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ABSTRACT: To address and remediate severe particulate matter (PM)
pollution in the North China Plain (NCP), many studies have traced
pollution sources by using fixed air quality monitoring stations. However,
these fixed monitors have high maintenance costs that make it economically
infeasible to construct spatially dense networks for air quality measurement.
Alternatively, using satellite monitoring systems and a low-cost air quality
sensor network can greatly increase the spatiotemporal resolution of the
ground-level PM concentration data for a given region. This study
comprehensively examines the performance of China’s EPA monitoring
stations (CN-EPA), low-cost PM sensor networks and satellite aerosol
optical depth (AOD) measurements. The goal is to improve the
spatiotemporal resolution of ground-level PM concentration data for
Xinxiang, a typical industrial city in the NCP. The inferred results show
that low-cost PM sensors demonstrate high linearity with CN-EPA data sets
for PM2.5 concentrations with an R2 value of 0.82. The PM2.5 concentration inferred from the AOD retrievals demonstrates a
moderate correlation with fixed monitoring stations with an R2 value of 0.53. To evaluate the impact of human activities on air
pollution, four traditional Chinese festivals, Chinese New Year, Tomb Sweeping Day, Ghost Festival, and Moon Festival, are chosen
to observe the PM distribution in Xinxiang. Heat-maps of the ground-level PM2.5 concentration reveal pollution hotspots in areas of
high population density. Cross-validation is employed to evaluate the accuracy of the created pollution maps. The results
demonstrate that pollution maps that were interpolated from data measured by CN-EPA data sets have the smallest root mean
squared error (RMSE). Finally, our results show that low-cost PM sensor data can be integrated with traditional fixed air quality
measurements to provide more detailed information about emission sources on pollution maps in urban and rural areas.

KEYWORDS: air quality, PM2.5,, North China Plain, AOD, low-cost sensor, anthropogenic air pollution, Chinese New Year

I. INTRODUCTION

The North China Plain (NCP) suffers from air pollution from
anthropogenic activities.1−4 Severe haze events with extremely
high particulate matter (PM) mass concentrations, ranging
from 100 to 1000 μg·m−3, happen frequently in this region.1

Research has demonstrated that a high PM concentration can
cause cardiovascular, cerebrovascular, and respiratory prob-
lems.5 The World Health Organization recently stated that
exposure to ambient air pollution causes over 4 million deaths
every year and that PM is a major source of ambient air
pollution.6 To reduce the adverse impacts of PM on human
health and mitigate environmental concerns, national govern-
ments have routinely monitored and regulated air quality. The
Chinese Ministry of Environmental Protection measures PM
concentration by gravimetry, β-ray attenuation monitoring
(BAM), and tapered element oscillating microbalance

monitoring (TEOM).3,7,8 Many studies use data from these
three reference methods to evaluate health impacts, derive haze
mechanisms, and improve the accuracy and quality of
measurement techniques in the NCP area.9−13 The reference
methods yield high quality PM2.5, fine particles with diameters
that are below 2.5 μm, data that is comparable across all three
methods, but these standard instruments can be deployed only
sparsely due to their high cost and maintenance require-
ments.14−16
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The air quality monitoring system of the Chinese EPA (CN-
EPA) is sparse with only 1.05 monitors per million people and
1.53 monitors per 10 000 km2 in 2014.17 Most air quality
monitors are primarily located in big cities. Thus, pollution
mapping based on CN-EPA measurements can demonstrate a
general trend, but it cannot accurately reveal pollutant
concentrations that vary sharply over short distances.18,19

CN-EPA stations are usually deployed in urban areas.
However, satellite remote sensing systems observing global
distribution of aerosols can address the paucity of PM
concentration measurements in rural areas.20 Remote sensing
has been used to predict PM2.5 concentrations at local,
regional, and global scale.21 Since the early 2000s, the
Moderate Resolution Imaging Spectroradiometer (MODIS)
and the Multiangle Imaging Spectroradiometer (MISR)
instruments on the Terra and Aqua satellites have been
applied to retrieve aerosol optical depth (AOD).22−25 AOD is
a measure of the aerosols (e.g., urban haze, smoke particles,
desert dust, sea salt) distributed within a column of air from
the Earth’s surface to the top of the atmosphere.26 Many
studies convert AOD data to surface PM concentration via
semiempirical models, simulation-based methods, and multi-
variate statistical regression.27−29 To predict surface PM
concentration from AOD, several factors are considered,
including the AOD-PM retrieval algorithm, the column’s
vertical structure, the composition and size distribution of the
particulate matter, and the water content of the aerosol.20,30,31

In addition, to develop simple empirical relationships between
AOD and PM2.5 a chemical transport model can also be used
to calculate the coincident ratio of AOD and PM2.5, including
aerosol composition, relative humidity, and the vertical
structure of aerosol extinction.32,33 In this research, satellite
AOD data from the Multiangle Implementation of Atmos-
pheric Correction (MAIAC) system is used to estimate PM2.5.
The satellite remote sensing system can observe the AOD in
unpopulated and remote areas that conventional monitoring
sites do not cover. However, remote-sensing-based PM2.5
concentrations may have higher spatiotemporal uncertainties
in their AOD values.
Besides remote sensor monitoring, increasing the number of

ground monitors yields better air quality data.19,34−36 Low-cost
PM sensors have been shown as a potential method to
supplement conventional PM concentration measurement and
create a high-resolution pollution map.15,37−39 These sensors
use simple nephelometers or optical particle counters to
convert optical signals to PM concentrations.15 Besides their
purchase price, low-cost PM sensors are small, lightweight, and
have minimal power consumption. With these advantages, low-
cost PM sensors have been used to identify pollution hot spots,
track the sources of pollutants, and collect exposure data.34

