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Variable Damping Control for pHRI:
Considering Stability, Agility, and Human Effort
in Controlling Human Interactive Robots
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Abstract—This paper presents a multi-degree-of-freedom
variable damping controller to manage the trade-off between
stability and agility and to reduce user effort in physical human-
robot interaction. The controller accounts for the human body’s
inherent impedance properties and applies a range of robotic
damping from negative (energy injection) to positive (energy
dissipation) values based on the user’s intent of motion. To
evaluate the effectiveness of the proposed controller in balancing
the trade-off between stability/agility and reducing user effort, two
studies were performed on both the human upper-extremity and
lower-extremity to represent both industrial and rehabilitation
applications of the proposed controller. These studies required
subjects to perform a series of multi-dimensional target reaching
tasks while the human user interacted with either the end-effector
of a robotic arm for the upper-extremity study or with a wearable
ankle robot for the lower-extremity study. Stability, agility, and
user effort were quantified by a variety of performance metrics.
Stability was quantified by both overshoot and stabilization time.
Mean and maximum speed were used to quantify agility. To
quantify the user effort, both overall and maximum muscle
activation, and mean and maximum root-mean-squared
interaction force were calculated. The results of both the upper-
and lower-extremity studies demonstrated that the controller was
able to reduce user effort while increasing agility at a negligible
cost to stability.

Index Terms—Physical human robot interaction, variable
impedance control, performance, stability, agility, human effort

I. INTRODUCTION

HE field of physical human-robot interaction (pHRI) has
steadily grown in recent years with new developments in a
variety of applications. Human-robot systems for rehabilitation
have allowed for enhanced physical therapy and powered
prosthesis [1, 2], and industrial and military human-in-the-loop
robots have seen increased development and design
considerations [3-5].
To ensure system stability and safety of human-robot
systems, researchers have designed and used different types of
controllers [6-8]. One popular approach is
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impedance/admittance control which regulates the force/torque
and displacement/angular displacement relationship at the
interaction point [9, 10]. Such strategies often focus on using
controllers that avoid adding energy into the system, often with
highly dissipative behavior [11, 12]. One drawback of this
approach is the additional effort required from the human user
to overcome the dissipative behavior of the robot, which greatly
reduces the performance of coupled human-robot systems in
terms of agility and user effort. While these approaches can
guarantee stability [13—15], they are not always desirable in
circumstances where the robot is intended to increase the
performance of the human within the coupled system.
Therefore, the trade-off between stability and performance
needs to be considered in controller design [11, 12].

The study of balancing the stability/agility tradeoff in pHRI
is an active research field [16]. One approach used to address
this problem was an impedance compensator based on the
estimation of human joint/limb impedance [17]. However, this
research was limited to movement along one axis. In another
approach, a method was developed that detected increases in
oscillation and acted to restore a stable behavior [18]. However,
this method is highly task-dependent and requires knowledge
about the human task and the corresponding parameter tuning.
A less task-dependent approach is to define some metrics to
quantify the intent of the user throughout the task such as
change in velocity or force at the interaction point to alter
robotic impedance parameters accordingly [19, 20]. This
approach is versatile, but the inherent impedance of the human
in the coupled system is not considered in these studies.

While the aforementioned research only focused on agility, a
limited amount of other research has been focused on reducing
user effort through impedance/admittance-based control
[21-23]. The key idea of these works is to change the
parameters of the impedance/admittance controller to ensure
compliant motion. Although these approaches were successful
in reducing user effort with guaranteed stability, they are either
application-based approaches or costly regarding hardware
design.
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Previous research has been focused on either balancing the
trade-off between agility/stability or reducing user effort, but,
typically, both goals are equally important for pHRI
applications. Therefore, this paper aims to quantify the stability,
agility, and user effort in the evaluation of the proposed
controller, namely a variable damping controller. This
controller takes into account the inherent human impedance
properties, in particular, human joint/limb damping, known
from previous characterization studies [24—26] in order to
design a controller that considers the summation of the damping
contributions of both the robot and human within the coupled
system.

With the knowledge that many limbs and joints in the human
body are inherently positively damped, the variable damping
controller can safely use negative robotic damping to inject
energy into the system, while maintaining an overall stable
human-robot system. The controller was developed on the
principle that negative damping provides the user with agility
while positive damping maintains stability [10, 17]. If the intent
of the user can inform the damping behavior of the robot, then
the robot can inject or dissipate energy from the system to
minimize user effort and increase the agility without
compromising stability of the coupled human-robot system. We
hypothesized that the variable damping controller with the
ability to quickly transition between negative and positive
damping could achieve both stability and agility
simultaneously, while reducing user effort.

