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Abstract

The distribution of taxonomic, phylogenetic, and functional biodiversity results from a
combination of abiotic and biotic drivers which are scale dependent. Parsing the relative
influence of these drivers is critical to understanding the processes underlying species assembly
and generating predictions of biodiversity across taxonomic groups and for novel sites. However,
doing so requires data that capture a spatial extent large enough to reflect broad-scale dynamics
such as speciation and biogeography, and a spatial grain fine enough to detect local-scale
dynamics like environmental filtering and biotic interactions. We used species inventories of
vascular plants, birds, and mammals collected by the U.S. National Ecological Observatory
Network (NEON) at 38 terrestrial field sites, to explore the processes underlying taxonomic,
phylogenetic, and functional diversity and turnover. We found that, for both species richness
(alpha-diversity) and turnover (beta-diversity), taxonomic, phylogenetic, and functional diversity
are weak proxies for one-another, and thus may capture different species assembly processes. All
diversity metrics were best predicted by a combination of abiotic and biotic variables.
Taxonomic and phylogenetic richness tended to be higher at warmer, wetter sites, reflecting the
role energy inputs play in driving broad-scale diversity. However, plant diversity was negatively
correlated with bird phylogenetic and mammal functional diversity, implying trait conservation
in plant communities may limit niche availability for consumer species. Equally, turnover in bird
and mammal species across sites were associated with plant turnover. That the biodiversity of
one taxon is predictive of another across these North American sites, even when controlling for

environment, supports a role for the cross-clade biotic environment in driving species assembly.
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Introduction

Patterns in the distribution of taxonomic, phylogenetic, and functional biodiversity across taxa
can inform our understanding of the processes underlying community assembly (Cavender-Bares
et al. 2009, Jetz et al. 2012a). In particular, parsing the relative contributions of abiotic
(environmental) and biotic (other species) factors to community assembly and biodiversity is
critical to predicting the direct and indirect impacts of environmental change and species loss in
plant and animal communities. Abiotic and biotic drivers operate and interact across spatial
scales (Westgate et al. 2014, Fine 2015). Classically, biogeography and speciation are considered
broad-scale drivers while environmental filtering and interspecific interactions are thought to
dominate local-scale assembly (Whittaker et al. 2001, Wang et al. 2009, Belmaker and Jetz
2011). Understanding how these broad- and local-scale drivers work in tandem to influence site-
level biodiversity is an important next step for linking academic work on macro-ecological
patterns with practical conservation decision-making at local sites. The relative contributions of
the processes generating and maintaining biodiversity can be further informed by comparing
patterns in richness (alpha-diversity) and turnover (beta-diversity) across assemblages. Turnover
between sites can provide valuable context for broad patterns of alpha-diversity, reflecting
heterogeneity in the taxonomic, phylogenetic, and functional identities of different assemblages.
Furthermore, prior studies show taxonomic, phylogenetic, and functional diversity are often

unreliable proxies for one another (Devictor et al. 2010, Cadotte and Tucker 2018), and
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understanding how and where they differ can provide insight into ecological and evolutionary
processes. Parsing the drivers of each dimension of biodiversity independently presents an
opportunity to examine, from multiple vantage points, how and why assemblages vary across
biotic and abiotic gradients.

Investigations into what drives taxonomic, phylogenetic, and functional richness across
sites have shown strong abiotic controls, particularly at the regional and global scale. Latitude
and elevation are often strong regional predictors of biodiversity, and greater energy inputs (e.g.,
temperature, primary production) may lead to higher alpha-diversity across taxa (the ‘energy
hypothesis’; Currie et al. 2004, Tittensor et al. 2010). The proposed mechanisms underlying this
relationship include direct environmental (abiotic) impacts on speciation rates, as well as biotic
drivers of speciation and niche availability (e.g., producer diversity driving consumer diversity;
Hawkins et al. 2003, Belmaker and Jetz 2011). Efforts to parse these abiotic and biotic drivers of
richness—and to understand whether cross-taxon congruence is driven by shared environmental
responses or causal biotic links—have produced conflicting results across scales and taxa
(Westgate et al. 2014). Studies covering sufficiently broad geographic extents to capture the
impacts of biogeography and speciation on biodiversity suggest that once environmental
responses are accounted for, the biodiversity of other taxa provide little additional predictive
power (Jetz et al. 2008). However, those covering smaller geographic and environmental extents
have found links among taxa beyond shared environmental responses (Kissling et al. 2007, 2008,
Barrio et al. 2016).

