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Abstract— The problem of localizing a set of nodes from rela-
tive pairwise measurements is at the core of many applications
such as Structure from Motion (SfM), sensor networks, and
Simultaneous Localization And Mapping (SLAM). In practical
situations, the accuracy of the relative measurements is marred
by noise and outliers; hence, we have the problem of quantifying
how much we should trust the solution returned by some given
localization solver. In this work, we focus on the question of
whether an `1-norm robust optimization formulation can recover
a solution that is identical to the ground truth, under the
scenario of translation-only measurements corrupted exclusively
by outliers and no noise; we call this concept verifiability.
On the theoretical side, we prove that the verifiability of
a problem depends only on the topology of the graph of
measurements, the edge support of the outliers, and their
signs, while it is independent of ground truth locations of
the nodes, and of any positive scaling of the outliers. On the
computational side, we present a novel approach based on
the dual simplex algorithm that can check the verifiability of
a problem, completely characterize the space of equivalent
solutions if they exist, and identify subgraphs that are verifiable.
As an application of our theory, we provide a procedure to
compute a priori probability of recovering a solution congruent
or equivalent to the ground truth given a measurement graph
and the probabilities of each edge containing an outlier.

I. INTRODUCTION

The problem of localizing a set of agents or nodes with
pairwise relative measurements can be modeled as a pose
graph [18], where the nodes are associated to vertices
and pairwise relative measurements are associated to edges.
Typical solutions are cast as maximizing the likelihood of
the relative pairwise measurements given the estimated agent
poses, possibly after choosing different statistical models that
lead to different cost functions to be optimized; this approach
has been referred to as Pose Graph Optimization (PGO) [10]
Different versions of this problem have been of interest in
a number of fields. In computer vision, the Structure from
Motion (SfM) problem [16] aims to recover the location and
orientation of cameras, and the location of 3-D points in
the scene, given an unordered collection of 2D images. In
sensor networks, the nodes need to be localized from relative
translation or distance measurements [6], [9], [11]. In robotics,
the Simultaneous Localization And Mapping (SLAM) [14],
[24] problem aims to recover the pose trajectories of one or
more mobile agents, while building a map of the environment,
using multimodal measurements (extracted from images or
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inertial measurement units). In all these applications, pairwise
measurements are generally corrupted by a combination of
small-magnitude noise and large-magnitude outliers, due to
hardware, environmental, and algorithmic factors [31].

The simplest and most common objective employed in PGO
is the least square error [3], [13], which corresponds to the
assumption that measurements are affected by Gaussian noise
(typically having low variance). However, the solution of least
square optimization can be greatly impacted by the presence
of outliers (one or two isolated outliers can bias the solution
for all the nodes). In [22], [23], the authors estimate the
location of the nodes (with relative direction measurements)
by minimizing a least square objective function with global
scale constraints through a semi-definite relaxation (SDR),
while [27], [28] solve a similar problem through constrained
gradient descent; in both cases, although some theoretical
analysis of the robustness of the method to noise is given,
the resulting methods are not robust to outliers (due to
the use of the least squares cost). To obtain robustness,
a possible approach is to use a pre-processing stage (e.g.,
using Bayesian inference or other mechanisms) to pre-process
the measurements and remove outliers, followed by PGO
[19], [21], [30], [31], [33]. An alternative or complementary
method is to optimize robust (ideally convex) cost functions,
such as the Least Unsquared Deviation (LUD) [15], [34] or
others [32]; in this case, the optimization can be carried out
using re-weighting techniques (such as Iterative Reweighted
Least Squares, IRLS [17] or others [1], [25]), or Alternate
Direction Method of Multipliers (ADMM, [7], [12]). In all
these robust approaches, it has been shown empirically that
the results are close to the ground truth even in the presence
of outliers; however, there have been no published attempts
to characterize, in a precise way, what kind of situations can
be tolerated by the solvers. The reader should contrast this,
for example, to the simple case of the median in statistics,
where it is well known that such estimator is robust up to 50
percent of outliers [8], [20], [29].