However, due to their design, low-cost PM sensors may have
higher uncertainty than BAM and TEOM. The performance of
low-cost PM sensors is affected by temperature, humidity, and
ambient pressure.40,41 Also, the accuracy of the pollution map
depends highly on the sensor positions, and sampling at fixed
locations may not be applicable for dynamic unpredictable
sources.37 Thus, low-cost PM sensor networks have to be
calibrated with reference monitor methods to increase the
accuracy of the pollution map.
Inferred PM concentrations from different measurements

may improve the spatiotemporal resolution of sam-
pling.4,30,37,38,42,43 However, few studies have made estimates
from ground-based sampling and satellite remote sensing in the

North China Plain. Xu et al. measured ambient fine particulate
matter over 336 cities in China from January 2016 to
December 2017 by using the reference methods to find the
correlation between PM concentration and health effects, but
they did not create a high spatial resolution pollution map of
each city.16 Wu et al. observed AOD in Wuhan via MODIS in
2017.44 They used the long short-term memory (LSTM)
neural network method to improve the accuracy of PM2.5
concentration values and compared them with values from 10
fixed monitoring stations in Wuhan. Their result from the
neural network method, however, could not provide reliable
maximum and minimum PM concentrations due to the
algorithm’s performance limitations and the small number of
data points.44 Thus, collecting sampling data from different
methods can improve the prediction of PM concentration.27,43

Previous studies of the NCP have not dealt with the limited
spatiotemporal resolution in rural areas. Most studies have
evaluated PM concentration via CN-EPA data sets and
provided a general trend for PM pollution.
To fill these research gaps, data from two measurement

approaches, CN-EPA data sets and low-cost sensor networks
are used to map PM levels with a high spatiotemporal
resolution for Xinxiang, a prefecture-level city in the northern
Henan province in the NCP. Data from both low-cost sensors
and satellite AOD measurements were compared to fixed CN-
EPA data sets. Further, inferred PM2.5 data was used to create
pollution maps via an Inverse Distance Weighting (IDW)
interpolation methodology.

II. MATERIALS AND METHODS
2.1. Data Sources and Their Spatial Distributions. In

this study, we investigate PM2.5 concentrations in Xinxiang, a
typical industrial city in northern Henan province. The data
sets used are the Environmental Protection Administration in
China (CN-EPA) data set, the (satellite) AOD data set, and
the low-cost PM sensor data set. Xinxiang lies between
113°23′ and 114°59′E and 34°53′ and 35°50′N, and its total
area is 8291 km2. The monthly average temperature and
humidity of Xinxiang are shown in Figure 1a,b. The humid,
north subtropical monsoon climate averages around 30 °C in
summer and 5 °C in winter with an annual average
temperature of 20 °C.
The spatial distribution of measurement sites is shown in

Figure 2. The red circles in Figure 2a are the high population
areas in Xinxiang. The largest red circle in the center of
Xinxiang is in downtown, the most populated area in the study.
In Figure 2b, the 48 CN-EPA monitoring stations are marked
by green triangles. The hourly average PM2.5 concentrations
were recorded at routine sampling locations in Xinxiang. The
hourly PM2.5 concentrations were measured by BAM or
TEOM, methods which both have demonstrated good
agreement with standard gravimetric measurement in previous
studies.19,31,36,45 Both BAM and TEOM can continuously
monitor airborne particle concentration in real-time and
provide reliable PM2.5 levels. The AOD data set, marked by
the black cross in Figure 2b, is obtained from the satellite data
algorithm, MAIAC. Clearly, the satellite measurements have
the greatest coverage. The black circles in Figure 2b represent
data from 144 low-cost light scattering PM sensors. The low-
cost PM sensor used in this study is the XHAQSN-808 model
(Table 1). The measured PM concentration range is from 10
to 1000 μg/m3, and the sensors can operate between −20 to
55 °C, and relative humidity ranges from 15 to 90%. The
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detection limit of hourly PM concentration is 5 μg/m3 and the
resolution is 0.01 μg/m3.40 The low-cost PM sensor data sets
in this study include measurement results for the whole year of
2017. The low-cost PM sensor spatial distribution in
downtown Xinxiang is shown in Figure 2c.
The spatial distributions are different in each data set, and

they are more heterogeneous for CN-EPA and AOD data sets
than low-cost PM sensor data sets. CN-EPA monitoring
stations are mainly located in schools and administrative
buildings in every district. Low-cost PM sensors are mainly
deployed in high population density areas and clustered
around the commercial district in the central area of Xinxiang.
Both instruments have lower density in the agricultural (rural)
areas in the east of Xinxiang. The satellite remote sensing
observes the AOD over most parts of Xinxiang, including the
business districts and agricultural (rural) areas.
Statistics for each data set are provided in Table 2 and

Figure 3. For the CN-EPA and low-cost PM sensor data sets,
PM2.5 mass concentrations are in units of μg/m3. The data for
the satellite remote sensing of the AOD is dimensionless. The
temporal resolution of the CN-EPA and low-cost PM sensor
data sets is 1 h, but for the AOD the temporal resolution is 1
day. The maximum, minimum, and arithmetic mean of the
CN-EPA data sets are 396.79, 23.94, and 72.86 μg/m3,
respectively; for the low-cost PM sensor data sets they are
301.70, 22.78, and 74.66 μg/m3; for the AOD data sets they

are 4.00, 0.18, and 1.06, respectively. The maximum value of
the CN-EPA data is much higher than the maximum value of

Figure 1. (a) Monthly average temperature and (b) monthly average
relative humidity in Xinxiang during 2017.

