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Abstract—The increasing penetration of cyber systems into
smart grids has resulted in these grids being more vulnerable
to cyber physical attacks. The central challenge of higher order
cyber-physical contingency analysis is the exponential blow-up of
the attack surface due to a large number of attack vectors. This
gives rise to computational challenges in devising efficient attack
mitigation strategies. However, a system operator can leverage
private information about the underlying network to maintain
a strategic advantage over an adversary equipped with superior
computational capability and situational awareness.

In this work, we examine the following scenario: A malicious
entity intrudes the cyber-layer of a power network and trips
the transmission lines. The objective of the system operator is
to deploy security measures in the cyber-layer to minimize the
impact of such attacks. Due to budget constraints, the attacker
and the system operator have limits on the maximum number of
transmission lines they can attack or defend. We model this ad-
versarial interaction as a resource-constrained attacker-defender
game. The computational intractability of solving large security
games is well known. However, we exploit the approximately
modular behaviour of an impact metric known as the disturbance
value to arrive at a linear-time algorithm for computing an
optimal defense strategy. We validate the efficacy of the proposed
strategy against attackers of various capabilities and provide an
algorithm for a real-time implementation.

Index Terms—Smart Grids, Cyber-Security, Cyber-Physical
Contingency Analysis, Security Games.

I. INTRODUCTION

Analyzing the impact of component failures is critical to
successful design, monitoring and control of power grids,
communication networks and other cyber-physical systems.
Modern power networks are designed to meet the N —1 relia-
bility criterion wherein no single line failure critically impacts
the functioning of the grid. The problem of identifying and
planning for 1-component contingencies has been extensively
studied (for example, in [1] [2] [3] [4]). Vulnerability to cyber
attacks is an unavoidable consequence of the transition to the
smart grid. The possibility of such attacks has made larger-
scale component failures more probable and has elucidated
the need for consideration of k-component failures to enhance
the cyber-security and resiliency of the system [5]. Due
to the inherent combinatorial complexity of considering all
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possible k-component failures, exhaustive and exact N — k
cyber-physical contingency analysis in large grids requires
exponential time. Indeed, for real-time applications, such anal-
ysis in even moderately-sized grids may be computationally
infeasible.

In the past, techniques such as heuristic pruning algo-
rithms [6], cutting plane algorithms [7], and probabilistic
methods [8] [9] [10] [11] have been proposed to reduce the
search space of k-component contingencies. Although each of
these methods provides a significant improvement over the
enumerative approach, they still suffer from some inherent
inefficiencies. For example, the pruning and cutting plane
algorithms evaluate a number of non-critical contingencies and
some of the probabilistic methods identify only a subset of
critical contingencies [10] or require the use of predetermined
component failure data [11]. An alternate approach proposed
in [12] performs low-order contingency analysis on a reduced
grid obtained by comparing the topological and electrical
structure of the original grid. However, this reduction can fail
to account for the impact of contingencies involving single
lines with high power flows. Game-theoretic models have also
been proposed in the past to address contingency analysis
and investments strategies [13]. They include formulation of
contingency analysis as a simultaneous move [14] game as
well as a Stackelberg game [15] [11].

Our current work is based on [16] which presents a linear-
time algorithm to obtain saddle-point strategies for zero-sum
games with additive utility functions. Based on the approx-
imately modular [17] behaviour of of the disturbance value
function associated with k-line failures [18], we cast the cyber-
physical-contingency analysis of a power network as a additive
zero-sum game. In Section II, we formulate the problem of
k-line contingency analysis as a security game, review the
notion of disturbance value introduced in [18], and describe
its additive approximation. In Section III, we frame the linear
program used to solve the security game as in [14]. We
simulate contingency analysis in Section IV on four small
networks obtained by augmentation of standard 5,9,14, and
39 bus systems, and compare the results obtained under the
additivity assumption by the methods of [16] and [14] with the
actual contingency impacts. Finally, in Section V, a heuristic
method to implement the defender resource allocation on a



grid according to the results of Section IV is proposed and
simulated on the augmented 39 bus system.

