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Abstract— Automation of the process of developing biophysical
conductance-based neuronal models involves the selection of
numerous interacting parameters, making the overall process
computationally intensive, complex, and often intractable. A
recently reported insight about the possible grouping of currents
into distinct biophysical modules associated with specific
neurocomputational properties also simplifies the process of
automated selection of parameters. The present paper adds a
new current module to the previous report to design spike
frequency adaptation and bursting characteristics, based on
user specifications. We then show how our proposed grouping of
currents into modules facilitates the development of a pipeline
that automates the biophysical modeling of single neurons that
exhibit multiple neurocomputational properties. The software
will be made available for public download via our site
cyneuro.org.

I. INTRODUCTION

Computational models of single neurons utilize a variety of
formulations depending on the application. One such
formulation, biophysical conductance-based model can
provide improved realism in network models when
investigating phenomena such as neuronal oscillations.
Present single cell models have compartments varying from
one in reduced order cells to over 1000 in morphologically
complex cell models. Large neuronal network models
typically use reduced order models of single cells to limit both
computational overheads and parametric uncertainties [1].
However, in such cases, it is important that the reduced order
model neuron possess key neurocomputational properties
including passive properties, current injection responses as
well as possibly complex oscillatory dynamics. We had
previously hypothesized and successfully tested the
hypothesis that in a single neuron, sets of currents organized
in modules might be responsible for neurocomputational
properties such as passive properties (resting membrane
potential (RMP), time constant and input resistance), sub-
threshold oscillations, and spike waveforms [2]. Furthermore,
the hypothesis naturally suggested an approach, termed the
‘segregation method’, that was shown to facilitate the
selection of single cell model parameters and to simplify the
overall design. Such a simplification in design facilitates
automation of the process of optimizing the numerous
parameters associated with Hodgkin-Huxley formulations in
the biophysical conductance-based models of single neurons.

Here, as a first contribution, we first extend the
biophysical-based segregation method [2] to also include
another neurocomputational propertfy of spike frequency
adaptation and bursting. As a second contribution, we propose
a pipeline to automate the design process using a recently
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reported machine learning scheme that includes Bayesian and
fully connected neural network modules (simulation-based
inference, sbi; [3]). We illustrate the proposed scheme using
an example of a pyramidal neuron in the CA3 region of the
hippocampus that responds to stimuli with a rapidly adaptive
burst waveform that then reduces to tonic spiking or to a
continuously bursting phenotype, both of which are
commonly found neural signatures [4]. We then show that
such a waveform output of CA3 neurons plays an important
role in the generation of theta oscillations in the model
hippocampal network. We will make the automated pipeline
for modeling publicly accessible to the neuroscience
community to facilitate designing single neuron models.

II. METHOD

Models of single neurons were developed using
experimental parameters from our collaborators and the
literature [2], and implemented using the NEURON 7.4
simulator [5] with a fixed time step of 25 us. We first describe
a brief overview of the mathematical underpinnings of both
single cell dynamics and of the segregation approach [2].

Mathematical equations for voltage-dependent ionic
currents.

The dynamics for each compartment (soma or dendrite)
followed the Hodgkin-Huxley formulation [4] in eqn. 1,

Cr,dV;
= —greak(V; — Epear) — gc(Vs — Vo)

dt
- Z Iciﬁ;,s - Z Icsa/r,s + Iinj (1)
where V;/V,; are the somatic/dendritic membrane potential
(mV), I3 ¢ and I, are the intrinsic and synaptic currents
in the soma, I;,; is the electrode current applied to the soma,
C,, is the membrane capacitance, g; . is the conductance of
the leak channel, and g, is the coupling conductance between
the soma and the dendrite (similar term added for other

dendrites connected to the soma). The intrinsic current IJi% o,

was modeled as IL . = go,,mPh(V; — Epyy), Where gy, is
its maximal conductance, m its activation variable (with
exponent p), & its inactivation variable (with exponent ¢), and
E.,, its reversal potential (a similar equation is used for the
synaptic current Ics,ff s but without m and #). The kinetic
equation for each of the gating variables x (m or /) takes the
form but without m and /. The kinetic equation for each of the
gating variables x (m or k) takes the form

