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Abstract—This paper presents a multi-degree-of-freedom 
variable damping controller to manage the trade-off between 
stability and agility and to reduce user effort in physical human-
robot interaction. The controller accounts for the human body’s 
inherent impedance properties and applies a range of robotic 
damping from negative (energy injection) to positive (energy 
dissipation) values based on the user’s intent of motion. To 
evaluate the effectiveness of the proposed controller in balancing 
the trade-off between stability/agility and reducing user effort, two 
studies were performed on both the human upper-extremity and 
lower-extremity to represent both industrial and rehabilitation 
applications of the proposed controller. These studies required 
subjects to perform a series of multi-dimensional target reaching 
tasks while the human user interacted with either the end-effector 
of a robotic arm for the upper-extremity study or with a wearable 
ankle robot for the lower-extremity study. Stability, agility, and 
user effort were quantified by a variety of performance metrics. 
Stability was quantified by both overshoot and stabilization time. 
Mean and maximum speed were used to quantify agility. To 
quantify the user effort, both overall and maximum muscle 
activation, and mean and maximum root-mean-squared 
interaction force were calculated. The results of both the upper- 
and lower-extremity studies demonstrated that the controller was 
able to reduce user effort while increasing agility at a negligible 
cost to stability.  
 
Index Terms—Physical human robot interaction, variable 

impedance control, performance, stability, agility, human effort  
 

I. INTRODUCTION 
HE field of physical human-robot interaction (pHRI) has 
steadily grown in recent years with new developments in a 

variety of applications. Human-robot systems for rehabilitation 
have allowed for enhanced physical therapy and powered 
prosthesis [1, 2], and industrial and military human-in-the-loop 
robots have seen increased development and design 
considerations [3-5]. 
To ensure system stability and safety of human-robot 

systems, researchers have designed and used different types of 
controllers [6-8]. One popular approach is 
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impedance/admittance control which regulates the force/torque 
and displacement/angular displacement relationship at the 
interaction point [9, 10]. Such strategies often focus on using 
controllers that avoid adding energy into the system, often with 
highly dissipative behavior [11, 12]. One drawback of this 
approach is the additional effort required from the human user 
to overcome the dissipative behavior of the robot, which greatly 
reduces the performance of coupled human-robot systems in 
terms of agility and user effort. While these approaches can 
guarantee stability [13-15], they are not always desirable in 
circumstances where the robot is intended to increase the 
performance of the human within the coupled system. 
Therefore, the trade-off between stability and performance 
needs to be considered in controller design [11, 12].  
The study of balancing the stability/agility tradeoff in pHRI 

is an active research field [16]. One approach used to address 
this problem was an impedance compensator based on the 
estimation of human joint/limb impedance [17]. However, this 
research was limited to movement along one axis. In another 
approach, a method was developed that detected increases in 
oscillation and acted to restore a stable behavior [18]. However, 
this method is highly task-dependent and requires knowledge 
about the human task and the corresponding parameter tuning. 
A less task-dependent approach is to define some metrics to 
quantify the intent of the user throughout the task such as 
change in velocity or force at the interaction point to alter 
robotic impedance parameters accordingly [19, 20]. This 
approach is versatile, but the inherent impedance of the human 
in the coupled system is not considered in these studies. 
While the aforementioned research only focused on agility, a 

limited amount of other research has been focused on reducing 
user effort through impedance/admittance-based control 
[21-23]. The key idea of these works is to change the 
parameters of the impedance/admittance controller to ensure 
compliant motion. Although these approaches were successful 
in reducing user effort with guaranteed stability, they are either 
application-based approaches or costly regarding hardware 
design.  
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Previous research has been focused on either balancing the 
trade-off between agility/stability or reducing user effort, but, 
typically, both goals are equally important for pHRI 
applications. Therefore, this paper aims to quantify the stability, 
agility, and user effort in the evaluation of the proposed 
controller, namely a variable damping controller. This 
controller takes into account the inherent human impedance 
properties, in particular, human joint/limb damping, known 
from previous characterization studies [24-26] in order to 
design a controller that considers the summation of the damping 
contributions of both the robot and human within the coupled 
system.  
With the knowledge that many limbs and joints in the human 

body are inherently positively damped, the variable damping 
controller can safely use negative robotic damping to inject 
energy into the system, while maintaining an overall stable 
human-robot system. The controller was developed on the 
principle that negative damping provides the user with agility 
while positive damping maintains stability [10, 17]. If the intent 
of the user can inform the damping behavior of the robot, then 
the robot can inject or dissipate energy from the system to 
minimize user effort and increase the agility without 
compromising stability of the coupled human-robot system. We 
hypothesized that the variable damping controller with the 
ability to quickly transition between negative and positive 
damping could achieve both stability and agility 
simultaneously, while reducing user effort. 
To validate our hypothesis, we performed two distinct 

experiments simulating two different pHRI applications: 1) an 
industrial application using an upper-extremity robot, and 2) a 
rehabilitation application using a lower-extremity robot. For the 
upper-extremity study, we performed a set of human 
experiments that required subjects to interact with the end-
effector of a 7 degree-of-freedom (DOF) robotic arm. For the 
lower-extremity study, human experiments were performed 
using a 2-DOF wearable ankle robot in a seated task. These two 
separate experiments allowed us to demonstrate the general 
applicability of the controller to different parts of the human 
body and different applications.  
Our preliminary studies considered a one-dimensional (1D) 

version of the variable damping controller [27, 28]. These 
previous studies demonstrated that the variable damping control 
approach could improve the trade-off between stability and 
agility for simple, single plane tasks. However, most human 
movements in daily activities are more complex and involve 
movement in a multi-dimensional space. In this study, we 
introduce a 2D variable damping controller that more closely 
resembles what is necessary for real-world pHRI applications. 
Subjects completed a series of point-to-point target reaching 
tasks under constant positive damping and variable damping 
conditions. Stability, agility, and user effort were quantified by 
a variety of performance metrics that are used to demonstrate 
the general applicability of the controller for balancing the 
stability/agility trade-off and reducing the user effort. 

