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PDE-CONSTRAINED OPTIMIZATION AND LARGE
DEVIATION THEORY, WITH APPLICATION TO TSUNAMIS
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We propose and compare methods for the analysis of extreme events in complex
systems governed by PDEs that involve random parameters, in situations where
we are interested in quantifying the probability that a scalar function of the
system’s solution is above a threshold. If the threshold is large, this probability
is small and its accurate estimation is challenging. To tackle this difficulty, we
blend theoretical results from large deviation theory (LDT) with numerical tools
from PDE-constrained optimization. Our methods first compute parameters that
minimize the LDT-rate function over the set of parameters leading to extreme
events, using adjoint methods to compute the gradient of this rate function. The
minimizers give information about the mechanism of the extreme events as well
as estimates of their probability. We then propose a series of methods to refine
these estimates, either via importance sampling or geometric approximation of
the extreme event sets. Results are formulated for general parameter distributions
and detailed expressions are provided for Gaussian distributions. We give theo-
retical and numerical arguments showing that the performance of our methods
is insensitive to the extremeness of the events we are interested in. We illustrate
the application of our approach to quantify the probability of extreme tsunami
events on shore. Tsunamis are typically caused by a sudden, unpredictable change
of the ocean floor elevation during an earthquake. We model this change as a
random process, which takes into account the underlying physics. We use the
one-dimensional shallow water equation to model tsunamis numerically. In the
context of this example, we present a comparison of our methods for extreme
event probability estimation, and find which type of ocean floor elevation change
leads to the largest tsunamis on shore.
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1. Introduction

Extreme events tend to occur rarely but are often consequential when they do. Exam-
ples from natural, social, and engineered systems include extreme weather patterns
such as hurricanes or tornadoes, pandemics, the collapse of financial systems, cascad-
ing failures in power grids, and structural damage in dams or bridges. Estimating the
probability of these events and uncovering the mechanisms behind their emergence
can help inform strategies to mitigate their effects. However, given the complexity
of their dynamics, it is typically unfeasible to calculate their probabilities explicitly.
Monte Carlo methods are the standard approach to studying complex systems that
include uncertainty. Unfortunately, these methods become inefficient to explore the
probability tails associated with extreme events. The aim of this paper is to design
efficient methods to estimate tail probabilities occurring in complex systems.

The methods we propose are meant to be generic and applicable to a broad
class of problems. However, in this paper we use tsunamis as our main application
example. Tsunami waves are generated by the displacement of a large amount of
water due to a sudden and unpredictable elevation change in the ocean floor. This
change, which occurs in conjunction with an earthquake, typically happens tens or
hundreds of kilometers away from the coast line. As the tsunami waves travel to
shore, they speed up in the deeper parts of the ocean and slow down in the shallower
parts. This nonlinear interaction with the ocean floor combined with reflections
from land features shape the tsunami waves that eventually reach the shore. To
quantify the flooding-induced damage in locations of interest (e.g., cities or critical
infrastructure), we use the average tsunami wave height in regions close to those
locations. The random component in this system is the ocean floor elevation change.
Given a distribution for possible elevation changes, we study the probability of
observing extreme tsunamis close to the locations of interest. Additionally, we
explore which type of elevation changes result in the largest tsunamis. The next
section summarizes our approach, prior to a review of related work in this area.

1A. Mathematical setup and methodological aspects. Following the strategy pro-
posed in [14; 15], we use tools from large deviation theory (LDT) to connect
probability estimation of extreme events with optimization. We assume that the
randomness of the event under consideration can be captured by a parameter 6
taking values in a Hilbert space €, e.g., @ = R" or Q = L?(D) for a domain
D C R", and whose statistics are specified by a probability measure p. Given a
parameter-to-event map F : 2 — R such that the larger F(6), the rarer the event,
we are interested in the probability

P(z) :=P(F() = 2), -1

when z is large and hence P(z) < 1. In the applications we are interested in,
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F () is of the form F(#) = G(u(0)), where G is some functional evaluated on
the solution u of a (partial) differential equation (PDE), which we will denote by
e(u, 8) = 0: the parameter 8 may enter this PDE for instance as a forcing, or as a
boundary or initial condition, and so its solution implicitly depends on 8, u = u(6).
We will show that computation of the probability in (1-1) is aided by finding the
most likely point (in the physical literature called instanton) 6*(z) in the extreme
event set Q(z) :={0 € Q: F(A) > z}, i.e., the solution of
0*(z) = argmin I (6), (1-2)
0eQ(z)
where [ is the rate function from LDT defined in the subsequent sections and 6*(z)
is the global minimizer of I over the set €2(z), which we assume to be unique. When
F(0)=G(u(0)) where u solves e(u, 0) =0, (1-2) has the form of a PDE-constrained
optimization problem. Under suitable assumptions on F and the distribution of 6
to be detailed in Section 2, the minimum 6*(z) is attained on the boundary of €2 (z)
and it can equivalently be characterized as a solution of the problem

0*(z) = argmin I () — AF () (1-3)
0eQ

for a specific parameter A > 0. A variant of LDT then states that
log P(z) ~ —1(0*(z)) asz—> oo, (1-4)

where “A” means that the ratio between the left and the right sides goes to 1 as
7z — 0o. This shows that, by solving optimization problems of the form (1-2) (or,
equivalently, (1-3) with appropriate A > 0), we can estimate the log-asymptotic
behavior of the probability P(z) via (1-4). The details, along with the assumptions
needed for (1-4) to hold, are given in Section 2.

The next question we will address is how to get estimates of the probability (1-1)
that are more accurate than (1-4). We show that this can be done in two ways.
In Section 3 we first propose an importance sampling (IS) method based on the
optimizers 0*(z) for different z. Unlike a vanilla Monte Carlo sampler, the sample
variance of this IS does not include the term exp(—1(6*(z))). This is a significant
improvement as this term grows exponentially with the extremeness of events. This
IS method allows asymptotically exact computation of P(z).

The second way to improve upon (1-4) is to obtain an estimate that holds without
the logarithm in this equation. That is, in Section 4, we discuss how to find a
function Cy : R — (0, 00) such that

P(z) = Cy(z) exp(—1(0™*(z))) asz—> oo. (1-5)

The function Cy(z) > 0 is usually referred to as a “prefactor”. We will show
that Cy(z) can be calculated by exploiting the local derivative information at the
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optimizer 6*(z) to construct the second-order approximation of the extreme set
boundary d€2(z). In the engineering literature, this approach is referred to as the
second order reliability method (SORM), and in Section 4 we discuss conditions
under which SORM is asymptotically exact, i.e., it leads to a prefactor Cy(z) such
that (1-5) holds. Additionally, we show how low-rank approximations can be
used to compute SORM-based probabilities in high parameter dimensions. For
completeness, in Section B we review another approach used by engineers, termed
first order reliability method (FORM), which gives another expression for Cy(z):
the FORM expression for Cy(z) is simpler than that of SORM but we show that it
is not asymptotically exact in general.

As an illustration, in Sections 5 and 6 we apply our methodology to estimate
the probability of extreme tsunami events on shore, which are caused by random,
earthquake-induced elevation changes of the ocean floor described above. Here,
the parameter-to-event map F involves the solution of a system of nonlinear PDEs,
namely the shallow water equations. Since the random parameter 6 in this problem
is high-dimensional, solving the optimization problem (1-2) is challenging. We use
an adjoint method for the efficient computation of derivatives of F with respect to 6
and discuss the challenges of the resulting PDE-constrained optimization problem.

1B. Related literature. Most methods for extreme event estimation are based on
Monte Carlo (MC), Markov chain Monte Carlo (MCMC) or importance sampling
(IS) [37]. Standard MC sampling becomes impractical for extreme events due to the
large number of required samples for unlikely events. MCMC sampling has similar
shortcomings, but tailored variants such as umbrella sampling [47] can improve the
estimation of tail probabilities. Importance sampling [8; 31] decreases the required
number of samples by using proposal distributions that reduce the variance of the
estimator. Recently proposed IS methods use ideas from Bayesian inference to
find a maximum a posterior (MAP) point and construct a Gaussian distribution
centered at that point as IS proposal [42; 44; 52]. These methods require MAP
points that lie in the pre-image of certain extreme events, and finding such events
can be computationally extensive. In particular, the authors of [52] compute a
Gaussian IS proposal by minimizing the Kullback—Leibler divergence to the ideal
IS proposal. In [42], the authors propose to draw observation pairs from Rice’s
formula. Both methods rely on the linearity of the parameter-to-event maps and
linearize them for nonlinear problems.

In this paper, we follow the approach proposed in [15] that takes the perspective
of large deviation theory [16; 50] to estimate extreme event probabilities in a
system with random components and applies the resulting methods to quantify
the probability of the occurrence of rogue waves [13; 14]. These papers solve an
optimization problem that finds the most important point (also called instanton) in
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the extreme event set. This present paper uses a similar approach but generalizes it
in various directions, e.g., it provides prefactor estimators. In a related approach,
the authors of [20; 43] search for initial conditions leading to the highest growth in
flow problems. This also requires solution of an optimization problem related to
LDT optimization.

Probability estimation of extreme events is also of importance in engineering,
e.g., for assessing the structural reliability of buildings or bridges [17]. Methods
used in this context are based on the point with largest probability density (typically
of a Gaussian distribution), combined with extreme event set approximations called
first and second order reliability methods (FORM and SORM) [18; 41; 46]. These
methods use a truncated Taylor expansion of the parameter-to-event map at the
most probable point to estimate probabilities. Also IS methods based on the most
probable point have been proposed [31; 46]. Our approach has similarities with
these engineering methods, but uses instead the minimizer of the rate function from
LDT, which describes the asymptotic behavior of the probability and can be used
to design IS methods [19; 49] . Since the rate function of a Gaussian distribution
is a multiple of its log-density, our methods generalize FORM and SORM, and
provide theoretical justification for these approaches. Moreover, our methods apply
to complicated dynamical systems (governed for instance by ODEs or PDEs) with
high-dimensional parameters as they only require derivatives that can be computed
efficiently using adjoint methods.

We use the methods we propose to estimate the probability of extreme tsunami
waves on shore after sudden earthquake-induced ocean floor changes, which are mod-
eled as random. As governing equations, we use the one-dimensional shallow water
equations [35; 51], discretized with discontinuous-Galerkin finite elements [29].
To prevent the occurrence of shocks in these nonlinear hyperbolic equations, we
add artificial viscosity [10]. This also provides justification for using the adjoint
method to compute derivatives for optimization problems governed by hyperbolic
equations [24; 45].

The proposed methods require the solution of optimization problems involving
complex systems that are typically governed by PDEs. While the structure of these
problems is similar to problems occurring in optimal control and inverse problems,
the extreme event perspective suggests several novel research directions. First, it
motivates the study of new classes of governing equations, e.g., hyperbolic systems
and their discretization [24; 26; 27; 53; 45]. Second, it requires the study and
computation of post-solution properties of minimizers, e.g., estimation of second
derivatives as in Bayesian inference [9; 1] or parametric sensitivity analysis [25].
Third, as it is typically unknown when an extreme event will occur, it motivates
further study of time-optimal control problems and their numerical solution in
complex applications [21; 32].
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1C. Contributions and limitations. The main contributions of this work are as
follows: (1) We present an extreme event probability estimation framework that
exploits connections between probability estimation and PDE-constrained optimiza-
tion, and apply it to a complex example problem. (2) We propose approaches to
refine the asymptotic probability estimates from LDT by approximations of the
extreme event sets. The computational cost of these approximations is independent
of the extremeness of the events. (3) We show that importance sampling leveraging
the LDT optimizers can lead to exponential reductions of relative errors in all
parameter directions. (4) As our tsunami application problem is governed by the 1D
shallow water equations, we derive adjoint equations for this nonlinear hyperbolic
conservation law and use them to efficiently compute gradients of the LDT objective.