dx _ xw(V,[Ca“]i)—x

at x(V,[Ca?*])) @)
where x,, is the steady state gating voltage- and/or Ca*'-
dependent gating variable and 7, is the voltage- and/or Ca*'-
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dependent time constant. The equation for the dendrite
follows the same format with ‘s’ and ‘d’ switching positions
in eqn. 1. The procedure for selecting the channel currents and
their model parameters are described next using an approach
we proposed recently.

Segregation hypothesis in single cell design.

The hypothesis states that distinct current modules implement
neurocomputational properties, e.g., passive properties
(Vrest, input resistance, tau) and spiking properties in cartoon
form in Fig.1. In this case, leak, and the hyperpolarization-
activated cation current H (passive module) are responsible
for passive properties. Similarly, leak, transient sodium Nat,
and delayed rectifier Kdr currents set the spiking properties
for the spiking module. The activation functions are
segregated to prevent overlap, i.e., the currents of each
module start on the voltage axis only after the zone of action
of the module to its left. Cut-off values for the gating variables
were selected to be within reported ranges of v-half values [6].
Details related to the approach with additional modules can
be found in [2].

Design of the Nap-KM module as option 1 for
adaptation/bursting properties.

To design the neurocomputational property of adaptation and
bursting, we first add the transient sodium (Nap) and the M
type potassium (KM) as a module (known to provide this
property to neurons [6]) to the ‘passive’ and ‘spiking’
modules in Fig. 1. An example case hippocampal CA3 neuron
with an adapting characteristic [7] is considered to illustrate
the procedure. The neuron also has other spiking currents
transient sodium (Nat), delayed rectifier potassium (Kdr),
hyperpolarization-activated cation current (H) and leak
currents, which are kept fixed here. The ranges for the
adjustable parameters for Nap-KM modules of the CA3
neuron, based on biological reports, were as follows (units for
g is mS/cm2 and for V1/s is mV): gNap — [1*¥107, 0.005],
gKM - [5%10%, 0.017], V12 Nap - [-65, -35], Vi, KM - [-50,
071 [6].

Design of the CaS-CaT-sAHP module as option 2 for
adaptation/bursting properties.

A second option to implement adaptation and busting is the
set of currents that include a low-threshold Ca2+ (CaS), high-
threshold Ca2+ (CaT) and the calcium-activated potassium
(sAHP) currents.

A different class of the same hippocampal CA3 neuron that
exhibits the bursting characteristic [8] is considered for this
option. Like the case above, the ranges for the parameters for
this set of current were as follows (units for g is mS/cm?2 and
for V1/s is mV): gCaS — [1*107, 0.017], gCaT— [1*107,
0.017], gsAHP — [1*107%, 0.008], V1,2 CaS - [-33], V12 CaT -
[-27.1].

III. RESULTS

The two options to model spike frequency adaptation and
bursting into model neurons via the approach that groups
currents into modules using a segregation approach is
illustrated using an example case hippocampal neuron from
our previous publication [9].

Design of two current modules to implement spike
frequency adaptation and bursting

Nap-KM module. This module adds the neurocomputational
property of adaptation and bursting, depending on the
parameters of the two currents. Both channels can be
segregated up to ~-60 mV in this model. Optimizing the
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Figure 1. Example of segregation of into three modules —

passive (H), adapting/bursting (Nap, KM) and Spiking (Nat,

Kdr) modules in the example hippocampal CA3 cell.
parameters after implementing the segregation (Fig. 1)
resulted in the following parameter set that provided the
adapting characteristic shown in Fig. 2A that matches the
biological current injection (Fig. 2C) response in [6] well:
gNap =0.0005, gKM = 0.017, V2 Nap =-48, Vi KM = 35.