While the patterns and drivers of total local biodiversity, or richness, can broadly indicate
how biodiversity is generated and maintained, they may differ from the patterns and drivers of

species composition, as represented by biodiversity turnover. The focus of turnover on
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79 differences in species identities across sites suggests similar rates of turnover among taxa could
80 result from links related to resource use, interactions, and shared microhabitat responses not

81 detected by broad-scale models. Compared to biodiversity richness, however, the processes

82 underlying turnover are more poorly understood (Swenson et al. 2012), despite the importance of
83 turnover in disentangling the mechanisms underlying biodiversity richness. For instance, the

84 homogenization of diversity (e.g., in urban ecosystems) can result in high richness but low

85 turnover (Groffman et al. 2014). Understanding regional-scale turnover is therefore important in
86 and of itself for understanding what processes contribute to community composition, and it is

87 also important for addressing ongoing debates about the drivers of alpha diversity (Gonzalez et
88 al. 2016). In some cases, the diversity of other co-occurring taxa has been shown to be a stronger
89  predictor of turnover than climate (Buckley and Jetz 2008), but the patterns and drivers of

90 turnover have been shown to be highly scale-dependent (Barton et al. 2013, Mori et al. 2018).

91 Efforts to parse the drivers of both richness and turnover have ultimately been limited by
92 amismatch of scale. Data limitations often limit studies of broad spatial extents to aggregate data
93 and so sacrifice fine-scale geographic resolution. A common concern in such studies of species
94 whose ranges overlap is whether they can capture true co-occurrences or direct biotic

95 interactions. Conversely, studies that do capture such fine-grained interactions do so

96 across limited spatial extents, making it is difficult to capture broad environmental variation or
97 the influence of biogeography. These practical constraints have made it challenging to explore
98 the combined influence of abiotic and biotic processes on local-scale biodiversity. To overcome
99 this challenge, what is needed are fine-grain, cross-taxon species assemblage data that cover a

100  broad spatial extent.
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101 The US National Ecological Observatory Network (NEON) is now emerging as a

102  resource that offers fine grain, cross-taxon species inventories across the United States. These
103  data provide a unique opportunity to investigate the contributions of the abiotic and biotic

104 environment to site-level biodiversity. Here we explore NEON's observations of vascular plants,
105 birds, and small mammals to examine the patterns and drivers of alpha- and beta-diversity across
106 the US. We examine taxonomic, phylogenetic, and functional diversity to generate insights into
107 the patterns and drivers of species richness, biogeography, and niche differences, as well as the
108 extent to which these processes reflect and interact with one another. Leveraging NEON's fine
109 spatial grain and broad spatial extent, we parse the abiotic and biotic predictors of biodiversity.
110 We find that for both richness and turnover, the diversity of other, co-occurring taxa provides
111  additional predictive power not captured by the environment alone. Our results suggest an

112 important role for the biotic environment in future efforts aimed at modeling species assembly.
113

114 Materials and Methods

115 Our goals were to assess the extent to which the taxonomic, phylogenetic, and functional

116 dimensions of biodiversity and turnover reflect one another, and to parse the drivers of each

117 dimension for plants, birds, and mammals across the USA. To do so, we used organismal data
118 collected by NEON at 38 sites across the USA, climate data primarily reflecting temperature and
119  water availability, published high-resolution phylogenies for each taxonomic group, and publicly
120  accessible trait data on plant maximum height and mean bird and mammal body size. We

121  estimated taxonomic, phylogenetic, and functional biodiversity within and turnover among sites,
122 and then used these estimates to compare across diversity metrics within taxa, and examined the

123  abiotic and biotic predictors of biodiversity and turnover for each taxonomic group. All analyses
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124  were conducted in R version 3.6.3 (R Core Team 2018) and all data and code are available on
125  GitHub and also provided in the Supplement (Appendix S1).

