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Abstract— We propose a computational pipeline that uses 

biophysical modeling and sequential neural posterior estimation 

algorithm to infer the position and morphology of single 

neurons using multi-electrode in vivo extracellular voltage 

recordings. In this inverse modeling scheme, we designed a 

generic biophysical single neuron model with stylized 

morphology that had adjustable parameters for the dimensions 

of the soma, basal and apical dendrites, and their location and 

orientations relative to the multi-electrode probe. Preliminary 

results indicate that the proposed methodology can infer up to 

eight neuronal parameters well. We highlight the issues involved 

in the development of the novel pipeline and areas for further 

improvement. 

I. INTRODUCTION 

Computational modeling of single neurons span the range 
in type from ‘integrate-and-fire’ that are suitable for studies 
related to theoretical studies to ‘biophysical’ that are 
conductance-based with complex morphologies purportedly 
providing improved physiological realism [1]. Physiological 
realism in modeling single cells is thought to be important for 
investigating underlying mechanisms implicated in neural 
phenomena such as oscillations [2]. Present biophysical single 
cell models have compartments varying in number from one to 
over a thousand, and techniques are also being proposed to 
ensure that single neurons capture the key neurocomputational 
properties [3]. However, we lack reliable neurophysiological 
in vivo data and suitable algorithms to translate the data into 
parameters and morphology for realistic biophysical models. 

New technologies are beginning to provide 
neurophysiological data at increasing levels of precision and at 
multiple scales including at single neuron and network levels. 
In parallel, advances in machine learning-based algorithms 
and architectures have spurred the development of several 
automated neural parameter estimation schemes. As an 
example, statistical inference can be combined with machine 
learning schemes to provide principled approaches that can 
integrate multiple data sources to handle variability, quantify 
uncertainty and incorporate prior knowledge. A specific 
instance of such a hybrid scheme is sequential neural posterior 
estimation (SNPE), which combines the advantages of 
statistical and mechanistic modeling [4], as briefly described 
next. 

 Several neural modeling packages facilitate 
implementation of complex, stochastic, numerical simulations 
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to characterize the dynamics of single neurons and networks. 
However, a challenge is to generate appropriate parameters 
that would be both physiological and also replicate 
observational data. Bayesian inference provides a general and 
powerful framework to invert the simulators, i.e., describe the 
parameters which are consistent both with empirical data and 
with prior knowledge, using tools from the rapidly growing 
area of simulation-based inference [5]. 

 A powerful Python toolbox labeled ‘sbi’ (simulation 
based inference) has recently been developed by the Macke 
Lab [4] to implement simulation based inference for neuronal 
models. In their approach, models of neurons and neural 
networks can be used as ‘simulators’ to generate data linking 
parameter sets to neuronal and network outputs. The toolbox 
then uses Bayesian inference to invert the simulators, i.e., 
describe the parameters which are consistent both with 
experimental data and prior knowledge. 

Here we propose a scheme that uses the SNPE algorithm to 
infer morphology and biophysics of single neurons from 
multi-electrode in vivo recordings of the local field potential 
(LFP). In this inverse modeling scheme, we first developed a 
generic biophysical model of a neuron with stylized 
morphology that has adjustable parameters for the dimensions 
of the soma, basal and apical dendrites, and their locations 
relative to the multi-electrode probe. The model includes 
biophysics and a module to estimate the LFP at any location. 
Results are reported that use the proposed scheme to infer the 
posterior distribution of the morphological parameters given 
the in vivo LFP waveforms of a putative rodent L5 cell from 
the motor cortex as the ‘observed’ data. The spatiotemporal 
profile of the LFP is recorded simultaneously at multiple sites 
on the Neuropixel probe [6]. Our long-term goal is to develop 
an open-source toolbox that automates the process of inferring 
neuronal morphology and parameters from in vivo LFPs for 
multiple cell types. 

II. METHOD 

A. In vivo Data from Multi-electrode Array 

The in vivo extracellular voltage induced by the action 
potential of a single neuron was recorded using a Neuropixel 
probe. The probe has 384 electrodes arranged in a 2 
dimensional 3840x48 μm sheet of thickness 70 μm [6]. 
Extracellular action potentials of a putative cell identified by a 
spike sorting algorithm were averaged. Then the averaged 
waveform was high-pass filtered with 100 Hz cutoff 
frequency. The waveforms in every 4 nearby channels were 
averaged to form the waveform profile in a one-dimensional 
array of 96 channels. 