To validate our hypothesis, we performed two distinct
experiments simulating two different pHRI applications: 1) an
industrial application using an upper-extremity robot, and 2) a
rehabilitation application using a lower-extremity robot. For the
upper-extremity study, we performed a set of human
experiments that required subjects to interact with the end-
effector of a 7 degree-of-freedom (DOF) robotic arm. For the
lower-extremity study, human experiments were performed
using a 2-DOF wearable ankle robot in a seated task. These two
separate experiments allowed us to demonstrate the general
applicability of the controller to different parts of the human
body and different applications.

Our preliminary studies considered a one-dimensional (1D)
version of the variable damping controller [27, 28]. These
previous studies demonstrated that the variable damping control
approach could improve the trade-off between stability and
agility for simple, single plane tasks. However, most human
movements in daily activities are more complex and involve
movement in a multi-dimensional space. In this study, we
introduce a 2D variable damping controller that more closely
resembles what is necessary for real-world pHRI applications.
Subjects completed a series of point-to-point target reaching
tasks under constant positive damping and variable damping
conditions. Stability, agility, and user effort were quantified by
a variety of performance metrics that are used to demonstrate
the general applicability of the controller for balancing the
stability/agility trade-off and reducing the user effort.

II. VARIABLE DAMPING CONTROLLER

A. Controller Description

The central goal of the proposed variable damping controller
is to use the kinematic data collected by the robot to transition
between negative (energy injecting) and positive (energy
dissipating) damping. The kinematic information from the
robot must be used to determine the user’s intent of motion. In
a typical target reaching task of a human extremity, the human
will move their extremity in a predictable way: accelerate
towards the target initially, then decelerate when they are
nearing the desired target. During the initial acceleration phase
of this movement, it is desirable for the robot to inject energy
into the system, which can be realized through negative robotic
damping. By applying negative damping, the robot is making it
easier for the human user to move in the desired direction. By
taking into account the magnitude of positive damping that is
inherent in the human’s extremity, the robot will be able to
prevent the coupled human-robot system from becoming
unstable. As long as the magnitude of the negative damping
provided by the robot is less than the magnitude of the positive
damping inherent in the extremity, the coupled system will
remain stable despite the injection of energy by the robot. As
the human user begins to decelerate while approaching the
target, it is now desirable for the robot to apply positive
damping. As positive damping is applied to the system, the
human user can focus on stabilizing within the target.

For the robot to transition from negative to positive damping
while the user performs a target reaching task, the robot requires
a quantification of the “user intent.” Based on the previous
description of a human user performing a target reaching task,
the acceleration is a good candidate for quantifying user intent
since its sign represents the intent of the user to start and stop
motion. However, this quantification can be improved by taking
the product of the velocity (x) and acceleration vectors (%),
which then represents a scaled version of the change in kinetic
energy and therefore has a more desirable physical meaning.

Rather than instantaneously switching from a maximum
negative robotic damping condition to a maximum positive
robotic damping condition, the variable damping controller is
defined by a piecewise logistic function to smoothly transition
between the positive and negative damping (Eq. (1)). A
piecewise function was selected to allow the designer to set the
robotic damping, b, when the user intent is zero regardless of
the positive and negative damping limits, by and b, g, which
are not generally of equal magnitude.

ZbLB . e
W_bw+bc. x>0
B(xX) = Thy o
17 oFnix T bus +be, X% <0

where B is the robotic damping applied in 1-DOF and b,z + b,
and byg + b, are the lower and upper asymptotes of the
damping range. In addition to the user intent XX, tuning
constants k,, and k,, are used as they described in (2) to specify
the logistic growth rate of the function, which determines how
quickly to transition between b,z + b and byg + b.
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Fig. 1. Simulation results of the variable damping controller in 2-DOF. A-
B: Simulation results using minimum jerk trajectory as an input to the
variable damping controller. By tuning the controller based on the extrema
of the user intent, the robotic damping plot shows the use of the full range
of damping in both the { and j directions. C-D: A 2D trajectory plot in
black showing the damping applied in each direction, with a color range
used to show the different magnitudes and directions of robotic damping
applied by the variable damping controller. Negative damping is shown in
orange, positive damping in green.
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P XXmax (2)
where XX,,,, and XX,,;, are the maximum and minimum user
intent during typical movement of the extremity and s
represents the desired sensitivity of the robotic damping
function. In this study, s = 0.95, which means that the robotic
damping will be 0.95b,5 + b at XX,,,, and 0.95by; + b, at
XXpmin. Therefore, k, and k, can be selected such that the
robotic damping will transition through the full range of
damping, [byg+bc, bypthbc].