Figure 2. (a) High-population areas in Xinxiang. (b) Distribution of
CN-EPA stations, low-cost PM sensors, and MAIAC AOD in
Xinxiang. (c) Distribution of low-cost PM sensors and CN-EPA
stations in downtown Xinxiang.

Table 1. Characteristics of XHAQSN-808

instrument model XHAQSN-808

PM2.5 measurement method: laser light scattering
range: 10−1000 μg/m3

temporal resolution 1 min
power supply municipal power supply (220 V),

or solar powered (12 V)
boundary dimension 220 × 220 × 350 mm
work environment temperature: −20−55 °C; RH: 15%−90%
communication GPRS, Wi-Fi, Bluetooth
battery lead-acid battery
working hours 720 h without external power
weight 2.5 kg
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low-cost PM sensor data because the CN-EPA data sets have
more data from the industrial districts. The minimum and
mean values of CN-EPA data sets and low-cost PM sensor data
sets are similar because many sampling locations are in the
business districts and have similar pollution sources.
2.2. Equations for Retrieving and Cross-Validating

Data. We used linear regression to calibrate the PM
concentration of the low-cost PM sensor and the AOD data
sets. For the CN-EPA and low-cost PM sensor data sets, the
low-cost PM sensors were paired with CN-EPA sites within a
500 m radius46−48 and the hourly PM concentrations of low-
cost PM sensors were correlated with the PM concentrations
of CN-EPA sites. To calibrate the AOD data set, the CN-EPA
and the low-cost PM sensor data sets were converted from the
hourly data to daily data. For the daily CN-EPA and the low-
cost PM sensor data sets, daily average PM concentrations
were the average of all valid data for every location each day.
For the AOD data set, we used daily AOD across Xinxiang.
Although satellite AOD is retrieved daily, under some
conditions (e.g., dense cloud cover, snow, bright land surface)
the data are not valid.49−51 To calibrate the MAIAC AOD to
ground-level PM concentration, we matched the AOD data set
with CN-EPA sites within a 500 m radius and correlated the
daily CN-EPA data set with the AOD data set. The correlation
equation for the linear regression is

α β= +PM PM2.5(ref) 2.5(pre) (1)

where PM2.5(ref) are the PM2.5 concentrations measured by the
fixed monitoring sites, PM2.5(pre) are either the PM2.5
concentrations measured by the low-cost PM sensors or the
inferred PM2.5 concentrations from the AOD, α is the slope of
the line, and β is the y-intercept.
Data sets were interpolated by inverse distance weighting

(IDW), a geostatistical method for estimating unsampled
points by a weighted average of the values of the sampled
points. This method has been widely used to interpolate air
pollution data.52 Generally, IDW uses the following equation

̂ =
∑

∑
=

=
v

vi
n
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i
n

d

1
1

1
1
i
p

i
p (2)

where v̂ is the PM concentration to be estimated, vi is the
measured PM concentration, di

p are the distances from the
measured points to the estimated points, and p is the power of
the estimated points. The lower the exponent is, the more
uniform the interpolation is and the more neighbors that are
incorporated into it. The higher the exponent is, the more
discontinuous the interpolation is and the fewer the neighbors
that are incorporated into it. In most situations, the power of
the distance is 2.
The basic assumption of IDW is that concentrations that are

spatially close to one another are more alike than those that are
farther apart. In this study, the IDW geostatistical analyst in

ArcGIS 10.6.1 was used to interpolate among four data sets
from each day: the CN-EPA data sets, the calibrated low-cost
PM sensor data sets, AOD derived PM2.5 data sets and the
combined PM2.5 data sets which combined the CN-EPA data
sets and the low-cost PM sensor data set together. The IDW
geostatistical analyst predicted a value for any unsampled
location and created the pollution map of Xinxiang.
Cross-validation is widely used to evaluate how well a model

predicts values at unknown locations. We used leave-one-out
cross-validation (LOOCV) to evaluate the performance of the
results from IDW. LOOCV uses all the data to estimate trends
and autocorrelation models. LOOCV omits one data point and
calculates the value at the location of the omitted point by
using the remaining data points. Then, it compares the
predicted and the actual values. This procedure is repeated for
each point. For example, assume that a data set includes n data
points and that we use (xi, yi, PMi) to represent each point,
where x is longitude, y is latitude, and PM is the sampled PM
concentration. For the first point, LOOCV removes data
points (xi, yi, PMi), uses n − 1 data points to interpolate and
predict the value of (xi, yi, PMi,pre), and then compares the
values of PMi and PMi,pre. The procedure is repeated for a
second point, and so on. The error and root-mean-square error
(RMSE) are calculated by eqs 3 and 4

= −error PM PMi i ,pre (3)

=
∑ −=

n
rmse

(PM PM )i
n

i i1 ,pre
2

(4)

III. RESULTS AND DISCUSSION

3.1. Correlations among the AOD, Monitoring Sites,
and Low-Cost PM Sensor Data Sets. Figures 4 and 5 show
daily average and monthly average values for the three data
sets. As can be seen from Figure 4b,c, the CN-EPA data sets
and the low-cost PM sensor data sets show similar trends. In
winter, the PM2.5 concentrations are much higher than in
summer, ranging between 90 to 180 μg/m3 when the monthly
average temperature is below 10 °C. Winter air particulate
concentrations are affected by several causes, including
different emission sources, winter monsoons, temperature,
and atmospheric pressure.53,54 Previous studies suggested that
emissions from human activities are a major reason for PM2.5
pollution in the NCP. The main source of emissions from
human activities is incomplete combustion of coal in simple
residential heating stoves.55 These relatively high emissions
include many products of incomplete combustion, such as
PM2.5 and carbon monoxide.56

In Figure 4a and Figure 5, the AOD data sets do not show a
similar trend to those of the CN-EPA data sets and the low-
cost PM sensor data sets. In summer, especially in July and
August, the AOD data sets demonstrate higher variations than
in spring and winter. The AOD value is not always strongly
correlated with the ground PM2.5 concentration because AOD
represents light extinction by aerosol in the atmospheric
column above the earth’s surface.20,31 Also, AOD is affected by
the vertical structure, composition, size distribution, and water
content of the atmospheric aerosols.57−59 During summer, the
variable relative humidity in Xinxiang introduced day-to-day
unpredictability, so we divided the AOD data sets into months
or seasons to infer the PM2.5 concentration.