Our work has several limitations: (1) Most of the presented expressions for
extreme event probability estimation are for an underlying Gaussian probability
distribution. Possible generalizations depend on the probability measure and must
be considered on a case-by-case basis. However, our explicit expressions apply
to distributions that can be mapped to Gaussian distributions. (2) The proposed
approach requires regularity properties, e.g., that the optimization problem has a
unique solution and that the rate function of the parameter distribution is well defined.
Some properties of the parameter-to-event map F discussed in the next section can
be difficult to verify a priori, but some may be verified a posteriori. (3) The tsunami
model used in this work is one-dimensional, thus not allowing some of the complex-
ity of a more realistic two-dimensional setup. However, our framework is generic
and applies to more complex problems as long as derivatives of the objective with
respect to the parameters are available. (4) We make some simplifying choices in the
numerical scheme used for the shallow water equations, e.g., we use uniform time
steps and a global Lax—Friedrichs flux. Some of these choices could be relaxed and
while such a discussion is definitely interesting, it is beyond the scope of this paper.

1D. Notation. Throughout the paper we repeatedly use asymptotic estimates. Thus,
we introduce the following notation, where we consider the asymptotic parameter
s — 00. Then, for a(s), b(s) > 0, we introduce the notation

a(s) ~b(s) if @ — lass — o0, (1-6a)
b(s)
a(s) Sb(s) if a(s) <b(s) for all s, and % — lass — o0, (1-6b)
s

a(s) 2 b(s) if a(s) > b(s) for all s, and ZE—S; — lass — oo. (1-6¢)
S

We commonly use multivariate Gaussian parameters in R"”, n > 1. We say that a
parameter 6 follows 6 ~ N (6p, C) when 6 is a multivariate Gaussian parameter
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with mean 6y € R" and covariance matrix C € R"*", Here, C is assumed to be
symmetric and positive definite.

We regularly use a Hilbert space 2 and denote the corresponding inner product
by (-, -) and the induced norm by || - ||. For the Euclidean inner product, we also use
the vector notation a ' b = (a, b) whenever convenient. Given a symmetric positive
operator Q on £2, we denote the weighted inner product by (-, -)p := (-, O-) and
the induced norm by || - [l o.

2. Large deviation theory and optimization

Extreme event quantification aims at estimating the probability that a certain scalar
quantity, which is a function of a random parameter 6, is at or beyond a threshold.
In this section we summarize how ideas from LDT can be used to establish a
formal connection between estimation of extreme events and optimization, loosely
following [15]. We first show how the underlying distribution for the parameter 6
defines the rate function / : Q2 — RUoo occurring in the optimization problem (1-2).

For a parameter 6 with probability distribution w«(0), the cumulant generating
function S(n) is the logarithm of the moment generating function of 8

S(n) =log Ee™% = log/ 9 du o), -1
Q
and we define 7 : Q — R to be the Legendre transform of S(7):
1(0) = max((n, 0) — S(n)). (2-2)
neQ

We will be interested in problems in which 7 (6) plays the role of the large deviation
rate function, as obtained from the Gartner—Ellis theorem when it applies [16], and
will therefore refer to it as such. We note that /(6) is convex by definition, and it
can be computed explicitly for some distributions. For completeness, we derive it
for multivariate Gaussian and exponential distributions in Appendix A. In particular,
we find that the rate function /() of a multivariate Gaussian distribution is the
negative log-probability density. Next, we present the principle that allows us to
relate constrained optimization over [ (9) to estimating probabilities.

2A. Large deviation principle. Given a parameter 0 € Q with probability mea-
sure wu, and a parameter-to-event map F : 6 +— R, LDT relates the probability
P(z) =P(F(0) > z) and the minimizer (1-2) of the LDT rate function 7 (6) in (2-2).
A sketch of this relation is shown in Figure 1. We now provide a formal proof of
the LDT result (1-4). This proof is based on the five assumptions in [15], which
we recall and generalize to accommodate a more general class of extreme events
sets 2(z) (see Assumption 4). Moreover, we discuss what each assumption means
for a multivariate Gaussian parameter distribution.
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Figure 1. 2D illustration of level sets of the rate function /(-) and the extreme event
sets Q(z). For fixed z, 6*(z) is the solution to an optimization problem and thus the
gradients VF (6*(z)) and VI (0*(z)) align and after normalization equal 7*(z). The path
of the optimizers 6*(z) for different z plays an important role in large deviation theory.

Assumption 1. There exists a finite zg such that the restriction of the map F to
the preimage of the interval (zg, 00) C R, i.e., to the set F~!((z9, 00)) C L, is
differentiable with ||[VF|| > K > 0O for a suitable K > 0.

Assumption 2. The probability measure p is such that the cumulant generating
function S(n) (2-1) exists for all n € Q and defines a differentiable function S :
Q — R.

For a Gaussian parameter, S(n) = n" 6+ %nTCn as shown in (A-1), and thus
this assumption is automatically satisfied. As in [15], Assumption 2 allows us to
introduce the tilted measure d ., (6), which is used in the following assumptions:

e"dp ()
[p 0 dpu(6)

Assumption 3. There exists a finite zo and a constant K such that, for all z > z,
the rate function /(#) has the unique global minimizer 6*(z) in the set Q(z) =
{6 € Q: F() > z}. In addition, the map 6* : [z9, 00) — 2 is continuously
differentiable and 7 (6*(-)) is strictly increasing with z with

diuy(®) = =00 dp (o). 2-3)

10*(z)) > o0 and ||VIO* ()| >K >0 asz— oo. 2-4)

For a Gaussian parameter, /() = %(9 —60)TC71O —6y), so I(6*(z)) — oo as
long as [|6*(z) || = oo as z — oo. Additionally, | VI (0*(2))||=|C~"(6*(2)—60) || >
[1(0*(z) = 00) | /Amax(C™") = K > 0 as long as [|(9*(z) — 60) || = K Amax (C™1) for
7 > 20, where Apna(C) is the largest eigenvalue of C. Thus, Assumption 3 is
satisfied when ||6*(z)|| — oo as z — oo.
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Since the rate function [ is convex, Assumption 3 implies that 6*(z) € 9Q2(z)
for z > zp, i.e., we can replace (1-2) with

0*(z) = argmin I (0) . (2-5)
0e€dQ(2)

The corresponding Euler-Lagrange equation is
VI(0*(z)) =AVF(0*(2)), (2-6)

for some Lagrange multiplier A € R. Following [15], if we define n*(z) :=V1(6*(z)),
it is easy to see that the mean of (,»(;) is *(z). From the Legendre transform,
this implies that (n*(z), 6*(2)) — S(n*(2)) = 1(6*(z)). Thus, we obtain an exact
representation formula for the probability P(z):

P(x) = / dp(0) = / ST =@ gy (0)
Q) Q(2)
:e—I(G*(Z))/ e~ (2),0-6(2)) dity)(0). (2-7)
Q)

To prove the large deviation principle (1-4), we also need assumptions on €2(z).
Unlike in [15], we avoid the assumption that €2(z) is contained in the half-space

H(z) = {0 : (1"(2),0 —67(2)) = 0}, (2-8)
where
n*(2) = VE@"()/IIVF (0 @)l = VI©* @) /IVIE* @)l = n"@)/lIn" )]l
Instead, we make a more general assumption.

Assumption 4. (modified version of [15]) The set €2 (z) satisfies

lo e @6=6"@) gL ()
lim g(fg(z) n*(2) ) <0
¢>00 1(6*(2))

(2-9)

This assumption relaxes the condition that €2(z) is included in H(z), and ex-
presses that the measure of 2(z)\*(z) must be sufficiently small.

For a Gaussian parameter 6 ~ N (6, C), this assumption is related to the half-
space approximation discussed later in this paper. Namely, the approximation (B-8)
derived in Appendix B implies

/ e—(TI*(Z),Q—G'(Z)) d'un*(z) (0) — (27T)—n/2 det(c)—l/Z/ el(@'(z))—l(@) do
H(z) H(z)
1

= m (2-10)



190 SHANYIN TONG, ERIC VANDEN-EIINDEN AND GEORG STADLER

Thus, we only need that

1 —(n*(2),0—0*(2)
lim log(sz— '1(9*(z>>+fsz<z>\mz>e e Z>d“"'(1)(9)>
z—>00 1(60*(2))

=0, (-1

which means that the part of €2(z) not contained in H(z) must be sufficiently small.
As further discussed in Section 4A, if the set €2(z) is contained in a paraboloid
centered at 6*(z), the curvature of that paraboloid must be in proper relation to the
quadratic rate function. For details, we refer to the proof of Theorem 4.2.

For the next assumption, which is needed for the lower bound, we first define
G(z2.5) = (5 () \ H(z. 5)) with

H(z,s):=1{0 : (n"(z),0 —0"(z) —n*(z)s) >0} (2-12)

Assumption 5. There exists s; > 0 such that

log G(z, s1) _0

2-1
5 T 100*(2) (&-13)

This assumption ensures that the shape of €2(z) does not degenerate as z — oo.

Theorem 2.1 (large deviation principle). Under Assumptions 1-5, the following
result, which is equivalent to (1-4), holds:

o g P . logu(Q@) (2-14)
=0 [(0%(2) >0 1(0%(2) '

We note that this theorem is slightly different from a standard LDP [4; 7; 16; 50]
since it involves taking the limit of the ratio of log P(z) and I (6*(z)): in contrast
a standard LDP would also establish how /(0*(z)) grows as z — o0o. Our result
does not give this growth explicitly, and it has to be calculated numerically via
estimation of /(6™ (z)) for large z. We will explain how to do so in Section 3.