In the two experiments simulating the industrial and
rehabilitation applications of the proposed variable damping
controller, there are multiple DOFs that must be considered
simultaneously. For a human arm performing a target reaching
task in a horizontally planar workspace—analogous to the types
of tasks common in industrial applications—there are two
translational directions of motion that must be considered: the
medial-lateral (ML) and antero-posterior (AP) directions.
Similarly, for a human ankle performing a target reaching
task—analogous to the types of tasks common in many
rehabilitation applications—there are two rotational directions
of interest: the inversion-eversion (IE) and dorsiflexion-
plantarflexion (DP) directions. Though the upper-
extremity/industrial application considers translational motion
and the lower-extremity/rehabilitation application considers
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Fig. 2. Simulation results in 2-DOF that demonstrate that the tuning of the
controller allows different human users to move at different speeds while
still experiencing the full damping range of the controller. The solid lines
represent the same simulation as performed in Fig. 1, while the dashed and
dotted lines simulated slower movement.

rotational motion, both cases can be addressed using a 2-DOF
implementation of the variable damping controller.

In both the upper- and lower-extremity implementations of
the controller, one of the first considerations is the inherent
human joint/limb damping with which the robot is interacting.
Since different DOFs of parts of the human body have different
inherent damping, the controller is designed so that the variable
damping control is decoupled for each DOF. Therefore, the ML
and AP directions of the upper-extremity planar motion are
considered separately by the controller, and likewise for the IE
and DP directions of the ankle (Eq. (3)). Note that I and j are
unit vectors specifying the direction of planar motion (in the
upper-extremity case) and rotational motion (in the lower-
extremity case).

upper-extremity
lower-extremity

B. — {BMLi + Bapf (3)

BIEi + BDPj

B.  Simulations

To ensure the effectiveness of the controller, two simulations
were performed. The first simulation focused on the use of user
intent, XX, 4, and XX, to calculate the tuning constants, k,
and k,,, and output of the robotic damping response, B,.. For
this simulation, two position profiles needed to be generated to
simulate the movement of the human user in the { and j
directions. Using a minimum jerk trajectory function (Eq. (4)),
these positions could be simulated as smooth paths from a
starting position to an ending (target) position.

X = Xyarget [10 (é)3 - 15 (i)4 +6 (é)s]

where X4, g¢; TEpresents the target position of the human user
and t; represents the duration of motion. For the simulation, the
initial position was set at (0, 0) and the target was set at a
position of (0.2, -0.1). Slightly different durations of movement
were set for the I and j directions, with the movement in the ©
direction taking 0.2 s longer than movement in the  direction.
Damping ranges of [-10, 20] Ns/m (i direction) and [-5, 10]
Ns/m (f direction) with b, = 0 were selected for the simulation.

The simulation shows the kinematic and damping responses
for both DOFs (Fig. 1). With the equation for minimum jerk

C)
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Fig. 3. GUI used for target reaching experiment. A: Cursor signified by a
red circle; targets signified by blue circles. A blue dashed line represented
the straightest path between the previous target and the next. B: Once a
user reached the target position, the target became orange as a visual
indication that they were inside the target.

trajectory and calculating the time derivatives to find velocity
and acceleration, the kinematic response was defined. Taking
the product of the velocity and acceleration responses yields the
quantification of user intent. In this simulation, the minimum
and maximum values from the user intent plot were used to
calculate the tuning constants for the calculation of the variable
damping response. In both the I and j directions, the full
damping range was used.

A second simulation was performed to ensure that the
variable damping controller could be tuned for human users that
move at different speeds (Fig. 2). Using the same parameters as
used in the first simulation, the original duration of time to
complete the task (1.2 s in { direction and 1.0 s in J direction)
was increased by 33.3% (1.6 s in i direction and 1.3 s in J
direction) and 66.7% (2.0 s in { direction and 1.7 s in f direction)
to simulate three different users who take different amounts of
time to complete the task. Without tuning the controller to each
user, some users might not use the full range of robotic
damping, since the controller would not be able to anticipate the
typical values of XX, and xX,;,. The simulation
demonstrates that the controller can be tuned to the typical
kinematic response of each user.

III. METHODS FOR EXPERIMENTAL VALIDATION
A. Experimental Protocol

Human experiments were performed to evaluate the variable
damping controller. Two experiments were performed with 20
healthy subjects each which implemented the variable damping
controller: 1) in an upper-extremity experiment and 2) in a
lower-extremity experiment. Both experiments required
subjects to complete a series of point-to-point target reaching
tasks while coupled to a robot. While the different robotic
hardware and ranges of motion for the two experiments
necessitates some small differences in the experimental
protocols, the two experiments shared many common
procedures, which will be described in this section, and the
following two sections will discuss the specific differences
between the two experimental protocols. The goal of
performing two separate experiments was to demonstrate the
general applicability of the controller for different parts of the
human body.

To instruct the subjects where to move throughout the

experiment, a GUI was created that showed the subject their
current position within the robot’s workspace, to where they
should move, (Fig. 3A) and whether they were successfully
within the target position (Fig. 3B). This visual feedback was
placed approximately ~1 m from the subject (Fig. 4 B and D).