Table 2. Sampling Period and Statistical Information of
PM2.5 Dataset for Monitoring Station, Low-Cost PM Sensor,
and MAIAC AOD in 2017

monitoring station low-cost PM sensor MAIAC AOD

sampling days 365 days 365 days 280 days
maximum value 396.79 μg/m3 301.70 μg/m3 4
minimum value 23.94 μg/m3 22.78 μg/m3 0.176
averaged value 72.86 μg/m3 74.66 μg/m3 1.056
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3.2. Correlation between AOD Data Set and
Monitoring Sites Data Sets. Figure 6 shows the correlation
between the AOD and CN-EPA data set determined by linear
regression. There were 4494 paired data points. However,
Figure 6 shows an R2 value of 0.15 between the AOD data set
and the CN-EPA data set. This R2 value is at the lower end of
literature reported values where R2 values ranged from 0.01 to
0.64.37,42 The reasons for the weak correlation between the

AOD and the surface PM2.5 concentrations are discussed in
Section 3.1. Because the AOD-PM2.5 relationships are time-
dependent,20 the monthly average ratio of PM2.5 to AOD was
used to reduce variations in the PM2.5 concentration value
caused by applying linear regression from the whole year data
set in the daily AOD data set. Table 3 shows the monthly
PM2.5/AOD ratios calculated for the MAIAC AOD. The daily
AOD data set was converted to PM2.5 concentrations via

Figure 3. (a) Boxplots of MAIAC AOD and PM2.5 concentrations measured by CN-EPA and low-cost PM sensors in Xinxiang during 2017. (b)
Histogram of CN-EPA, (c) histogram of low-cost PM sensor, and (d) histogram of MAIAC AOD.
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multiple monthly PM2.5/AOD ratios. The monthly PM2.5/
AOD ratios for the MAIAC AOD ranged from 28.51 to
127.97.
Figure 7 shows the results of the inferred PM2.5 values which

are converted from the monthly PM2.5/AOD ratios. The
correlation between the inferred PM2.5 values from the MAIAC
AOD data set and the CN-EPA data set is moderate with an R2

value of 0.53. The R2 value from the monthly ratio is much

higher than the value from directly using the daily data, which
is 0.15. The monthly PM2.5/AOD ratios reduce the time-
dependent variations of linear regression. Thus, using the
monthly ratios for MAIAC AOD are more suitable to estimate
ground level PM2.5.
After understanding the importance of time in the AOD-

PM2.5 relationships, we observed the AOD-PM2.5 relationship
in different seasons. Figure 8 demonstrates the correlations
between the MAIAC AOD data sets and the CN-EPA data sets
in different seasons. The ratios for the MAIAC AOD have a

Figure 4. Daily average value of (a) MAIAC AOD, (b) PM2.5
concentration measured by CN-EPA data sets, and (c) PM2.5
concentration measured by low-cost PM sensors in 2017.

Figure 5. Monthly average of ground-level PM2.5 concentration
converted by MAIAC AOD and measured by CN-EPA and low-cost
PM sensors in Xinxiang during 2017.

Figure 6. Correlation between MAIAC AOD and PM2.5 concen-
tration measured by CN-EPA in 2017.

Table 3. PM2.5/AOD Ratios from the Dataset of Satellite
Product and CN-EPA

PM2.5/AOD ratio (MAIAC AOD)

Jan. 127.97
Feb. 89.71
Mar. 55.78
Apr. 70.65
May 64.65
Jun. 43.79
Jul. 28.51
Aug. 41.45
Sep. 76.54
Oct. 65.84
Nov. 95.79
Dec. 119.34

Figure 7. Correlation between measured and inferred PM2.5
concentration in Xinxiang for different months during 2017.
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higher relationship in the cold weather of spring and winter. In
warmer weather, for example, summer and fall, the correlations
are weak. Previous studies have similarly found that in the
North China Plain the correlation is lower in summer and
higher in winter. The variations in the inferred PM2.5
concentrations were caused by weather conditions, including
the cloud fraction and relative humidity.42,58,60

3.3. Correlation between Low-Cost PM Sensor Data
Sets and Monitoring Site Data Sets. The hourly PM2.5
concentrations obtained by low-cost PM sensors were
correlated with CN-EPA sites within a 500 m radius. The
calibration procedure includes three steps: first, designating the
low-cost PM sensors within 500 m radius of CN-EPA sites as
pairs; second, setting low-cost PM sensor measurement as the
x-value and CN-EPA measurement as the y-value; third, using
linear regression to yield the regression equation. There were
22 590 paired data points for CN-EPA and low-cost PM sensor
data sets. In the linear regression, the x-variable is the low-cost
PM sensor data and the y-variable is the CN-EPA data. Figure
9a illustrates the hourly PM2.5 concentrations in the low-cost
PM sensor data and the CN-EPA data in 2017. The calibration
used eq 5, and the R2 value is 0.82. The standard error for
slope and intercept are 0.002 and 0.22. This R2 value and low
standard error of slope and intercept demonstrate a strong
correlation, indicating that the low-cost PM sensor data are
accurate for the reported sampling period. RMSEs were used
to evaluate errors in the regression. The RMSE of Figure 9a is
21.39, indicating that in some situations the low-cost sensor

data might not be represented accurately by the CN-EPA site
data. For example, the data in the red circle indicated high
response in EPA monitor sites but low responses in low-cost
PM sensors; this means at the same time these pair might
measure the same pollution events.