II. PROBLEM FORMULATION

Consider a power grid modeled as a graph G(v, ¢), where
the set of vertices v = {1,...,n} corresponds to the buses,
and the set of edges ¢ = {ey,...,en,} corresponds to the
transmission lines between the buses. We assume that the
transmission lines are purely reactive. The weight of edge
€ € €18 Y, = z%_, where z., > 0 is the reactance of the
transmission line corresponding to e;. Let P € R™ denote the
power supply/demand vector whose i** entry is positive when
there is generation at bus %, negative when there is load at bus
i, and zero when ¢ is a neutral node. We consider an arbitrary
direction for the edges and define D € R"*"™ as the directed
incidence matrix of G. Let f denote the vector of power flows
in each line in the adopted direction of the edges in G. We
consider a lossless and balanced network. In other words, each
line is purely reactive and ), P; = 0. Considering a DC
power flow approximation, the power flow equation is given
by f = YDTPLT, where L € R"*™ is the Laplacian matrix
associated to weighted graph G, LT denotes the pseudo-inverse
of L and Y = diag(y1,-..,Ym) is a diagonal matrix of the
reciprocals of transmission line reactances.

Next, we describe the attack scenario and the attack surface
for which the contingency analysis is being performed. We
consider a transmission line attack in which an attacker
breaches the access points through cyber layer, and trips the
relay associated with the individual transmission lines. In order
to secure the power network from such attacks, additional
security measures need to be deployed at the access points
vulnerable to such attacks. However, due to limitations in the
attackers resources, we assume that the attacker can trip at
most k, < m transmission lines. Similarly, due to limitations
in the cyber-defense budget, the defender can deploy additional
security measures on at most kg < m lines. Therefore, there
are n, = (,Z;) and ng = (;’;) actions for player 1 and
player 2 respectively. We assume that neither player has any
information about the strategy of the other player. However,
information about the network (topology, line reactances) is
common information between the players.

In this work, we consider the disturbance value, initially
introduced in [18], as a metric of the impact of a k-link failure.
Let IC; = {e1,...,er} denote a set of link failures. Let ¢x,
denote the disturbance value associated with failure of links
in /C;. In [18], the authors show that ¢, can be approximated
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where r; is the equivalent reactance between the end nodes of
line e;. As a result, high-risk contingencies can be quickly
identified by focusing only on lines with high 1-line dis-
turbance values. This approximation is shown to have an
approximation error of less than 10% and 0.98 correlation to
the actual disturbance value in simulations of 3-line failures
that do not cause a disconnection of the grid in the IEEE

118 and 300 bus systems. Considering contingencies with high
disturbance values allowed the authors to reduce the space of
contingencies in their simulations on these grids by more than
90%.

Given the actions of the 2 players and the impacts associated
with any given pair of actions, the contingency analysis
problem reduces to find the optimal strategies of the defender.

III. GAME-THEORETIC MODELING: OPTIMAL DEFENSE
STRATEGY AND MAXIMUM IMPACT

In order to find the optimal strategy for the defender, we
formulate a strategic security game (X, ), A), where X’ and )
denote the action sets for attacker and defender, respectively,
and card(X) = ng, card()) = ny. Every element x; € X
represents a set of attacked links. Similarly, y; € ) represents
a set of protected links. Each z; € X and y; € ) is a k,-tuple,
and k4-tuple subset of €, respectively. Let A represent the game
matrix or payoff matrix for player 1. Since we consider a
zero-sum game, the payoff matrix for player 2 is —A. The
element in row ¢ and column j, A;;, represents the payoff to
the attacker when the defender and attacker choose y; and z;,
respectively.

In the previous section, we defined ¢x, as the impact
associated with a k-link failure based on disturbance values
and presented an expression for it (1). This can be considered
as the payoff/utility for the attacker when it is successful in
attacking links in /C;. Since the utility function has the additive
property, entries of the cost matrix A are defined as follows:
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Let p (¢) denote the probability vector representing the
mixed strategies for player 1 (player 2). The expected utility
(impact to the network) when attacker (player 1) and defender
(player 2) play mixed strategies p and ¢, respectively, is
v = pT Aq. According to the minimax theorem, every finite
two-person zero-sum game has a saddle point with the value,
v*, in mixed strategy p* = [p’l‘, e ,pfla]T for player 1, and
mixed strategy ¢* = [q{7 e qr d] " for player 2, such that the
average gain of player 1 is at least v* no matter what player 2
does and the average loss of player 2 is at most v* regardless
of the strategy of player 1. That is

* xT * «T
p"Aq <p*T Ag" <p* Aq.
Every finite matrix game can be reduced to the following LP
problem,

maximize v
P

Na
subject to v < ZpiAij, ji=1,...,nq (3)
i=1
prt-tpp, =1Lp >0 Vi
However, the dimension of the decision variables in the above

formulation is (n, + 1) which is exponential in terms of m.
Based on our previous work in [16] regarding games with



additive utility, (3) can be converted to a new LP in m variables
and m constraints as follows:
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m
Zai:ka, a; <1, 1=1,...,m.
i=1

where
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In the above equations, @ = [a1,...,q,]T and B =
[B1,...,Bm]T can be interpreted as the attack and exposure
probability vectors, respectively. For instance, «; is the sum-
mation of all p;’s for which target j lies in action set of x;.
Since we consider additive property, payoff for each player
is summation of expected outcome for each target (i.e. attack
probability x impact x exposure probability). Consequently,
we can define the optimality conditions in terms of («, ).
(a*,8*) is a NE of a security game (X,), A) if and only if
any feasible deviation from «o* (8*), does not lead to better
payoff for the attacker (defender).