The structure of the experiment was defined by a collection
of trials, movements of a subject from one target position to the
next, and blocks, a set of ten trials. The full study consisted of
a total of 220 trials, separated into 22 blocks between which
subjects were given a one-minute break to rest. The first six
blocks were used for tuning the two DOFs of the variable
damping controllers separately, the next two blocks were used
for practice, and the final 14 blocks, called the main blocks,
were those used for the data analysis. The instructions for all
the blocks were the same: each time a target appears on the
screen, move as fast as possible to the target while avoiding
overshoot. In the practice and main blocks, the subjects
interacted with a variable damping condition and a constant
positive damping condition. The constant positive damping
condition was chosen as an experimental control condition,
with the magnitude of positive damping selected to be a small
value that prevented large overshoots.

For each trial within the six tuning blocks, subjects were
required to move from a neutral position, along either the  or j
directions, and then move back to the neutral position. Since the
T and j controllers are independent of one another, they were
tuned separately, with three consecutive blocks for tuning the 1
controller and three more for tuning the j controller. Within
each set of three blocks, the first block calculated the tuning
constants while applying zero robotic damping, the second
block used the tuning constants calculated in the first block to
apply variable damping while calculating a new set of tuning
constants, and the third block repeated the same process as the
second block to calculate the final tuning constants used for all
the later variable damping blocks. By the end of the six tuning

blocks, four tuning constants had been found: k%, k{;, kL, and

k;, where the superscript identifies the DOF corresponding to
the tuning constant.

Following the six tuning blocks were two practice blocks,
which introduced the subject to the 2D target reaching task.
During these practice blocks and all the later main blocks,
targets would appear within the defined workspace centered at
the neutral position. A trial was considered complete when the
subject stabilized within the target for two consecutive seconds.
Within the practice blocks, there was one block where the robot
was applying constant positive damping in both directions and
one block where the robot was applying variable damping in
both directions. Subjects were not informed that there were
different damping environments between blocks.

After the two practice blocks, the subject continued to the 14
main blocks. The main blocks were indistinguishable from
practice blocks from the perspective of the subject. However,
instead of alternating between positive and variable damping
each block as was done for the two practice blocks, the 14 main
blocks were grouped together so that the subjects had time to
acclimate to the different damping conditions. The blocks were
grouped in two sets of three blocks, followed by two sets of four
blocks. Within each set of blocks, the damping environment
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Fig. 4. Experimental setups to evaluate the effectiveness of the variable
damping controller. A-B: Human user holding the end-effector of the 7-
DOF robotic arm for the upper-extremity experiment. C-D: Human user
coupled to the wearable ankle robot for the lower-extremity experiment.

alternated, and the order that these damping environments were
shown in the experiment was randomized between subjects.

In total, the 22 blocks and one-minute breaks between each
block took less than one hour, ensuring that the subjects did not
become fatigued throughout the study. The targets were placed
in such a way that they did not favor either the { or j directions.

1) Upper-Extremity Experiment: For the upper-extremity
experiment, the variable damping controller was implemented
into a 7-DOF robotic arm (LBR iiwa R820, KUKA, Germany)
with a 6-axis load cell (Delta IP60, ATI Industrial Automation,
NC) attached to the end-effector, where the human user would
grasp while moving their dominant arm in the ML (f) and AP
(j) directions. Because of the addition of the 6-axis load cell,
force data could be collected during the experiment, in addition
to kinematic and muscle activation data. Kinematic and force
data was sampled at 1 kHz.

A total of 20 young, healthy subjects (age: 20-33, weight:
48-100 kg, 4 female, 16 male) participated in this study, which
was approved by the Institutional Review Board of Arizona
State University (STUDY00008114). All subjects gave written
consent prior to participation and were not aware of the study’s
hypothesis. Each of the subjects completed the experimental
protocol in a seated position while holding the end-effector of
the robot (Fig 4A). The subjects could move the end effector in
only the ML and AP directions (the transverse plane of motion),
as the stiffness of the end effector was set to 0 N/m in these
directions, and 10° N/m in the perpendicular direction. In
addition to the 0 N/m stiffness in the transverse plane, the inertia
was set to 10 kg. The subjects were seated with a neutral
position defined as holding the robot with the elbow at 90° of
flexion and shoulder at 70° of abduction and 45° of horizontal
flexion. Subjects were instructed to hold their wrist at a constant
neural position and not allow any relative angle change between
the hand and forearm. The stool the subjects were seated on was
positioned to allow movement of 18 cm in any of the four

directions (+i, —1, +J, and —j) along the transverse plane. For
the safety of the human user, a virtual wall of size 36 cm by 36
cm was created around the workspace, so any movement at or
outside of that perimeter would be prevented by imposing a
highly positive damping of 30 Ns/m.

Within both the practice and main blocks, the ten targets were
placed in such a way that the overall path length within a block
was 50 cm in each of the four movement directions (medial,
lateral, anterior, and posterior) and the minimum displacement
in each direction in each trial was more than 5 cm. A path was
generated in the plane with dimension of 20x20 ¢cm? around the
neutral position. Target sizes had the radius of 1.5 cm, while the
radius of the cursor for subject position was 5 mm. The
following damping ranges were selected based on upper-
extremity characterization studies [24, 25]: [-10, 60] Ns/m for
the ML direction and [-30, 60] Ns/m for the AP direction. In-
between trials the damping was set to 30 Ns/m for safety
purposes. During the tuning blocks, each trial required a motion
of +£10 cm in each direction.