The goal of this paper is to obtain results for PGO that are
similar in spirit to those available for the median in classical
robust estimation theory. In order to obtain strong theoretical
results on the effect of outliers alone, in this paper we
focus on the case where we are interested in recovering only
translations (not rotations), and there is no Gaussian noise
(i.e., each measurement is either perfect, or corrupted by an
outlier of arbitrarily high, but bounded, magnitude); we plan
to extend our results to more realistic situations in our future
work. As the objective function in the optimization, we use the
least absolute value deviation (`1-norm), which is convex and



allows us to bring the extensive tools from linear optimization
to our disposal. Under these conditions, it can be empirically
noticed that the robustness of the `1 cost function leads to
three possible outcomes: the solution found by the solver and
the ground truth are either congruent; different, but with the
same value for the cost; or drastically different. Moreover,
this categorization appear to depend on where the outliers are
situated, but not on their absolute magnitude. We formalize
this observation in the notion of verifiability for a graph.
Given an hypothesis for the edge support of the outliers and
their sign, we can use convex optimization theory to predict
whether solving the `1 optimization problem can recover the
ground truth solution, whether this can be done uniquely,
and, if not, completely characterize the set of solutions, while
identify which subsets of the graph can be exactly recovered.
From this, and by knowing the probability of each edge
to be an outlier with a given sign, we can then compute
the probability that the recovered solution is completely or
partially congruent to the ground truth embedding (without
knowing the actual support of the outliers). Moreover, the
procedure can be extended to identify subgraphs that can be
uniquely localized with high probability.

II. NOTATION AND PRELIMINARIES

In this section we formally define our measurement model,
the optimization problem for localizing nodes from relative
measurements, and we define the notion of verifiability.

A. Graph Model

Definition 1: A sensor network is modeled as an oriented
graph G = (V,E), where V = {1, . . . , N} represents the set
of sensors, and E ⊂ V × V represents the pairwise relative
measurements; we have (i, j) ∈ E if and only if there is
a measurement between node i ∈ V and node j ∈ V . We
assume that G is connected. We use |V |, |E| to indicate the
cardinality of the sets V and E, respectively.

Definition 2: An embedding of the graph associates each
node i to a position xi ∈ Rd. Mathematically, we identify an
embedding with a matrix XV =

[
x1 . . . x|V |

]
∈ R|V |×d,

with d being the ambient space dimension; we denote the
ground truth embedding as X∗V .

Definition 3: A measurement between node i and j,
(i, j) ∈ E, is modeled as

tij = x∗j − x∗i + εij , (1)

where x∗j − x∗i is the true translation between nodes i and j,
and εij is a random variable for outliers with distribution

εij =


0, w.p. 1− p+ij − p

−
ij

U−, w.p. p−ij
U+, w.p. p+ij

, (2)

where p−ij , p
+
ij ∈ (0, 1) are a priori probabilities of having

an outlier for the edge (i, j) with, respectively, negative or
positive support, and U−,U+ are stochastic functions that re-
turns a samples from a uniform distribution with arbitrary, but
finite, non-zero support contained in, respectively, R<0,R>0.

If d > 1, we assume that the entries of the vector εij are
i.i.d. with the same distribution (2).

We assume that the probabilities pE = {pij}(i,j)∈E are
known; as shown below in Theorem 3.3, our results are valid
independently of the support for U± (as long as it is finite).

From this point on, subscripts with V or E refer to the
vector obtained by stacking the specified quantity considered
for all nodes or edges (e.g., pE = stack({pij}(i,j)∈E)).

Definition 4: We define the outlier support Eε ⊂ E such
that Eε = {(i, j) ∈ E : εij 6= 0}.

B. Localization Through Robust Optimization

Given the relative pairwise measurements tE in the graph
G, we aim to find and characterize all the embeddings that
minimize the sum of all absolute residuals, i.e.,

min
XV ,x1=0

∑
(i,j)∈E

‖xj − xi − tij‖1

.

(3)

C. Global Translation Ambiguity

If we translate all the points in the embedding by a
common translation, the cost (3) does not change, since the
relative measurements also remain constant. Without loss of
generality, we fix this translation ambiguity by choosing a
global reference frame such that x∗1 = x1 = 0d. Since we
assumed that the graph is connected (Definition 1), fixing x1

alone is sufficient to fix the global translation. For simplicity’s
sake, we keep x1 as a variable in the optimization problem (3)
even though it is used to fix the global translational ambiguity.

