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Abstract— We propose a computational pipeline that uses
biophysical modeling and sequential neural posterior estimation
algorithm to infer the position and morphology of single
neurons using multi-electrode in vivo extracellular voltage
recordings. In this inverse modeling scheme, we designed a
generic biophysical single neuron model with stylized
morphology that had adjustable parameters for the dimensions
of the soma, basal and apical dendrites, and their location and
orientations relative to the multi-electrode probe. Preliminary
results indicate that the proposed methodology can infer up to
eight neuronal parameters well. We highlight the issues involved
in the development of the novel pipeline and areas for further
improvement.

I. INTRODUCTION

Computational modeling of single neurons span the range
in type from ‘integrate-and-fire’ that are suitable for studies
related to theoretical studies to ‘biophysical’ that are
conductance-based with complex morphologies purportedly
providing improved physiological realism [1]. Physiological
realism in modeling single cells is thought to be important for
investigating underlying mechanisms implicated in neural
phenomena such as oscillations [2]. Present biophysical single
cell models have compartments varying in number from one to
over a thousand, and techniques are also being proposed to
ensure that single neurons capture the key neurocomputational
properties [3]. However, we lack reliable neurophysiological
in vivo data and suitable algorithms to translate the data into
parameters and morphology for realistic biophysical models.

New technologies are beginning to provide
neurophysiological data at increasing levels of precision and at
multiple scales including at single neuron and network levels.
In parallel, advances in machine learning-based algorithms
and architectures have spurred the development of several
automated neural parameter estimation schemes. As an
example, statistical inference can be combined with machine
learning schemes to provide principled approaches that can
integrate multiple data sources to handle variability, quantify
uncertainty and incorporate prior knowledge. A specific
instance of such a hybrid scheme is sequential neural posterior
estimation (SNPE), which combines the advantages of
statistical and mechanistic modeling [4], as briefly described
next.

Several neural modeling packages facilitate
implementation of complex, stochastic, numerical simulations
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to characterize the dynamics of single neurons and networks.
However, a challenge is to generate appropriate parameters
that would be both physiological and also replicate
observational data. Bayesian inference provides a general and
powerful framework to invert the simulators, i.e., describe the
parameters which are consistent both with empirical data and
with prior knowledge, using tools from the rapidly growing
area of simulation-based inference [5].

A powerful Python toolbox labeled ‘sbi’ (simulation
based inference) has recently been developed by the Macke
Lab [4] to implement simulation based inference for neuronal
models. In their approach, models of neurons and neural
networks can be used as ‘simulators’ to generate data linking
parameter sets to neuronal and network outputs. The toolbox
then uses Bayesian inference to invert the simulators, i.e.,
describe the parameters which are consistent both with
experimental data and prior knowledge.

Here we propose a scheme that uses the SNPE algorithm to
infer morphology and biophysics of single neurons from
multi-electrode in vivo recordings of the local field potential
(LFP). In this inverse modeling scheme, we first developed a
generic biophysical model of a neuron with stylized
morphology that has adjustable parameters for the dimensions
of the soma, basal and apical dendrites, and their locations
relative to the multi-electrode probe. The model includes
biophysics and a module to estimate the LFP at any location.
Results are reported that use the proposed scheme to infer the
posterior distribution of the morphological parameters given
the in vivo LFP waveforms of a putative rodent L5 cell from
the motor cortex as the ‘observed’ data. The spatiotemporal
profile of the LFP is recorded simultaneously at multiple sites
on the Neuropixel probe [6]. Our long-term goal is to develop
an open-source toolbox that automates the process of inferring
neuronal morphology and parameters from in vivo LFPs for
multiple cell types.

II. METHOD

A. Invivo Data from Multi-electrode Array

The in vivo extracellular voltage induced by the action
potential of a single neuron was recorded using a Neuropixel
probe. The probe has 384 electrodes arranged in a 2
dimensional 3840x48 pm sheet of thickness 70 pum [6].
Extracellular action potentials of a putative cell identified by a
spike sorting algorithm were averaged. Then the averaged
waveform was high-pass filtered with 100 Hz cutoff
frequency. The waveforms in every 4 nearby channels were
averaged to form the waveform profile in a one-dimensional
array of 96 channels.

B. Stylized Single Cell Model

We modeled a single cell with stylized ball-and-stick
morphology with a soma, basal dendrites and apical dendrites
(Fig. 1). The soma is at the origin and the trunk is vertical
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Figure 1. Stylized morphology for a generic layer 5 pyramidal cell

(aligned with y-axis). There are four basal dendrites attached
to the soma, two horizontal (aligned with x-axis) and two
inclined down by 45 degrees. The apical dendrite consists of a
vertical trunk and two tufts inclined up by 45 degrees.