= ± + ±PM PM(0.86 0.002) (8.69 0.22)2.5,calibrated 2.5,sensor (5)

The low-cost PM sensors do not always perform stably over a
long period.36 In Figure 9b, we showed the correlations of the
low-cost PM sensor data sets and the CN-EPA data sets in
different seasons. To compare with the AOD data set, the daily
average data was used. The seasonal calibration equation
results are plotted in Figure 9. From spring to winter, the R2

values are 0.91, 0.69, 0.89, and 0.85. Seasonal variations in R2

values were also found in the previous studies.61 The reasons
include seasonal differences, meteorological factors (wind
speed, temperature, relative humidity, and air mass), and
specific events (e.g., fireworks). From June to August 2017, the
daily average relative humidity (RH) was above 75% on 47
days and above 90% on 5 days. The working environment of
RH for the XHAQSN-808 model is from 15% to 90%. The
high RH can lead to a failure of the circuits of the sensors and
cause biased measurements.62,63 Additionally, the RMSEs from
spring to winter are 7.17, 7.23, 9.46, and 24.62. Higher RMSEs
in fall and winter were obtained than for spring and summer.
The possible reason causing the high RMSE might be due to
anthropogenic activities. In Xinxiang, there are many house-
holds heating with coal stoves in winter and these stoves cause

Figure 8. Correlation between measured and inferred PM2.5 concentration in Xinxiang for different seasons during 2017.
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high emissions of PM2.5 in high population areas.55 These
events could cause differences in CN-EPA measurements and
low-cost sensor measurements.
3.4. Cross-Validation Results. We performed the cross-

validations for seven data sets: (1) the CN-EPA data sets, (2)
the low-cost sensor data sets, (3) the AOD data set, (4) the
low-cost sensor combining CN-EPA data set, (5) the low-cost
sensor combining AOD data set, (6) the CN-EPA combining
AOD data set, and (7) the CN-EPA combining low-cost
sensor and AOD data sets. PM2.5 concentration data obtained
by the low-cost PM sensors were calibrated according to eq 5.
The PM2.5/AOD ratios from Table 3 were used to infer the
AOD data set to ground-level PM2.5 concentrations. The size
of the data sets and cross-validation results are provided in
Tables 4 and 5. For the CN-EPA data set, there were 18 and
24 data points during Chinese New Year and Tomb Sweeping

Day, whereas there were 46 and 47 data points during Ghost
Festival and National Day. Similarly, there was fewer low-cost
PM sensor data point during Chinese New Year and Tomb
Sweeping Day than Ghost Festival and National Day. For
AOD data sets, the data point number were similar from 54 to
67 data points in different sampling events. The LOOCV
method is used to calculate the RMSEs and average absolute
errors during Chinese New Year, Tomb Sweeping Day, Ghost
Festival, and National Day in 2017.
The LOOCV results are shown in Table 6. The RMSEs of

the AOD and CN-EPA data sets have smaller values for each
event than other data sets. The RMSEs of low-cost sensor data
sets are small except for the Chinese New Year Days (59.93).
This high value means that there might be a local high
concentration event that happened during the sampling period.
The LOOCV method compares the values of the prediction
with the value of measurements from the data set. The results
of lower RMSEs show that the predictions are similar to the
measurements from the data set. Thus, to evaluate whether the
data set can accurately reflect PM2.5 concentrations, the CN-
EPA data sets were combined with AOD and low-cost sensor
data sets to observe the change of the RMSEs and mean
absolute error. Although the AOD data sets provide moderate
RMSEs and low mean absolute errors when used by itself, after
combining with CN-EPA data sets the mean absolute error
increased from 7 to 12 on the Chinese New Year Day and the
RMSEs increased in all events except the Tomb Sweeping Day.
It means that the AOD derived PM2.5 has differences with CN-
EPA measurements and they may not be suitable to use for
ground-level PM2.5 concentration predictions. On the other
hand, the RMSEs and mean absolute errors decreased after the
low-cost PM sensor data set was combined with the CN-EPA
data sets.
The difference might be caused by the different spatial

distributions, data continuities, and size of the data sets. The
monitoring sites for CN-EPA data sets are more homoge-
neously distributed than those of the low-cost PM sensor data
sets and combined PM2.5 data sets. The low-cost PM sensor
data sets are clustered in densely overpopulated areas instead
of rural areas. The AOD data sets are homogeneously
distributed in urban and rural areas. The heterogeneity of
the data sets can cause prediction errors and lead to larger
RMSEs in cross-validation. In addition to the spatial
distribution of data sets, the operating characteristics of low-
cost PM sensors need to be considered. Low-cost PM sensors
can capture the high spatial heterogeneity of microenviron-
ments, thus increasing the RMSE of interpolation.37 For
example, in closely spaced locations, low-cost PM sensors
sometimes report different PM2.5 concentrations because of
small-scale pollution events. Thus, the data is discontinuous,
and nearby sensors may not report similar concentrations.
Because the data sets have different numbers of data points

and different spatial distributions, using LOOCV to calculate
the RMSEs to average absolute errors for every data point

Figure 9. Correlation between PM2.5 concentration measured by CN-
EPA and low-cost PM sensors in Xinxiang for (a) whole data sets and
(b) different seasons during 2017.