126

127 Organismal data

128  As part of the cross-site NEON protocol, scientists collect species occurrence data for plants,
129 mammals, and birds at all sites (Thorpe et al. 2016). Although NEON site construction was

130 officially completed in early 2019, site-level species occurrence data were collected at many
131 NEON sites between 2012-2018. We used the ‘neonUltilities’ package (Lunch et al. 2020) to
132 compile species inventories from three NEON Data Products: plant presence and percent cover
133 (NEON.DP1.10058; NEON 2021), small mammal box trapping (NEON.DP1.10072; NEON
134 2021), and breeding landbird point counts (NEON.DP1.10003; NEON 2021). Of NEON's 47
135 terrestrial field sites, 39 sites collected assemblage data for birds, plants, and mammals in 2017.
136  We limited our data use to only those collected in 2017 to maximize overlap of assemblages in
137  space and time, as NEON data offer a unique opportunity to compare local assemblages that
138 connect at the regional scale. We removed one site (BARR: Utqiagvik, Alaska) from all analyses
139  because only one mammal species was observed, resulting in 38 study sites distributed across the
140  United States (Figure 1a). During the bootstrap sub-sampling of sites described below (see

141  Biodiversity Estimates), estimates of mammal diversity were too low to estimate phylogenetic
142 diversity in all but 13 sites; therefore, all analyses including mammal phylogenetic diversity or
143 turnover as an explanatory or response variable use a reduced subset of sites (Appendix S2).
144

145  Site characteristics and climate
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146 In order to generate potential abiotic predictors of biodiversity across NEON sites, we first

147  gathered estimates of the average elevation, latitude, and longitude of each site, provided by

148 NEON. To capture the climatic variables reflecting energy availability and potential abiotic

149  constraints on regional species occurrences, we then accessed data for a suite of temperature and
150  water availability variables (monthly mean, minimum, and maximum temperatures,

151 precipitation, vapor pressure, cloud cover, frost day frequency, and potential evapotranspiration)
152 from the Climatic Research Unit gridded product CRU TS v.4.03 (Harris et al. 2014). The CRU
153  spatial resolution of 0.5° met our goal of highlighting broad differences among sites and

154 minimizing the potential effects of small-scale processing error. Similarly, since we aimed to
155 describe broad climatic differences among sites that might affect species occurrence, including
156 establishment and persistence of individuals, we averaged all climatic variables across the years
157 1989-2018 and used these thirty-year average values in all subsequent analyses. We used

158  Principal Component Analysis (PCA) to reduce the CRU climate variables to two principal

159 components explaining a cumulative 93% of the variation in all abiotic predictors (Appendix
160 S3). PC1 explained 75% of the total variation, with primary loadings from the three temperature
161 variables, frost day frequency, vapor pressure, and potential evapotranspiration. The major

162 loadings on PC2 include precipitation and cloud cover. We inverted the values of PC1 and refer
163  to this axis as “temperature” and PC2 as “precipitation” for all subsequent analyses.

164

165  Phylogeny

166 To estimate phylogenetic richness and turnover, we used published, high-resolution phylogenies
167  for birds (Jetz et al. 2012b), mammals (Upham et al. 2019), and plants (Zanne et al. 2014). To