Adaptation happens when KM current builds up enough

to counteract the Nap current. The time constant of KM
controls the duration of the initial high frequency of the
adapting characteristic. On the other hand, increasing gKM
and gNap together (~0.17 and 0.001, respectively) shuts off
spiking and results in a bursting characteristic. Importantly,

D,
_25,
__ =501
>
£ —75]
.
257
8.
o J
2 0
_25,
_50,
_75_
=
fomy
— 0.8
—
1 |
L o0l ‘ : : , : .
5 0 250 500 750 1000 1250 1500
O Time (ms)

Figures 2. CA3 Pyramidal cell response to current injection
when segregated (2A, top) and unsegregated (2B, middle)

without such a segregation of the current modules, it was very
difficult to hand-tune the parameters due to the interactions
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between the currents. Such interaction effects resulted in
changes to spiking properties affecting passive properties, and
so on. This makes the tuning process very difficult, for both
hand- and automated-tuning scenarios [2]. This neuron
becomes an endogenous spiker if segregation is not
implemented (Fig. 2B).

CaS-CaT-sAHP module: This second option to add
adaptation/bursting involves three currents. CaS is segregated
at -64 mV; CaT and sAHP remain unsegregated (Fig. 3A).
The parameter set after implementing the segregation scheme
(Fig. 3A) and tuning are as follows: gCaS =0.00425, gCaT
=0.001, gsAHP = 0.005. These
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Figure 3A. Segregation of currents into three modules for the
second option — passive (H), adapting/bursting (CaS, CaT and
SAHP) and Spiking (Nat, Kdr) for example hippocampal CA3 cell.

-80

resulted in a bursting profile. Without segregation, the CaS-
CaT-sAHP module will offset Vrest by around 0.3mV. Eleak
can be altered to account for this change; however, altering
Eleak will result in a change in both inter-burst interval (IBI)
and spikes per burst. Fixing this involves a time-consuming
retuning of the cell which is less preferable compared to the
alternative of segregating the CaS channel appropriately.

Bursting is controlled in this module by tsanp and Tca-pool.
Tsanp can be increased or decreased largely independently to
increase or decrease, respectively, the number of spikes per
burst. Similarly, Tcapool can be increased or decreased almost
independently to increase or decrease, respectively, the inter-
best interval.

Some interesting neural dynamic characteristics that we
noted for the Nap-KM and CaS-CaT-sAHP modules were as
follows (Fig. 3B): (i) the ranges of IBI for the Nap-KM
module are set by the lower/higher biological ranges for the
time constant of the KM current, of 46 ms and 120 ms,
respectively. The maximum spike frequency was 125 Hz. (ii)
For the CaS-CaT-sAHP module, the minimum IBI was 120
ms, set by the minimum time constant for the Ca2+ pool to
permit SAHP to activate. Ranges were not found to set the
maximum on the IBI in this case. The maximum spiking
frequency for this module was 77 Hz, set by the competing
effects of CaS that raised the membrane potential to allow for
faster spiking but also simultaneously increases activation of
SsAHP activation that causes inhibition.

As an application of the segregation module proposed in
our paper, we used a previously developed CA3 hippocampal

network model to demonstrate the importance of high initial
bursts in pyramidal cells for theta generation [10]. After
substituting a bursting CA3 pyramidal cell (segregated), we
found that a 15 Hz Poisson random spike train to the model
Entorhinal Cortex resulted in a power spectral density (PSD)
theta peak of of 1.2 * 10* (spk/sec) /Hz at a frequency of 5
Hz (Fig. 4). However, with a tonically spiking cell
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Figure 3B. Spike frequency and Inter-Burst Interval limits for both
bursting Modules.