Table 4. Meteorological Conditions on Sampling Days

Chinese New Year Day Tomb Sweeping Day Ghost Festival Day Chinese National Day

sampling period 01/20−02/15 04/01−04/06 09/04−09/06 09/28−10/10
pressure (hPa) 1007.2 994.5 990.3 999.1
temperature (°C) 1.9 14.9 22.1 16.2
RH (%) 55.1 66.3 85.8 84.1
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might not be directly comparable between the different data
sources. Thus, we used a similar method to LOOCV but did
not calculate the RMSEs for every data point. The CN-EPA
data set was used as a reference in each event to calculate the
RMSEs and average absolute errors between measured and
predicted PM2.5. We used the CN-EPA data points in each
event by omitting one data point and calculating the value at
the location of the omitted point using the remaining data
points. Only the CN-EPA sites were systematically omitted for
this calculation, and the AOD and low-cost sensor data were all
used for each calculation. In addition to RMSEs, normalized
RMSEs were calculated by dividing the RMSE by the mean of
the measurement data.
The results are shown in Table 7. Unlike the LOOCV

results, the AOD data sets show higher RMSEs, NRMSEs, and
absolute errors in all events. This indicates that the use of the
AOD derived PM2.5 in the ground-level PM2.5 concentrations
may not be suitable in our study. Additionally, the low-cost PM
sensor combining with the CN-EPA data set shows the
RMSEs, NRMSEs, and absolute errors were improved in this
study.
Comparing with different events, the Chinese New Year Day

had the largest difference for the RMSEs and average absolute
errors. The RMSEs of low-cost PM sensor, AOD, and CN-EPA
combining low-cost PM sensor data sets were 27.93, 35.47, and
30.31 and the average absolute errors were 22.26, 32.79, and

Table 5. Measurement Site Number for CN-EPA, Low-Cost PM Sensor, Combined PM2.5, and AOD Datasets on Sampling
Days

Chinese New Year Day
01/20−02/15

Tomb Sweeping Day
04/01−04/06

Ghost Festival Day
09/04−09/06

Chinese National Day
09/28−10/10

CN-EPA data set 18 24 46 47
low-cost PM sensor 66 69 97 107
AOD data set 66 67 54 64

Table 6. LOOCV of Seven Datasetsa

Chinese
New Year

Day
01/20
−02/15

Tomb
Sweeping

Day
04/01
−04/06

Ghost
Festival
Day
09/04
−09/06

Chinese
National
Day
09/28
−10/10

RMSE
CN-EPA 12.04 12.99 10.17 7.51
LCS 59.93 10.53 11.71 10.77
AOD 10.46 12.94 15.35 17.83
LCS + CN-EPA 54.23 10.57 11.72 10.00
LCS + AOD 43.10 14.07 10.67 15.35
AOD + CN-EPA 16.17 15.35 11.51 17.83
CN-EPA + LCS + AOD 41.81 13.77 11.24 14.67

Mean Absolute Error
CN-EPA 9.99 10.57 7.48 5.34
LCS 19.71 7.76 8.97 7.29
AOD 7.11 8.05 4.70 10.23
LCS + CN-EPA 18.43 8.06 8.89 6.87
LCS + AOD 11.90 11.17 6.14 10.29
AOD + CN-EPA 12.64 10.42 7.37 11.10
CN-EPA + LCS + AOD 11.83 10.18 8.45 8.76

aCN-EPA, low-cost PM sensor (LCS), AOD, LCS + CN-EPA, LCS +
AOD, AOD + CN-EPA, and CN-EPA + LCS + AOD datasets on
sampling days.

Table 7. LOOCV Results by Using CN-EPA as Reference of Six Datasetsa

Chinese New Year Day
01/20−02/15

Tomb Sweeping Day
04/01−04/06

Ghost Festival Day
09/04−09/06

Chinese National Day
09/28−10/10

RMSE
LCS 27.93 12.75 16.50 9.50
AOD 35.47 34.67 20.78 15.04

LCS + CN-EPA 30.31 11.12 12.03 8.56
LCS + AOD 47.76 13.82 17.01 12.85

AOD + CN-EPA 21.10 16.83 12.66 13.24
CN-EPA + LCS + AOD 25.89 12.56 12.70 10.93

Mean Absolute Error
LCS 22.26 10.53 12.01 6.73
AOD 32.79 31.39 10.16 11.08

LCS + CN-EPA 17.47 9.04 9.31 6.08
LCS + AOD 35.66 11.86 8.73 9.55

AOD + CN-EPA 17.56 13.10 4.51 9.40
CN-EPA + LCS + AOD 22.51 10.06 10.57 8.26

NRMSE
LCS 0.24 0.17 0.18 0.18
AOD 0.36 0.77 0.32 0.27

LCS + CN-EPA 0.24 0.15 0.22 0.17
LCS + AOD 0.40 0.20 0.29 0.24

AOD + CN-EPA 0.18 0.25 0.23 0.25
CN-EPA + LCS + AOD 0.24 0.19 0.23 0.21

aCN-EPA, low-cost PM sensor (LCS), AOD, LCS + CN-EPA, LCS + AOD, AOD + CN-EPA, and CN-EPA + LCS + AOD datasets on sampling
days.
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17.47. For the CN-EPA combining low-cost PM sensor AOD
data sets, the predictions of the maps were improved by adding
the data points covering the whole Xinxiang. Regarding the
NRMSEs, the values were from 0.15 to 0.24 and the Chinese
New Year Day and Ghost Festival Day had the largest
difference for NRMSE.
To analyze the performance of AOD and low-cost PM