The 96 electrodes measuring the LFP are evenly spaced
from -1900 to 1900 um along the y-axis. The cell can be
moved to a new position from its initial position by a
translation that follows a rotation, represented here by four
parameters, X, y, h and ¢. Translation occurs by (r,y) where
r=(x*+z%)""? is the minimum distance to the y-axis. One degree
of freedom is reduced due to the symmetry about y-axis.
Hence, the translation in x that we use actually represents r. In
the configuration of Fig. 1, the polar rotation angle is given by
cos’!(h), and azimuth angle by ¢. We consider the effects of
roll (spin about y-axis) to be negligible. Since the orientation
parameters are desired to be uniformly distributed, we
represent the orientation by a point on the 3D unit sphere
which can be mapped to the lateral surface of a cylinder with
unit radius and 2 units height, represented by uniformly
distributed parameters h in [-1,1] and ¢ in [-w,7t] [7]. The other
two parameters are translation in x and y axis respectively,
which are also uniformly distributed (both in um) [-200,200]
and [-2000,2000], respectively. The symmetry of the relative
position between the cell and the electrodes helps reduce the
range of the four parameters x, y, h, ¢ to [0,200],
[-2000,2000], [-1,1], and [O,x], respectively. Successful
inference of these four parameters from the observed in vivo
waveform profile will enable the determination of the relative
position of the cell with respect to the electrode. The
morphology of the cell is presently characterized by three
geometry parameters, soma radius, trunk length and trunk
radius, that are to be inferred from in vivo data, with priors
from uniform distributions (all in pm) in [3,10], [100,800],
[0.05,0.2], respectively.

C. Stimulus Design

A multi-step approach is proposed to emulate the in vivo
extracellular action potential response in the model neuron. In
the first step, we consider the stylized neuron with only leak
channels. Assuming the in vivo extracellular waveform with
the maximum magnitude to largely reflect the transmembrane
current in the soma, we use the negative in vivo extracellular
waveform as the current to be injected to the soma. The
resulting extracellular voltage response will be a filtered signal
where the input is the current injection with the model cell
acting as an RC circuit. The extracellular voltage response is
further filtered by 100 Hz high-pass filter to ensure it is
processed similar to the in vivo data. Although this will result
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in a phase lag and some distortion, most of the key features
will be preserved. We propose such an approach to decouple
the problem of simultaneously inferring both morphology and
biophysical parameters. Finally, a scaling factor for the
magnitude of the simulated LFP is used as another parameter
to be inferred. This scaling factor handles the uncertainty in
current injection magnitude and the overall linear scaling
effect of the morphology properties not parameterized at this
stage (see below), represented by 10* where A has uniform
prior distribution in [3,5].

D. Summary Statistics

The observed data which comprises the multi-electrode
extracellular action potential profiles span a high dimensional
feature space. SNPE provides the option of using summary
statistics to represent salient user-defined features from the
observed data. We obtain the summary statistics by truncating
the extracellular action potential profile to a 3 ms time
window, and extracting four measures from each trace:
average voltage, minimum and maximum voltage, and the
time difference between the occurrence of the minimum and
maximum voltages. Then for each of these four
measurements, six statistical quantities are calculated over all
96 channels: mean, standard deviation, minimum and
maximum value of each measurement, and the position of the
electrodes at which the minimum and maximum occurred. The
observed data were thus summarized by 24 features.

E. Algorithm for Estimation of Parameters

SNPE improves on the approximate Bayesian computation
inference algorithm for estimating the parameters [5], and is
implemented by the PyTorch package (sbi [8]). In this
algorithm, the first step draws samples from the prior
distribution of the parameters p(8) provided by the user, and
feeds them into the biophysical model and generate the
corresponding model outputs (e.g., voltage traces, summary
statistics, etc.) for numerous sets in the parameter space. A
density estimator, masked autoregressive flow (MAF), is then
trained to associate the model outputs to the corresponding
parameters, yielding an approximate posterior distribution
p(0)x). This posterior distribution is then fed the
experimentally observed data, xo, and the posterior for the
experimental data is returned, p(6|xo). The next step uses this
posterior as the new prior, called a proposal prior, p«(0), and
the process is repeated monitoring desired convergence levels.
In our problem, the parameter 6, consists of the four position
parameters, three geometry parameters and the one scaling
factor (see Methods). The observed data x¢ consists of the
summary statistics.