Proof. Assumptions 1-3 allow us to introduce the tilted measure and other terms
discussed above. Applying Assumption 4 to (2-7), we find an upper bound for P (z),
namely,

log P log e—(1"(2),.0-0%(2)) d sz (0)
. log (2) ~ 14 lim (fsz(z) r©®) <—1. (2-15)
=00 ] (0*(2)) 200 1(6*(2))

Splitting 6 into the normal direction 7* and orthogonal directions, that is, 6 = 6* +
si*+n', (nT, 7*) =0, we have (n*(z), 0 —0*(z)) = |In*(2)|s, using the fact that
n*(z) is parallel to 7* from the definition of n*. In addition, G (z, 00) = i (5)(2(2))
and G(z, —oo) = 0, thus we can use d;G(z, s) ds as a new measure. As in [15],
applying Fubini’s theorem to (2-7) using the new measure d;G (z, s) ds, followed
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by integration by parts, we obtain

o0
P(z)=e1<9'(Z>>/ IOy Gz 5)ds

—00

o
—e 1@ (z))/ e (z)HS||,7*(Z)||G(z,s)ds
—0oQ

51
> 6—1(9*(1))/ E_HU*(Z)”S||7’]*(Z)||G(Z, s)ds
0

> e—](@*(z))G(Z,S ) In*(2)lls1 . (2-16)
L+ [ln*(@)Is1
Applying Assumption 5, we obtain the lower bound for P(z),

log P(z)
im —— =
z=o0 [(0*(2))

log G(z, s1) +log(In*(2)lIs1) —log(1 + [ln* (@) ls1) _

>_14+ 1 —1. (2-17
z —1+ lim 16" @) (2-17)
Combining (2-15) and (2-17) establishes (2-14) O

2B. The LDT optimization problem. We will now discuss the optimization prob-
lem (1-2), whose solution is used in Theorem 2.1. Assumptions 1 and 3 imply
(2-5), i.e., the minimizer is attained on the boundary of 2 (z) and thus F(0*(z)) = z.
From the Karush—Kuhn—Tucker (KKT) conditions or the method of Lagrangian
multipliers [5], and the regularity assumptions in Assumption 1, the minimizer
0*(z) of (2-5) satisfies

VI0*(z)) =2 (2)VF(0*(2)), F*(2)) =z, (2-18)

where A*(z) € R is a Lagrange multiplier. If " and / have second derivatives, we
have the following second-order necessary condition:

VO € Q where (VI(0*(2)), (6 —6*(2))) = 0 holds,
(0, (V1(0"(2) = A (V2 F (60" (2))0) = 0. (2-19)

That is, the matrix V21 (6*(z)) — A*(z) V2 F(6*(2)) is positive semidefinite in the
tangent space of the constraint. The sufficient form of this second-order optimality
condition, i.e., that the matrix is positive definite on the tangent space, will play a
role in Section 4, where we discuss approximations of extreme event probabilities
that rely on the geometry of the extreme event set, and do not require sampling.

In practice, we are interested in solving the optimization problem (2-5) for
different z. This can be done, for instance, by a projected gradient or Newton
descent method. However, sometimes it is preferable to solve an unconstrained
problem instead of (1-2) as discussed next.
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2C. Unconstrained formulation of LDT optimization problem. Here, we study
when and in what sense the minimizers of the constrained optimization (1-2) can
also be found as minimizers of the unconstrained optimization problem (1-3), i.e,

renigrzl H(@) where HO):=1(0)—AF(@®). (2-20)

The function H is called the Hamiltonian, e.g., in [15]. Here, A > 0 is considered
to be a given constant. If we assume that the problem (2-20) has a unique global
minimizer 6* () for every fixed A > 0, then 6*(1) is also the global minimizer of
(2-5) with z = F(6*(1)), i.e., of

0*(A)= argmin 1(0). (2-21)

0:F(0)=F (6* (1))

This can be seen as follows: If the minimizer 6*(z) of (2-5) with z = F(6*())) were
not 6*(A), from uniqueness of 6*(z) in Assumption 3 we obtain I (6*(z)) < I (6* (1))
and F(60*(z)) = F(6*())), and thus H(0*(z)) < H(6*())). This would contradict
the assumption that 6*()) is the unique minimizer of (2-20). Thus, under this
assumption, the minimizer 6* of the LDT problem (2-5) can also be computed by
solving the unconstrained problem (2-20).

This provides us with an alternative approach to solve the LDT optimization
problem (1-2) for various values of z. Namely, instead of considering a sequence
of z’s in (1-2), one can consider a sequence of A’s in (2-20). The solutions 6* (1)
then correspond to the extremeness values z = z(X) := F(6*(X)). Thus, A > 0 can
be used instead of the threshold z to control the extremeness of the event. Larger
values of F(0) correspond to more extreme events. Such events can be found by
increasing A, which puts more emphasis on the term involving F. Although the map
A — z(X) is implicit, solving an unconstrained problem is often preferable to solving
a constrained optimization problem. This is also the approach we take in Sections 5
and 6, where we describe our numerical example and present corresponding results.

In problems where the evaluation of F requires the solution of a PDE, (2-20) has
the typical form of a PDE-constrained optimization problem, with the analogy that
1(0) is a regularization term, and F (6) involves the governing PDE. The existence
and uniqueness of solutions for (2-20) depend on properties of 1 (-) and F(-), and
must be studied on a case-by-case basis.

3. Probability estimation using optimization and sampling

The solutions 6*(z) of (2-20) give the leading order contributions to the probability,
i.e., the log-asymptotic approximation of P (z) from the large deviation principle
Theorem 2.1. However, we still lack information regarding the omitted prefactor
Co(2) in (1-5) since LDT only implies log(Co(z))/1(6*(z)) — 0 as z — oo. In this
section we explore sampling methods to approximate Co(z).
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3A. Conventional Monte Carlo sampling. Although conventional Monte Carlo
sampling is inefficient for studying extreme events, we first summarize its properties
to compare with other methods. The probability P(z) in (1-1) can be written as
the expectation of the indicator function for the set €2(z). This implies an unbiased
estimate of P(z) [37],

1 N
PMC(Z)Zﬁzlsz(z)(@k), 3-D
=1

where the 6;’s are i.i.d. realizations (samples) from the distribution of 6, i.e., 6y ~ .
The mean and the variance of the estimator in (3-1) are

1
E[PNC(2)]=P(2), Vu[PYC()]= ~IP@ - P> (2)]. (3-2)

Thus, the relative root mean square error (RMSE) is

CYVUPYC@T 1 PO —P2) 1

T EJAPMC] VN PQ) VN VPR’

where the last approximation holds for z — 0o as P(z) < 1, i.e., for extreme events
when P2(z) is dominated by P(z). Using (1-5), the relative RMSE is

(3-3)

MC 1 1
(Y, @)~ —=

VN V/Co(2)
indicating an exponential term that rapidly increases the number of samples needed.
For a Gaussian parameter distribution, this term can be computed explicitly using
results detailed in Appendix B. Denoting by 6*(z) the solution of (2-5), we have
7z = F(6*(z)) since the minimizer 8*(z) lies on the boundary of €2(z). Thus we can

use the half-space approximation (B-8) to obtain, for z — oo, that

1exp(—1(07(z)))

P(z)%(Zn)TW, where 1(0) =30 —00)"C'(6 —60). (3-5)

exp(31(60*(2))), (3-4)

Hence, the relative RMSE of P}\\,/[C (z) for events with P(z) < 1 becomes

1 1 1
VNVP@ N
where we were able to replace the unknown prefactor in (3-4) with an expression

involving the quadratic rate function /(6*(z)), which satisfies I (6*(z)) — oo as
z — 00 according to Assumption 3.

eMC(z) ~ [471(6* ()] exp(1(6%(2))),  (3-6)
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3B. Combining Monte Carlo and LDT rate using a constant prefactor. A simple
method to estimate the prefactor Cy(z) is assuming it to be a constant Cy. Although
standard MC sampling might not be effective for studying extreme events, it is a
reasonable method for moderately extreme events and can be combined with the
rates from LDT optimization to compute probability estimates for more extreme
events. That is, we determine a constant Cy by fitting exp(—1(6*(z))) to the MC
results. Besides making the uncontrolled assumption that the prefactor is constant,
the method has another shortcoming: it requires MC sampling to estimate the
probability of moderately extreme events. In practice, one needs to choose a regime
for fitting, i.e., use the MC estimate for somewhat extreme events that still have
reasonable MC accuracy. Then, LDT can be used to provide the probability of
more extreme events. This approach was used in [14; 15].

3C. Importance sampling for Gaussian parameters. From (3-6) and (3-4), we
know that the number of samples needed for the conventional MC method increases
exponentially with z, i.e., as the events become more extreme. For Gaussian
parameters, this can significantly be improved using importance sampling (IS).

For fixed A > 0, we again denote the solution of (2-20) by 6* and compute
z:= F(0*). The IS method we implement uses a Gaussian proposal centered at 6*,
as sketched in Figure 2. By inserting 6* — 6*, the probability P(z) defined in (1-1)
becomes

P(Z)=(27T)”/2det(C)1/2/ o2 10=0" 0 =005y 40
Q2(2)

_Llygr— 2 * — * _lyp_p*2
—e 2110 QOHC_] ‘(ZN)_”/zdet(C)_l/z/ e—(9—9 yre—Yeo _90)6 s 16—0 HC_l do
Q(2)

=" E;[Laq @) exp(—(@—0%)C O 601, (-7

where § ~ N (0*, C) with probability measure ji. The corresponding IS estimator is

ol & _ i
PR ="M Tap@) exp(—@ =60 CTIO" =00l (3-8)
k=1

where 6, are independent samples from N (6*, C).
Let us now compute mean, variance and the relative RMSE of this estimator.
Using (3-7), the mean and the variance of the estimator P,{,S (z) are given by

EalPLS ()] =e " Ealla) (0)exp(—(@—6%)T C™1(0*—6)]1 = P(2),
_ _ (3-9)
V[Pl () =e?! <9*>%\/,1[1Q(Z)(9) exp(—(@—0%)TC~1(0*—0p)1.



EXTREME EVENTS, PDE-CONSTRAINED OPTIMIZATION AND LDT 195

e Q@

Figure 2. Sketch of importance sampling method based on shifting the mean 6 to the
LDT-optimizer 6*(z) for a specific z. Samples from the original distribution are shown in
blue, and those used for IS are shown in green.

Since 68* = 6*(z) is the solution of (2-5), (3-9) and the approximation (3-5) yield
Eillae) ) exp(—(@ —6%)"C~ (6" —60)]

* 1 1
= 107) ~2r) 2 —7MM -1
e’V P(z) ~ (2m) TN (3-10)

where [ (0*) = %(0* —0p) TC~1(6* —6y). The sample variance can be estimated as

Villa ) (@) exp(—(@—0%)TC~1(0*—6p)]
=Fallae @) exp(—2(6—6%) T C1(0*—6p)1—[e' O P(2)]?

| 1 | 1 2 | 1
~r)y b oyt <om e 31l
N ICIR) [(”) ¢21(9_*(z>>}“(”) NG M

where the last estimate holds for z — oo. Hence, the relative RMSE is

_1 1
el e DATD _ 216" )l (3-12)

Exl Py (2)] f Q) t—L_ N

21(9* ()

Thus, we have removed the exponential term of (3-6) by using importance sam-
pling with samples from A/ (6*(z), C). This sampling error reduction holds for all
directions. This IS method uses the covariance of the original distribution in the
proposal distribution. Since we know the density decreases faster in the direction of
V1(6*), one may be able to modify the covariance matrix in this direction in order
to decrease the variance of IS estimator, similar as in the IS method proposed in [52].
Generalizations of the presented approach to non-Gaussian distributions could rely
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on approximate mappings of the parameter distribution to a Gaussian distribution,
or on Gaussian approximations of the distribution about an LDT optimizer.

4. Probability estimation using second-order approximation
of the extreme event set

Since P(z) = u(£2(z)), this probability can be computed by integrating the mea-
sure u over the set €2(z), provided we know or can approximate this set. Since
evaluation of F(-) requires the solution of a PDE, Q(z) = {0 : F(0) > z} typically
cannot be computed explicitly. However, we can construct an approximation
of 2(z) based on properties of the solution 6* of (2-20), and integrate over this
approximating set. For certain distributions, e.g., multivariate Gaussian distributions,
this results in a computationally feasible method. In this section, we discuss the
approximation of P(z) through integration over a second-order approximation
of ©(z), and provide explicit expressions for multivariate Gaussian parameters. For
completeness, we present corresponding results based on a first-order approximation
of @ in Appendix B. While this first-order approximation is easier to compute, it is
not asymptotically exact in the sense of (1-5).

