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Abstract— Automation of the process of developing biophysical 

conductance-based neuronal models involves the selection of 

numerous interacting parameters, making the overall process 

computationally intensive, complex, and often intractable. A 

recently reported insight about the possible grouping of currents 

into distinct biophysical modules associated with specific 

neurocomputational properties also simplifies the process of 

automated selection of parameters. The present paper adds a 

new current module to the previous report to design spike 

frequency adaptation and bursting characteristics, based on 

user specifications. We then show how our proposed grouping of 

currents into modules facilitates the development of a pipeline 

that automates the biophysical modeling of single neurons that 

exhibit multiple neurocomputational properties. The software 

will be made available for public download via our site 

cyneuro.org. 

I. INTRODUCTION 

 Computational models of single neurons utilize a variety of 

formulations depending on the application. One such 

formulation, biophysical conductance-based model can 

provide improved realism in network models when 

investigating phenomena such as neuronal oscillations. 

Present single cell models have compartments varying from 

one in reduced order cells to over 1000 in morphologically 

complex cell models. Large neuronal network models 

typically use reduced order models of single cells to limit both 

computational overheads and parametric uncertainties [1]. 

However, in such cases, it is important that the reduced order 

model neuron possess key neurocomputational properties 

including passive properties, current injection responses as 

well as possibly complex oscillatory dynamics. We had 

previously hypothesized and successfully tested the 

hypothesis that in a single neuron, sets of currents organized 

in modules might be responsible for neurocomputational 

properties such as passive properties (resting membrane 

potential (RMP), time constant and input resistance), sub-

threshold oscillations, and spike waveforms [2]. Furthermore, 

the hypothesis naturally suggested an approach, termed the 

‘segregation method’, that was shown to facilitate the 

selection of single cell model parameters and to simplify the 

overall design. Such a simplification in design facilitates 

automation of the process of optimizing the numerous 

parameters associated with Hodgkin-Huxley formulations in 

the biophysical conductance-based models of single neurons.  

 Here, as a first contribution, we first extend the 

biophysical-based segregation method [2] to also include 

another neurocomputational propertfy of spike frequency 

adaptation and bursting. As a second contribution, we propose 

a pipeline to automate the design process using a recently 
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reported machine learning scheme that includes Bayesian and 

fully connected neural network modules (simulation-based 

inference, sbi; [3]). We illustrate the proposed scheme using 

an example of a pyramidal neuron in the CA3 region of the 

hippocampus that responds to stimuli with a rapidly adaptive 

burst waveform that then reduces to tonic spiking or to a 

continuously bursting phenotype, both of which are 

commonly found neural signatures [4]. We then show that 

such a waveform output of CA3 neurons plays an important 

role in the generation of theta oscillations in the model 

hippocampal network. We will make the automated pipeline 

for modeling publicly accessible to the neuroscience 

community to facilitate designing single neuron models.  

II. METHOD 

Models of single neurons were developed using 
experimental parameters from our collaborators and the 
literature [2], and implemented using the NEURON 7.4 
simulator [5] with a fixed time step of 25 µs. We first describe 
a brief overview of the mathematical underpinnings of both 
single cell dynamics and of the segregation approach [2]. 

Mathematical equations for voltage-dependent ionic 

currents. 

The dynamics for each compartment (soma or dendrite) 

followed the Hodgkin-Huxley formulation [4] in eqn. 1, 
𝐶𝑚𝑑𝑉𝑠

𝑑𝑡
= −𝑔𝐿𝑒𝑎𝑘(𝑉𝑠 − 𝐸𝐿𝑒𝑎𝑘) − 𝑔𝑐(𝑉𝑠 − 𝑉𝑑) 

                        − ∑ 𝐼𝑐𝑢𝑟,𝑠
𝑖𝑛𝑡 − ∑ 𝐼𝑐𝑢𝑟,𝑠

𝑠𝑦𝑛
+ 𝐼𝑖𝑛𝑗           (1) 