Electromyography (EMG) data was recorded by surface
EMG sensors (Trigno Wireless EMG System, DELSYS Inc.,
USA) placed on the dominant arm of the subject. All subjects
that participated in the experiment were right-handed. The
muscles recorded were the brachioradialis (BRD), biceps (BI),
anterior deltoid (DELTant), posterior deltoid (DELTrost), and
the lateral and longitudinal triceps (TRILat and TRILong). All
sites of application were thoroughly cleaned with alcohol pads
before placing the sensors. Sensors were secured with double-
sided adhesive tape and waterproof skin tape. After attaching
the sensors, the subject was instructed to perform a maximum
voluntary contraction (MVC) test for each of the muscles
following standard muscle testing procedures [29, 30]. This
involved three repetitions of an isokinetic movement for each
muscle. There was a three second hold for each repetition and a
one second rest in-between repetitions. All MVC movements
occurred while the subject was standing, and all EMG data for
the upper-extremity experiment was sampled at 2 kHz.

2) Lower-Extremity Experiment: For the lower-extremity
experiment, the variable damping controller was implemented
into a wearable ankle robot (Anklebot, Bionik Laboratories
Corp., Canada). The wearable robot is highly backdrivable and
could therefore apply damping in the IE (f) and DP (j)
directions of the human’s ankle as they moved. There is no
force sensor on this robot, so no interaction force data was
collected throughout the experiment.

A total of 20 young, healthy subjects (age: 21-34, weight:
48-91 kg, 7 female, 13 male) participated in this study, which
was approved by the Institutional Review Board of Arizona
State University (STUDY00012606). All subjects gave written
consent prior to participation and were not aware of the study’s
hypothesis.

The wearable ankle robot was supported by a knee brace and
connected to the human subject with joints on the subject’s right
shoe (Fig. 4B). All subjects wore the same style of rigid shoe
with a flat sole. The robot was then calibrated to a neutral foot
position of 90° from the shank in the DP direction to the sole of
the shoe. Afterwards, gravity compensation was performed so
that a constant, upwards torque was applied throughout the
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Fig. 5. Visual representations of the performance metrics selected for data
analysis. Row 1 shows stability metrics, with the target position in blue
and position response in red. Row 2 shows the agility metrics in green.
Rows 3 and 4 show the effort metrics, with muscle activation in orange
and force in violet. The illustration of muscle activation could be
considered as the contribution from a single muscle or the average of
multiple agonists.

study to prevent fatigue. Before the main portion of the
experiment, the subjects performed the tuning trials. During the
tuning trials, subjects had to move £7.5° in the IE direction and
+15° (for the first set of three tuning blocks) in the DP direction
(for the second set of three tuning blocks) and then return to the
neutral position.

The targets for the practice and main portion of the
experiment (blocks 7-22) were placed on the end of randomly
generated path segments within an ellipse that was +15° tall and
+7.5° wide. These values were chosen to remain within the
documented range of motion for the human ankle [31]. All
paths for each block were selected to have the same amount of
distance traveled in the DP and IE directions within +1°. The
total path length for all trials within a block was 55+1°. The
targets had a radius of 2.5°, and the user’s cursor had a radius
of 0.75°.

EMG data was recorded by surface EMG sensors (Bagnoli-
16, DELSYS Inc., USA) placed on the tibialis anterior (TA),
peroneus longus (PL), medial gastrocnemius (MG), and soleus
(SL), and a grounding sensor was placed on the subject’s
kneecap. Procedures for EMG setting and MVC measurement
were the same as in the upper-extremity experiment.

B. Data Analysis

To analyze the data collected during the 14 main blocks in
the experimental protocol, a number of performance metrics
were selected. These performance metrics convert the raw
kinematic, EMG, and interaction force (upper-extremity
experiment only) data into meaningful quantities that are used
to represent the effectiveness of the controller. Selecting the
point-to-point target reaching task for both experiments allowed
for the presentation of variety of performance metrics that are
minimally task specific. Since the goal of the variable damping
controller is to improve the trade-off between stability/agility
and reduce user effort in pHRI, there are three main categories
of performance metrics in this paper: stability, agility, and user
effort.

1) Stability: Stability was quantified by evaluating the
amount of overshoot and the time required to stabilize in each
trial. A stable trial was defined as one in which the subject
moved along a straight path to the target without going past the
target. If the subject passed the target along the ideal line from
the previous target to the next, the maximum tangential distance
from the target along the ideal line was quantified as the
overshoot (Fig 5A). Additionally, the time period during which
this overshoot was taking place (between when the subject first
hit the target to the stability point) was quantified as the
stabilization time (Fig. 5B). The stability point was defined as
the time when the subject was able to hold the center of the
cursor within the target for 0.5 s.