sensor data sets in urban and rural areas, we designated several
CN-EPA monitoring sites in central Xinxiang as urban sites,
and sites with no low-cost PM sensors within a 500 m radius as
rural sites. Figure 10 shows the locations of urban and rural

sites. Using the same method in previous paragraphs, we
compared the predictions from AOD and low-cost PM sensor
data sets with the CN-EPA data sets and calculated the
RMSEs, NRMSEs, and mean absolute errors. In Table 8, the
results show that the AOD data set provides larger RMSEs,
NRMSEs, and mean absolute errors in both urban and rural
areas. Thus, the AOD data sets may not provide accurate
ground-level PM2.5 concentrations in urban and rural areas in
this study. Regarding the low-cost PM sensor data sets, their
performance was similar to urban and rural areas which
indicated that the low-cost PM sensor data sets could provide
useful information in both urban and rural areas.
3.5. PM2.5 Pollution Map Visualization. In this section,

we plot 2017 pollution maps of PM2.5 concentrations in
Xinxiang during Chinese New Year, Tomb Sweeping Day,
Ghost Festival, and Chinese National Day. During these

festivals, fireworks and ghost money burning usually cause
severe hazes in the NCP.2,5,12,37

From the discussion in Section 3.4, the CN-EPA combined
with low-cost PM sensor data set provided more data points
and moderate RMSEs, NRMSEs, and mean absolute error.
Four data sets, the CN-EPA data set, the calibrated low-cost
PM sensor data set, AOD data set, and CN-EPA combined
low-cost PM sensor data set, were imported into ArcGIS pro
software to obtain PM2.5 distribution maps determined by the
IDW method.
Figure 11(a-1), (a-2), and (a-3) shows pollution maps from

CN-EPA data sets, low-cost PM sensor data sets, and AOD

data sets during the Chinese New Year; panels (b-1), (b-2),
and (b-3) show pollution maps during Tomb Sweeping Day;
panels (c-1), (c-2), and (c-3) show pollution maps during
Ghost Festival; panels (d-1), (d-2), and (d-3) show pollution
maps during National Day.
Pairwise comparison of Figure 11(a-1) and (a-2), (b-1) and

(b-2), (c-1) and (c-2), and (d-1) and (d-2) demonstrates that

Figure 10. CN-EPA site locations in urban and rural areas in four
sampling periods: (a) Chinese New Year day, (b) Tomb Sweeping
Day, (c) Ghost Festival, and (d) National Day.

Table 8. Performance of AOD and LCS Datasets in Rural and Urban Areas Compared to CN-EPA Data

Chinese New Year Day
01/20−02/15

Tomb Sweeping Day
04/01−04/06

Ghost Festival Day
09/04−09/06

Chinese National Day
09/28−10/10

urban rural urban rural urban rural urban rural

AOD
RMSE 32.50 38.75 40.30 33.23 24.98 16.02 7.53 18.26
mean absolute errors 29.99 37.87 39.01 30.88 21.87 14.11 5.32 15.94
NRMSE 0.32 0.40 0.97 0.73 0.36 0.27 0.15 0.31

LCS
RMSE 21.22 14.28 11.28 16.18 12.25 11.22 8.32 8.50
mean absolute errors 16.57 11.46 9.04 12.94 9.35 8.12 4.70 6.63
NRMSE 0.18 0.11 0.15 0.23 0.25 0.18 0.18 0.16

Figure 11.Maps of (a-1) CN-EPA, (a-2) low-cost PM sensor, and (a-
3) AOD data sets on Chinese New Year Day. Heat-maps of (b-1)
CN-EPA, (b-2) low-cost PM sensor, and (b-3) AOD data sets on
Tomb Sweeping Day. Heat-maps of (c-1) CN-EPA, (c-2) low-cost
PM sensor, and (c-3) AOD data sets on Ghost Festival. Heat-maps of
(d-1) CN-EPA, (d-2) low-cost PM sensor, and (d-3) AOD data sets
on National Day.
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the pollution maps interpolated from CN-EPA data sets are
much different compared to maps from the calibrated low-cost
PM sensor data sets. The maps interpolated from the low-cost
PM sensor data sets indicate more sharp, triangular-like
regions, especially in the rural areas of Xinxiang. This
difference may be due to the locations of the low-cost PM
sensors. Most low-cost PM sensors are located in the densely
populated central area of Xinxiang. Relying on data from
sensors clustered near the central area of Xinxiang may lead to
the failure to predict PM concentrations in more outlying
areas. On the other hand, the monitoring stations are
homogeneously dispersed in the densely and sparsely
populated areas. For this reason, in Figure 11(a-1), (b-1), (c-
1), and (d-1) the pollution maps of the CN-EPA data sets are
more smooth than Figure 11(a-2), (b-2), (c-2), and (d-2).
During Chinese New Year and Tomb Sweeping Day, the