F. Inference on Biophysical Parameters

After the cell position and morphology are determined,
they will be considered fixed and we will then add active
channels to the stylized cell model with adjustable biophysics
parameters. The SNPE algorithm will then be used to infer the
biophysics parameters of the neuron. After we obtain a good
fit to the in vivo action potential waveform, we will begin an
iterative process where we fix the biophysical parameters and
apply inference on the morphology parameters, and vice versa
till the desired convergence is accomplished.
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II. RESULTS

A. Inference on Position and Morphology Parameters using
Simulated Ground Truth

A set of the position and morphology parameters were
selected as ground truth and the simulated extracellular
waveform profile was used as observed data. SNPE was then
applied on the observed data to infer the parameters. Each
iteration that updates the proposal prior is called a round. After
training for 3 rounds, the estimated posterior of the position
parameters were returned and are shown in Fig. 2. The
posterior of the location parameters X, y are most concentrated
compared to other parameters (Fig. 2E), which implies that
they are the most significant ones that affects the waveform
profile The parameter R s (soma radius) deviates from its
ground truth, implying the training may be trapped in a local
minimum. The parameter L t (trunk length) has almost
uniform posterior, which implies it does not affect the
waveform, more precisely the summary statistics. These
parameters could be influential to some features which are not
captured by the summary statistics. If so, using an artificial
neural network may help preserving the features and improve
convergence on such parameters.

B. Inference on Location and Orientation using In Vivo Data

In vivo LFP was used as observed data and only the
position parameters were selected to be inferred first. After
training for 3 rounds, the simulated LFP using inferred
parameters reproduced similar waveform profile as the in vivo
data (Fig. 3. Case I).

C. Inference Including Morphology Parameters using In
Vivo Observed Data

In vivo LFP was used as observed data and the position
and morphology parameters were all selected to be inferred.
After training for 3 rounds, the simulated LFP using inferred
parameters reproduced closer waveform profile to the in vivo
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Figure 2. Inference results using simulated ground truth. A.
Simulated LFP of the ground truth cell generating action potential. B.
LFP traces of multiple channels for the same ground truth. C. Predicted
LFP of the cell with inferred parameters from the estimated posterior.
D. LFP traces of multiple channels for the same inferred cell. E.
Estimated posterior distributions of the position and morphology
parameters. Red lines and dots indicate the ground truth parameter
values. R_s, L t and R _t denote soma radius, trunk length and trunk
radius respectively.
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Figure 3. Inference results for two cases using the same in vivo data.

Case I: Inference on position parameters only. A. In vivo LFP of the
averaged action potential waveform of a cell. B. LFP traces of multiple
channels for the same in vivo cell. C. Predicted LFP of the cell with
inferred parameters from the estimated posterior. D. LFP traces of
multiple channels of the inferred cell. E. Estimated posterior
distributions of the location and orientation parameters. Case II:
Inference on both position and morphology parameters. Panels F, G
and H are the same as C, D and E but with inference of the largers set of
cied parameters.

data than previous result in which only position parameters
were inferred (Fig. 3. Case II). The estimation of the
orientation parameters h and ¢ was different in the case with
only position parameters, implying that local minimum may
be reached since the inference was constrained on a parameter
subspace. Inference results from another in vivo cell are
shown in Fig. 4.
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Figure 4. Inference results using in vivo data for another cell with
position and morphology parameters. A. In vivo LFP of the averaged
action potential waveform of a cell. B. LFP traces of multiple channels
for the same in vivo cell. C. Predicted LFP of the cell with inferred
parameters from the estimated posterior. D. LFP traces of multiple
channels of the inferred cell. E. Estimated posterior distributions of the
position and morphology parameters.
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IV. DISCUSSION AND CONCLUSION