D. Set of Global Optimizers X opt

We define as X opt the set of local minimizers of (3). Since
the objective function is convex (being the sum of convex
functions), we have that X opt is convex, and is exactly given
by the set of global minimizers (see [4, Theorems 8.1, 8.3]).
Moreover, using the fact that the value of x1 is fixed and
that the graph is connected, it is possible to show that the
objective function in (3) is radially unbounded, and therefore
the set X opt is compact. In fact, since (3) can be rewritten
as a Linear Program (LP, see below), X opt either reduces to
a single point, or is a polyhedron with a finite number of
corners (we use this term instead of vertex as a distinction
from the individual elements of V ).

E. Verifiability

If Eε = ∅, then tE is identical to the true measurements,
and the solution of (3) would be equal to the ground truth
embedding X∗V . However, since (3) is a robust optimization
problem, the optimum value could still correspond to X∗V
even in the presence of outliers (Eε 6= ∅). In the latter case,
however, there could be multiple minimizers all giving the
same value of the `1 objective. We start formalizing the
situation with the following.

Definition 5: A (localization) problem is defined by a pair
of a graph G = (V,E) and a signed outlier support E±ε ⊂
E × {+,−} (i.e., a subset of edges paired with signs). A
problem is said to be uniquely verifiable if X opt = X∗V



(unique solution), verifiable if X∗V ∈ X opt (possible multiple
equivalent solutions), and non-verifiable otherwise.
Note that, according to the definitions, uniquely verifiable
problems are also verifiable.

In [31, Theorem 2], the authors also introduce the concept
of verifiable edge and verifiable graph; however, that work
considers only the case of a single outlier (|E±ε | = 1). In this
work, we generalize the same notion to more general cases.

III. CANONICAL LP FORM AND VERIFIABILITY

In this section we perform a series of transformations to
the optimization problem (3) to reduce it to a canonical,
one-dimensional LP (and its dual), allowing us to deduce
that particular ground-truth embeddings X∗V and outlier
magnitudes εE do not affect the verifiability of a problem,
thus ensuring that Definition 5, which depends only on the
graph topology and the signed outlier support, is well posed.

A. Canonical Form

We first perform a change of variable so that the true
embedding corresponds to the point at the origin. More in
detail, we define a set of new variables X′V such that

X′V = XV −X∗V , (4)

i.e., for each i ∈ V we replace xi by x′i + x∗i . If X∗ is an
optimal point for (3), then X′ = 0|V | is a minimizer for the
following transformed problem:

min
x′V ,x

′
1=0

∑
(i,j)∈E

‖(x′j + x∗j )− (x′i + x∗i )− (x∗j − x∗i + εij)‖1,

(5)
which reduces to

min
x′V ,x

′
1=0

∑
(i,j)∈E

‖x′j − x′i − εij‖1. (6)

By inspecting (6), we can deduce the following:
Lemma 3.1: The canonical form of the optimization prob-

lem, and the definition of verifiability, do not depend on the
specific value of X∗V .

Proof: Assume we have two problems with different
true embeddings X∗V1

, X∗V2
, but with the same graph topology

G, and the same outlier realization εE . The corresponding
optimization problem in canonical form (6) are the same,
hence, also their set of solutions (after the change of variable)
is the same. The rest of the claim then follows from
Definition 5.

The practical implication of Lemma 3.1 is that we can reason
about the verifiability of a problem independently from the
specific true positions of nodes. To simplify our discussion,
for the remainder of the paper and without loss of generality
we use x instead of x′.

B. Reduction to One-Dimensional Problems

The `1-norm ‖·‖1 : Rd → R in the optimization objective
can be decomposed into sums of absolute values across
dimensions, i.e., (6) becomes

min
XV ,[x1]k=0

d∑
k=1

∑
(i.j)∈E

∣∣[xj ]k − [xi]k − [εij ]k
∣∣, (7)

where [v]k denotes the k-th element of a vector v ∈ Rd. The
minimization problem (7) can then be decomposed into d
separate optimization problems, each one with a solution set
[X opt]k, k ∈ {1, . . . , d}, and each one corresponding to a
1-D localization problem of the form

min
xV ,x1=0

∑
(i.j)∈E

| xj − xi − εij | . (8)

We postpone to Section IV-D the discussion of how to
combine the results of our analysis from the different
dimensions; until that section, we exclusively focus on the
1-D version of the problem.