PM2.5 concentrations are much higher than during the other
two events. The causes may be conventional activities (e.g.,
fireworks and burning ghost money) and coal combustion for
heating.55,64 The highest PM2.5 concentration in Figure 11(a-
2) is in a high population density area near downtown
Xinxiang. However, as seen in Figure 11(a-1), the CN-EPA
monitors did not detect the high PM concentration near the
sampling location of the low-cost PM sensor. This difference in
detection performance might be caused by microenvironments
(e.g., fireworks and biomass burning) that did not affect
measurements by CN-EPA monitors. Also, this phenomenon is
seen in Figure 11(b-1) and (b-2). From this observation, using
the low-cost PM sensor can provide more information on
pollution sources that are neglected by CN-EPA measurement
sites.
During Ghost Festival, Figure 11(c-1) shows PM concen-

trations generally higher than Figure 11(c-2), especially in
southern Xinxiang where there are fewer low-cost PM sensors.
On the other hand, in Figure 11(c-2) low-cost PM sensors
measured pollution sources in the middle-eastern area. The
pollution source may be due to the tradition of burning ghost
money. People in China usually burn ghost money and have
many ceremonies to pray for health and safety. These
anthropological activities involve burning and may cause
small-scale PM2.5 pollution in the agricultural area.5 During
National Day, Figure 11(d-1) shows a pollution hot spot in
central Xinxiang, and Figure 11(d-2) shows an additional
pollution hot spot in north Xinxiang. The low-cost PM sensor
data sets provide detailed pollution event records in this area,
although they cannot identify causes.
In Figure 11(a-3), (b-3), (c-3), and (d-3), the AOD data set

provided different hotspots to the CN-EPA and low-cost PM
sensor data sets. We can observe some hotspots in the eastern
parts of Xinxiang. In the eastern parts of Xinxiang, there are
several villages with smaller business areas and less populations
than central Xinxiang. The pollution events, which were
neglected in the ground monitor data, were observed in the
AOD data sets during the Tomb Sweeping Day and the
Chinese National Day. The AOD data set also provided lower
PM2.5 concentrations in north Xinxiang which is a mountain-
ous area with fewer human activities.
Figure 12a−d shows pollution maps interpolating the

combination of two data sets: CN-EPA and low-cost PM
sensor data sets during the Chinese New Year, Tomb
Sweeping Day, Ghost Festival Day, and Chinese National
Day. The pollution maps showed higher spatial resolution in
four sampling periods. Combining data from monitoring

stations and low-cost PM sensors yields a PM distribution
map with greater detail of Xinxiang. Increasing the data points
for the whole Xinxiang captured pollution sources in the
densely populated areas with high resolution in downtown.
This sensitivity can help in finding emission sources and
estimating exposures. Furthermore, the results can help in
regulating human activities to control severe air pollution in

Figure 12. Heat-maps of CN-EPA + LCS data sets on Chinese New
Year Day, Tomb Sweeping Day, Ghost Festival, and Chinese National
Day.
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Xinxiang. To improve the accuracy of prediction in rural areas,
we need to consider the spatial distribution and the
characteristics of low-cost PM sensor data sets. Increasing
the number of data points in rural areas would yield a more
homogeneous data set, increasing the accuracy of IDW
interpolation.

IV. CONCLUSIONS
Integrating PM data sets from different measurement methods
improves the spatial resolution of PM measurements. This
paper illustrated the integration of PM2.5 data sets from 48 CN-
EPA stations and 144 low-cost PM sensors in Xinxiang, a
traditional city in the North China Plain. Additionally, an AOD
data set from remote sensing was used to infer ground-level
PM2.5 predictions.
Inferred PM2.5 concentrations from monthly PM2.5/AOD

ratios provide a better correlation than directly inferring from a
whole-year AOD data set. Directly inferred PM2.5 concen-
trations from the MAIAC AOD data set demonstrated weak
correlations with an R2 of 0.15. Inferred PM2.5 concentrations
from monthly PM2.5/AOD ratios using MAIAC data provided
moderate correlation with R2 values of 0.53. The correlations
of AOD and PM2.5 varied with season, showing better
correlations in spring and winter due to a lower cloud fraction
and relative humidity.
The low-cost PM sensor data set is strongly correlated with

the CN-EPA data set, especially in spring. A good correlation
between the low-cost PM sensor data set and the CN-EPA
data set with an R2 of 0.82 was obtained. Seasonally, summer
showed the lowest R2, 0.69, and demonstrated more
fluctuations due to meteorological factors (wind speed,
temperature, relative humidity, and air mass) and specific
human activity. The higher RMSEs were found in fall and
winter which may be due to contribution of localized sources
such as coal stoves used for heating.
The cross-validation of seven data sets was performed to

evaluate the predictions of data sets. The AOD data set
showed the lowest values of RMSEs from the LOOCV
method, but after combining the AOD data sets with CN-EPA
data sets both the RMSEs and mean absolute errors increased.
This indicated that the AOD data set might not reflect the
ground-level PM2.5 concentrations in this study. On the other
hand, the RMSEs and mean absolute errors of low-cost PM
sensor data sets improved after combining with CN-EPA data
sets. The performance of low-cost PM sensor and AOD data
sets in rural and urban areas showed that AOD data sets had
higher RMSEs, NRMSEs, and mean absolute errors than low-
cost PM sensor data sets. To reduce the effect of the data
number of different data sets, the RMSEs, the NRMSEs, and
the mean absolute errors were calculated by comparing the
predictions and the measurements at the location of CN-EPA
data sets. The AOD data set showed higher RMSEs, NRMSEs,
and mean absolute errors than other data set combinations.
Thus, we decided to use the CN-EPA and low-cost PM sensor
data sets to visualize the pollution maps.
Finally, the CN-EPA combined with low-cost PM sensor

data sets were better than the CN-EPA data set in identifying
local hotspots in downtown and rural Xinxiang during four
events that generate serious haze: Chinese New Year, Tomb
Sweeping Day, Ghost Festival, and National Day. Pollution
maps were created via IDW interpolation, and the cross-
validations were used to evaluate their accuracy. The CN-EPA
data set showed lower RMSEs than the low-cost PM sensor

data set and the combined PM2.5 data sets. The results
demonstrated the Chinese New Year Day had a higher
difference to the other three events.
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