II. VARIABLE DAMPING CONTROLLER  

A. Controller Description 
 The central goal of the proposed variable damping controller 
is to use the kinematic data collected by the robot to transition 
between negative (energy injecting) and positive (energy 
dissipating) damping. The kinematic information from the 
robot must be used to determine the user’s intent of motion. In 
a typical target reaching task of a human extremity, the human 
will move their extremity in a predictable way: accelerate 
towards the target initially, then decelerate when they are 
nearing the desired target. During the initial acceleration phase 
of this movement, it is desirable for the robot to inject energy 
into the system, which can be realized through negative robotic 
damping. By applying negative damping, the robot is making it 
easier for the human user to move in the desired direction. By 
taking into account the magnitude of positive damping that is 
inherent in the human’s extremity, the robot will be able to 
prevent the coupled human-robot system from becoming 
unstable. As long as the magnitude of the negative damping 
provided by the robot is less than the magnitude of the positive 
damping inherent in the extremity, the coupled system will 
remain stable despite the injection of energy by the robot. As 
the human user begins to decelerate while approaching the 
target, it is now desirable for the robot to apply positive 
damping. As positive damping is applied to the system, the 
human user can focus on stabilizing within the target. 
 For the robot to transition from negative to positive damping 
while the user performs a target reaching task, the robot requires 
a quantification of the “user intent.” Based on the previous 
description of a human user performing a target reaching task, 
the acceleration is a good candidate for quantifying user intent 
since its sign represents the intent of the user to start and stop 
motion. However, this quantification can be improved by taking 
the product of the velocity (𝑥̇) and acceleration vectors (𝑥̈), 
which then represents a scaled version of the change in kinetic 
energy and therefore has a more desirable physical meaning. 
 Rather than instantaneously switching from a maximum 
negative robotic damping condition to a maximum positive 
robotic damping condition, the variable damping controller is 
defined by a piecewise logistic function to smoothly transition 
between the positive and negative damping (Eq. (1)). A 
piecewise function was selected to allow the designer to set the 
robotic damping, 𝑏!, when the user intent is zero regardless of 
the positive and negative damping limits, 𝑏"# and 𝑏$#, which 
are not generally of equal magnitude. 

 

								𝐵(𝑥̇𝑥̈) = 		*

2𝑏$#
1 + 𝑒%&!'̇'̈

− 𝑏$# + 𝑏! ,					𝑥̇𝑥̈ ≥ 0	

−
2𝑏"#

1 + 𝑒%&"'̇'̈ + 𝑏"# + 𝑏! ,			𝑥̇𝑥̈ < 0				
							(1) 

 
where 𝐵 is the robotic damping applied in 1-DOF and 𝑏$# + 𝑏! 
and 𝑏"# + 𝑏! are the lower and upper asymptotes of the 
damping range. In addition to the user intent 𝑥̇𝑥̈, tuning 
constants 𝑘* and 𝑘+ are used as they described in (2) to specify 
the logistic growth rate of the function, which determines how 
quickly to transition between 𝑏$# + 𝑏! and 𝑏"# + 𝑏!. 
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𝑘* =
−𝑙 𝑛 71 − 𝑠1 + 𝑠9
𝑥̇𝑥̈,-'

, 												𝑘+ =
−𝑙 𝑛 71 + 𝑠1 − 𝑠9

𝑥̇𝑥̈,.+
												(2) 

 
where 𝑥̇𝑥̈,-' and 𝑥̇𝑥̈,.+ are the maximum and minimum user 
intent during typical movement of the extremity and 𝑠 
represents the desired sensitivity of the robotic damping 
function. In this study, 𝑠 = 0.95, which means that the robotic 
damping will be 0.95𝑏$# + 𝑏! at 𝑥̇𝑥̈,-' and 0.95𝑏"# + 𝑏! at 
𝑥̇𝑥̈,.+. Therefore, 𝑘* and 𝑘+ can be selected such that the 
robotic damping will transition through the full range of 
damping, [𝑏$#+𝑏!, 𝑏"#+𝑏!]. 
 In the two experiments simulating the industrial and 
rehabilitation applications of the proposed variable damping 
controller, there are multiple DOFs that must be considered 
simultaneously. For a human arm performing a target reaching 
task in a horizontally planar workspace—analogous to the types 
of tasks common in industrial applications—there are two 
translational directions of motion that must be considered: the 
medial-lateral (ML) and antero-posterior (AP) directions. 
Similarly, for a human ankle performing a target reaching 
task—analogous to the types of tasks common in many 
rehabilitation applications—there are two rotational directions 
of interest: the inversion-eversion (IE) and dorsiflexion-
plantarflexion (DP) directions. Though the upper-
extremity/industrial application considers translational motion 
and the lower-extremity/rehabilitation application considers 

rotational motion, both cases can be addressed using a 2-DOF 
implementation of the variable damping controller.  
 In both the upper- and lower-extremity implementations of 
the controller, one of the first considerations is the inherent 
human joint/limb damping with which the robot is interacting. 
Since different DOFs of parts of the human body have different 
inherent damping, the controller is designed so that the variable 
damping control is decoupled for each DOF. Therefore, the ML 
and AP directions of the upper-extremity planar motion are 
considered separately by the controller, and likewise for the IE 
and DP directions of the ankle (Eq. (3)). Note that 𝚤̂ and 𝚥̂ are 
unit vectors specifying the direction of planar motion (in the 
upper-extremity case) and rotational motion (in the lower-
extremity case). 
 