C. Canonical Linear Program Form

In this section, we transform (8) into the equivalent standard
Linear Program (LP) form, with a linear cost function subject
to linear inequality constraints, and compute its dual. This will
allow us to arrive to the conclusion that the exact magnitude
of the outliers is not important in terms of verifiability, and
only the signed outlier support matter.

We first introduce variables

Zij = |xj − xi − εij |, ∀(i, j) ∈ E, (9)

to push the cost function into the constraints.

min
ZE ,xV ,x1=0

∑
(i,j)∈E

Zij (10a)

subject to xj − xi − εij ≤ Zij , (10b)
− (xj − xi − εij) ≤ Zij , (10c)
Zij ≥ 0, (10d)
∀i ∈ V, (i, j) ∈ E.

Next, in order to obtain a standard LP form, all variables
must be non-negative. We therefore split each variable xi
into the summation of two non-negative variables,

xi = x+i − x
−
i , x

+
i , x

−
i ≥ 0. (11)

Finally, we change the inequality constraints into equality
constraints by introducing the slack variables S+

E , S
−
E :

min
Z,x,x1=0

∑
(i.j)∈E

Zij , (12a)

subject to x+j − x
−
j − (x+i − x

−
i )− εij + S+

ij = Zij ,

(12b)

− (x+j − x
−
j − (x+i − x

−
i )− εij) + S−ij = Zij ,

(12c)

x+i , x
−
i , S

+
ij , S

−
ij , Zij ≥ 0, (12d)

∀i ∈ V, (i, j) ∈ E.



Remark 1 (Value of SE): If we add constraints (12b) and
(12c), we obtain

S+
ij + S−ij = 2Zij . (13)

Moreover, from (9) and (13),

(S+
ij , S

−
ij ) =

{
(2Zij , 0), if Zij = −(xj − xi − εij)
(0, 2Zij), if Zij = xj − xi − εij .

(14)

We can also form the dual optimization problem of (12),

max
P+
ij ,P

−
ij

∑
(i,j)∈E

εij(P
+
ij − P

−
ij ), (15a)

subject to
∑

j,(j,i)∈E

(P+
ji − P

−
ji )−

∑
j,(i,j)∈E

(P+
ij − P

−
ij ) = 0,

(15b)

− P+
ij − P

−
ij ≤ 1, (15c)

P+
ij , P

−
ij ≤ 0, (15d)

∀i ∈ V, (i, j) ∈ E,

where P+
ij is the dual variable associated to constraint (12b),

and P−ij is the dual variable associated to constraint (12c).
Remark 2 (Strong duality and verifiability): Assume that

the localization problem (G,Eε) is verifiable or uniquely
verifiable. Then, the origin is primal optimal, i.e., 0|V | ∈ X opt,
and from (9), we have that, at the primal optimal solution
(X∗ = 0, Z∗E , S

+∗
E , S−∗E ):∑

(i,j)∈E

Z∗ij =
∑

(i,j)∈E

|εij | =
∑

(i,j)∈E±ε

|εij |; (16)

note that, in the last equality, the sum is only over edges in
the outlier support.

If a linear programming problem has an optimal solution,
so does its dual, and the respective optimal costs are equal;
this is known as the strong duality property [5, Theorem 4.4].
Combining this observation with (16), we have that, for a
dual optimal solution (P+∗

E , P−∗E ),∑
(i,j)∈E

Z∗ij =
∑

(i,j)∈E±ε

εij(P
+∗
ij − P

−∗
ij ) =

∑
(i,j)∈E±ε

|εij |.