2) Agility: Agility was quantified by evaluating the speed at
which subjects completed each trial. Two separate metrics of
speed were evaluated: mean speed and maximum speed. The
mean speed was calculated during the main portion of the trial
from when the subject started moving, the initiation time, to
when they first hit the target, the first hit time. The initiation
time was quantified as the point in time when the subject moved
at least 5 mm (in the upper-extremity experiment) or 2° (in the
lower-extremity experiment) in any direction around their
initial position. The first hit was quantified as the point in time
when the subject hit the outer edge of the target with the cursor.
Between these two times, the mean speed was calculated for
each trial (Fig. 5C). The second agility metric was the
maximum speed, which was simply a quantification of the
largest magnitude speed achieved by a subject during each trial
(Fig 5D).

3) User Effort: User effort was quantified in both
experiments by the muscle activation and, in the upper-
extremity experiment, by force at the interaction point. Muscle
activation data was collected by surface EMG sensors on the
muscles relevant to motion. All EMG data, including that of the
MVC, was filtered using a 4™ order low-pass Butterworth filter
with a frequency of 5 Hz after removing the DC bias offsets and
rectifying the signal. All EMG data was normalized by the
MVC value for each muscle. This was calculated by taking the
average of 1 second’s worth of data surrounding the maximum
data point from the MVC test. A single peak data point was not
chosen because it would allow too much variability [32].

The two metrics to evaluate the EMG data were overall effort
and maximum effort. The overall effort was defined as the
integral of the processed EMG curve from 200 ms before the
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Fig. 6. A representative subject’s kinematic data. The two leftmost columns represent the data of the anterior and medial direction from the upper-extremity
study, while the last two columns are the dorsiflexion and eversion data from the lower-extremity study. The position data in the first two rows (A: positive,
B: variable) are displayed as normalized values to account for the differences in path lengths, with the starting location indicated with a normalized position
of 0 and a target location with a normalized position of +1. User intent is shown in C and the average variable damping applied across the trials is shown in

D. The dotted lines represent +1 STD from the mean.

initiation time to the stability point (Fig 5E). The 200 ms of
EMG data before the initiation time was included to capture the
muscle activation required to initiate movement. This value was
then divided by the time elapsed over when the integral was
taken, and then averaged with the values calculated for the
agonists of the appropriate direction of movement. The relevant
agonist muscles for each direction were as follows. For the
upper-extremity study: forward corresponded to the TRILonG
and TRILaT, backwards to the BRD and BI, left to the TRIpaT,
TRILonG, and DELTanr, and right to the DELTrost, BRD, and
BLI. For the lower extremity study: dorsiflexion corresponded to
the TA, plantarflexion to the SL and MG, and eversion to the
PL. Inversion motion was not quantifiable using surface EMG
sensors and thus was not considered. The maximum effort
metric was calculated by taking the maximum value of
activation over the whole trial and averaging it with the other
agonists, similar to the overall effort (Fig. S5F).

In addition, the mean root-mean-squared (RMS) and
maximum RMS interaction force were used in the upper-
extremity experiment to quantify kinetic reduction in effort.
The mean RMS interaction force was taken from the initiation
time to the stability point (Fig. 5G). The maximum interaction
force was simply the highest value of interaction force over the
course of the whole trial (Fig. SH).

4) Additional Considerations and Statistical Analysis:

Outlier rejection was applied to all performance metrics
using the normalized position response in each movement
direction. The trials were shifted to align the position response,
and any trial that fell outside of +3 standard deviations (STD)
from the mean position response was removed.

Statistical analysis was performed to assess the significance
of mean differences between the variable and positive damping
conditions. Two-tailed, paired t-tests were used for all
kinematic metrics and non-paired t-tests were used for all EMG
metrics. This is because both EMG metrics are reported with
the variable condition as a ratio to the positive such that the t-
test is comparing normalized variable damping data to one with
an unknown variance. All statistical tests used a significance
level of 0.05.

IV. RESULTS

Results from the 20 subjects in both the upper- and lower-
extremity studies confirmed that the variable damping
controller was able to reduce user effort while simultaneously
improving agility with a minimal reduction in stability. The
subsections below describe the results from a representative
subject and the group results from each study. To be concise,
variable damping and positive damping are abbreviated as VD
and PD, respectively, within this section. The average percent
of trials removed per subject from the upper-extremity
experiment were 4.9 = 1.5% and 6.1 £ 1.5% for PD and VD
respectively. Similarly, for the lower-extremity experiment,
averages of 5.5+ 1.3% (PD) and 7.7 £ 2.1% (VD) of trials were
removed as outliers.