168 account for phylogenetic uncertainty, we used a bootstrap approach for all phylogenetic analyses,
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169 estimating phylogenetic diversity measures and phylogenetic signal across 100 trees (following
170  (Nakagawa and De Villemereuil 2019), who suggest that 50 would be sufficient) for each taxon.
171  Bird and mammal trees were downloaded from VertLife.org, using species lists from the NEON
172  organismal data (367 bird species, 93 mammal species). The bird trees were sampled from trees
173 constrained by the backbone described in (Ericson et al. 2006) and contain 9993 OTUs each. The
174 mammal trees were sampled from bird-death node-dated completed trees including 5911 species.
175 To introduce plant species present in the organismal data but missing from the trees published in
176 Zanne et al. (2014), we used the 'congeneric.merge' function in the package 'pez' (Pearse et al.
177  2015). This increased the species included in the plant phylogeny from 1667 to 2595 species.
178

179  Trait Data

180 For estimates of functional richness and turnover, we used maximum plant height, average bird
181 body mass, and average mammal body mass. Plant height data were gathered using the BIEN 4
182  trait database using the function ‘BIEN trait traitbyspecies’ in the package ‘BIEN’ (Maitner

183  2020), and used to calculate maximum plant height for 938 plant species. Mean bird body mass
184 and mammal body mass values were gathered using the EltonTraits 1.0 database (Wilman et al.
185 2014) for 92 mammal species and 367 bird species. All traits were log transformed (natural log)
186 to avoid bias in functional diversity from extreme trait values. For estimates of site-level

187  functional diversity, we imputed trait values for the 1657 plant species and 1 mammal species for
188  which we had no trait data, using the ‘phylopars’ function in the package ‘Rphylopars’ (Goolsby
189 etal. 2017) and assuming a Brownian Motion model of trait evolution. This phylogenetic

190 imputation is conservative, given our hypotheses are about the disconnects between functional

191 and phylogenetic information, since it should tend to bias us towards finding similarities between
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192  functional and phylogenetic information. To estimate phylogenetic signal in each of the traits, we
193  used the ‘phylosig’ function in the package ‘phytools’ v0.6.99 (Revell 2012), applied only to the
194  non-imputed (i.e., truly measured) data.

195

196  Biodiversity Estimates

197  For each taxonomic group (plants, birds, and mammals), we estimated measures of taxonomic,
198 phylogenetic, and functional richness at, and turnover across, each of the 38 NEON sites, in

199  order to identify the extent to which these metrics may reflect shared or unique processes.

200 While sampling protocols were kept consistent across sites, the number of plots sampled
201 and number of visits to each plot differed. To standardize sampling across sites, within each

202 taxon we used a bootstrap re-sampling approach to generate 100 estimates of each biodiversity
203 metric. Each estimate was based on a random re-sampling of the minimum number of plots

204 across sites (10 plots for plants, 5 for birds, 2 for mammals) and the minimum number of dates
205 on which plots were sampled (1 date for all taxa). We calculated the mean of the 100 estimates
206 for each biodiversity metric, resulting in one estimate for each taxon at each site. We compared
207 these estimates to others calculated from all available data collected in 2017 for each site and
208  found patterns of taxonomic, phylogenetic, and functional diversity to be comparable across sites
209 (Appendix S4).

210 Taxonomic richness was calculated as total species richness, or the sum of unique species
211 of each group (plants, mammals, birds), at each site. The phylogenetic richness at each site was
212 estimated using the standardized effect size of mean nearest taxon distance, (SESyntp; Webb et
213 al. 2002, Kembel 2009) which reflects the extent to which species tend to be phylogenetically

214 related to their nearest relative (and should be more sensitive to differences related to traits

10
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evolving under Brownian motion-type models; Letten and Cornwell 2015), while accounting for
species richness. SESyntp was calculated using the function 'ses.mntd' in the package 'picante’
v1.8.1 (Kembel et al. 2010). Functional richness was calculated as functional dispersion
(Laliberté and Legendre 2010) using the function 'dbFD' in the 'FD' package (Lalibert¢ et al.
2014) and was conducted using log-transformed maximum plant height and mean bird and
mammal body mass.