For the remainder of this section we consider a Gaussian parameter distribution
0 ~ N (6o, C). In this case, the LDT minimizer 6* is also the most probable point,
since exp(—1 (0)) is the density of the Gaussian distribution up to a normalization
constant; see Example 1. As will be shown in Section 4A, one can derive explicit
approximations of P(z) using approximations of the extreme event set. As a
preparatory step, we show how to transform the general Gaussian case to a standard
normal distribution N (0, I). We also detail how the extreme event set, the rate
function, and the parameter-to-event map are modified under this transformation.

Although all results in this section are presented in finite dimensions, we believe
that they can be generalized to infinite dimensions, i.e., Gaussian random fields. In
particular, if the expressions for the probabilities we find in Theorem 4.2 converge
as n — 0o, they correspond to probabilities defined over an infinite-dimensional
parameter space. In many cases, such a convergence follows from properties of the
covariance operator of a Gaussian random field. However, a rigorous discussion of
infinite-dimensional parameter spaces is beyond the scope this paper.

We use the optimizer 6* obtained by solving (2-20) for a fixed A > 0. The
corresponding event value is z = F'(6*) as discussed in Section 2B, i.e., 0* = 6*(2).
For simplicity of the notation, we drop the dependence of 6* on z (and 1) in the
subsequent derivations.

We first define the affine transformation

0= At +0,, A:=C2R, (4-1)

where R is a rotation matrix such that RTC~2 (60* — b)) is parallel to the first unit
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................ second-order
approx.-...

Figure 3. 2D illustration of the second-order approximation of the set €2(z) for given
z. These approximations exploit properties of the minimizer 6* the normal direction
n* = Vo F(0*)/|VoF(0*)|| = VoI (6*)/||VgI(6*)| and the curvature of d2(z) at 6*.
The first-order approximation is also given, its details are discussed in Section B.

vector, i.e., only the first component of R' C -3 (6* — 6p) is nonzero and positive.
The affine transformation (4-1) maps the standard normal variable & ~ N (0, I,,)
with measure 5N to a Gaussian variable 6 ~ N (6y, C). Under this transformation,
the rate function and parameter-to-event map become
FE) =FO)=FA'§+6), 1):=10)=1(A""§+60) =3l (4-2)
The extreme event set €2(z) is mapped to Q(z) ={&: F (&) = z} and the derivatives
become
VeF(E)=ATVyF (), ViF(E) =ATV;F(0)A, @3
Vel (E)=ATVgl(0) =&, ViI(E)=ATVIO)A=1,.

The optimizer in the transformed system is £* = A~!(9* — ) and due to the
definition (4-1), only the first component of £* is nonzero and positive. The
following Euler—Lagrange equation holds for the transformed functions F and I:

Vel (§%) = AVeF (€. (4-4)
By construction, the normal direction at the optimal point £* is

VeF(h _ Vel _ & “5)
IVeEEDI IVelES I

where e; the first unit vector. Finally, we introduce P, := [0, I,_] € ROr=Dxn
where 0 € R"~! is the zero vector. This matrix represents a projection onto E IL =
{elL : (Ell, e1) =0} ={[0, ], ¢ e R*1}, the hyperplane orthogonal to e;. Clearly,
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P,(Ei) =R"! and every vector & in R" can be split uniquely as £ = [0, {]+£jey,
where { = P, ().

4A. Second-order approximation of R (z). To approximate €2(z), one can use a
second-order approximation of 9€2(z). This is similar to the second-order reliability
method (SORM) for Gaussian distributions in engineering [18], which replaces F
in F(6) > z by its second-order Taylor expansion at 6%,

F39(0) := F(0*) + (Vo F(0%),0 —0*) + £(0 — 0*, VZF (0*)(0 —6)).  (4-6)
Since F(6*) = z, the corresponding estimate of P(z) becomes

PSO(2) = u(Q(2)) = 1@ / OB () s (QE\H (2, $)) s, (4-T)

—0o0
where
Q(z):=1{6: F°(0) = 2}
={0: (VaF(6),0 —=0") +5(0 — 0", ViF(0)(0 —6) = 0}.  (4-8)
For a multivariate Gaussian parameter, it is possible to find an explicit approxi-
mation of PSO(z). First, we start with the standard normal case.

Lemma 4.1 (measure of paraboloid for standard normal distribution). Let & ~
N0, I,) in R" with measure uSN, &* = |£*|le aligned with the first basis vector,
and define the set Qg := (€ : (e1, & — &*) + 3(§ — &*, H(E — %)) > 0}, where
H € R™" is a symmetric matrix such that (¢, (I — |E*||H)E) > O for any & L e.
Then, MSN(QS*) satisfies

~ 1 1 1 * 2/’!—1 1
N Qer) o @) 2 e [T - 1&g inEI2, @-9)
i=1

where the asymptotic estimate holds for ||E*|| — oco. Here, H := P,H PnT €
RO=Dx=D s the submatrix obtained by removing the first row and column of H,
and A;(-) denotes the i-th eigenvalue.

Proof. First, we split £ as £ = &* 4 se; + elL, s €R, elL € Ell to obtain
IEN* = IE*N +5)* + 1S 1R = IE* I +251E* 1+ 1E 1 (4-10)

where ¢ := P, (ell) e R""!. Since & — £* = se; + elL and e; and elL are orthogonal,
we can rewrite the term in the definition of Qg as

(1,6 =€) + (6 —E" HE—£")
2
= s+ S Hi 5 (Hoom 1, O + 36 Hid g1, (4-11)

where H; € Ris the (1, 1)-entry of H, and H>..., 1 € R"~1 is the first column of H
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without the first component. Thus, we can compute the measure 5N (Qg*) using
integration over e; and its orthogonal complement and use (4-10) and (4-11) to
obtain

uSN(Qg) = (2m)7 8 / 2N geds. (4-12)

+%H11+S(Hz-un.1K)R»H

+3 (0 H1Egn-120
The integrand decays exponentially with increasing |s| and ||¢ ||g:-1. However, for
large ||£*||, the decay is (exponentially) faster in the direction e; (corresponding to )
than in the orthogonal direction ell (corresponding to ¢) due to (4-10). Thus, the term
s2Hy; in (4-11) is dominated by s and the term s(Ha...,.1, ¢ )gn—1 by %({, HiZ)pn1
as ||&€*|| — oo, which is why these terms can be neglected in the specification of
the integration domain. As a consequence, we obtain the asymptotic estimate

~ n _1 * 2 2

uN(D) ~ (2) / o3 UE IS0 g g
s+ 3¢ H18) gno120

and using (4-10) and Fubini’s theorem, we arrive at

~ n _1 *12 * 2
uSN(Der) ~ (271)2/ ¢~ 2WEPH2AEUSHITIZ ) g7 g
S+ H ) gno1>0

ek R ~ 1"l
=Qmr) 2e2 e 7Rl e ds |dg
R~ — 3 HI ) a1

:(271)—3”;—*”[5'5"2[ S =18 NS et g
Rn—1

The assumption (&, (I — ||E*||H)& > O for any & L e; implies that I, — ||£*|| H;
is positive, and thus we obtain

- 1 N
uSN(Qp) ~ (2m) 1 ——e 218 det[ 1,y — [|E*]| Hy ]

I&*]
D T .
=<2n>—fme—i“5 PTTo = ngr a2, O

i=1

Note that the condition (&, (I — ||€*||H)&) > 0 in Lemma 4.1 is equivalent to
1/ > (€, HE)/||€||>. Geometrically, this condition means that the curvature of
the centered circle through £* must be an upper bound for the eigenvalues of Hi,
i.e., the projection of H onto the space orthogonal to e;. This circle is the level
set through &* of the rate function for the standard normal distribution. In the
generalization of Lemma 4.1 presented next, such a condition follows from the
second-order optimality condition of the LDT-minimizer. This result uses the affine
transformation (4-1) and applies Lemma 4.1 to obtain an approximation of P5°(z)
in (4-7).
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Theorem 4.2 (second-order approximation for general Gaussian distributions). Let
0 ~ N (6, C), denote by 0*(z7) the optimizer with » > 0 of (2-20), and define
the rotation operator as in (4-1). Additionally, assume F is twice continuously
differentiable and the minimizer 0* satisfies that C ! —AVQZF (6%) is positive definite
(as opposed to positive semidefinite), i.e., a second-order sufficient condition. Then,
the second-order approximation PS°(z) defined in (4-7) can be approximated as

(27.[)71/2
21(0%(2))

PSO(Z) ~ 6—1(9*(1))

n—1
_1
x [J[1 = 2ni(P.RT(CHTVEF@*@)CRP)] 2, (4-13)
i=1
where the asymptotic estimate holds for z—o0c. As before, A;(-) is the i-th eigenvalue
and P, is the projection onto the subspace orthogonal to the first basis vector.

Proof. Using (4-3), the set Q(z) defined in (4-8) is affinely transformed to

[6:(ATTVEF(£Y), A — A&") + (A& — AE*, ATTVEF (") AT (AE — A&)) > 0}
={6:IVeFE)(e1. £ —£*) +3(6 — &, VEF(E")(E — &) = 0}
={&: (1.6 —EN+IE—E HE—EY)} = Qs

with H = VZF(£")/[ Ve F (§)]|. Thus, P(2) = u(Q(2)) = 13N(Qg). for which
we use Lemma 4.1. Combining (4-3) and the Euler—Lagrange equation (4-4),

_ VIF(E") _ Vel @I ATVEF (07 A
IVeFEDI IVeFEDT 187

Thus, I — |E*|H = 1 — AATVIF(6*)A = RT(CHT(C™! - ,\VgF(e*)c%R is
positive, satisfying the assumption in Lemma 4.1. Using this H and ||£*]| = /21 (0*)
from (4-2) in Lemma 4.1, we obtain

SO Cm)V2 e T T2 Ty
PP () X ——=e" 1 —Ar (P, A 'V F(O")AP,) )] 2.
@O~ s i|:|1[ i(P,ATV2F O AP
Using the definition of the linear operator A in (4-1) finishes the proof. ]

Note that (4-13) also holds when PSO(2) is replaced by P(z). This follows from
asymptotic expansions of multinormal Laplace-type integrals [3, Chapter 8] and
[6, Appendix I] using that F' is twice differentiable, that 6*(z) is the minimizer of
1(6) over Q2(z), and that 1(6*(z)) — oo as z — oo as assumed in Assumption 3.
Thus, PSO(z) is an asymptotic approximation of P(z) and we obtain an asymptotic
approximation of the prefactor Cy(z), i.e., P(z) & Cy(z) exp(—1(6*(2))), as z — 00,
where Cy(z) is given by the right-hand side in (4-13) neglecting the exponential term.
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Note that the second-order sufficient condition in Theorem 4.2 is used to ensure
that the right-hand side in (4-13) is well defined. Due to the occurrence of the
projection P,, this condition can be relaxed to (6, (C~! —AVQZF (6*))6 > 0 for any 6
satisfying (9 — 0*, C~1(6* — 6p)) =0, i.e., to a second-order sufficient optimality
condition for the constrained problem (2-5).