(17)
Remark 3 (Discrete optimal solution for dual variables):

Note that constraints (15c) and (15d), together with
(17) imply that the dual optimal solution is given by
(P+∗
ij , P

−∗
ij ) ∈ {(−1, 0), (0,−1)}, for all (i, j) ∈ E±ε

(i.e., there are two discrete cases for each edge with
outliers, and the selection depends on the sign of εij), and
−1 ≤ P+∗

ij , P
−∗
ij ≤ 0 for the remaining edges.

These remarks allow us to prove the following.
Lemma 3.2: For a fixed outlier support Eε, if we change

the scale of the outliers by positive factor, the verifiability of
the graph does not change.

Proof: Assume that the localization problem (G,E±ε ) is
verifiable or uniquely verifiable, and that (X∗V = 0, Z∗E , S

∗
E)

is a primal optimal solution, while (P ∗+E , P ∗−E ) is a dual
optimal solution. If we replace each outlier εij with a
positively scaled version uijεij , uij > 0, (i, j) ∈ E (the
case uij = 0 is excluded, otherwise the outlier support

would change), the cost function in (15) changes, but not the
constraints, so (P ∗+E , P ∗−E ) is still a dual feasible solution.
Considering the second equality in (17) from Remark 2
together with Remark 3, we have that the new dual cost
after rescaling is∑

(i,j)∈E

uijεij(P
+∗
ij − P

−∗
ij ) =

∑
(i,j)∈E±ε

uij |εij |. (18)

At the same time, the solution (X∗V =
0, {uijZ∗ij}(i,j)∈E , {uijS∗ij}(i,j)∈E) is primal feasible,
and the corresponding cost is∑

(i,j)∈E

uijZ
∗
ij =

∑
(i,j)∈E

uij |εij |. (19)

From (18) and (19) together with strong
duality, we can therefore conclude that (X∗V =
0, {uijZ∗ij}(i,j)∈E , {uijS∗ij}(i,j)∈E) (respectively,
(P ∗+E , P ∗−E )) is primal (respectively, dual) optimal.
This shows that X∗V = 0 is an optimal solution, and the
rescaled problem is again verifiable; hence, one problem is
verifiable if and only if all the positive scaled versions are
also verifiable.
Combining lemmata 3.1 and 3.2 we have the following:

Theorem 3.3: The notion of verifiability depends only on
the graph topology G, the support of the outliers Eε , and
the sign of the outliers.

Technically speaking, the proof above does not cover the
case of unique verifiability, in the sense that the they do not
exclude the case where a verifiable problem might become
uniquely verifiable after rescaling (or viceversa). We are
investigating this issue in our current work.

IV. VERIFIABILITY COMPUTATION

A. Linear Programming

In this section, we discuss how the dual simplex algorithm
can be used to compute the verifiability of a given problem.
As a result of the previous section, for our analysis, the values
of εE can be choosen randomly, as long as they have the
correct edge support E±ε . We start by rewriting the LP (12)
in matrix form:

min
q

cTq

subject to Aq = b

q ≥ 0.

(20)

The vector c = stack(02|V |,1|E|,02|E|) contains
the set coefficients in the cost function, while A ∈
{0, 1,−1}2|E|×(2|V |+3|E|), and b =

[
1
−1
]
⊗ εE defines

the constraints (where ⊗ denotes the Kronecker’s prod-
uct). Finally, the vector q = stack(x+V , x

−
V , ZE , S

+
E , S

−
E ) ∈

R2|V |+3|E| contains the decision variables.
Given the standard form of the optimization problem (20),

we can use the dual simplex algorithm [5] to find all the
corners of the set of minimizers X opt. Next, we present the
algorithm and application to our problem.



0-th col. x+V x−V ZE S+
E S−E

0-th rowx 0 0V 0V 1E 0E 0E
qB(1) b(1) | | | | |
qB(2) b(2) ax+

V
ax−V

aZE aS+
E

aS−E
...

... | | | | |
qB(2|E|) b(2|E|)

Fig. 1: Initial simplex tableau, with labeled rows and columns

B. Localization Via the Dual Simplex Method

The dual simplex method is based on the following
concepts:

1) Basic variables (BVs): a subset of variables (qB),
that, together with the constraints, defines the current
candidate solution in the algorithm. Non-basic variables
(NBV) are always zero.