Taxonomic turnover among sites is represented by Sorensen's Index, which reflects the
presence or absence of shared species between assemblages. We calculated Sorensen’s Index
using the 'vegdist' function in the package 'vegan' v2.4-2 (Oksanen et al. 2019). We calculated
turnover in phylogenetic diversity as PCDp (Ives and Helmus 2010), which isolates the average
phylogenetic distance of non-shared species from the number of species shared in two
communities (1.e., Sorensen's index), using the ‘pez.dissimilarity’ function in the package ‘pez’
(Kembel et al. 2010, Pearse et al. 2015). We estimated turnover in functional diversity among
sites using the same package, which uses a distance matrix of species' trait values to estimate

differences among sites.

Statistical analysis

To compare taxonomic, phylogenetic, and functional diversity within each taxon, we
used Pearson correlations for richness and Mantel tests for turnover (resulting in 9 analyses each
for richness and turnover). In all models, data were Z-transformed to produce coefficients that
reflect effect sizes (Gelman and Hill 2006).

To parse the abiotic and biotic predictors of taxonomic, phylogenetic, and functional

richness, we used multiple linear regression models. For each diversity metric of each taxon

11
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238  (separately), we modeled diversity as a function of abiotic (temperature, precipitation, and

239 elevation) and biotic explanatory variables (the same metric of diversity in the other two

240 taxonomic groups; i.e. bird phylogenetic diversity as a function of plant and mammal

241 phylogenetic diversity). To decompose variance explained by abiotic and biotic factors, we also
242 compared two additional sets of models with only abiotic, and only biotic explanatory variables.
243 We compared the R? values of each model to assess the role of biotic and abiotic predictors

244  across taxa and metrics of biodiversity and used the coefficients of the predictors from the full
245 models to compare their strength and significance. Additional analyses to ensure correlations
246  between abiotic and biotic factors did not affect our results are shown in the supplementary

247 materials.

248 To estimate the relative impact of abiotic and biotic factors on taxonomic, phylogenetic,
249  and functional turnover across NEON sites for plants, mammals, and birds, we used quantile
250 regression models. These models are ideal for comparing multiple distance matrices, and while
251 we include spatial distance in these analyses to control for autocorrelation we emphasize that
252  quantile regressions are robust to even pseudoreplication (Legendre and Legendre 2012). As
253  with the models of richness, for each diversity metric in each taxon we modeled diversity as
254 function of abiotic and biotic explanatory variables, abiotic variables only, biotic variables only,
255 and we modeled the residuals of the abiotic models as a function of the biotic predictors. The
256 variables included were the same as those from the alpha-diversity models but were calculated as
257 dissimilarity values between sites rather than site averages, and with distance among sites also
258 included among the abiotic variables. We used the coefficients of the predictors from the full
259 models to identify primary correlates of beta-diversity.

260

12
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Results
Relationships among taxonomic, phylogenetic, and functional richness and turnover
Taxonomic, phylogenetic, and functional diversity and turnover were generally positively, but
weakly, correlated with one another (Table 1). The strength and signal of associations among the
metrics varied across taxa. We found the strongest associations among the phylogenetic and
functional richness and turnover of plants and birds (richness; plants: r3¢ = 0.78, p < 0.001; birds:
136 = 0.49, p = 0.002; turnover; plants: r79; = 0.48, p < 0.001; birds: r79; = 0.32, p <0.001).
Taxonomic and functional richness were positively correlated for mammals (r3 = 0.36, p
=0.03) and birds (136 = 0.41, p = 0.01), as were taxonomic and functional turnover for mammals
(r701 = 0.38, p < 0.001), but not birds (r7o; = 0.05, p = 0.22). Lastly, taxonomic and phylogenetic
richness, but not turnover, were positively correlated in birds (r3¢ = 0.34, p = 0.04), while these
metrics were positively correlated for turnover, but not richness, in plants (r79; = 0.56, p <
0.001). For both richness and turnover, the same metrics were significantly, negatively correlated

for mammals (richness; r1; = -0.64, p = 0.02; turnover; r497 = -0.55, p < 0.001).