B. Stylized Single Cell Model 

We modeled a single cell with stylized ball-and-stick 
morphology with a soma, basal dendrites and apical dendrites 
(Fig. 1). The soma is at the origin and the trunk is vertical 
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(aligned with y-axis). There are four basal dendrites attached 
to the soma, two horizontal (aligned with x-axis) and two 
inclined down by 45 degrees. The apical dendrite consists of a 
vertical trunk and two tufts inclined up by 45 degrees. 

The 96 electrodes measuring the LFP are evenly spaced 
from -1900 to 1900 μm along the y-axis. The cell can be 
moved to a new position from its initial position by a 
translation that follows a rotation, represented here by four 
parameters, x, y, h and φ. Translation occurs by (r,y) where 
r=(x2+z2)1/2 is the minimum distance to the y-axis. One degree 
of freedom is reduced due to the symmetry about y-axis. 
Hence, the translation in x that we use actually represents r. In 
the configuration of Fig. 1, the polar rotation angle is given by 
cos-1(h), and azimuth angle by φ. We consider the effects of 
roll (spin about y-axis) to be negligible. Since the orientation 
parameters are desired to be uniformly distributed, we 
represent the orientation by a point on the 3D unit sphere 
which can be mapped to the lateral surface of a cylinder with 
unit radius and 2 units height, represented by uniformly 
distributed parameters h in [-1,1] and φ in [-π,π] [7]. The other 
two parameters are translation in x and y axis respectively, 
which are also uniformly distributed (both in μm) [-200,200] 
and [-2000,2000], respectively. The symmetry of the relative 
position between the cell and the electrodes helps reduce the 
range of the four parameters x, y, h, φ to [0,200], 
[-2000,2000], [-1,1], and [0,π], respectively. Successful 
inference of these four parameters from the observed in vivo 
waveform profile will enable the determination of the relative 
position of the cell with respect to the electrode. The 
morphology of the cell is presently characterized by three 
geometry parameters, soma radius, trunk length and trunk 
radius, that are to be inferred from in vivo data, with priors 
from uniform distributions (all in μm) in [3,10], [100,800], 
[0.05,0.2], respectively. 

C. Stimulus Design 

A multi-step approach is proposed to emulate the in vivo 
extracellular action potential response in the model neuron. In 
the first step, we consider the stylized neuron with only leak 
channels. Assuming the in vivo extracellular waveform with 
the maximum magnitude to largely reflect the transmembrane 
current in the soma, we use the negative in vivo extracellular 
waveform as the current to be injected to the soma. The 
resulting extracellular voltage response will be a filtered signal 
where the input is the current injection with the model cell 
acting as an RC circuit. The extracellular voltage response is 
further filtered by 100 Hz high-pass filter to ensure it is 
processed similar to the in vivo data. Although this will result 

in a phase lag and some distortion, most of the key features 
will be preserved. We propose such an approach to decouple 
the problem of simultaneously inferring both morphology and 
biophysical parameters. Finally, a scaling factor for the 
magnitude of the simulated LFP is used as another parameter 
to be inferred. This scaling factor handles the uncertainty in 
current injection magnitude and the overall linear scaling 
effect of the morphology properties not parameterized at this 
stage (see below), represented by 10λ, where λ has uniform 
prior distribution in [3,5]. 

D. Summary Statistics 

The observed data which comprises the multi-electrode 
extracellular action potential profiles span a high dimensional 
feature space. SNPE provides the option of using summary 
statistics to represent salient user-defined features from the 
observed data. We obtain the summary statistics by truncating 
the extracellular action potential profile to a 3 ms time 
window, and extracting four measures from each trace: 
average voltage, minimum and maximum voltage, and the 
time difference between the occurrence of the minimum and 
maximum voltages. Then for each of these four 
measurements, six statistical quantities are calculated over all 
96 channels: mean, standard deviation, minimum and 
maximum value of each measurement, and the position of the 
electrodes at which the minimum and maximum occurred. The 
observed data were thus summarized by 24 features. 