														𝑩𝒓 = A
	𝐵0$𝚤̂ 	+ 	𝐵12𝚥̂											upper-extremity
	𝐵34 𝚤̂ 	+ 	𝐵52 𝚥̂											lower-extremity

														 (3) 
 

B.  Simulations 
 To ensure the effectiveness of the controller, two simulations 
were performed. The first simulation focused on the use of user 
intent, 𝑥̇𝑥̈,-' and 𝑥̇𝑥̈,.+, to calculate the tuning constants, 𝑘* 
and 𝑘+, and output of the robotic damping response, 𝑩𝒓. For 
this simulation, two position profiles needed to be generated to 
simulate the movement of the human user in the 𝚤 ̂ and 𝚥̂ 
directions. Using a minimum jerk trajectory function (Eq. (4)), 
these positions could be simulated as smooth paths from a 
starting position to an ending (target) position. 
 

										𝑥 = 𝑥6-7896 C10 7
6
6#
9
:
− 157 6

6#
9
;
+ 67 6

6#
9
<
E																	(4) 

 
where 𝑥6-7896 represents the target position of the human user 
and 𝑡= represents the duration of motion. For the simulation, the 
initial position was set at (0, 0) and the target was set at a 
position of (0.2, -0.1). Slightly different durations of movement 
were set for the 𝚤̂ and 𝚥̂ directions, with the movement in the 𝚤̂ 
direction taking 0.2 s longer than movement in the 𝚥 ̂direction. 
Damping ranges of [-10, 20] Ns/m (𝚤 ̂ direction) and [-5, 10] 
Ns/m (𝚥 ̂direction) with 𝑏! = 0 were selected for the simulation. 
 The simulation shows the kinematic and damping responses 
for both DOFs (Fig. 1). With the equation for minimum jerk 

 
 
 

Fig. 1. Simulation results of the variable damping controller in 2-DOF. A-
B: Simulation results using minimum jerk trajectory as an input to the 
variable damping controller. By tuning the controller based on the extrema 
of the user intent, the robotic damping plot shows the use of the full range 
of damping in both the 𝚤 ̂ and 𝚥̂ directions. C-D: A 2D trajectory plot in 
black showing the damping applied in each direction, with a color range 
used to show the different magnitudes and directions of robotic damping 
applied by the variable damping controller. Negative damping is shown in 
orange, positive damping in green. 

 
 

 

Fig. 2. Simulation results in 2-DOF that demonstrate that the tuning of the 
controller allows different human users to move at different speeds while 
still experiencing the full damping range of the controller. The solid lines 
represent the same simulation as performed in Fig. 1, while the dashed and 
dotted lines simulated slower movement. 

A !̂ Direction B #̂ Direction
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trajectory and calculating the time derivatives to find velocity 
and acceleration, the kinematic response was defined. Taking 
the product of the velocity and acceleration responses yields the 
quantification of user intent. In this simulation, the minimum 
and maximum values from the user intent plot were used to 
calculate the tuning constants for the calculation of the variable 
damping response. In both the 𝚤̂ and 𝚥 ̂ directions, the full 
damping range was used. 
 A second simulation was performed to ensure that the 
variable damping controller could be tuned for human users that 
move at different speeds (Fig. 2). Using the same parameters as 
used in the first simulation, the original duration of time to 
complete the task (1.2 s in 𝚤 ̂direction and 1.0 s in 𝚥̂ direction) 
was increased by 33.3% (1.6 s in 𝚤̂ direction and 1.3 s in 𝚥̂ 
direction) and 66.7% (2.0 s in 𝚤 ̂direction and 1.7 s in 𝚥 ̂direction) 
to simulate three different users who take different amounts of 
time to complete the task. Without tuning the controller to each 
user, some users might not use the full range of robotic 
damping, since the controller would not be able to anticipate the 
typical values of 𝑥̇𝑥̈,-' and 𝑥̇𝑥̈,.+. The simulation 
demonstrates that the controller can be tuned to the typical 
kinematic response of each user. 