Predictors of plant, mammal and bird richness

Across all taxonomic groups and measures of biodiversity, the strongest models of richness
included both abiotic and biotic explanatory variables (Figure 2). Taken together, abiotic and
biotic factors explained 92%, 68%, and 85% of the variation in plant, mammal, and bird
phylogenetic richness (respectively) across NEON sites. The majority of the variation in
phylogenetic richness of plants and birds was explained by the biotic environment; this was also

the case in model fits that first accounted for abiotic variables (Appendix S5).

13
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Among the abiotic predictors considered here, we found that either temperature,
precipitation, or both tended to have positive associations with plant, bird, and mammal richness
(Figure 3a). For plants, temperature was a significant driver of species richness (p = 0.04, df =
32) and had a strong positive association with phylogenetic richness (p = 0.08, df = 7), while
precipitation was a significant driver of both phylogenetic (p = 0.05, df = 7) and functional
richness (p = 0.02, df = 32). Similarly, although non-significant, bird phylogenetic richness
tended to be higher at warmer (Figure 1b; p = 0.15, df = 7), wetter sites (p = 0.35), and mammal
phylogenetic diversity was higher at wetter sites (p = 0.21, df = 7). Bird and mammal functional
diversity were more poorly predicted by the abiotic environment, however bird functional
diversity had a significant negative relationship with elevation; that is, higher elevation sites
tended to have lower bird functional richness (p = 0.04, df = 32).

Among the biotic predictors of species richness, we found a significant, positive
association between plant and bird taxonomic diversity (p = 0.04, df = 32). We also found a
significant, negative association between the phylogenetic diversity of plants and birds (p = 0.04,
df =7) as well as between the functional diversity of plants and mammals (p = 0.01, df = 32).
That is, although sites with more plant species also tend to host more bird species, those with
higher phylogenetic and functional plant richness also tended to host more clustered

communities of birds and mammals, and vice versa (Figure 1c-d).

Predictors of plant, mammal and bird turnover
The predictors of turnover in species identities, clades, and functions also included contributions
from both the abiotic and biotic environment (Figure 3b). In many cases the strongest predictors

of turnover reflected turnover in other co-occurring taxa. For example, turnover in the species of
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birds and mammals (taxonomic turnover) among sites was best predicted by that of plants (both
p <0.001, df = 703) even when accounting for abiotic differences and distances among sites
(Figure 4, Appendix S6). However, this was not the case for phylogenetic turnover in either
consumer taxon (birds: p =49, df = 499; mammals: p = 0.21, df = 499), or for functional
turnover in birds (p = 0.14, df = 703). Rather, differences in precipitation among sites showed
positive associations with phylogenetic turnover in plants and mammals (p < 0.001, df = 499)
and functional turnover in mammals and birds (p < 0.001, df = 703). That is, sites that differed
the most in precipitation tended to host assemblages that were more phylogenetic and
functionally distinct from one another. The opposite was true of temperature; with greater
differences in temperature among sites, assemblages tended to have greater similarities in the

clades and functions represented (Figure 3b).

Discussion

Here we applied plant and animal assemblage data collected by NEON to investigate the patterns
and drivers of taxonomic, phylogenetic, and functional richness and turnover across the USA.
NEON’s organismal data uniquely captures records of co-occurring plants, mammals, and birds
at a fine spatial grain (reflecting local-scale ecological dynamics) spread across a broad spatial
extent (at which broad-scale evolutionary processes take place). Across NEON sites, we
compared these taxonomic, phylogenetic, and functional richness and turnover within taxa and
found that they were often weak predictors of one another. We also parsed the abiotic and biotic
drivers of richness and turnover for each taxon, and found support for the role of the biotic
environment in shaping species assembly, even when accounting for variation in the abiotic

environment (e.g., energy inputs).