A. Representative Subject Results

The position profiles for the representative subject (Fig. 6A
and 6B) were shifted in time and normalized so that the
initiation of movement (time when the subject had moved 5 mm
for the upper-extremity study and 2° for the lower-extremity
study) is represented as a position of zero and the target is a
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Fig. 7. The group-averaged results for the kinematic and EMG data of the
upper-extremity study. Group averages are represented by the height of
the bars. The error bars show a range of +1 standard deviation from the
mean. Stars are used to denote significance in pairwise comparisons: **
for p <0.001, and *** for p < 1E-4.

position of +1. Both the upper- and lower-extremity position
profiles with the VD controller show a low amount of
overshoot, and the difference in overshoot between the two
damping conditions is almost negligible. This shows that the
ability of VD to provide a level of stability comparable to PD.
Marked in red hollow circles, the mean time to reach 90% of
the normalized target position occurs sooner in the VD
condition than the PD condition. This result demonstrates the
increased agility with the VD controller.

Further, the effectiveness of the VD controller can be seen in
the representative subject results of user intent and robotic
damping. These results show how the damping applied (Fig.
6D) is dependent on the user intent (Fig. 6C). Positive user
intent causes negative damping which helps the user accelerate,
while negative user intent causes positive damping which
allows users to stabilize within the target position. Fig. 6C
shows how quickly the VD controller was able to assist with
acceleration and deceleration over the course of the trial.

B. Group Results: Upper-Extremity Study

1) Stability: The overshoot and stabilization time metrics
provided a means for comparing the impact each controller has
on the stability of the user (Fig 7A and 7B). Neither the PD nor
VD condition caused a significant amount of overshoot (< 0.1
cm). This result is in comparison to the minimum and maximum
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Fig. 8. The group-averaged results for the kinematic and EMG data of the
lower-extremity study. The error bars show a range of +1 standard
deviation from the mean. Stars are used to denote significance in pairwise
comparisons: * for p < 0.05 ** for p <0.001, and *** for p < 1E-4.

path lengths of 7 cm and 28 cm, respectively. The overshoot
was 0.07 cm greater for VD than PD. While a paired t-test
demonstrated a significant difference (p < 1E-4) in overshoot
between the damping conditions, the small magnitude of the
VD overshoot (< 2% of the minimum possible path length)
overall is inconsequential. The second stability metric,
stabilization time, had a 7.5% increase in time required to reach
the target after movement initiation. This result represents a
difference in means of 0.04 s and is statistically significant
according to a paired t-test (p < 1E-4). However, as with the
overshoot metric results, this difference is largely
inconsequential.

2) Agility: The agility metrics show that the VD controller
allowed subjects to move more quickly than the PD
controller. VD produced faster mean and maximum speeds than
those of PD (Fig. 7C and 7D). The mean speed of VD was 2.5
cm/s higher than PD representing a 10.7% increase, while the
maximum speed of VD was 8.1 cm/s higher than PD
representing a 22.2% increase. Both results were found to be
statistically significant using a paired t-test (p <0.001, p < 1E-
4 for mean and maximum speed, respectively).

3) User Effort: User effort was quantified using two metrics,
muscle effort and interaction force. The muscle effort metrics
demonstrate the biomechanical reduction in effort as a function
of muscle activation, while the interaction force metrics are an
outward representation of the muscle effort. Intersubject
variability in the MVC caused by differences in muscle size was
reduced by normalizing VD to PD. The overall muscle effort
metric (Fig. 7E) showed a 11.9% decrease in muscle activation,
while the maximum muscle effort metric (Fig. 7F) showed a
21.8% decrease. A t-test comparing the normalized value of VD
to one showed that both the overall and maximum muscle effort
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had a statistically significant difference in mean values (p <
0.001 and p < 1E-4, respectively).

Both the mean and maximum RMS force applied in VD were
significantly lower than PD (Fig. 7G and 7H). The mean RMS
force in VD was 1.5 N less than PD representing a 33.9%
decrease, while the maximum RMS force in VD was 9.2 N less
than PD, representing a 54.9% decrease. These results were
found to be statistically significant using a paired t-test (p < 1E-
4 for both mean and maximum RMS force), demonstrating a
kinetic reduction in effort associated with the VD controller.

C. Group Results: Lower-Extremity Study

1) Stability: There was a significant difference (p < 1E-4) in
overshoot between the means of the two damping conditions
(Fig. 8A) as reported by a paired t-test. This represented a
28.2% increase in overshoot from PD to VD and an increase in
mean of 0.25°. Despite this significant difference in means, the
overshoot in both conditions was very small (< ~1°), relative to
a minimum and maximum path lengths of 4.1° and 15.4°,
respectively. The stabilization time metric (Fig. 8B) also had a
significant difference (p < 0.005) between the two damping
conditions as reported by a paired t-test. There was a 2.2%
difference between conditions representing a 0.01 s difference
in the average time it took subjects to stabilize. Although
statistically significant, this difference is not large enough to
indicate a substantial reduction in the user’s stability.