III. METHODS FOR EXPERIMENTAL VALIDATION 
A. Experimental Protocol 
Human experiments were performed to evaluate the variable 

damping controller. Two experiments were performed with 20 
healthy subjects each which implemented the variable damping 
controller: 1) in an upper-extremity experiment and 2) in a 
lower-extremity experiment. Both experiments required 
subjects to complete a series of point-to-point target reaching 
tasks while coupled to a robot. While the different robotic 
hardware and ranges of motion for the two experiments 
necessitates some small differences in the experimental 
protocols, the two experiments shared many common 
procedures, which will be described in this section, and the 
following two sections will discuss the specific differences 
between the two experimental protocols. The goal of 
performing two separate experiments was to demonstrate the 
general applicability of the controller for different parts of the 
human body. 
To instruct the subjects where to move throughout the 

experiment, a GUI was created that showed the subject their 
current position within the robot’s workspace, to where they 
should move, (Fig. 3A) and whether they were successfully 
within the target position (Fig. 3B). This visual feedback was 
placed approximately ~1 m from the subject (Fig. 4 B and D). 
The structure of the experiment was defined by a collection 

of trials, movements of a subject from one target position to the 
next, and blocks, a set of ten trials. The full study consisted of 
a total of 220 trials, separated into 22 blocks between which 
subjects were given a one-minute break to rest. The first six 
blocks were used for tuning the two DOFs of the variable 
damping controllers separately, the next two blocks were used 
for practice, and the final 14 blocks, called the main blocks, 
were those used for the data analysis. The instructions for all 
the blocks were the same: each time a target appears on the 
screen, move as fast as possible to the target while avoiding 
overshoot. In the practice and main blocks, the subjects 
interacted with a variable damping condition and a constant 
positive damping condition. The constant positive damping 
condition was chosen as an experimental control condition, 
with the magnitude of positive damping selected to be a small 
value that prevented large overshoots. 
For each trial within the six tuning blocks, subjects were 

required to move from a neutral position, along either the 𝚤̂ or 𝚥̂ 
directions, and then move back to the neutral position. Since the 
𝚤̂ and 𝚥̂ controllers are independent of one another, they were 
tuned separately, with three consecutive blocks for tuning the 𝚤̂ 
controller and three more for tuning the 𝚥 ̂ controller. Within 
each set of three blocks, the first block calculated the tuning 
constants while applying zero robotic damping, the second 
block used the tuning constants calculated in the first block to 
apply variable damping while calculating a new set of tuning 
constants, and the third block repeated the same process as the 
second block to calculate the final tuning constants used for all 
the later variable damping blocks. By the end of the six tuning 
blocks, four tuning constants had been found: 𝑘*>̂ , 𝑘*

@̂ , 𝑘+>̂ , and 
𝑘+
@̂ , where the superscript identifies the DOF corresponding to 
the tuning constant. 
Following the six tuning blocks were two practice blocks, 

which introduced the subject to the 2D target reaching task. 
During these practice blocks and all the later main blocks, 
targets would appear within the defined workspace centered at 
the neutral position. A trial was considered complete when the 
subject stabilized within the target for two consecutive seconds. 
Within the practice blocks, there was one block where the robot 
was applying constant positive damping in both directions and 
one block where the robot was applying variable damping in 
both directions. Subjects were not informed that there were 
different damping environments between blocks. 
After the two practice blocks, the subject continued to the 14 

main blocks. The main blocks were indistinguishable from 
practice blocks from the perspective of the subject. However, 
instead of alternating between positive and variable damping 
each block as was done for the two practice blocks, the 14 main 
blocks were grouped together so that the subjects had time to 
acclimate to the different damping conditions. The blocks were 
grouped in two sets of three blocks, followed by two sets of four 
blocks. Within each set of blocks, the damping environment 

 
 

Fig. 3. GUI used for target reaching experiment. A: Cursor signified by a 
red circle; targets signified by blue circles. A blue dashed line represented 
the straightest path between the previous target and the next. B: Once a 
user reached the target position, the target became orange as a visual 
indication that they were inside the target. 
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alternated, and the order that these damping environments were 
shown in the experiment was randomized between subjects. 
In total, the 22 blocks and one-minute breaks between each 

block took less than one hour, ensuring that the subjects did not 
become fatigued throughout the study. The targets were placed 
in such a way that they did not favor either the 𝚤̂ or 𝚥̂ directions. 
1) Upper-Extremity Experiment: For the upper-extremity 

experiment, the variable damping controller was implemented 
into a 7-DOF robotic arm (LBR iiwa R820, KUKA, Germany) 
with a 6-axis load cell (Delta IP60, ATI Industrial Automation, 
NC) attached to the end-effector, where the human user would 
grasp while moving their dominant arm in the ML (𝚤̂) and AP 
(𝚥̂) directions. Because of the addition of the 6-axis load cell, 
force data could be collected during the experiment, in addition 
to kinematic and muscle activation data. Kinematic and force 
data was sampled at 1 kHz. 
A total of 20 young, healthy subjects (age: 20-33, weight: 

48-100 kg, 4 female, 16 male) participated in this study, which 
was approved by the Institutional Review Board of Arizona 
State University (STUDY00008114). All subjects gave written 
consent prior to participation and were not aware of the study’s 
hypothesis. Each of the subjects completed the experimental 
protocol in a seated position while holding the end-effector of 
the robot (Fig 4A). The subjects could move the end effector in 
only the ML and AP directions (the transverse plane of motion), 
as the stiffness of the end effector was set to 0 N/m in these 
directions, and 106 N/m in the perpendicular direction. In 
addition to the 0 N/m stiffness in the transverse plane, the inertia 
was set to 10 kg. The subjects were seated with a neutral 
position defined as holding the robot with the elbow at 90° of 
flexion and shoulder at 70° of abduction and 45° of horizontal 
flexion. Subjects were instructed to hold their wrist at a constant 
neural position and not allow any relative angle change between 
the hand and forearm. The stool the subjects were seated on was 
positioned to allow movement of 18 cm in any of the four 