where 𝑉𝑠/𝑉𝑑 are the somatic/dendritic membrane potential 

(mV), 𝐼𝑐𝑢𝑟,𝑠
𝑖𝑛𝑡  and 𝐼𝑐𝑢𝑟,𝑠

𝑠𝑦𝑛
 are the intrinsic and synaptic currents 

in the soma, 𝐼𝑖𝑛𝑗  is the electrode current applied to the soma, 

𝐶𝑚 is the membrane capacitance, 𝑔𝐿𝑒𝑎𝑘 is the conductance of 

the leak channel, and 𝑔𝑐 is the coupling conductance between 

the soma and the dendrite (similar term added for other 

dendrites connected to the soma). The intrinsic current 𝐼𝑐𝑢𝑟,𝑠
𝑖𝑛𝑡 , 

was modeled as 𝐼𝑐𝑢𝑟,𝑠
𝑖𝑛𝑡 = 𝑔𝑐𝑢𝑟𝑚𝑝ℎ𝑞(𝑉𝑠 − 𝐸𝑐𝑢𝑟), where 𝑔𝑐𝑢𝑟  is 

its maximal conductance, m its activation variable (with 

exponent p), h its inactivation variable (with exponent q), and 

𝐸𝑐𝑢𝑟  its reversal potential (a similar equation is used for the 

synaptic current 𝐼𝑐𝑢𝑟,𝑠
𝑠𝑦𝑛

 but without m and h). The kinetic 

equation for each of the gating variables x (m or h) takes the 

form but without m and h. The kinetic equation for each of the 

gating variables x (m or h) takes the form 

𝑑𝑥

𝑑𝑡
=

𝑥∞(𝑉,[𝐶𝑎2+]
𝑖
)−𝑥

𝜏𝑥(𝑉,[𝐶𝑎2+]𝑖)
                                     (2) 

where 𝑥∞ is the steady state gating voltage- and/or Ca2+- 

dependent gating variable and 𝜏𝑥 is the voltage- and/or Ca2+- 
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dependent time constant. The equation for the dendrite 

follows the same format with ‘s’ and ‘d’ switching positions 

in eqn. 1. The procedure for selecting the channel currents and 

their model parameters are described next using an approach 

we proposed recently. 
 

Segregation hypothesis in single cell design.  

The hypothesis states that distinct current modules implement 

neurocomputational properties, e.g., passive properties 

(Vrest, input resistance, tau) and spiking properties in cartoon 

form in Fig.1. In this case, leak, and the hyperpolarization-

activated cation current H (passive module) are responsible 

for passive properties. Similarly, leak, transient sodium Nat, 

and delayed rectifier Kdr currents set the spiking properties 

for the spiking module. The activation functions are 

segregated to prevent overlap, i.e., the currents of each 

module start on the voltage axis only after the zone of action 

of the module to its left. Cut-off values for the gating variables 

were selected to be within reported ranges of v-half values [6]. 

Details related to the approach with additional modules can 

be found in [2]. 

 

Design of the Nap-KM module as option 1 for 

adaptation/bursting properties.  

To design the neurocomputational property of adaptation and 

bursting, we first add the transient sodium (Nap) and the M 

type potassium (KM) as a module (known to provide this 

property to neurons [6]) to the ‘passive’ and ‘spiking’ 

modules in Fig. 1. An example case hippocampal CA3 neuron  

with an adapting characteristic [7] is considered to illustrate 

the procedure. The neuron also has other spiking currents 

transient sodium (Nat), delayed rectifier potassium (Kdr), 

hyperpolarization-activated cation current (H) and leak 

currents, which are kept fixed here. The ranges for the 

adjustable parameters for Nap-KM modules of the CA3 

neuron, based on biological reports, were as follows (units for 

g is mS/cm2 and for V1/s is mV): gNap – [1*10-5, 0.005], 

gKM – [5*10-6, 0.017], V1/2 Nap - [-65, -35], V1/2 KM - [-50, 

0] [6]. 
 

Design of the CaS-CaT-sAHP module as option 2 for 

adaptation/bursting properties.  

A second option to implement adaptation and busting is the 

set of currents that include a low-threshold Ca2+ (CaS), high-

threshold Ca2+ (CaT) and the calcium-activated potassium 

(sAHP) currents.  

A different class of the same hippocampal CA3 neuron  that 

exhibits the bursting characteristic [8] is considered for this 

option. Like the case above, the ranges for the parameters for 

this set of current were as follows (units for g is mS/cm2 and 

for V1/s is mV): gCaS – [1*10-5, 0.017], gCaT– [1*10-5, 

0.017], gsAHP – [1*10-5, 0.008], V1/2 CaS - [-33], V1/2 CaT - 

[-27.1].  
 

III. RESULTS 

The two options to model spike frequency adaptation and 
bursting into model neurons via the approach that groups 
currents into modules using a segregation approach is 
illustrated using an example case hippocampal neuron from 
our previous publication [9].  