Algorithm 1 presents a technique to compute 5* and v*.
It takes as input the parameters of the problem (¢, m, kq, kq)
and provides the optimal resource allocation strategy for the
defender. The overall algorithm runs in O(m) steps which is a
significant improvement from an exponential-time algorithm.
Details regarding the complexity and completeness of Algo-
rithm 1 can be obtained in [16].

IV. SIMULATION RESULTS

In this section, we provide a number of simulations over
power networks to show that impacts of k line failures can
be approximated by the sum of the individual 1-line failures.
That is, we demonstrate that the additivity property is a valid
assumption in these networks. Furthermore, we examine the
scenario in which players solve the exact game versus the
scenario in which the approximated solution obtained via the
additive property is taken. We explicitly compare the payoffs
to the players in these scenarios.

A. Empirical evaluation of near-modular behaviour of the
disturbance value

In this section, we evaluate the validity of approximation
in (1) (additivity). We define an approximation error as fol-
lows:

. P — 2 jex, il 100 ©
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We examine four networks with 5,9,14 and 39 busses. In
order to obtain networks with edge-connectivity of 3, we
augment standard 5,9,14 and 39 bus networks' with additional

15_bus PIM example from Rui Bo, 9-bus example case from Chow, IEEE 14
-bus case, 39-bus New England case. All cases are examined in MATPOWER
7.1

Algorithm 1 Computation of v* and 5*

1: Input: ¢, m, kg, kq

2: Output: v* and S*

3: fori=1:mdo

4 for j =1:m do

5: s:m—i—f—l,r:j—i,cizzgsé
6 if s—1>r>0A

7 r+m-—s>ky,>r+1) A

8 (cifbs—r Zi_kd > Cid)s—r—l) then
9

Wy = Gemnlizha) L 577l o
10: case < case I ‘
11: elseif (s—1>r>0)A
12: r+m—-—s>k,>r+1)A
13: (Cips—r—1+1>i0i—kg+ 12> cip1¢5-7-1)
then
14: Wij=(@—kq+1—cips—r_1)ps—1+
15: (ko = 7)ps—r—1 + le:—527T o]
16: case < case II
17: else
18: Wi,j =00
19: end if
20: end for
21: end for

22: v* <~ min W, (¢*,r*, s*) < argminWV
23: if case = case I then

e
24 ﬁf::ﬁ;‘*71:17 5;:1014);1,]:5*7,771,
25: else if case = case II then
26: ﬁi“::ﬁ;“*72:1

27: B:*_lf i — kg + 1 — Cirpgr _pr_q
% B =gt e (st m)
29: end if

Link Additions to 5-bus Network
End Busses of e; Te,

1,3 0.02

2,4 0.01

5,3 .02

TABLE I: Links added to the case 5-bus system to ensure
3-edge-connectivity of the grid.

edges. Tables LILIII and Figure 3 provide details regarding the
additional edges. In the new networks, k, = 2 is guaranteed
without islanding.

Figure 1 shows the histogram of e for all possibilities of
2-line failure for the four networks. From the figure, we can
observe that the gap between the approximation in (1) and
reality closes as the size of the network grows. Intuitively, we
expect that larger networks have smaller approximation error
since the failure of a group of links has less effect on the
rest of network as the size of the network grows. Moreover,
the structure of the matrices involved in the calculation of
the disturbance value [18] further support the aforementioned
hypothesis.



Link Additions to 9-bus Network
End Busses of e; Te,; End Busses of e; Te,
1,2 0.085 9,7 0.085
1,3 0.161 7,5 0.176
2,3 0.12 9,5 0.176

TABLE II: Links added to the case 9-bus systems to ensure
3-edge-connectivity of the grid.