Adaptive bursts are important to generate theta
oscillations in a network of CA3 cells
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Figure 4. Power Spectral Density (PSD) using two different cell
types for CA3 pyramidal cells in the network: a non-bursting
tonic cell (original, blue) and a bursty cell (segregated, orange).

with same properties and FI curve (non-segregated case),
theta power diminished considerably. PSD was calculated by
partitioning spike times into 0.1 ms bins and calculating Fast
Fourier Transform with a sliding window of 1024 ms and a
512 ms overlap. An insight/prediction of the model is that
interactions with surrounding GABAergic interneurons via
‘bursty’ input from CA3 pyramidal cells produces theta
power. Although the average frequency was matched when
generating the two cases, we were not able to replicate the
initial high frequency burst without segregation. This
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suggests that the segregation technique may be critical for the
design of cells with characteristics such as high initial bursts.

Automating the segregation process using machine learning
As a first step in automating the segregation process using the
Bayesian-based machine learning approach, we consider the
CA3 cell with only the passive and spiking modules, i.e., the
simple spiker case with only leak, H, Nat and Kdr channels.
With the segregation scheme of Fig. 1, the validation
performance was better and the posterior distribution was
tighter, compared to the without segregation case. The next
step will be to include the Nap-KM module independently to
infer gNap, gKM and tau KM. Work is on-going to automate
the pipeline of inferring the parameters of all the modules, i.e.,
passive, spiking and adapting modules simultaneously
combining the segregation approach and simulation-based-
inference (sbi;[3]) module.

IV. DISCUSSION AND CONCLUSION

Modeling single cells with multiple neurocomputational
properties poses challenges at both theoretical and application
levels. For instance, at the theoretical level it is not clear how
the plethora of current channels coordinate to implement the
seemingly distinct neural signatures. At the application level,
procedures to select parameters including automated
schemes, typically result in multiple parameter sets for the
same solution (e.g., [11]). Moreover, automated schemes such
as genetic algorithm searches (e.g., [12]) cannot provide
mechanistic insights into the interactions among the channels.

Distinct features of modules that implement spike-frequency
adaptation and bursting.

The neurocomputational property of spike frequency
adaptation and bursting was implemented via two known
current modules, the distinct characteristics of which are
highlighted by our approach. Parameters of the Nap-KM
module were found to have several functional implications.
Time constant Tnap Was found to be restricted to a small range
suggesting that it might not vary much, and this time constant
controls the rapid response of the burst. The initial high
frequency of the burst was controlled by gnap. The time
constant txm controlled the duration of the burst and its
conductance gkm controlled spikes per burst. In the two-
current module, gnap and gkwm together controlled the
frequency of the burst. And gkm and tkm together controlled
the duration of the burst and the inter-burst interval. This
made it difficult to independently set both burst duration and
inter-burst interval with the Nap-KM module, suggesting that
it may be better suited primarily for the adaptation
characteristic. On the other hand, the CaS-CaT-sAHP module
had additional degrees of freedom which made it possible to
independently vary both burst duration and inter-burst
interval. However, the Nap-KM module seems to allow for a
faster burst spiking profile than what is possible with the CaS-
CaT-sAHP module which may mean it is necessary in cells
that display this characteristic.

Also, the analysis suggests user tuning guidelines for the
Nap-KM module as follows: increasing t© KM and gKM
increases IBI; an increase in gNap increases spike frequency;
number of spikes per burst can be increased by increasing
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gNap, increasing ©_ KM, or decreasing gKM with the latter
being the least effective. Similar guidelines for tuning the
CaS-CaT-sAHP module are as follows: increasing
t_Ca2+pool and t sAHP increase IBI; spike frequency can
be increased by gCasS; spikes per burst can be increased by
decreasing gCaT or gsAHP, or by increase ©_sAHP.

Automated pipeline for developing biophysical models of
single neurons

The segregation method with its lack of interaction among the
various current modules makes the tuning process more
efficient and facilitates automation via the machine learning
package. Automation of the simple spiking module was
shown in the Results section. Ongoing work focuses on
extending the process to include the Nap-KM and CaS-CaT-
sAHP modules separately. The final goal is to automate the
entire pipeline including passive, spiking, adapting, and
bursting modules, and make it available for public download
via the site cyneuro.org.
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