directions (+𝚤,̂ −𝚤,̂ +𝚥,̂ and −𝚥)̂ along the transverse plane. For 
the safety of the human user, a virtual wall of size 36 cm by 36 
cm was created around the workspace, so any movement at or 
outside of that perimeter would be prevented by imposing a 
highly positive damping of 30 Ns/m. 
Within both the practice and main blocks, the ten targets were 

placed in such a way that the overall path length within a block 
was 50 cm in each of the four movement directions (medial, 
lateral, anterior, and posterior) and the minimum displacement 
in each direction in each trial was more than 5 cm. A path was 
generated in the plane with dimension of 20×20 cm2 around the 
neutral position. Target sizes had the radius of 1.5 cm, while the 
radius of the cursor for subject position was 5 mm. The 
following damping ranges were selected based on upper-
extremity characterization studies [24, 25]: [-10, 60] Ns/m for 
the ML direction and [-30, 60] Ns/m for the AP direction. In-
between trials the damping was set to 30 Ns/m for safety 
purposes. During the tuning blocks, each trial required a motion 
of ±10 cm in each direction. 
Electromyography (EMG) data was recorded by surface 

EMG sensors (Trigno Wireless EMG System, DELSYS Inc., 
USA) placed on the dominant arm of the subject. All subjects 
that participated in the experiment were right-handed. The 
muscles recorded were the brachioradialis (BRD), biceps (BI), 
anterior deltoid (DELTANT), posterior deltoid (DELTPOST), and 
the lateral and longitudinal triceps (TRILAT and TRILONG). All 
sites of application were thoroughly cleaned with alcohol pads 
before placing the sensors. Sensors were secured with double-
sided adhesive tape and waterproof skin tape. After attaching 
the sensors, the subject was instructed to perform a maximum 
voluntary contraction (MVC) test for each of the muscles 
following standard muscle testing procedures [29, 30]. This 
involved three repetitions of an isokinetic movement for each 
muscle. There was a three second hold for each repetition and a 
one second rest in-between repetitions. All MVC movements 
occurred while the subject was standing, and all EMG data for 
the upper-extremity experiment was sampled at 2 kHz. 
2) Lower-Extremity Experiment: For the lower-extremity 

experiment, the variable damping controller was implemented 
into a wearable ankle robot (Anklebot, Bionik Laboratories 
Corp., Canada). The wearable robot is highly backdrivable and 
could therefore apply damping in the IE (𝚤̂) and DP (𝚥̂) 
directions of the human’s ankle as they moved. There is no 
force sensor on this robot, so no interaction force data was 
collected throughout the experiment. 
A total of 20 young, healthy subjects (age: 21-34, weight: 

48-91 kg, 7 female, 13 male) participated in this study, which 
was approved by the Institutional Review Board of Arizona 
State University (STUDY00012606). All subjects gave written 
consent prior to participation and were not aware of the study’s 
hypothesis. 
The wearable ankle robot was supported by a knee brace and 

connected to the human subject with joints on the subject’s right 
shoe (Fig. 4B). All subjects wore the same style of rigid shoe 
with a flat sole. The robot was then calibrated to a neutral foot 
position of 90° from the shank in the DP direction to the sole of 
the shoe. Afterwards, gravity compensation was performed so 
that a constant, upwards torque was applied throughout the 

 
 

 

Fig. 4. Experimental setups to evaluate the effectiveness of the variable 
damping controller. A-B: Human user holding the end-effector of the 7-
DOF robotic arm for the upper-extremity experiment. C-D: Human user 
coupled to the wearable ankle robot for the lower-extremity experiment. 
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study to prevent fatigue. Before the main portion of the 
experiment, the subjects performed the tuning trials. During the 
tuning trials, subjects had to move ±7.5° in the IE direction and 
±15° (for the first set of three tuning blocks) in the DP direction 
(for the second set of three tuning blocks) and then return to the 
neutral position. 
The targets for the practice and main portion of the 

experiment (blocks 7-22) were placed on the end of randomly 
generated path segments within an ellipse that was ±15° tall and 
±7.5° wide. These values were chosen to remain within the 
documented range of motion for the human ankle [31]. All 
paths for each block were selected to have the same amount of 
distance traveled in the DP and IE directions within ±1°. The 
total path length for all trials within a block was 55±1°. The 
targets had a radius of 2.5°, and the user’s cursor had a radius 
of 0.75°. 
EMG data was recorded by surface EMG sensors (Bagnoli-

16, DELSYS Inc., USA) placed on the tibialis anterior (TA), 
peroneus longus (PL), medial gastrocnemius (MG), and soleus 
(SL), and a grounding sensor was placed on the subject’s 
kneecap. Procedures for EMG setting and MVC measurement 
were the same as in the upper-extremity experiment. 