Link Additions to IEEE 14-bus Network

End Busses of e; Te, End Busses of e; Te,
1,3 0.34 10,14 0.085
3,8 0.19 14,11 0.34
8,10 0.27 12,11 0.34

TABLE III: Links added to the IEEE 14-bus systems to ensure
3-edge-connectivity of the grid.
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Fig. 1: Figure shows the histogram of e for the (a) 5-bus
network (b) 9-bus network (c) 14-bus network.(d) 39-bus

network
B. Variations in the attacker models

In this section, we consider the following variations of the
attacker model while the defender is assumed to implement

pr:

1) Computationally superior attacker: We consider an attacker
who implements a strategy obtained by solving a game without
using approximation (1), i.e., one who computes the exact
disturbance value of a k-line failure. Figure 2 shows the
expected outcome of the play (vq) for several values of kg
in the 5 and 9 bus networks. Figure 2 shows a close overlap
between v; and vy for both networks. A computationally
superior attacker therefore has minimal effect on the expected
outcome in the simulations shown in Figure 2. In other words,
it is reasonable for the defender to compute their optimal
allocation based upon the additivity approximation.

2) Attacker with side information: We consider an attacker
that has side information regarding the limited computational
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Fig. 2: Figure shows v;,vs,vs for the 5-bus and 9-bus net-
works.

capabilities of the defender and implements the output of
Algorithm 1. Figure 2 shows the expected outcome of the
play (vs) for several values of k; for the two different
networks. We can observe that vs is always smaller than v
and v;. Therefore, an attacker that hedges its play on the side
information and thus modifies its play to a* gets a lower
payoff. In light of this result, the defender may wish to hedge
its play by allowing the side information to reach the attacker.

V. IMPLEMENTATION OF STRATEGIES

In this section, we address the problem of implementing
£* on a real power network. The probability of the defender
assigning a resource to a link ¢ when he plays the mixed
strategy ¢* is v; = 1 — 3. For a set of indices 7', let v},
be the vector of entries of v* which occur at the indices in T’

and denote .
_ Y1

7T=<=_=
ZiGT Vi

Note that selection of target ¢ is deterministic when ;" = 1 or
v} = 0. Computing ¢* from * (from (5)) is computationally
challenging, for it requires solving a system of underdeter-
mined equations involving a large (exponential in m) number
of unknown variables. Algorithm 2 presents a more efficient
strategy for the defender to choose links based on /*. This
approach iteratively chooses links based upon the exposure
probabilities obtained using Algorithm 1.

Algorithm 2

Input: ~*
Output: Selected targets 7'
S = {ily; = 0} and T = {ify} = 1}
I={1,...,m}
count = |T|
while count < k; do
j: select 1 target from I\ (T'US)
with probability yn\ (Tus)-
T+ TU{j}
count < count + 1
: end while
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Fig. 3: The augmented 39-bus system used in our simulations.
Our link additions to the system are depicted by dashed lines
along with the corresponding reactance values. Links shown
in green highlight the defender resource allocation for k, = 2,
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Fig. 4: The difference between v* and the expected outcome of
Algorithm 2 for the defender in 39 bus network. For a specific
value of m and k4, the average error has been computed over
10 different sets of ¢’s over 100 iterations (i; = 100).

Figure 4 shows the difference between v* and the outcome
of the game for 39-bus network when the defender implements
Algorithm 2. The difference is computed for several values of
m and kg (k, = 2). For each value of m and k4, Figure 4
depicts the average difference computed over 10 games with
randomly chosen ¢’s after 100 iterations of Algorithm 2.
From the figure, we can conclude that difference between the
outcome of the game when the defender implements Algo-
rithm 2 and v* is of the order of 1072 which is negligible.
Figure 3 shows the covered links for 39-bus system when
ko =2,kq = 5.

VI. CONCLUSION

In this work, we formulate cyber-physical contingency
analysis in power networks as an attacker-defender game.
Leveraging structural properties of the power network and
empirically proven near-modular behaviour of the impact met-
ric, we propose a computationally efficient technique to obtain
optimal deployment of cybersecurity measures under budget
constraints. We believe that this work is a first-step towards
alleviating the “curse of complexity” in N-k cyber-phyiscal
contingency analysis. Currently, our examination of this prob-
lem does not take into account the possibility of cascading
failures, islanding, or variable line capacities. Identification of

structural properties of the system that could drastically reduce
the computational complexity of cyber-physical contingency
analysis involving (a) A wide range of impact metrics that
also take into account economics of power generation and
distribution; (b) Management of dynamic situations arising
from high-impact high-frequency strategic attacks; (c) Attacks
that incorporate cascading failures or disconnections of the
grid; are aspects of the broader goal to direct future work.
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