15


https://doi.org/10.1101/2021.11.11.468263
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.11.468263; this version posted November 12, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

329  General patterns and correlates among biodiversity facets

330 The often-weak relationships we detected among taxonomic, phylogenetic, and

331 functional diversity and turnover reflect unique patterns and processes. Among the strongest
332 associations of these metrics were between phylogenetic and functional richness in plants and
333  birds. This is expected to occur when evolutionary distance between species is representative of
334 trait and niche differentiation (Webb et al. 2002, Cadotte et al. 2009, Devictor et al. 2010), and
335 so traits representing function have strong phylogenetic signal, as is true for all traits included in
336 this study (all Pagel's lambda > 0.95, all p <0.001; Pagel 1999). The stronger correlation

337 between phylogenetic and functional diversity in plants reflects widespread phylogenetic signal
338 in plant traits (Pennell et al. 2015), while limitations on the strength of this relationship in the
339 consumer taxa echo previous findings of inconsistency of species richness as a predictor of

340 phylogenetic diversity over space and time (Devictor et al. 2010, Flynn et al. 2011, Purschke et
341 al. 2013). In particular, while previous studies have similarly found positive associations

342 between phylogenetic and functional diversity for birds (Pigot et al. 2016), the convergent

343  evolution of morphological traits (Pigot et al. 2020) and the reversal of global trait patterns

344  within lineages (Nee et al. 1991) can limit the ability of phylogenetic diversity metrics to inform
345 function.

346 We found a positive relationship between taxonomic and functional diversity in

347 mammals and birds, suggesting that species-rich consumer assemblages typically reflect a broad
348 range of function. Considering the traits analyzed all exhibit phylogenetic signal, it is somewhat
349  surprising that taxonomic and phylogenetic richness (measured as SESyntp, which controls for
350 null effects of species richness) are significantly positively associated only in birds. This

351 difference among taxa may reflect lesser dispersal in plants: if mammals and birds assemble
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from a broader regional pool, and thus from more phylogenetic lineages, then the addition of
species may be more likely to result in increased evolutionary variety, as compared to dispersal-
limited producers. Links between bird taxonomic and phylogenetic alpha-diversity have been
demonstrated using data with a broad grain and extent (Voskamp et al. 2017), while higher
resolution data sets have shown weak relationships between the two metrics (Devictor et al.
2010), as is the case here. This demonstrates the importance of using fine-grain data for
exploring the processes underlying site-level biodiversity and suggests these measures will
contribute somewhat independently to our understanding of alpha-diversity.

Lastly, taxonomic diversity had a significant, positive relationship with PCDp for plants,
but not for birds or mammals; as the proportion of plant species that are shared among
assemblages increases, so does the phylogenetic distance between non-shared species. We might
expect this to be the case if, in two communities with few species in common, close relatives
occupy similar niches (in which case species not in common would be closely related). The
significant negative relationship in mammals indicates that as communities have more species in
common, non-shared species are more closely related. This may reflect a more regional-scale
pattern, wherein communities that include many of the same species (e.g., because they share a
biome) will also contain closely-related, non-shared species due to shared biogeography

(Graham and Fine 2008).

Abiotic and biotic environment together predict richness
The strength of individual aspects of the biotic and abiotic environment at predicting plant, bird,
and mammal diversity suggest joint contributions of broad- and local-scale processes. While

abiotic predictors reflecting broad-scale patterns in energy inputs consistently explained some
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variation in biodiversity, as in previous studies (Currie et al. 2004, Jetz et al. 2008, Meynard et
al. 2011), in many cases the biotic environment alone explained as much or more variation. This
suggests that at the broad scale, energy inputs influence processes like species radiation, while at
the local-scale (particularly at sites with intermediate energy inputs) local-scale processes of
niche diversification explain additional variation (Graham et al. 2018). Bird and plant taxonomic
diversity were positively associated with one another, consistent with previously published
global and regional patterns (Gaston 2000, Kissling et al. 2007, 2008). It is widely recognized
that changes in the diversity of one taxonomic group can result in similar changes to another by
altering available niche space through resources and interactions (Kissling et al. 2007, 2008,
Barrio et al. 2016). However, our findings contrast with some studies of biodiversity over broad
spatial extents (and grains) which have concluded that the variation in biodiversity explained by
other taxa is largely redundant to that explained by the abiotic environment (Jetz et al. 2008).
One example of the power of the biotic environment is our finding that phylogenetic bird
and plant richness were better predictors of one-another than was the abiotic environment. A site
with few closely-related plant species (e.g., a grassland) was likely to host a larger phylogenetic
diversity (corrected for species richness) of birds (and functional diversity of mammals), while a
site with more distantly-related plant species (e.g., a highly-structured forest) was more likely to
contain species representing young, rapidly diversifying clades (e.g., passerines) and therefore a
lower phylogenetic diversity of birds. Bird functional diversity, on the other hand, was best
predicted by the abiotic predictor of elevation, consistent with past studies that have shown
strong elevational effects on diversification (McCain 2009, Quintero and Jetz 2018). Declines in
taxonomic diversity with elevation, as seen here, can result from shifts in plant structure and