B. Data Analysis 
 To analyze the data collected during the 14 main blocks in 
the experimental protocol, a number of performance metrics 
were selected. These performance metrics convert the raw 
kinematic, EMG, and interaction force (upper-extremity 
experiment only) data into meaningful quantities that are used 
to represent the effectiveness of the controller. Selecting the 
point-to-point target reaching task for both experiments allowed 
for the presentation of variety of performance metrics that are 
minimally task specific. Since the goal of the variable damping 
controller is to improve the trade-off between stability/agility 
and reduce user effort in pHRI, there are three main categories 
of performance metrics in this paper: stability, agility, and user 
effort. 
 1) Stability: Stability was quantified by evaluating the 
amount of overshoot and the time required to stabilize in each 
trial. A stable trial was defined as one in which the subject 
moved along a straight path to the target without going past the 
target. If the subject passed the target along the ideal line from 
the previous target to the next, the maximum tangential distance 
from the target along the ideal line was quantified as the 
overshoot (Fig 5A). Additionally, the time period during which 
this overshoot was taking place (between when the subject first 
hit the target to the stability point) was quantified as the 
stabilization time (Fig. 5B). The stability point was defined as 
the time when the subject was able to hold the center of the 
cursor within the target for 0.5 s. 
 2) Agility: Agility was quantified by evaluating the speed at 
which subjects completed each trial. Two separate metrics of 
speed were evaluated: mean speed and maximum speed. The 
mean speed was calculated during the main portion of the trial 
from when the subject started moving, the initiation time, to 
when they first hit the target, the first hit time. The initiation 
time was quantified as the point in time when the subject moved 
at least 5 mm (in the upper-extremity experiment) or 2° (in the 
lower-extremity experiment) in any direction around their 
initial position. The first hit was quantified as the point in time 
when the subject hit the outer edge of the target with the cursor. 
Between these two times, the mean speed was calculated for 
each trial (Fig. 5C). The second agility metric was the 
maximum speed, which was simply a quantification of the 
largest magnitude speed achieved by a subject during each trial 
(Fig 5D). 
 3) User Effort: User effort was quantified in both 
experiments by the muscle activation and, in the upper-
extremity experiment, by force at the interaction point. Muscle 
activation data was collected by surface EMG sensors on the 
muscles relevant to motion. All EMG data, including that of the 
MVC, was filtered using a 4th order low-pass Butterworth filter 
with a frequency of 5 Hz after removing the DC bias offsets and 
rectifying the signal. All EMG data was normalized by the 
MVC value for each muscle. This was calculated by taking the 
average of 1 second’s worth of data surrounding the maximum 
data point from the MVC test. A single peak data point was not 
chosen because it would allow too much variability [32].  
The two metrics to evaluate the EMG data were overall effort 

and maximum effort. The overall effort was defined as the 
integral of the processed EMG curve from 200 ms before the 

 
 

Fig. 5. Visual representations of the performance metrics selected for data 
analysis. Row 1 shows stability metrics, with the target position in blue 
and position response in red. Row 2 shows the agility metrics in green. 
Rows 3 and 4 show the effort metrics, with muscle activation in orange 
and force in violet. The illustration of muscle activation could be 
considered as the contribution from a single muscle or the average of 
multiple agonists. 
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initiation time to the stability point (Fig 5E). The 200 ms of 
EMG data before the initiation time was included to capture the 
muscle activation required to initiate movement. This value was 
then divided by the time elapsed over when the integral was 
taken, and then averaged with the values calculated for the 
agonists of the appropriate direction of movement. The relevant 
agonist muscles for each direction were as follows. For the 
upper-extremity study: forward corresponded to the TRILONG 
and TRILAT, backwards to the BRD and BI, left to the TRILAT, 
TRILONG, and DELTANT, and right to the DELTPOST, BRD, and 
BI. For the lower extremity study: dorsiflexion corresponded to 
the TA, plantarflexion to the SL and MG, and eversion to the 
PL. Inversion motion was not quantifiable using surface EMG 
sensors and thus was not considered. The maximum effort 
metric was calculated by taking the maximum value of 
activation over the whole trial and averaging it with the other 
agonists, similar to the overall effort (Fig. 5F).  
 In addition, the mean root-mean-squared (RMS) and 
maximum RMS interaction force were used in the upper-
extremity experiment to quantify kinetic reduction in effort. 
The mean RMS interaction force was taken from the initiation 
time to the stability point (Fig. 5G). The maximum interaction 
force was simply the highest value of interaction force over the 
course of the whole trial (Fig. 5H). 
4) Additional Considerations and Statistical Analysis:

 Outlier rejection was applied to all performance metrics 
using the normalized position response in each movement 
direction. The trials were shifted to align the position response, 
and any trial that fell outside of ±3 standard deviations (STD) 
from the mean position response was removed.  

Statistical analysis was performed to assess the significance 
of mean differences between the variable and positive damping 
conditions. Two-tailed, paired t-tests were used for all 
kinematic metrics and non-paired t-tests were used for all EMG 
metrics. This is because both EMG metrics are reported with 
the variable condition as a ratio to the positive such that the t-
test is comparing normalized variable damping data to one with 
an unknown variance. All statistical tests used a significance 
level of 0.05.  

IV. RESULTS  
Results from the 20 subjects in both the upper- and lower-

extremity studies confirmed that the variable damping 
controller was able to reduce user effort while simultaneously 
improving agility with a minimal reduction in stability. The 
subsections below describe the results from a representative 
subject and the group results from each study. To be concise, 
variable damping and positive damping are abbreviated as VD 
and PD, respectively, within this section. The average percent 
of trials removed per subject from the upper-extremity 
experiment were 4.9 ± 1.5% and 6.1 ± 1.5% for PD and VD 
respectively. Similarly, for the lower-extremity experiment, 
averages of 5.5 ± 1.3% (PD) and 7.7 ± 2.1% (VD) of trials were 
removed as outliers.  