Design of two current modules to implement spike 

frequency adaptation and bursting 

Nap-KM module. This module adds the neurocomputational 

property of adaptation and bursting, depending on the 

parameters of the two currents. Both channels can be 

segregated up to ~-60 mV in this model. Optimizing the  

 
 

 
 

parameters after implementing the segregation (Fig. 1) 

resulted in the following parameter set that provided the 

adapting characteristic shown in Fig. 2A that matches the 

biological current injection (Fig. 2C) response in [6] well: 

gNap =0.0005, gKM = 0.017, V1/2 Nap = -48, V1/2 KM = 35.   

Adaptation happens when KM current builds up enough 

to counteract the Nap current. The time constant of KM 

controls the duration of the initial high frequency of the 

adapting characteristic. On the other hand, increasing gKM 

and gNap together (~0.17 and 0.001, respectively) shuts off 

spiking and results in a bursting characteristic. Importantly,  

 
 

 
without such a segregation of the current modules, it was very 

difficult to hand-tune the parameters due to the interactions 

Figures 2. CA3 Pyramidal cell response to current injection 
when segregated (2A, top) and unsegregated (2B, middle) 

Figure 1. Example of segregation of  into three modules – 
passive (H), adapting/bursting (Nap, KM) and Spiking (Nat, 
Kdr) modules in the example hippocampal CA3 cell. 
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between the currents. Such interaction effects resulted in 

changes to spiking properties affecting passive properties, and 

so on. This makes the tuning process very difficult, for both 

hand- and automated-tuning scenarios [2]. This neuron 

becomes an endogenous spiker if segregation is not 

implemented (Fig. 2B). 
CaS-CaT-sAHP module: This second option to add 

adaptation/bursting involves three currents. CaS is segregated 

at -64 mV; CaT and sAHP remain unsegregated (Fig. 3A). 

The parameter set after implementing the segregation scheme 

(Fig. 3A) and tuning are as follows:  gCaS =0.00425, gCaT 

=0.001 , gsAHP = 0.005. These  

    
 

 
 

resulted in a bursting profile. Without segregation, the CaS-

CaT-sAHP module will offset Vrest by around 0.3mV. Eleak 

can be altered to account for this change; however, altering 

Eleak will result in a change in both inter-burst interval (IBI) 

and spikes per burst. Fixing this involves a time-consuming 

retuning of the cell which is less preferable compared to the 

alternative of segregating the CaS channel appropriately. 

       Bursting is controlled in this module by sAHP and Ca-pool. 

sAHP can be increased or decreased largely independently to 

increase or decrease, respectively, the number of spikes per 

burst. Similarly, Ca-pool can be increased or decreased almost 

independently to increase or decrease, respectively, the inter-

best interval.  

    Some interesting neural dynamic characteristics that we 

noted for the Nap-KM and CaS-CaT-sAHP modules were as 

follows (Fig. 3B): (i) the ranges of IBI for the Nap-KM 

module are set by the lower/higher biological ranges for the 

time constant of the KM current, of 46 ms and 120 ms, 

respectively. The maximum spike frequency was 125 Hz. (ii) 

For the CaS-CaT-sAHP module, the minimum IBI was 120 

ms, set by the minimum time constant for the Ca2+ pool to 

permit sAHP to activate. Ranges were not found to set the 

maximum on the IBI in this case. The maximum spiking 

frequency for this module was 77 Hz, set by the competing 

effects of CaS that raised the membrane potential to allow for 

faster spiking but also simultaneously increases activation of 

sAHP activation that causes inhibition. 

As an application of the segregation module proposed in 

our paper, we used a previously developed CA3 hippocampal 

network model to demonstrate the importance of high initial 

bursts in pyramidal cells for theta generation [10]. After 

substituting a bursting CA3 pyramidal cell  (segregated), we 

found that a 15 Hz Poisson random spike train to the model 

Entorhinal Cortex resulted in a power spectral density (PSD) 

theta peak of of 1.2 * 104 (spk/sec) 2/Hz at a frequency of 5 

Hz (Fig. 4). However, with a tonically spiking cell 

 
 

 

Adaptive bursts are important to generate theta  

oscillations in a network of CA3 cells 

 
 

 

 
 

with same properties and FI curve (non-segregated case), 

theta power diminished considerably. PSD was calculated by 

partitioning spike times into 0.1 ms bins and calculating Fast 

Fourier Transform with a sliding window of 1024 ms and a 

512 ms overlap. An insight/prediction of the model is that 

interactions with surrounding GABAergic interneurons via 

‘bursty’ input from CA3 pyramidal cells produces theta 

power. Although the average frequency was matched when 

generating the two cases, we were not able to replicate the 

initial high frequency burst without segregation. This 

Figure 4. Power Spectral Density (PSD) using two different cell 
types for CA3 pyramidal cells in the network: a non-bursting 
tonic cell (original, blue) and a bursty cell (segregated, orange). 