2) Simplex tableau: a (2|E|+ 1)× (2|V |+ 3|E| − 1) array
where
• The zeroth column represents the value of the set of

basic variables (qB). It is initialized with the vector b.
• The zeroth row contains the reduced costs, which are

defined as the penalty cost for introducing one unit of
the variable qi to the cost. These are initialized with
the vector c.

• Columns one to 2(|V | − 1) + 3|E| are each one
associated with one variable, where we excluded the
columns corresponding to x+1 , x

−
1 , since x1 is fixed in

the optimization. These columns are initialized with
the matrix A.

For our initial estimated solution, we set all variables to
zero except the slack variables; as a result, our initial BVs
correspond to the set of slack variables, while the rest are
NBVs. See Fig. 1 for an illustration of the initial tableau.

A typical iteration starts with some basic variables con-
taining negative elements, and all reduced costs non-negative.
For instance, in Fig. 1, the initial BVs are selected to be
slack variables where S+

ij = εij and S−ij = −εij , hence, there
are some negative initial BVs, while all reduced costs are
non-negative (as all elements of vector c are non-negative).
These two properties are always maintained by the algorithm
from one iteration to the next.

The iterations of the algorithm then follow these steps:
1) Check for termination due to optimality: Examine the

elements of zeroth column (which constitutes the basic
set). If all of them are non-negative, we have an optimal
basic solution and the algorithm terminates.

2) Choose pivot row: Find some ν such that [qB ]ν < 0.
3) Check for termination due to unbounded solution:

Considering the ν-th row of the tableau, with elements
r1, . . . , r2(|V |−1)+3|E|, if all the elements of the row are
non-negative, the optimal dual cost is +∞ and algorithm
terminates. Since the set of minimizers X opt in our
problem is bounded (see Section II-D), this condition is
never encountered in our application.

4) Choose pivot column: For each i such that ri < 0,
compute the ratio c̄i/|ri| where c̄i is the reduced cost
of variable qi and let j be the index of a column that
correspond to the smallest ratio.

5) Pivoting: Remove the variable [qB ]ν from the basis, and
have variable qj take its place. Add to each row of the
tableau a multiple of the ν-th row (pivot row) so that rj
(the pivot element) becomes 1 and all other entries of
the pivot column become 0. As a result, the total cost
is reduced by the reduced cost c̄j .

6) Repeat the algorithm from step 2 until all elements of qB
are non-negative or the algorithm otherwise terminates.

After solving the simplex tableau, we get the basic optimal
solution, which contains non-negative elements, together with
non-negative reduced costs. The solution of the dual simplex
algorithm is an optimal solution for (20), and is a corner
point of the feasible region (Theorem 2.3, [5]). If we have
multiple optimal solutions (i.e., X opt is not a singleton), there
will be multiple other corners with the same cost.

Hence, it is of interest to computationally enumerate all
the corners of X opt, as discussed next.

C. Characterizing X opt And Verifiability

The LP problem 20 can have multiple optimal solutions
only when two conditions are met [2]:

1) There exists a non-basic variable with zero reduced cost.
Pivoting this variable into the basis would not change
the value for the cost function.

2) There exists a degenerate basic solution, i.e. some basic
variables are equal to zero.

If the two conditions above are met, the corners in X opt

can be enumerated using a depth first search [26]:
1) Prepare a queue Q of corners to visit, with the cor-

responding tableau, and initialize it with the current
solution found by the dual simplex algorithm,

2) For each corner in Q and its associated tableau,
a) Choose Ccol as the set of columns associated to non-

basic variables with zero reduced cost, for all j ∈ Ccol,
i) Choose Crow as the set of elements of the j-th

pivot column which are positive,
ii) For i ∈ Crow, we perform the pivoting, so that

the pivot element in i-th row and j-th column
becomes 1 and all other entries of the pivot column
become 0,

iii) Add the current corner to the queue Q, if is not
in it already,

3) Go to step 2 until the queue Q is empty.
Remark 4: In terms of our localization problems, the