The probability estimation based on the first-order (rather than the second-order)
approximation of €2(z) is easier to compute than (4-13). This approach, which is
known in engineering as first-order reliability method (FORM) is summarized in
Appendix B. While it only requires 6*, it does not provide a controllable approxi-
mation of the prefactor Cy(z). In fact, FORM must be multiplied with a correction
factor to obtain an asymptotically exact approximation. This leads to an alternative
approach to approximate PSO(z) typically used in engineering. Namely, using the
Euler-Lagrange equations (4-4) and the first-order approximation (B-8), we can
reinterpret (4-13) as a refinement of P¥O(z) with a correction term:

n—1
PSO(g) ~ PRO(o) [ [ + V21 0*(2))ki) ™. (4-14)
i=1

Here, the k;’s are the eigenvalues of —P,IATV(}F(Q*)APJ/HATVQ F©], ie.,
the principle curvatures of F at 8* This is the formulation that is referred to as
SORM in engineering, where the curvatures k; are typically computed directly as
detailed in [18]. However, we prefer the formulation (4-13) over (4-14) as it lends
itself to approximating dominating eigenvalues with low-rank methods, which is
particularly useful for high-parameter dimensions. This approach, which to the best
of our knowledge is novel, is presented next.

4B. Low-rank approximation of the covariance-preconditioned Hessian of F.
A natural question is if the approximation for P39 (z) presented in Theorem 4.2 can
be computed efficiently. In particular for problems where the parameter dimension n
is large, and where the definition of F involves the solution of an expensive-to-solve
PDE, computation of the Hessian matrix VgF (6*) may be infeasible as computation
of each of its columns requires at least two PDE solves. However, (4-13) shows
that mostly the eigenvalues of P,R T (C %)TV(gF @"Hc 2 RP] that are significantly
different from zero contribute to the product in (4-13) and thus to the estimate for
P39(z). Geometrically, these eigenvalues correspond to directions in which the
boundary 9€2(z) has large curvature. Additionally, these directions must correspond
to large eigenvalues of the covariance matrix C, i.e., they must also be important
for the underlying Gaussian distribution.

Using either the Lanczos algorithm or a randomized SVD [11; 28] allows us
to compute the dominant eigenvalues of P,RT(C %)TVGZF e > RPn—r without
explicit construction of this matrix but only through application to vectors. The
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number of required matrix-vector applications for these methods is typically only
slightly larger than the number of dominant eigenvalues. This number depends
on properties of VQZF (6*) and C. While one cannot make general statements
about the number of dominant eigenvalues, we show in Section 6B that for our
tsunami example, this number is small, and is insensitive to A > 0. Such a low-rank
property is likely to also hold for other problems due to the structure of the matrix
(Cc %)TVtgF 0"C > , which we refer to as the covariance-preconditioned parameter-
to-event Hessian. A similar operator occurs in Bayesian inverse problems, where it is
referred to as the prior-preconditioned misfit Hessian [9]. Dominant eigenvalues of
VgF (6*) correspond to directions with strong (either positive or negative) curvature
of 9Q2(z), i.e., their occurrence depends on the nonlinearity of the parameter-to-
event map. Large eigenvalues of C correspond to directions with large variance,
i.e., where the Gaussian measure has the majority of its mass. Only parameter
directions that are important for VgF (6™) and for C have eigenvalues with a large
absolute value and thus contribute significantly to the right-hand side in (4-13).

5. Application to extreme tsunami probability estimation

As our main application, we study earthquake-induced tsunamis and estimate the
probability that they give rise to an extreme flooding event on shore. Tsunamis are
caused by a sudden elevation change of the ocean floor after fast, and potentially
complex, slips at the fault between two tectonic plates below the ocean floor. This
slip process, also called dynamic rupture, is caused by stress buildup over years or
decades. It typically occurs within seconds or, for the largest events, a few minutes.
In particular for large events, slip patterns are complex and difficult to predict.
Hence, we model sudden ocean floor elevation changes as a random parameter field.
Since the fault slip process is on a much faster time scale than the scale at which
water waves travel, we do not include time dependence in this random process and
consider the ocean floor elevation change as instantaneous. The map from these
(random) parameters to the event, namely the average wave height in a region close
to shore, is governed by the shallow water equation. Here, for simplicity, we use a
one-dimensional shallow water model. The next subsections describe the shallow
water equations and their discretization, modeling the distribution of the parameter
field, the parameter-to-event map and the computation of its derivatives. Numerical
results in which we study the performance of the proposed methods and the physics
implications are presented in Section 6.

5A. One-dimensional shallow water equations. To model tsunami waves, we use
the one-dimensional shallow water equations [35] defined on a domain D = [a, b]
for times ¢ € [0, Tr]. The domain represents a slice through the sea, that includes
the shallow part near the shore and the part where the ocean floor elevation can
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change. We denote the horizontal fluid velocity as u(x, ¢t) and the height of water
above the ocean floor by 4 (x, t). The bathymetry B(x) is the negative depth of the
ocean at rest, i.e., h(x, t) + B(x) = 0 when the ocean is at rest. The shallow water
equations in conservative form are

h hu 0
|:hu]t + [huz + %ghz]x - [—gth] ’ (>-D

where g is the gravitational constant and the subscripts ¢, x denote derivatives with
respect to time and location. Introducing the variable v := hu and augmenting (5-1)
with initial and boundary condition leads to

hi+v, =0 onDx]|0, Tr], (5-2a)

2
v + <% + %gh2> +ghB,=0 onDx]|0, Tr], (5-2b)
h(x,0) = —By(x), v(x,00=0 forx eD, (5-2¢)
v(a,t) =v(b,t) =0 forrel0, Tr]. (5-2d)

Here, the initial condition (5-2¢) assumes that the water is at rest. It can be verified
that if B = By, h = —By and v = hu = 0 for all times. However, any change in
the bathymetry B results in a nonzero solution. This is the main mechanism that
generates tsunami waves. Note that this form of the shallow water equations only
allows us to incorporate the vertical bathymetry change B — By. Earthquakes also
alter the horizontal component of the bathymetry, but most likely this does not have
a large effect on tsunami waves. The reflective boundary conditions (5-2d) are not
physically accurate, but we assume that the boundary is far enough from the region
where the tsunami wave is generated or measured such that unphysical reflections
are not relevant. For a discussion on different boundary conditions for the shallow
water equations, we refer to [51].

The domain we use for our tsunami model problem is shown in Figure 4. This
setup is inspired by the 2011 Tohoku—Oki earthquake and tsunami [22]. The
geometry represents a two-dimensional slice with a bathymetry that models the
continental shelf and the Pacific Ocean to the east of Japan. We also use a similar slip
mechanism to the one that occurred in the Tohoku—Oki earthquake, as discussed next.

5B. Modeling random parameter field B using subduction physics. The bathy-
metry B(x), whose derivative enters in the right-hand side of (5-2), changes during
an earthquake as a result of slip between plates under the ocean floor. Since details
of this slip process are difficult to predict, we model the slip as a random process,
and thus also the bathymetry field B is random. Since B enters in the shallow water
equations (5-2), the (space and time-dependent) solutions /# and v are random and
hence also the event objective we will specify in Section 5C is a random variable.
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Figure 4. Problem setup inspired by Tohoku—Oki 2011 earthquake/tsunami. Bathymetry
changes (area in purple) are modeled as resulting from 20 randomly slipping patches
in the slip region (in green, with end points (178 km, —9.9 km) and (187 km, —9.1 km))
using the Okada model. The event we observe is the average wave height in the interval
[40km, 44km] close to shore (shown in red), where the water depth at rest is 50 m.

The relation between slip under the sea floor and the resulting bathymetry change
typically assumes that the earth’s solid crust behaves like a linear elastic material.
The commonly used Okada model [40] assumes a finite number of slip patches in a
fault under the ocean floor, and evaluates expressions for a linear elastic material to
compute the induced bathymetry change. We assume 20 slip patches and model
each of the uncertain slips of fault pairs as independent Gaussian random parameters
with mean zero and a standard deviation of 10 m. We assume the slip to be along
the down-dip direction, i.e., a positive slip value means that the overriding plate
(i.e., the sea floor) moves downwards along the fault, while a negative value means
it is moving upwards. In this work we use a centered Gaussian slip distribution,
which is a simplification as realistic earthquake slips are typically negative since
they are caused by a sudden stress release. We refer to [23; 36] for more realistic
slip distribution models, which we are currently incorporating into our framework.
The Okada model is defined for three-dimensional sea floor deformations. By
assuming that the width of each patch is infinite and extracting the deformation
in the direction of the slice plane, we adopt the Okada implementation [2] to our
two-dimensional geometry. The model assumes that the crust has a Poisson ratio of
v =0.25, which is the only elasticity parameter that plays a role in the Okada model.
The linear relationship between skip patches and bathymetry change results in

20
B(x)=By(x)+(0S)(x) with S=(s1,...,s520) ' and (OS)(x)::Zs,- O;(x), (5-3)
i=1
where O; is the bathymetry change due to the i-th slip patch, and s; ~ N (0, 10).
Hence,

20
BeB::{Bo(x)+Zs,-O,-(x):s,-e[R}. (5-4)

i=1
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Figure 5. Samples from the bathymetry change distribution computed from the Okada
model with 20 slip fault pairs under the ocean floor. Shown is the vertical ocean floor
displacement. Each slip is independent with mean zero and standard deviation of 10 m.
The main part of the ocean floor where bathymetry change arises is highlighted in purple

in Figure 4.

Random draws of the bathymetry change B — B are shown in Figure 5. While the
slips are independent, the bathymetry samples are smooth. This is due to properties
of linear elasticity, i.e., rough boundary conditions on one part of the boundary
result in a smooth displacement field on a different part of the boundary. Note also
that all random samples of B — By yield positive and negative elevation changes
as typically also found in observations [22]. This is due to the fact that slip at the
fault zone is tangential and thus leads to elastic compression in parts of the elastic
domain and to extension in other parts.

Since the transformation (5-3) between slips and the bathymetry change is linear,
B is a Gaussian random field with mean By and covariance induced by the slip
covariance matrix Cs := 10015. The rate function / for a bathymetry B € B with
coefficient vector S € R? is

[(B)=3%S"C; 'S =: (B — By, B— By)c,. (5-5)

5C. Measuring tsunami size close to shore. After discussing the governing equa-
tions and the parameter distribution for B, it remains to define how we measure
events. Namely, to measure the size of a tsunami close to shore, we average the wave
height (72 + Bp) in the area [c, d]. This area is assumed to be sufficiently far away
from where the main bathymetry change occurs such that we can consider 4 + By
rather than & 4+ B. Hence, for a measurement time ¢ € [0, Tr], we define f b ag

1 d
|d——c|/ [h(x,t)+Bo(x)]dx, (5-6)

where i and v are the solutions of shallow water equations (5-2) for given B, and fcd

d
£OP(h,v; B, 1) ::f [h(x,t)+Bo(x)]dx :=



206 SHANYIN TONG, ERIC VANDEN-EIINDEN AND GEORG STADLER

is the average of the integral over [c, d]. Since we do not know exactly at what time
t the tsunami wave is close to shore, we take the maximum over the time interval, re-
sulting in the parameter-to-event map F : B+ F (h(B), v(B); B), with F defined as

F(h,v; B) ;= max f°(h,v;B, t)— max f [h(x, 1)+ Bo(x)1dx. (5-7)
t€[0,TF] €[0,TF]

In the definition of F, we consider the variables /# and v functions of B through the
solution of the shallow water equations. Thus, the probability we aim at estimating is
the probability that the maximum average wave height in [c, d] exceed a threshold z,
where B follows the distribution introduced in Section 5B.