Figure 3A. Segregation of currents into three modules for the 
second option – passive (H), adapting/bursting (CaS, CaT and 
sAHP) and Spiking (Nat, Kdr) for example hippocampal CA3 cell. 

Figure 3B. Spike frequency and Inter-Burst Interval limits for both 
bursting Modules. 
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suggests that the segregation technique may be critical for the 

design of cells with characteristics such as high initial bursts. 
 

Automating the segregation process using machine learning 

As a first step in automating the segregation process using the 

Bayesian-based machine learning approach, we consider the 

CA3 cell with only the passive and spiking modules, i.e., the 

simple spiker case with only leak, H, Nat and Kdr channels. 

With the segregation scheme of Fig. 1, the validation 

performance was better and the posterior distribution was 

tighter, compared to the without segregation case. The next 

step will be to include the Nap-KM module independently to 

infer gNap, gKM and tau_KM. Work is on-going to automate 

the pipeline of inferring the parameters of all the modules, i.e., 

passive, spiking and adapting modules simultaneously 

combining the segregation approach and simulation-based-

inference (sbi;[3]) module.  
 

IV. DISCUSSION AND CONCLUSION 

Modeling single cells with multiple neurocomputational 

properties poses challenges at both theoretical and application 

levels. For instance, at the theoretical level it is not clear how 

the plethora of current channels coordinate to implement the 

seemingly distinct neural signatures. At the application level, 

procedures to select parameters including automated 

schemes, typically result in multiple parameter sets for the 

same solution (e.g., [11]). Moreover, automated schemes such 

as genetic algorithm searches (e.g., [12]) cannot provide 

mechanistic insights into the interactions among the channels.  
 

Distinct features of modules that implement spike-frequency 

adaptation and bursting.  

The neurocomputational property of spike frequency 

adaptation and bursting was implemented via two known 

current modules, the distinct characteristics of which are 

highlighted by our approach. Parameters of the Nap-KM 

module were found to have several functional implications. 

Time constant Nap was found to be restricted to a small range 

suggesting that it might not vary much, and this time constant 

controls the rapid response of the burst. The initial high 

frequency of the burst was controlled by gNap. The time 

constant KM controlled the duration of the burst and its 

conductance gKM controlled spikes per burst. In the two-

current module, gNap and gKM together controlled the 

frequency of the burst. And gKM and KM together controlled 

the duration of the burst and the inter-burst interval. This 

made it difficult to independently set both burst duration and 

inter-burst interval with the Nap-KM module, suggesting that 

it may be better suited primarily for the adaptation 

characteristic. On the other hand, the CaS-CaT-sAHP module 

had additional degrees of freedom which made it possible to 

independently vary both burst duration and inter-burst 

interval. However, the Nap-KM module seems to allow for a 

faster burst spiking profile than what is possible with the CaS-

CaT-sAHP module which may mean it is necessary in cells 

that display this characteristic. 

Also, the analysis suggests user tuning guidelines for the 

Nap-KM module as follows: increasing _KM and gKM 

increases IBI; an increase in gNap increases spike frequency; 

number of spikes per burst can be increased by increasing 

gNap, increasing _KM, or decreasing gKM with the latter 

being the least effective. Similar guidelines for tuning the 

CaS-CaT-sAHP module are as follows: increasing 

_Ca2+pool and _sAHP increase IBI; spike frequency can 

be increased by gCaS; spikes per burst can be increased by 

decreasing gCaT or gsAHP, or by increase _sAHP. 
 

Automated pipeline for developing biophysical models of 

single neurons 

The segregation method with its lack of interaction among the 

various current modules makes the tuning process more 

efficient and facilitates automation via the machine learning 

package. Automation of the simple spiking module was 

shown in the Results section. Ongoing work focuses on 

extending the process to include the Nap-KM and CaS-CaT-

sAHP modules separately. The final goal is to automate the 

entire pipeline including passive, spiking, adapting, and 

bursting modules, and make it available for public download 

via the site cyneuro.org. 
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