Our results showed that Bayesian-based machine learning
algorithm SNPE facilitates automated inference of position
and morphology of single neurons using summary statistics
extracted from in vivo LFP records. Several salient
observations are noted. First, performance of the algorithm
seems to improve when the number of parameters increases
for our specific case considered. This is evident from two
cases we ran for the in vivo data of Figure 3. Compared to the
initial run for this case where only the cell position and
orientation (X, y, h, ¢, A) were inferred, the performance
improved considerably when the morphology parameters of
soma radius (R_s), trunk length (L _t) and trunk radius (R t)
were added to the parameters set. We can compare the
performance in each case by calculating the correlation
coefficient between the observed in vivo data and the
predicted data. The improvement with the increased degrees
of freedom could be due to interactions between the
parameters in setting the LFP and expectedly benefiting the
algorithm to converge to better optimal minima in the
parameter space. Although this improvement comes at the cost
of increased computational time, the overhead was not
significant for our application. As a second observation, we
note inference on some of the parameters remain poor,
possibly because the generation of the summary statistics may
have missed key features in rich and multi-site LFP signals. To
overcome this, we have begun to compare the capability of sbi
to learn the features directly using convolutional neural
networks (CNN) to automatically generate the relevant
features, that can potentially provide more optimized
parameters (e.g., for R s, L tin Fig. 2E, and L t in Fig. 3H).
Using the summary statistics for training, we obtain an LFP
which matches the ground truth with a correlation coefficient
of 0.44. The main differences between the two traces are that
the predicted LFP has reversed polarity, and its magnitude is
about 5 times larger, highlighting its shortcomings. Our
preliminary studies involved concatenating the summary
statistics with a CNN and this yielded better results. Compared
to the ground truth, the correlation coefficient increased to
0.89. The main difference is that some of the channels
followed a second waveform not aligned with the first. It is
possible that a different CNN architecture and/or increased
training will correct. Again, these are preliminary results with
only the ground truth model. As a next step we will be
comparing with the in vivo trace and also explore other
algorithms in the sbi toolbox.

A final observation relates to the capability of the
algorithm to distinguish between different neuronal types.
Some examples show that the in vivo waveforms can arise
from different types of neurons, such as the medium spiny
neurons in striatum, have an initial positive peak, which is the
opposite polarity one would expect for the action potential.
The reason could be that these cells are ‘closed-sources’ with
the cell body surrounded by the dendrites, and if the cell's
dendrites is closer to the probe then its soma. Then the somatic
depolarization associated with an action potential will produce
areturn potential in the dendrites with opposite polarity, which
results in more than one peaks in the waveform profile that
cannot be captured by the summary statistics which consider
only the max peak. Using CNN will potentially handle these
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cases and the inferred parameters such as trunk length may
help identify the cell type.

As a next step, we will include active channels to our
stylized cell (Fig. 1) and extend the inference to include
membrane biophysics. Specifically, we will add conductances
known to be present in the specific cell types and also consider
varying diameters of distal dendrites. This may improve
overall match with in vivo LFP, even prior to usage of CNNs
for enhancement of performance.

REFERENCES
(1]

Almog M, Korngreen A (2016) Is realistic neuronal modeling
realistic?, J Neurophysiol 116, 2180-2209.

Feng F, Headley DB, Amir A, Kanta V, Chen Z, Paré D, Nair SS (2019)
Gamma oscillations in the basolateral amygdala: Biophysical
mechanisms and computational consequences, eNeuro 6,
ENEURO.0388-0318.2018.

Alturki A, Feng F, Nair A, Guntu V, Nair SS (2016) Distinct current
modules shape cellular dynamics in model neurons, Neuroscience 334,
309-331. PMC5086448.

Gongalves PJ, Lueckmann J-M, Deistler M, Nonnenmacher M, Ocal K,
Bassetto G, Chintaluri C, Podlaski WF, Haddad SA, Vogels TP,
Greenberg DS, Macke JH (2020) Training deep neural density
estimators to identify mechanistic models of neural dynamics, eLife 9,
e56261.

Greenberg DS, Nonnenmacher M, Macke JH (2019) Automatic
posterior transformation for likelihood-free inference, arXiv preprint
arXiv:190507488.

Jun JJ, Steinmetz NA, Siegle JH, Denman DJ, Bauza M, Barbarits B,
Lee AK, Anastassiou CA, Andrei A, Aydin C, Barbic M, Blanche TJ,
Bonin V, Couto J, Dutta B, Gratiy SL, Gutnisky DA, Hiusser M, Karsh
B, Ledochowitsch P, Lopez CM, Mitelut C, Musa S, Okun M,
Pachitariu M, Putzeys J, Rich PD, Rossant C, Sun W-1, Svoboda K,
Carandini M, Harris KD, Koch C, O’Keefe J, Harris TD (2017) Fully
integrated silicon probes for high-density recording of neural activity,
Nature 551, 232-236.

WolframAlpha (2020) Sphere point picking,
https://mathworld.wolfram.com/SpherePointPicking.html.
Tejero-Cantero A, et al. (2020) Sbi: A toolkit for simulation-based
inference, Journal of Open Source Software 5.52: 2505.

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on December 31,2021 at 20:14:31 UTC from IEEE Xplore. Restrictions apply.