The function F (5-7) involves the max-function, which makes optimization
difficult. Thus, for y > 0, we introduce the regularized parameter-to-event map
F,: B F,(h(B),v(B); B), where

TF d
F,(h,v; B) :=ylog[TiF/0 exp(if (h—i—Bo)dx) d;]. (5-8)

The smaller y, the better (5-8) approximates (5-7). In particular,

= . 1T [, v: B, T)
lim F,(h,v; B) = lim y log| — exp| —— ) dt
y—0 y—0 TF 0 Y

= max f°°(h,v; B, T). (5-9)
1€[0,TF]

SD. LDT-optimization. Given the parameter space, the governing equations and
the event measure, we now detail the LDT optimization problem (2-20) over the
parameter B € B. For the tsunami problem, / (B) and F (B) are defined in (5-5) and
(5-7) (or (5-8)), respectively. The parameter-to-event map F involves the PDE (5-2)
with zero initial conditions and proper boundary conditions, which we omit in the
following discussions for brevity. Since we consider the two parameter-to-event
maps (5-7) and (5-8), we obtain two LDT optimization problems.

Regularized objective. Using the regularization parameter-to-event map (5-8), the
LDT problem is the PDE-constrained optimization problem

min /(B) — AF,(h,v; B), subject to the PDE constraints (5-2).  (5-10)
v

For subsequent use, we define the reduced objective J, ,(B) :=I(B) — AF, (B).
Thus, the PDE-constrained problem (5-10) can be written as an unconstrained
optimization problem over B € B. While the objective J, ;(-) is smooth, its
accurate evaluation can become difficult for small y > 0, and its gradients can be
large. An alternative to this regularized objective is to consider the time of the
largest average wave height close to shore as an additional unknown, resulting in
the second problem.
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Time-optimal problem. We can also consider a time-optimal LDT optimization that
does not require a regularization parameter y. Using the definition of F in (5-7),
additional optimization over the time results in the PDE-constrained optimization
problem

Bn}lin I(B) — AfOb(h, v; B,t), subject to the PDE constraints (5-2). (5-11)
v,
1€[0,TF]

The corresponding reduced objective is J, (B, t) :=1(B) — AfP(h(B), v(B); B, 1),
where h(B) and v(B) are again the solutions of shallow water equations (5-2).

SE. Discretization and stabilization. To solve the optimization problems (5-10)
and (5-11) numerically, we have to discretize the continuous functions B, v, h
together with the governing equations. Since the shallow water equations (5-12)
are hyperbolic, we use a discontinuous Galerkin finite element method (DG-FEM)
[29] to discretize the equations in space. For discretization in time, we use a
Runge—Kutta scheme.

Since the shallow water equations (5-2) are a system of nonlinear hyperbolic
equations, the solution can have shocks, i.e., the slope of the solution variables can
become infinite. It is well known that the numerical approximation of systems with
shocks is challenging [34]. This is further compounded for adjoint-based derivative
computation. Some of the discretization and stabilization choices we make here are
in fact motivated by our focus on adjoint-based derivatives, as will become clear
in the subsequent subsections. Partially motivated by the need for well-defined
discrete adjoint equations (see Section 5G), we add artificial viscosity to the shallow
water equations (5-2) to prevent slopes that cannot be resolved by the discretization.
There are different approaches of adding artificial viscosity to the shallow water
equations. One is adding viscosity for both the mass and momentum conservation
laws [10]. Here, we only add viscosity to the momentum equation, as discussed
in [38], where the authors prove that the solutions of the resulting system preserve
stationary steady states and are asymptotically stable. This modified problem is

h)+v, =0 onDx]|0, Tr], (5-12a)
2
v+ (% + %ghz _ eh<p> 4 ghB, =0 onD x[0, T, (5-12b)
X
<p+(—%) —0 onDx[0, Tsl, (5-12¢)
X

with the initial and boundary conditions (5-2¢) and (5-2d). Here, ¢(x, t) serves
as an auxiliary variable which allows us to write the dissipative operator in a way
suitable for a DG scheme. The parameter € controls how much artificial viscosity
is added, and we choose € = O(|h|) with & being the element length as proposed
in [34; 45].
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Our implementation uses a DG discretization with linear interpolating polynomi-
als in space. For (5-12a) and (5-12b), we use a global Lax—Friedrichs flux of the

form

- +y  CLE
=TT L C g, (5-13)

where ¢ stands for either 4 or v. Moreover, f(gq) is the corresponding flux, +
and — denote the exterior and the interior value at each element interface, and
CF is the global Lax—Friedrichs constant. A less diffusive alternative to a global
Lax—Friedrichs flux would be a local variant, where the flux at each interface
depends on the state variable. While using such a local flux in the context of
adjoint equations might be possible, here we prefer to avoid technical challenges
and possible inconsistencies and use the same global Lax—Friedrichs constant C1F

for all elements:
CLF:max(’£‘+\/gh>. (5-14)

For (5-12c¢), we use a central flux in the DG scheme, i.e., the average of the values
at the interfaces. Although the numerical results presented in this paper use a
first-order DG scheme, the proposed method can be generalized to higher-order
spatial discretizations. To discretize in time, we use a strong stability-preserving
second-order Runge—Kutta (SSP-RK2) method [29]. The strong stability-preserving
(SSP) property guarantees preservation of the total variation of the discrete solution.

SK. Adjoint-based gradient computation. Since the objectives J,(-) and J, 5 (-)
require the solution of a PDE, we use adjoints to efficiently compute their derivatives
[5; 12; 30; 48]. Here, we present the continuous form of these adjoint equations.
Their discretization is summarized in Section 5G. We skip details of the technical
derivation and only present the results, starting with the regularized objective.

Regularized objective. To derive the adjoint system for the shallow water equations

with artificial viscosity (5-12), we use a formal Lagrangian approach, i.e., we define

the Lagrangian as the sum of the objective and the weak form of the state equations,

where the test functions take the role of the Lagrange multiplier functions. Then,

setting variations with respect to the state variables in all directions to zero results
in the adjoint equations in the unknowns (p, w, ¥):

2 _

pt+(—%+gh—e<p)wx—%drx—ngw—i—kSth —0 onDx[0,Tr], (5-15a)

Wetpet 2w =2y =0 on Dx[0,T¢l, (5-15b)

Y—ehw,=0 onDx][0,Tr], (5-15¢)

px,Tr) =0, wx,Tp)=0 forxeD, (5-15d)

w(a,t)=w(b,t)=0 fortel0,Tr]. (5-15¢)
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Here, the partial derivative of F » with respect to 4 is defined as

d
Bhfy = i exp{l[f (h+ Bp)dx — Fy] }, on [c,d] x [0, Tr],
TF 14 c

and 9, F y =0 else. When solving the adjoint system (5-15), the state variables
(v, h, ¢) are known and we only solve for the adjoint variables (p, w, ¥), which
appear linear in (5-15). Note that due to (5-15d), this is a final value problem that
must be solved backwards in time. Once the state and the adjoint variables are
known, one can obtain the derivative G (B)(é) of J, , in an arbitrary direction
B = 0S as the variation of the Lagrangian with respect to B = By + OS in that

direction, i.e.,
A A TF A
GB)B) = (8~ Bo. Bye,+ [ [ ehwb.dxar
0 /P (5-16)

~ TF ~
:STC;IS+/ / ghw(0S8), dxdt.
0 D

Time-optimal objective. For the time-optimal problem (5-11), additionally to the
derivative with respect to B, we require derivatives with respect to the observation
time . Again, we skip details here — optimization over time or time-optimal control
is a challenging research topic by itself [21; 32].

The main difference between J and J, , is that in the latter, F y(h,v; B) is
replaced by f°P(h, v; B, t). Thus, one obtains the adjoint equations for the time
optimal problem (5-11) by replacing 9, F y in (5-15) with the derivative of f ob
with respect to &, i.e., 3, f°° :=1/|d — ¢| on [c, d] x [0, Tr] and 9, f°° := 0 else.
Additionally, the final time conditions become p(x, Tr) = A/|d —c| for x € [c, d]
and p(x, Tr) =0else. Since F), and f °> 4o not depend explicitly on B, the gradient
of J, is identical to (5-16).

Finally, we require the derivative of J; with respect to the observation time ¢. A
short computation yields that

9 P
—J,(B,t) = —A— f°°(h, v; B, t
a7 (B, 1) azf (h,v )

49 49
=—Kf —h(x,t)dx:kf —uv(x, t)dx, (5-17)
e Ot ¢ Ox
where the last identity follows from the conservation-of-mass equation 4, 4+ v, = 0.

5G. Discretization of adjoint equations and gradient. When shocks occur in the
state equations, this may lead to discontinuous coefficients in the adjoint equations.
Thus, the theory and grid convergence of adjoint-based gradients for hyperbolic
systems is challenging and rigorous results are rare. The authors of [24] study
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the grid convergence of the adjoint solutions for Burger’s equation, and find that
solutions of the finite difference-discretized equation may converge to a wrong
continuous solution when the state solution has shocks. To smooth out shocks
that cannot be resolved by the mesh, they propose adding artificial viscosity that
vanishes at a certain rate as the mesh is refined. The result on the required rate
has been improved recently [45]. As discussed in Section SE, we follow a similar
strategy in the context of a discontinuous Galerkin discretization for the shallow
water equations.

To discretize the adjoint equations and the gradient expressions from the previous
section, we follow a discretize-then-optimize approach, i.e., we first discretize the
optimization objective and the governing equations in space and time, and then
compute discrete derivatives. This means that the discretization of the adjoint
equation is implied by that of the state equation. An alternative would be the
optimize-then-discretize approach, which discretizes the continuous adjoint equation
independently. While more convenient, this may result in inconsistent gradients,
i.e., numerical gradients that are not exact gradients of any discrete (or continuous)
problem. Both approaches have their advantages and disadvantages, but here we
follow the former approach, i.e., discretize the problem and then compute the
corresponding adjoint-based gradient. In the previous section we nevertheless
presented the continuous adjoint equations to show and discuss their structure. We
suppress the (interesting) technical details of the following computations for space
reasons, and only summarize the results.

Following this discretize-then-optimize approach, we find that the adjoint of the
spatial DG-discretization of (5-12) is again a DG discretization of the continuous
adjoint equations, extending results in [53] to nonlinear conservation laws. The
induced flux in the adjoint equations is a modified global Lax—Friedrichs flux.
We follow the same discretize-then-optimize approach for the Runge—Kutta time
discretization. Results in [27] show that the SSP property for the state equation
ensures stability of the discrete adjoint time-stepping scheme. While the discrete
time-adjoint method does not coincide with the SSP-RK2 scheme, it is also a
second-order scheme that preserves stability. Since the regularized objective F y
involves integration over time, we use the quadrature induced by SSP-RK2 for
its discretization. The bathymetry B is discretized using linear continuous finite
elements. The embedding of linear continuous to discontinuous elements as needed
in (5-12) is trivial, and the adjoint of this embedding is used to transfer the gradient
from the discontinuous to the continuous space.

Due to the use of a DG scheme and the discretize-then-optimize approach, the
gradient expressions include additional terms at element interfaces, as observed
for linear problems [53]. These additional terms vanish in the limit as the mesh
is refined, but they must be included to obtain exact gradients of the discretized
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problem. To avoid the technical derivations, we only present the continuous forms
of the gradient in (5-16). We verify the correctness of our gradient implementation,
by comparing directional derivatives with their finite differences approximations.
Due to the discretize-then-optimize approach, they coincide not only for physics-
resolving, but also for coarse meshes up to what can be expected in the presence of
machine round-off.