E. Algorithm for Estimation of Parameters 

SNPE improves on the approximate Bayesian computation 
inference algorithm for estimating the parameters [5], and is 
implemented by the PyTorch package (sbi [8]). In this 
algorithm, the first step draws samples from the prior 
distribution of the parameters p(θ) provided by the user, and 
feeds them into the biophysical model and generate the 
corresponding model outputs (e.g., voltage traces, summary 
statistics, etc.) for numerous sets in the parameter space. A 
density estimator, masked autoregressive flow (MAF), is then 
trained to associate the model outputs to the corresponding 
parameters, yielding an approximate posterior distribution 
p(θ|x). This posterior distribution is then fed the 
experimentally observed data, x0, and the posterior for the 
experimental data is returned, p(θ|x0). The next step uses this 
posterior as the new prior, called a proposal prior, pr(θ), and 
the process is repeated monitoring desired convergence levels. 
In our problem, the parameter θ, consists of the four position 
parameters, three geometry parameters and the one scaling 
factor (see Methods). The observed data x0 consists of the 
summary statistics. 

F. Inference on Biophysical Parameters 

After the cell position and morphology are determined, 
they will be considered fixed and we will then add active 
channels to the stylized cell model with adjustable biophysics 
parameters. The SNPE algorithm will then be used to infer the 
biophysics parameters of the neuron. After we obtain a good 
fit to the in vivo action potential waveform, we will begin an 
iterative process where we fix the biophysical parameters and 
apply inference on the morphology parameters, and vice versa 
till the desired convergence is accomplished. 

 
Figure 1.  Stylized morphology for a generic layer 5 pyramidal cell 
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III. RESULTS 

A.  Inference on Position and Morphology Parameters using 

Simulated Ground Truth 

A set of the position and morphology parameters were 
selected as ground truth and the simulated extracellular 
waveform profile was used as observed data. SNPE was then 
applied on the observed data to infer the parameters. Each 
iteration that updates the proposal prior is called a round. After 
training for 3 rounds, the estimated posterior of the position 
parameters were returned and are shown in Fig. 2. The 
posterior of the location parameters x, y are most concentrated 
compared to other parameters (Fig. 2E), which implies that 
they are the most significant ones that affects the waveform 
profile The parameter R_s (soma radius) deviates from its 
ground truth, implying the training may be trapped in a local 
minimum. The parameter L_t (trunk length) has almost 
uniform posterior, which implies it does not affect the 
waveform, more precisely the summary statistics. These 
parameters could be influential to some features which are not 
captured by the summary statistics. If so, using an artificial 
neural network may help preserving the features and improve 
convergence on such parameters.  

 

B. Inference on Location and Orientation using In Vivo Data 

In vivo LFP was used as observed data and only the 
position parameters were selected to be inferred first. After 
training for 3 rounds, the simulated LFP using inferred 
parameters reproduced similar waveform profile as the in vivo 
data (Fig. 3. Case I). 

 

C. Inference Including Morphology Parameters using In 

Vivo Observed Data 

In vivo LFP was used as observed data and the position 
and morphology parameters were all selected to be inferred. 
After training for 3 rounds, the simulated LFP using inferred 
parameters reproduced closer waveform profile to the in vivo 

data than previous result in which only position parameters 
were inferred (Fig. 3. Case II). The estimation of the 
orientation parameters h and φ was different in the case with 
only position parameters, implying that local minimum may 
be reached since the inference was constrained on a parameter 
subspace. Inference results from another in vivo cell are 
shown in Fig. 4.  

 

 

Figure 2.  Inference results using simulated ground truth. A. 
Simulated LFP of the ground truth cell generating action potential. B. 

LFP traces of multiple channels for the same ground truth. C. Predicted 

LFP of the cell with inferred parameters from the estimated posterior. 
D. LFP traces of multiple channels for the same inferred cell. E. 

Estimated posterior distributions of the position and morphology 

parameters. Red lines and dots indicate the ground truth parameter 
values. R_s, L_t and R_t denote soma radius, trunk length and trunk 

radius respectively. 

 
Figure 3.  Inference results for two cases using the same in vivo data. 