pivoting variables and the motion from one corner of X opt to
another can be given a physical interpretation. We defined as
Zij the cost of edge (i, j). Assuming we have a verifiable
graph, from (16), the cost of edge (i, j) is equal to |εij |. When
we move (pivot) to another corner with the same cost, the
set of basic variables changes, but the value of all the other
variables remains the same. So, if a non-basic variable takes
the place of basic variables from the set x+V or x−V , it does not



produce a new optimal embedding (because such variables
where already equal to zero). If a pivoting variable takes the
place of non-zero basic variable Zij , then Zij becomes zero,
which means the cost of edge (i, j) changes to zero, and
if εij 6= 0 then from (16), xi and xj are not equal to zero
anymore. As the value of cost function remains the same,
the loss of cost of edge (i, j) must be compensated with
the costs of the rest of the edges. If we pivot a non-basic
variable to the non-zero basic variable S+

ij or S−ij , from (13),
it implies the value of Zij becomes zero which means the
cost of edge (i, j) changes to zero. So, pivoting non-basic
variable in order to find alternative solutions means shifting
the cost of outliers from one edge to the others.

There are three cases for the set of optimal solutions, X opt:

1) Uniquely verifiable solution: Pivoting new variables
to the basis does not result in new corner point; we
therefore have a unique optimal solution X opt = {0V },
and from (4) we conclude that the resulting embedding
is congruent to the ground truth.

2) Verifiable (non-unique) solution: We have multiple
optimal solutions, including the origin (0V ∈ X opt);
hence, there are multiple optimal embeddings, with one
of them being congruent to the ground truth.

3) Non-verifiable: In this case, 0V /∈ X opt, and the ground
truth embedding is not an optimal solution.

D. Combining Solutions From Multiple Dimensions

In Section III-B, we reduced one d-dimensional optimiza-
tion problem of the form (6) to d 1-D optimization problems
of the form (8). Now, we need to combine the optimal
solutions of all dimensions to characterize the d-dimensional
optimal solution. Let [X opt]k represents the set of optimal
solutions for the LP (10) of dimension k. The value of the
cost function (10) is the same for all corner points in [X opt]k.
Due to this fact, we can pick a 1-D corner point from each
set [X opt]k, k ∈ {1, . . . , d}, and combine them to build a
d-dimensional corner point:

xopt = stack(Xopt
1 , . . . , Xopt

d ), Xopt
k ∈ [X opt]k. (21)

Let |[X opt]k| represents the cardinality of the set [X opt]k; then,
we have N =

∏d
k=1

∣∣[X opt]k
∣∣ d-dimensional corner points.

To have a unique verifiable graph, we therefore need all
the individual 1-D problems to be also unique verifiable, i.e.
|[X opt]k| = 1 for all k ∈ {1, . . . , d}.

E. Maximal verifiable components

If for all corners a subset of components V ′ in the solution
are always zero (i.e., [Xopt

k ]′V = 0 for all k), then the position
of those particular nodes, and all their relative positions, are
congruent to the true embedding. As a consequence, also
all their relative costs are the same. Hence, while the entire
problem G,E±ε is not verifiable, the sub-problem G′, E′±ε ,
where G′ = (V ′, E′), E′ = {(i, j) ∈ E : i, j ∈ V ′} is
verifiable. We call the maximal connected components of G′

defined in this way the maximal verifiable components of G.

V. VERIFIABILITY PROBABILITY

Given a tuple (G,E±ε ) of a graph and a signed outlier
support, we can define a function that indicate if the associated
localization problem is verifiable,

Ver(G,E±ε ) =

{
1 if 0 ∈ Xopt

0 otherwise
(22)

This function can be implemented by using the dual simplex
algorithm discussed above.

Given the edge outlier probabilities xx defined in (2), we
can take the expectation of Ver(G, ·) over different outlier
realizations, and hence characterize the a priori probability of
recovering a localization that is cost-equivalent to the true one,
without knowing the exact value or support of the outliers.

Definition 6: We define the verifiability probability pVer

as the probability of recovering a solution whose cost is the
same as the ground truth, i.e., pVer = Eε[Ver(G,E±ε )], where
Eε[·] is the expectation over all the realizations of outliers.