A. Representative Subject Results 
The position profiles for the representative subject (Fig. 6A 

and 6B) were shifted in time and normalized so that the 
initiation of movement (time when the subject had moved 5 mm 
for the upper-extremity study and 2° for the lower-extremity 
study) is represented as a position of zero and the target is a 

Fig. 6. A representative subject’s kinematic data. The two leftmost columns represent the data of the anterior and medial direction from the upper-extremity 
study, while the last two columns are the dorsiflexion and eversion data from the lower-extremity study. The position data in the first two rows (A: positive, 
B: variable) are displayed as normalized values to account for the differences in path lengths, with the starting location indicated with a normalized position 
of 0 and a target location with a normalized position of ±1. User intent is shown in C and the average variable damping applied across the trials is shown in 
D. The dotted lines represent ±1 STD from the mean.  
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position of ±1. Both the upper- and lower-extremity position 
profiles with the VD controller show a low amount of 
overshoot, and the difference in overshoot between the two 
damping conditions is almost negligible. This shows that the 
ability of VD to provide a level of stability comparable to PD. 
Marked in red hollow circles, the mean time to reach 90% of 
the normalized target position occurs sooner in the VD 
condition than the PD condition. This result demonstrates the 
increased agility with the VD controller.  
Further, the effectiveness of the VD controller can be seen in 

the representative subject results of user intent and robotic 
damping. These results show how the damping applied (Fig. 
6D) is dependent on the user intent (Fig. 6C). Positive user 
intent causes negative damping which helps the user accelerate, 
while negative user intent causes positive damping which 
allows users to stabilize within the target position. Fig. 6C 
shows how quickly the VD controller was able to assist with 
acceleration and deceleration over the course of the trial.  

B. Group Results: Upper-Extremity Study   
1) Stability: The overshoot and stabilization time metrics 

provided a means for comparing the impact each controller has 
on the stability of the user (Fig 7A and 7B). Neither the PD nor 
VD condition caused a significant amount of overshoot (≤ 0.1 
cm). This result is in comparison to the minimum and maximum 

path lengths of 7 cm and 28 cm, respectively. The overshoot 
was 0.07 cm greater for VD than PD. While a paired t-test 
demonstrated a significant difference (p < 1E-4) in overshoot 
between the damping conditions, the small magnitude of the 
VD overshoot (< 2% of the minimum possible path length) 
overall is inconsequential. The second stability metric, 
stabilization time, had a 7.5% increase in time required to reach 
the target after movement initiation. This result represents a 
difference in means of 0.04 s and is statistically significant 
according to a paired t-test (p < 1E-4). However, as with the 
overshoot metric results, this difference is largely 
inconsequential. 
2) Agility: The agility metrics show that the VD controller 

allowed subjects to move more quickly than the PD 
controller. VD produced faster mean and maximum speeds than 
those of PD (Fig. 7C and 7D). The mean speed of VD was 2.5 
cm/s higher than PD representing a 10.7% increase, while the 
maximum speed of VD was 8.1 cm/s higher than PD 
representing a 22.2% increase. Both results were found to be 
statistically significant using a paired t-test (p < 0.001, p < 1E-
4 for mean and maximum speed, respectively).  
3) User Effort: User effort was quantified using two metrics, 

muscle effort and interaction force. The muscle effort metrics 
demonstrate the biomechanical reduction in effort as a function 
of muscle activation, while the interaction force metrics are an 
outward representation of the muscle effort. Intersubject 
variability in the MVC caused by differences in muscle size was 
reduced by normalizing VD to PD. The overall muscle effort 
metric (Fig. 7E) showed a 11.9% decrease in muscle activation, 
while the maximum muscle effort metric (Fig. 7F) showed a 
21.8% decrease. A t-test comparing the normalized value of VD 
to one showed that both the overall and maximum muscle effort 

 

Fig. 8. The group-averaged results for the kinematic and EMG data of the 
lower-extremity study. The error bars show a range of ±1 standard 
deviation from the mean. Stars are used to denote significance in pairwise 
comparisons: * for p < 0.05 ** for p < 0.001, and *** for p < 1E-4.  

 
Fig. 7. The group-averaged results for the kinematic and EMG data of the 
upper-extremity study. Group averages are represented by the height of 
the bars. The error bars show a range of ±1 standard deviation from the 
mean. Stars are used to denote significance in pairwise comparisons: ** 
for p < 0.001, and *** for p < 1E-4.  
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had a statistically significant difference in mean values (p < 
0.001 and p < 1E-4, respectively).  
Both the mean and maximum RMS force applied in VD were 

significantly lower than PD (Fig. 7G and 7H). The mean RMS 
force in VD was 1.5 N less than PD representing a 33.9% 
decrease, while the maximum RMS force in VD was 9.2 N less 
than PD, representing a 54.9% decrease. These results were 
found to be statistically significant using a paired t-test (p < 1E-
4 for both mean and maximum RMS force), demonstrating a 
kinetic reduction in effort associated with the VD controller. 