2) Agility: The agility metrics demonstrate that subjects were
able to maneuver at statistically significantly higher speeds in
VD compared to PD (p < 1E-4 for both metrics). This
significance was determined using a paired t-test for both
metrics. There was an increase in mean speed (Fig. 8C) of
19.4% corresponding to a mean difference of 0.09 cm/s from
PD to VD. There was also an increase in maximum speed (Fig.
8D) by 56.1% representing a difference in means of 0.46 cm/s.
These metrics demonstrate a statistically significant increase in
agility effected by the VD controller.

3) User Effort: The muscle effort metrics demonstrate that
the subjects were able to perform the tasks with significantly
less effort using the VD controller than the PD controller. The
overall and maximum effort metrics show respective 15.2% and
15.3% decreases in required agonist muscle activation from PD
to VD (Fig. 8E and F). A t-test comparing the normalized value
of VD to one showed denoted a significant difference in means
for both metrics (p < 1E-4 for both overall and maximum
muscle effort).

V. DISCUSSION

Impedance/admittance controllers with constant positive
damping have been widely used in many pHRI applications due
to the importance of stability in coupled human robot systems.
However, these control methods over-emphasize stability at the
expense of agility and user effort. In this study, the variable
damping controller was developed on the principle of using
both positive and negative damping to provide a solution
that balances stability, agility and user effort.

Our previous work in variable damping control was limited
to 1D applications [27, 28]. This allowed us to establish a proof
of concept for our methodology; however, 1D movement is not

an accurate representation of tasks encountered in everyday life.
This 2D study is meant to fill this gap and more closely
represent the behavior of the controller in real-world scenarios.

The results of both the upper- and lower-extremity studies
demonstrate that the variable damping controller was able to
reduce user effort while increasing agility at a negligible cost to
stability. The reduction in wuser effort has significant
implications for long-term use where the user may not possess
the stamina required to operate a less efficient coupled human-
robot system. The implementations of the VD controller
described in this work may be directly applied to rehabilitation
where the use of lower- [33] and upper-extremity [34]
movements for reaching tasks are common. Industrial
applications may also benefit from the efficiency of the VD
controller to mitigate the development of musculoskeletal
diseases that develop as a result of strenuous labor [35]. While
the amount of translational benefit of this controller in weight-
bearing pHRI has not yet been quantified, previous research has
shown that improved motor control in non-weight bearing
training can be transferred to weight-bearing daily tasks [33,
36]. In general, the improvement in agility allows the user to
have a more seamless experience during pHRI that is not
limited by the dissipative energy dynamics caused by a positive
damping controller [37]. Nearly equivalent stability in damping
conditions shows that the variable damping controller
effectively emulates desired deceleration dynamics of positive
damping. Increased agility and positive damping stability
demonstrate that the variable damping controller combines the
useful elements of both negative and positive damping to
develop a more efficient control mechanism.

Existing works on variable impedance/admittance
controllers in pHRI have improved the performance of coupled
human-robot systems. However, the performance of these
controllers was evaluated with limited or task-specific metrics
such as reducing force measured at the interaction point [23],
reducing time completion of a specific task [17, 19, 20], or
reducing oscillation while maintaining a specific amount of
force [21]. Unlike previous work, this paper evaluated several
categories of metrics to demonstrate the performance of the
proposed controller from a more holistic view in two separate
applications. The proposed controller could maintain stability,
increase agility, and reduce user effort, in both the upper- and
lower-extremities. All three of these characteristics are essential
in the design of coupled human-robot systems.

While the current implementation of the variable damping
controller was shown to successfully manage the trade-off
between stability, agility, and user effort in multi-DOF, it still
requires tuning and many static parameters. Several tuning
trials must be completed to ensure each subject’s maximum and
minimum user intent are paired with the respective values of
damping. Furthermore, the maximum and minimum values of
damping simulated by the controller were determined from the
results of the previous characterization studies [24-26].
Therefore, while these values are chosen based on knowledge
from the biomechanical characteristics of the average human
user, they are not based on biomechanical characteristics of
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each individual user. A more robust method would be to have
these parameters continually update as user proficiency
improves. However, the impact of user proficiency is not
currently factored into the design of the controller. The current
study was implemented using only the point-to-point target
reaching task. This task allowed us to present many different,
general performance parameters and to show the generality of
our method. Although more complicated tasks such as irregular
movement and obstacle avoidance are not directly studied, the
point-to-point target reaching task serves as an important
building block for such movements.

Future work will focus on developing learning methods so
that the controller can adaptively tune its parameters based on
the performance and biomechanical characteristics of each user.
This would eliminate the tuning sessions and incorporate the
ability and proficiency of each user. Other future work will
focus on integrating additional biomechanical characteristics of
humans, like stiffness, into the design variable impedance
controllers. The validated, improved controller may then be
tested using irregular movement tasks.
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