6. Results for the tsunami problem

Here, we study the convergence behavior of the proposed algorithms and approxi-
mations. We also discuss qualitative results such as the bathymetry change resulting
in the most extreme tsunami event and extreme event probabilities. First, we discuss
the numerical solution of the LDT optimization problems.

6A. Shallow water equation-constrained optimization. To compute minimizers
for (2-20), we need to solve the PDE-constrained optimization problems (5-10) and
(5-11). We use the adjoint method discussed in Section 5F to compute gradients and
use a preconditioned steepest descent method for the optimization. Backtracking
line search using the Armijo rule [39] is used for globalization of the descent
algorithm. We precondition the gradient with the covariance matrix.

In Table 1, we present iterations for different values of A, as well as the cor-
responding extreme event values and probability estimates based on the second-
order approximation discussed in Section 4A. For each A, we take the reference
bathymetry By as the starting point for the optimization. We observe in Table 1 that

A regularized objective F, time-optimal problem
z:=F,(B*(A)) P%9(z) #iter | z:=F(B*(1)) P(z) #iter

12 0.263 4.80-1072 23 0.281 4.70-1072 35
16 0.364 9.55-1073 31 0.382 9.36-1073 27
20 0.468 1.24-1073 24 0.486 1.22-1073 20
24 0.574 1.04-10~* 31 0.592 1.02-107* 20
28 0.682 5.45.107% 27 0.701 5.33-107% 30
32 0.792 1.77-1077 33 0.811 1.73-1077 27
36 0.905 3.54-107° 29 0.923 3.45-107° 34
40 1.018 4.27-107'1 32 1.037 4.17-107'" 38
44 1.134 3.09-10713 30 1.152 3.02-10713 30
48 1.250 1.36-1071% 37 1.269 1.26-1071 35

Table 1. Number of iterations for different A, for optimization with regularized objective
Fy in (5-10) with y = 0.003, and with time-optimal objective (5-11). The iteration
is terminated when the C _1—weighted norm of the gradient is reduced by 5 orders of
magnitude. Shown also are the values of z = z(A) and the event probability estimate
computed using a second-order approximation of 2(z).
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Figure 6. Shown on the left are optimal bathymetry changes of LDT-solutions B* for
different A (time optimal and regularized objective F), with y = 0.003). For fixed A, the
optimizers of the two problems are quite similar, showing that the approximation of the
max-function with F, is quite effective. Shown on the right are fault slips corresponding
to the optimal solutions B* for different A as discussed in Section 5B.

the iteration numbers are generally insensitive to A for both the regularized and the
time-optimal problem. Since larger A correspond to more extreme events, we find in
particular that the number of iterations is independent of the extremeness of events.
This is a desirable property that often does not hold for sampling-based methods.

Figure 6 shows the optimal bathymetry changes B* — B for different values of A,
and thus different extreme event thresholds z. We show results for the regularized
and the time-optimal formulations (5-10) and (5-11). Since y is chosen rather small,
there is visually little difference between the optimizers found with these different
formulations. As can be seen, the most effective mechanism for large tsunamis on
shore involves an uplift in the shore-facing part and a downlift away from the shore.
The corresponding slips generating these bathymetry changes can be seen on the
right in Figure 6. The 20 slip patches all move in the same direction and the slip is
larger in the middle than at the sides of the slip area. Since tsunami waves interact
with the bathymetry, these optimal patters depend, at least to some degree, on the
structure of the bathymetry and the location where the event is observed.

Note that optimizers for different A have a similar structure but their magnitude
varies with the extremeness of the event. To explain these magnitude differences,
recall that the rate function [ is quadratic. If the parameter-to-event map F were
linear, then the LDT minimizer would increase linearly with A as can be seen from
the optimality conditions of such a quadratic optimization objective. Deviations
from that scaling are a result of the nonlinearity in the parameter-to-event map caused
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Figure 7. Shown are the dominating eigenvalues of the preconditioned Hessian multiplied
with the corresponding A defined in Theorem 4.2 for various values of A. The eigenvalues
that are small compared to 1 have little influence on PSO(2), ie., computation of about
five eigenvalues is sufficient in our example. Note that the rapid decay is insensitive to A,
and thus to how extreme the event is.

by the nonlinearity of the shallow water equation and the extreme event objective.
Since this deviation is small, we deduce that the problem is moderate nonlinear.
This (together with the results presented in Section 6C) indicates a posteriori that
the assumptions needed for our LDT theory are likely satisfied in this problem.

6B. Eigenvalue estimation for second-order approximation PS°(z). Ashasbeen
discussed in Section 4A, computing the prefactor using (4-13) requires estima-
tion of the eigenvalues of the Hessian of the parameter-to-observable map, pre-
conditioned with the covariance of the Gaussian parameter distribution, that is,
(OCS1 / 2)TV]_%F (B*)OCS1 /2, Here, we study the feasibility of this approach for the
tsunami problem. In these numerical tests we approximate the Hessian-application
using finite differences of gradients.

As discussed in Section 5B, the random parameter B is modeled using 20 slips at
the fault boundary below the ocean floor. Thus, and due to typical properties
of covariance matrices, we argued in Section 4B that the eigenvalues of this
preconditioned Hessian decay rapidly. To verify this numerically, we compute
the eigenvalues of preconditioned Hessians for different A and multiply them by A
as in Theorem 4.2. The results for the tsunami problem are shown in Figure 7. It
can be seen that the eigenvalues decay rapidly and this behavior barely changes with
the extremeness of the event. This shows that it is sufficient to use a small number
of dominating eigenvalues in the second-order approximation. However, the largest
value of about 0.5 indicates nonnegligible nonlinearity of the parameter-to-event
map F. If F were linear, all eigenvalues would be zero. In addition, we find that all
leading eigenvalues are positive, indicating that F is convex in all leading directions
close to the LDT-minimizers. This results in a larger-than-one multiplicative SORM-
correction term equation (4-14). Thus, the probability estimate from the first-order
approximation is smaller than the estimate from the second-order approximation.
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Figure 8. Comparison of probability estimation for regularized objective F), (5-8) with
y = 0.003. Shown in blue are the mean and 95% confidence intervals obtained with
standard MC with 10° samples (discussed in Section 3A), in purple are results obtained by
fitting the asymptotic LDT rate with the MC mean (Section 3B), and results using first-
order and second-order approximation of 2(z) (Appendix B and Section 4A) in red and
yellow, respectively. Each marker represents the solution of an LDT optimization problem
with a different value of L. The zoom-in shows the regime where the variance of the
standard MC sampling method increases and standard MC sampling becomes infeasible.
For comparison, the cyan dotted line shows the probabilities obtained by linearization of
F), at the optimizer B* for A = 12.

6C. Comparison of extreme event quantification methods. In this section, we
compare the proposed extreme event estimation methods for the Tohoku—Oki
tsunami. In Figures 8 and 9, we compare the results of Monte Carlo sampling
with the LDT approaches (constant prefactor estimated by fitting with MC data,

I
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Figure 9. Same as Figure 8, but for time-optimal objective F defined in (5-7).
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the first and second-order approximation of the set €2(z)) for both the regularized
objective problem (5-10) and the time optimal problem (5-11). The reference
probability for moderately extreme events is computed with Monte Carlo sampling
with 103samples using the estimator P}\\,/[C (z) in (3-1). This procedure is clearly very
costly in particular when one is interested in extreme events. We also show the 95%
confidence interval for the estimator, which is tight for z < 0.4. However, the Monte
Carlo estimator P}\\,/IC (z) only provides acceptable accuracy for a probability down
to about 10~% We also use the LDT logarithmic rate with a constant prefactor as
discussed in Section 3B, fitting the Monte Carlo results in the interval z € [0.2, 0.4].
The resulting estimate seems to overestimate the extreme event probability. It also
requires MC sampling for estimating the fitting constant. The first and second-
order approximation of €2(z) do not require fitting since they rely only on the
LDT-optimizers and the local derivative information around the optimizers. The
first-order approximation results in Figures 8 and 9 are below the Monte Carlo
estimator, showing that significant parts of €2(z) are not contained in the half-
space H(z). The second-order approximation results in Figures 8 and 9 are closer to
the MC estimator, indicating that the second-order approximation of €2 (z) describes
the set ©2(z) well. All approaches provide probability estimates down to 104,
Comparing the results in Figures 8 and 9 shows that there is little difference between
the time-optimal formulation and the regularization formulation with y = 0.003. In
Figure 8, we additionally show the extreme event probabilities computed using a
linear parameter-to-event map, namely F), linearized around B*, the LDT-optimizer
for A = 12. When the parameter-to-event map is linear, the extreme event set is
a half-space over which we can integrate the rate function exactly. The resulting
values shown in Figure 8 underestimate the extreme event probability and results
in an incorrect asymptotic rate. This highlights the role of the nonlinearity in the
parameter-to-event map.

The results obtained with IS are shown in Figure 10. For each A also used
in Figure 8, we use 100 samples from the shifted distribution centered at the
optimizer B* to compute (3-8) at z =z(A), and in a neighborhood. Note that IS based
on the shift of the mean is efficient even for large z, which correspond to extreme
events. Despite only using 100 samples, we obtain tight 95% confidence intervals.
We only show the results for the regularized objective F),, but IS applies analogously
to F using the time-optimal optimizers, and we have obtained similar results. In
particular, IS with 100 samples has comparable accuracy to SORM in Figure 9.

To make the comparison between the different methods easier, we compare results
obtained with different methods for estimating the prefactor Cy(z) in Figure 11.
As can be seen, the second-order approximation of Cy(z) converges to the prefac-
tor estimated using IS as z increases, which demonstrates that the second-order
approximation (4-13) is an asymptotic estimation of the original probability P(z)
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Figure 10. Comparison of estimation using IS for regularized objective F,, with y =0.003.
In green we show the mean and 95% confidence intervals obtained with IS. The results
obtained with standard MC sampling and second-order approximation of €2(z) are as
in Figure 8 and shown for comparison. For IS, the same LDT minimizers for different
values of A as for the second-order approximation are used. We use 100 samples for each
LDT-optimizer to estimate the probability following (3-7). For other values of z, we use
the samples at the nearest minimizer to estimate the probability. As can be seen, the IS
results align well with the results from the second-order approximation.

I I
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Figure 11. Comparison of estimated prefactor for regularized objective F) (5-8) with
y = 0.003 as also used in Figure 8 and 10. Shown is the estimated prefactor C,(z) =
P(Fy, = z)/ exp(—1(0*(z))) with 109 samples of vanilla MC (blue), and estimations using
a first-order and second-order approximation of €2(z) (Appendix B and Section 4A) in
red and yellow, respectively. Each marker represents the solution of an LDT optimization
problem with a different value of 1. The green line shows the IS estimation of Cy. Since
only 103 samples are used for each optimizer, sampling error is still visible.
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as discussed in Section 4A. In contrast, the first-order estimation of Cy(z) does
not converge to the IS estimated prefactor, demonstrating that the correction factor
computed by the second-order approximation is crucial. These observations are
consistent with our discussion in Sections 4A and Appendix B.