Case I: Inference on position parameters only. A. In vivo LFP of the 
averaged action potential waveform of a cell. B. LFP traces of multiple 

channels for the same in vivo cell. C. Predicted LFP of the cell with 

inferred parameters from the estimated posterior. D. LFP traces of 
multiple channels of the inferred cell. E. Estimated posterior 

distributions of the location and orientation parameters. Case II: 

Inference on both position and morphology parameters. Panels F, G 
and H are the same as C, D and E but with inference of the largers set of 

cied parameters. 

 
Figure 4. Inference results using in vivo data for another cell with 

position and morphology parameters. A. In vivo LFP of the averaged 

action potential waveform of a cell. B. LFP traces of multiple channels 
for the same in vivo cell. C. Predicted LFP of the cell with inferred 

parameters from the estimated posterior. D. LFP traces of multiple 

channels of the inferred cell. E. Estimated posterior distributions of the 

position and morphology parameters. 
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IV. DISCUSSION AND CONCLUSION 

Our results showed that Bayesian-based machine learning 
algorithm SNPE facilitates automated inference of position 
and morphology of single neurons using summary statistics 
extracted from in vivo LFP records. Several salient 
observations are noted. First, performance of the algorithm 
seems to improve when the number of parameters increases 
for our specific case considered. This is evident from two 
cases we ran for the in vivo data of Figure 3. Compared to the 
initial run for this case where only the cell position and 
orientation (x, y, h, φ, λ) were inferred, the performance 
improved considerably when the morphology parameters of 
soma radius (R_s), trunk length (L_t) and trunk radius (R_t) 
were added to the parameters set. We can compare the 
performance in each case by calculating the correlation 
coefficient between the observed in vivo data and the 
predicted data. The improvement with the increased degrees 
of freedom could be due to interactions between the 
parameters in setting the LFP and expectedly benefiting the 
algorithm to converge to better optimal minima in the 
parameter space. Although this improvement comes at the cost 
of increased computational time, the overhead was not 
significant for our application. As a second observation, we 
note inference on some of the parameters remain poor, 
possibly because the generation of the summary statistics may 
have missed key features in rich and multi-site LFP signals. To 
overcome this, we have begun to compare the capability of sbi 
to learn the features directly using convolutional neural 
networks (CNN) to automatically generate the relevant 
features, that can potentially provide more optimized 
parameters (e.g., for R_s, L_t in Fig. 2E, and L_t in Fig. 3H). 
Using the summary statistics for training, we obtain an LFP 
which matches the ground truth with a correlation coefficient 
of 0.44. The main differences between the two traces are that 
the predicted LFP has reversed polarity, and its magnitude is 
about 5 times larger, highlighting its shortcomings. Our 
preliminary studies involved concatenating the summary 
statistics with a CNN and this yielded better results. Compared 
to the ground truth, the correlation coefficient increased to 
0.89. The main difference is that some of the channels 
followed a second waveform not aligned with the first. It is 
possible that a different CNN architecture and/or increased 
training will correct. Again, these are preliminary results with 
only the ground truth model. As a next step we will be 
comparing with the in vivo trace and also explore other 
algorithms in the sbi toolbox.  

A final observation relates to the capability of the 
algorithm to distinguish between different neuronal types. 
Some examples show that the in vivo waveforms can arise 
from different types of neurons, such as the medium spiny 
neurons in striatum, have an initial positive peak, which is the 
opposite polarity one would expect for the action potential. 
The reason could be that these cells are ‘closed-sources’ with 
the cell body surrounded by the dendrites, and if the cell's 
dendrites is closer to the probe then its soma. Then the somatic 
depolarization associated with an action potential will produce 
a return potential in the dendrites with opposite polarity, which 
results in more than one peaks in the waveform profile that 
cannot be captured by the summary statistics which consider 
only the max peak. Using CNN will potentially handle these 

cases and the inferred parameters such as trunk length may 
help identify the cell type. 

As a next step, we will include active channels to our 
stylized cell (Fig. 1) and extend the inference to include 
membrane biophysics. Specifically, we will add conductances 
known to be present in the specific cell types and also consider 
varying diameters of distal dendrites. This may improve 
overall match with in vivo LFP, even prior to usage of CNNs 
for enhancement of performance. 
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