as  an  example,  we
conducted a comparison study between the data-free PDE-con-
strained  learning  and weakly  data-based (i.e.,  sparse  data-
based)  PDE-constrained  learning,  where  boundary  conditions
are both imposed softly with a penalty parameter . Figure 5
shows the histories of test errors for velocity and pressure versus
the number of training epochs. The test error of the weakly data-
based learning (red dashed line) decreases much faster than that
of the  data-free  learning  (blue  solid  line).  With  the  same  num-
ber  of  training  epochs,  the  prediction  error  from  sparse  data-
based, physics-constrained learning is  about one order of  mag-
nitude  lower  than  purely  physics-constrained  learning  without
any  labeled  data.  The  comparison  indicates  that  adding  some
labeled  data  would  further  improve  the  equation-constrained
learning, which  is  consistent  with  the  intuition  since  more  in-
formation is used for the neural network training.

The objective of this work is to reconstruct a high-resolution
flow  field  from  sparse  and  possibly  noisy  data.  To  achieve  this
goal, we  proposed  a  physics-constrained  Bayesian  deep  learn-
ing  framework,  where  the  likelihood  function  is  constructed
based on the measurement uncertainty and model inadequacy.
Stein  variation  gradient  descent  is  used  to  enable  efficient
Bayesian learning. The proposed approach is able to reconstruct
the  flow  field  with  estimated  uncertainties  particularly  when
data are  corrupted with measurement noise.  Numerical  experi-
ments were conducted on a number of flow reconstruction cases
with  idealized  vascular  geometries,  where  synthetic  data  are
used  to  evaluate  the  performance  of  the  proposed  method.  We
have demonstrated that the constraints of a physical model can
significantly  improve  the  reconstruction  results  from  limited

clean data. When the data are noisy, our proposed PC-BNN can
accurately  predict  the  mean  flow  field,  meanwhile  reasonably
estimate the prediction uncertainties corresponding to different
data noise levels.
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