C. Group Results: Lower-Extremity Study 
1) Stability: There was a significant difference (p < 1E-4) in 

overshoot between the means of the two damping conditions 
(Fig. 8A) as reported by a paired t-test. This represented a 
28.2% increase in overshoot from PD to VD and an increase in 
mean of 0.25°. Despite this significant difference in means, the 
overshoot in both conditions was very small (< ~1°), relative to 
a minimum and maximum path lengths of 4.1° and 15.4°, 
respectively. The stabilization time metric (Fig. 8B) also had a 
significant difference (p < 0.005) between the two damping 
conditions as reported by a paired t-test. There was a 2.2% 
difference between conditions representing a 0.01 s difference 
in the average time it took subjects to stabilize. Although 
statistically significant, this difference is not large enough to 
indicate a substantial reduction in the user’s stability. 
2) Agility: The agility metrics demonstrate that subjects were 

able to maneuver at statistically significantly higher speeds in 
VD compared to PD (p < 1E-4 for both metrics). This 
significance was determined using a paired t-test for both 
metrics. There was an increase in mean speed (Fig. 8C) of 
19.4% corresponding to a mean difference of 0.09 cm/s from 
PD to VD. There was also an increase in maximum speed (Fig. 
8D) by 56.1% representing a difference in means of 0.46 cm/s. 
These metrics demonstrate a statistically significant increase in 
agility effected by the VD controller.    
3) User Effort: The muscle effort metrics demonstrate that 

the subjects were able to perform the tasks with significantly 
less effort using the VD controller than the PD controller. The 
overall and maximum effort metrics show respective 15.2% and 
15.3% decreases in required agonist muscle activation from PD 
to VD (Fig. 8E and F). A t-test comparing the normalized value 
of VD to one showed denoted a significant difference in means 
for both metrics (p < 1E-4 for both overall and maximum 
muscle effort).   

V. DISCUSSION 
Impedance/admittance controllers with constant positive 

damping have been widely used in many pHRI applications due 
to the importance of stability in coupled human robot systems. 
However, these control methods over-emphasize stability at the 
expense of agility and user effort. In this study, the variable 
damping controller was developed on the principle of using 
both positive and negative damping to provide a solution 
that balances stability, agility and user effort. 
Our previous work in variable damping control was limited 

to 1D applications [27, 28]. This allowed us to establish a proof 
of concept for our methodology; however, 1D movement is not 

an accurate representation of tasks encountered in everyday life.  
This 2D study is meant to fill this gap and more closely 
represent the behavior of the controller in  real-world scenarios. 
The results of both the upper- and lower-extremity studies 

demonstrate that the variable damping controller was able to 
reduce user effort while increasing agility at a negligible cost to 
stability. The reduction in user effort has significant 
implications for long-term use where the user may not possess 
the stamina required to operate a less efficient coupled human-
robot system. The implementations of the VD controller 
described in this work may be directly applied to rehabilitation 
where the use of lower- [33] and upper-extremity [34] 
movements for reaching tasks are common. Industrial 
applications may also benefit from the efficiency of the VD 
controller to mitigate the development of musculoskeletal 
diseases that develop as a result of strenuous labor [35]. While 
the amount of translational benefit of this controller in weight-
bearing pHRI has not yet been quantified, previous research has 
shown that improved motor control in non-weight bearing 
training can be transferred to weight-bearing daily tasks [33, 
36]. In general, the improvement in agility allows the user to 
have a more seamless experience during pHRI that is not 
limited by the dissipative energy dynamics caused by a positive 
damping controller [37]. Nearly equivalent stability in damping 
conditions shows that the variable damping controller 
effectively emulates desired deceleration dynamics of positive 
damping. Increased agility and positive damping stability 
demonstrate that the variable damping controller combines the 
useful elements of both negative and positive damping to 
develop a more efficient control mechanism. 
Existing works on variable impedance/admittance 

controllers in pHRI have improved the performance of coupled 
human-robot systems. However, the performance of these 
controllers was evaluated with limited or task-specific metrics 
such as reducing force measured at the interaction point [23], 
reducing time completion of a specific task [17, 19, 20], or 
reducing oscillation while maintaining a specific amount of 
force [21]. Unlike previous work, this paper evaluated several 
categories of metrics to demonstrate the performance of the 
proposed controller from a more holistic view in two separate 
applications. The proposed controller could maintain stability, 
increase agility, and reduce user effort, in both the upper- and 
lower-extremities. All three of these characteristics are essential 
in the design of coupled human-robot systems. 
While the current implementation of the variable damping 

controller was shown to successfully manage the trade-off 
between stability, agility, and user effort in multi-DOF, it still 
requires tuning and many static parameters. Several tuning 
trials must be completed to ensure each subject’s maximum and 
minimum user intent are paired with the respective values of 
damping. Furthermore, the maximum and minimum values of 
damping simulated by the controller were determined from the 
results of the previous characterization studies [24-26]. 
Therefore, while these values are chosen based on knowledge 
from the biomechanical characteristics of the average human 
user, they are not based on biomechanical characteristics of 
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each individual user. A more robust method would be to have 
these parameters continually update as user proficiency 
improves. However, the impact of user proficiency is not 
currently factored into the design of the controller. The current 
study was implemented using only the point-to-point target 
reaching task. This task allowed us to present many different, 
general performance parameters and to show the generality of 
our method. Although more complicated tasks such as irregular 
movement and obstacle avoidance are not directly studied, the 
point-to-point target reaching task serves as an important 
building block for such movements. 
Future work will focus on developing learning methods so 

that the controller can adaptively tune its parameters based on 
the performance and biomechanical characteristics of each user. 
This would eliminate the tuning sessions and incorporate the 
ability and proficiency of each user. Other future work will 
focus on integrating additional biomechanical characteristics of 
humans, like stiffness, into the design variable impedance 
controllers. The validated, improved controller may then be 
tested using irregular movement tasks. 
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