The interpretation of this number is the a priori probability
that the ground truth embedding X∗V belongs to X opt, the
set of minimizers of (3). For instance, if we assume the
edge positive outlier probability is p+, and the edge negative
outlier probability is p−, then we can define p(εE) =
(p+)|E

+
ε |(p−)|E

−
ε |(1− p+ − p−)(|E|−|E

−
ε |−|E

+
ε |) and pVer =

Eε[Ver(E,E±ε )].
Note that an analogous quantity could be computed for

unique verifiability, although we would need to expand our
results to make this rigorous (see comments immediately
after Theorem 3.3). Moreover, a similar concept could be
extended to each individual edge, or any arbitrary subset of
edges, by asking whether they are part of a maximal verifiable
component (Section IV-E). Nonetheless, a formal exploration
of these concepts is out of the scope of the present paper.

VI. NUMERICAL EXAMPLES

In this section we apply our theory and algorithm1 to a
simple graph with 5 nodes and 10 edges, XV ∈ R5×2 (Fig.
2). We start with the case where three relative measurements
in first coordinate are outliers and all other measurements
(Fig. 2a) are accurate. In this example, positive and negative
outlier have the same probability p+ = p− = 1

2p. After
solving the optimization problem associated to this graph, we
find three different embeddings that represent the corners of
X opt; these are shown in Fig. 2b, 2a and 2b.
In Fig. 2b, the resulted embedding is identical to the ground

truth embedding, which means that xV ∈ X opt, and the graph
is verifiable. However, since we have multiple solution, the
graph is not uniquely verifiable. In the figures, the cost of
associated to each edge is shown; it can be seen that different
corners shift the cost to different edges, although their sum
remains the same. The locations of nodes V ′ = {1, 2, 4}
are identical to their ground truth locations, and the costs
of edges E′ = {(4, 1), (2, 1), (2, 4)} remain the same in all

1The algorithm is implemented in MATLAB at
thttps://github.com/Mahrooo/Robust-Localization-Verifiability.git
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Fig. 2: Verifiable graph with 5 nodes and 10 edges, 3 edges
are outliers are shown by red color in Fig. 2a, the cost of
each edge is shown on each and the cost of optimal solution
for all embeddings are equal to the cost of the ground truth
embedding which is 63

embeddings, so the subgraph G = (V ′, E′) is a maximal
verifiable component.

Assuming that the edge outlier probability pij is 1
2p for

all edges (i, j) ∈ E, then for our graph in this example the
verifiability probability for this graph can be evaluated as

pVer = (1− p)10 + 20(
p

2
)(1− p)9 + 180(

p

2
)2(1− p)8

+ 920(
p

2
)3(1− p)7 + 2680(
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)7(1− p)3

+ 1080(
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)9(1− p) + 24(

p

2
)10,

(23)
where the coefficients come from Table I. As shown in Fig. 3,
if p = 0 we have a verifiable graph with probability pVer = 1;
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Fig. 3: Verifiability probability for the graph in Fig 2

TABLE I: Verifiability analysis for all possible cases of outlier
supports E±ε

#outliers, |E±ε | #possible
combinations,( |E|
|E±ε |

) #verifiable
combinations

0 1 1
1 20 20
2 180 180
3 960 920
4 3360 2680
5 8064 4524
6 13440 4560
7 15360 2820
8 11520 1080
9 5120 240
10 1024 24

as we increase the probability of more edges to be outliers, the
probability of having access to the verifiable graph decreases.

VII. CONCLUSIONS AND FUTURE WORKS

In this work, we consider the estimation of an embedding
for nodes with relative translation measurements affected by
outliers (but no noise) through the minimization of an `1-
norm cost function. We introduce the notion of verifiability,
which characterizes when we can expect to recover a solution
with cost equal to the true one; we show that the concept
of verifiability depends only on the topology of the network
and where the outliers are placed, and we also provide a way
to compute it using the dual simplex method. From a more
practical standpoint, we define the verifiability probability,
which characterizes the a priori reliability that can be expected
from a given measurement graph (given a priori probabilities
of outliers for each edge). There are many possible directions
for our future work. First, we plan to include the effects
of amplitude-limited noise to our measurement models, and
study its effect of noise on our results; concurrently, we will
study different cost functions, such as the Huber-loss function
and piece-wise linear loss functions.
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