7. Discussions and conclusions

In this paper, we use arguments from LDT to relate probability estimation of
extreme events to optimization problems. These optimization problems typically
involve solving a PDE, and thus we apply the adjoint method to compute derivatives
efficiently in a manner that is independent of the parameter space dimension.
Additionally, we observe numerically that the number of iterations required to solve
these LDT optimization problems is insensitive to the extremeness of the event. If the
underlying parameter distribution is a multivariate Gaussian distribution, the LDT-
prefactor required for the probability estimate can be computed using either a second-
order approximations of the extreme event set boundary combined with a randomized
SVD or importance sampling with a proposal centered at the LDT optimizer. We
observe that the cost of these methods is either independent or depends only weakly
on how extreme the event is. Moreover, it is independent of the discretization
dimensions. This is a significant improvement over MC methods whose performance
typically suffers from the parameter dimension and the level of extremeness of the
event. Since the method based on the second-order set approximation appears to
be accurate and does not require MC sampling, it might be a good candidate for
applications where the target is the control or mitigation of extreme events.

Our main application is a 1D tsunami problem, which is a simplification from real-
istic two-dimensional tsunamis. It is definitely interesting to expand this application
to 2D. The main methods including the optimization formulation from LDT and the
approximation using first/second-order information will remain as in 1D. The main
challenges are technical, i.e., modeling tsunami waves and a realistic bathymetry
in 2D, and deriving and implementing the corresponding adjoint equations.

Appendix A: Examples of rate functions 7 (§) for different distributions u(0)

We provide examples of the derivation of rate functions for different distributions.
Example 1 (multivariate normal distribution in R"). Consider a multivariate random
variable 8 ~ N (6, C). The cumulant generating function S() is

S(n):logf 9 (2) 5 (detC) "2~ O~WTCTE-0) gp
Q
:10g|:e"T9°+i”TC”-/ 2m) "3 (et C)~2¢™ 3@~ f=CmTCHE=60-Cn) d@]
Q

—logle" %+21 .11 =y Toy+1nT O, (A-1)
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Thus, the rate function 7 (f) for a multivariate Gaussian distribution is

1(0) = m%x
ner”
=[C71(0 —00)1" (0 — 6p) — S[CT1 (O — )1 CIC ™' (6 — 60)]

=516 = bollg—t (A-2)

(n"0—n"60—3n"Cn)

since the maximum is obtained at n = C~'(0 — 6y). Thus, I(9) is, up to a normal-
ization constant, the negative log-probability density of 6. Hence, for a Gaussian
distribution, the LDT optimization problem (1-2) is finding the most probable point,
i.e., the point maximizing the log-density.

While in this paper we focus on finite dimensional random variables, we show
that the previous example generalizes to Gaussian random fields.

Example 2 (Gaussian random field). Assume that the parameter is a Gaussian
random field 6(x) ~ N (6p(x),C). Here, C is a trace-class covariance operator
defined over a Hilbert space Q. For instance, = L?(D) for a physical domain
D CR", ne{l,2,3}, and thus each sample 6 is a real-valued function over D.
An example for such a covariance operator is C = (—A + yI)™2, ¥ > 0, with
appropriate boundary conditions. The parameter 6(x) has the Karhunen—Loeve
expansion 6(x) = Gy(x) + Z;’il \/)TJ-S jej(x), x € D, where &; are independent
standard normal variables &; ~ A/(0, 1), and A; > 0 and e; are eigenvalues and
orthonormal eigenfunctions of C, i.e., Ce; = Aje; [33].

Let n € 2, then (n, 0) = (n, 6y) + Z;O:l \/)Tjsj(n, ej). For the cumulant gener-
ating function S(n), we obtain

(m.00)+ 2 /A& (m.ej)
j=1

S(n) = log fg c du ()

o
_ 10g<e<n,eo> 1—[/ AT ) =582 df;“j)
j=17%

o

Eime;) 1 —lg2
= (1.60) + Y _lo /ev*-ﬂ?/meﬂ—e 25 g
<77 0) p g " m é]
s 1 1 2
2 L L& .
=<77’ 90>-|- E ]Og(ez)‘jmsez‘) / lzne_i(sj «/Mf,/('/sﬁ)) d%—])
; R v
j=1
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The corresponding rate function 7 (0) is

1(9)_max[(n,9 (77,60 Z% (n,ej) )i|

ne

For any given 6, the optimal 7, for the above maximization problem should satisfy
the first-order optimality condition, i.e., 8 — 6y — Zc;o: 1 Aj(n,ej)ej =0. Thus, the
maximum is obtained for n = Zj’;l )L;l (0 —6p, ej)e;. Plugging in this 1 and using
the facts that 0 — 6y = Z?‘il (0 —6p, ej)e; and {e;} is an eigenfunction basis of C,
we obtain:

1(9)—<Z%9 6o, i) e,,9>
o) 1 00 00 i 2
(<Zk_ (0 — 0, e;)e;, 90>+Z )"J<Z)\'_ (0 — 0, e;)e;, ej> )

=1 j=1 i=1 !

N | —

= 1 1
2
=325 (6 —b0.e* =316 =60l

NI~

Jj=1

The above computations only hold for 6 such that all infinite sums converge.
Otherwise, we define 1 (0) := oo.

Example 3 (exponential distribution). Consider a parameter 8 with n independent
components 6, each of which satisfies an exponential distribution with oy > 0, i.e.,

du(0) = Hake_“"edek for 6 > 0. (A-3)
k=1

The corresponding cumulant generating function S(n) is

S(n)_logl_[/ "k e %% o, = Zlog(l—a—k) for iy <ag. (A-4)

k=1
The associated rate function is

1(9)=77€D{3ax [n, —l—Zlog(l——)]

Nk <Ok

=Y (b —1—1logf) for 6 >0, (A-5)
k=1

since the maximum is reached for n; = o — 1/6; < «x. Note that, unlike in the
Gaussian case, I (0) is not a multiple of the negative log-density. Rather, the rate
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function includes the additional terms —1 — log(6;) and thus a minimizer of the
rate function 0*(z) might not maximize the density, i.e., be the most probable point.

Example 4 (other non-Gaussian distribution). For other non-Gaussian distributions,
it may not be possible to derive an explicit form for the cumulant generating
function S(n) nor for the rate function 7(6). As a remedy, one could numerically
approximate the rate function and its derivative. Alternatively, if available, one
could use a mapping between a Gaussian distribution and the target distribution,
and, for the LDT arguments discussed next, absorb that mapping into the definition
of the parameter-to-event map F.

Appendix B: Probability estimation using first-order approximation of 2 (z)

In this approach, we integrate the measure w(6) on the first-order approximation of
the set €2(z) to approximate P(z). In the engineering literature, a similar method is
known as the first-order reliability method (FORM) [18]. We replace F(8) with
the first-order Taylor expansions of F(6) at 6% i.e.,

FFO0) := F(6*(2)) + (Vo F (6% (2)), 6 — 6*(2)), (B-1)

where F(0*(z)) = z. Replacing the set Q2(z) = {0 : F(0) > z} with H(z) :=
{6 : FFO(9) > 7}, results in the half-space approximation #(z) of ©(z) defined in
(2-8), where n* is the normal direction (parallel to Vg F(6*)). The corresponding
first-order approximation of P(z) is

P™(2) := n(H(2)) = n({0 : (A*(2), 6 — 6% (2)) = 0}

=10 / e MO In* ()| wpe o) (H(\H(z, 8)) ds,  (B-2)
—00

where the last equality follows from (2-16), ,+(;) is the tilted measure (2-3), and
H(z, s) is the set defined in (2-12). If the tilted measure on the strip H(z)\H(z, 5)
is known explicitly, this allows us to compute PFO(z).

For a multivariate Gaussian parameter, we can compute PO (z) explicitly. First,
we state an auxiliary result for the standard normal distribution.

Lemma B.1 (measure of half-space for the standard normal distribution). As-
sume given the standard normal parameter & ~ N (0, I,) in R" with measure
SN, £* = ||&*||ley aligned with the first basis vector and the half-space 7:[5* =
{& : (e1, & — &™) = 0}. Then, the measure ,U,SN(7:lg*) can be computed as

o0
MSN(iL&*) — (27_[)—1/2/ e—%sz ds SJ (27.[)—]/2 ”;_*He—éllé‘lzy (B_3)
[Ed

where the asymptotic inequality holds for ||§*|| — oc.
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Proof. For every & € ﬂg«, we can split £ into two parts:
E=&"+se;+er = (|&*]+5)ei +ep, s>0, e €Ef. (B-4)
Using the orthogonality of e; and elL, and the projection P,, we find
1517 = (51 + )+ ler 17 = AE™ I +9)* + [ Pa(eD - (B-5)

Applying Fubini’s theorem, the measure of the half-space SN (ﬂg«) becomes

W ey = @) [ e ag
HS*

_ap [ —LUE I+ 2+ PateD)I2, ] L
= (2m) e? len=11d P, (e1)ds
0 Py(EY)

— —n/2 > —2IE* 1+5)2 =303,
= (2m) e 2 ds e 27wl dg
0 Rn—l

o2 [0 et e?
— (27) e ds
0

[e.¢]
—em P [ et B
|
This proves the equality in (B-3). The asymptotic estimate follows from
wSNHe) = 2m) 712 /OO e 2UE I+ g
0
— _Lyex2 o0 Cexe_ 12

— @) 2o HE / ol ls—s?

0

o0

<@ﬂl%iwﬁ/e'“ws

0

1 1 jex)2
=2 =1/2_~ =& B-7
e o

Here, we drop the term —%sz because it is dominated by —||£*||s for large ||£*||. O

For the Gaussian parameter 6 ~ A (6, C), we apply the affine transformation
(4-1) to Lemma B.1 to obtain the explicit form of P¥O(z) defined in (B-2).

Theorem B.2 (first-order approximation for general Gaussian distributions). As-
sume given a Gaussian parameter 6 ~ N (6y, C) and the optimizer 0*(z) of (2-20).
Then, the first-order approximation P¥O(z) defined in (B-2) can be computed as

00 1
PFO(Z):(zn)—l/zf e_%sz dsg(Zn)_l/Q—
V2I67() 21(0*(2))

where the asymptotic estimate < is for z — 00.

e—l(@*(z))’ (B-8)
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Proof. Using the affine transformation (4-1) and (4-3), we obtain
(1,0 —0") = (Vo F(0")/IIVo F (6", 6 — 6%)
_IVeFEM|

= (AT VEF(E")/IVoF(0")|, AE — AE*) = ———> " (e, £ —£*). (B-9
( sFED/IVeF O, AE — AET) ”%F(@,)”m §-§7). (B9
Thus, the affine transformation of the half-space #(z) becomes
IVe FEM . } ;
(e, £ — &) >0} = He (2), B-10
{S Ve F@ny) 5= o @ (B-10

i.e., the first-order approximation P¥O(z) = u(#(z)) = uSN (”;igr). Applying
Lemma B.1 and (4-2) with ||§*|| = /21 (6*), we obtain

P™O(z) = u>N (Her)

V21(6%)
Note that the integral in (B-8) in Theorem B.2 is the CDF of the standard normal,
which can be computed using the error function, i.e.,

o Y- S| o -
O () := (2m) /a e ds = 2[1 +eﬁ(ﬁ)] fora < 0. (B-12)

o0
1 *
:(271)‘”2/ e ds < Qm)y VP71 O (B-11)
V2I(0%)

The right estimate in Theorem B.2 also provides an asymptotic approximation
of PF¥O(z), which suggests that the prefactor is Co(z) = 2m)~12//2I1(6*(2)).
However, the error of this prefactor is not controllable, the asymptotic estimation of
the probability we should use is the second-order approximation (4-13), as discussed
in Section 4A.
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