ecosystem productivity (Kattan and Franco 2004, Herzog et al. 2005).
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398

399  The biotic environment is a valuable predictor of turnover

400 Congruence in the turnover of different taxa has previously been identified for plants,

401 invertebrates, mammals, and birds over broad cross-continental spatial extents (McKnight et al.
402 2007, Buckley and Jetz 2008), and local to regional extents (Su et al. 2004, Oertli et al. 2005,
403  Steinitz et al. 2005); however, whether turnover is driven primarily by turnover in other taxa
404 (e.g., Buckley and Jetz 2008) or climate (e.g., Zellweger et al. 2017) has been unclear. Our

405 results, which are unique in that they reflect assemblages of species which co-occur at the local
406 scale, across taxonomic groups, located across regional environmental gradients, suggest the best
407 models of plant and mammal turnover incorporate both abiotic and biotic predictors.

408 The strength of the cross-taxon biotic environment for predicting turnover (even after
409 accounting for broad-scale environmental variation) highlights the potential of site-level biotic
410 processes to drive species turnover. Our results specifically reflect that taxonomic turnover in
411 producer assemblages predicts turnover in consumers. Links between the composition of plants
412  and birds are particularly well-demonstrated (Lee and Rotenberry 2005, Fleishman and Mac
413 Nally 2006, Jankowski et al. 2013) and while foraging relationships are often implicated,

414  vegetation structure can also be an important mediator between plant and bird turnover

415 (Zellweger et al. 2017). Our results regarding functional turnover suggest that if this is the case,
416 maximum plant height may capture only a small portion of the features of vegetative structure
417 most relevant to variation in bird body size.

418 The importance of the biotic environment to turnover compared to local diversity reflects
419 the processes driving the composition (turnover), as compared to the local richness, of

420 biodiversity. The addition or loss of particular producer species can lead to corresponding
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changes in consumers that rely on those species for resources and services; the same can be true

for clades of related species when close relatives share similar roles (Graham and Fine 2008).

Conclusions

Biodiversity conservation interventions are often managed and assessed at the site-level, but site-
level diversity results from broad-scale dynamics like speciation and biogeography, in addition
to local-scale dynamics like environmental filtering and biotic interactions. Studies capturing
those broad-scale dynamics tend to be limited to broad spatial grains (e.g., using species
distributions to estimate co-occurrence), while studies that do capture the fine grain at which
local-scale dynamics operate tend to be limited in their extent. Using fine grain species
inventories for plants, mammals, and birds from NEON spread out over the broad extent of the
United States, enabled us to investigate the drivers of site-level biodiversity in a new light.

We found that both the abiotic and biotic environments explained separate aspects of bio-
diversity and turnover. We found nuanced relationships in taxonomic and phylogenetic diversity,
particularly for plants and birds, which reflect a combination of broad-scale species processes of
speciation along abiotic gradients, and local-scale niche diversification leading to an inverse
relationship between the taxa. Most strikingly, we found that plant turnover among sites is a
stronger predictor of bird and mammal taxonomic turnover than individual environmental
differences between sites, suggesting shifts in producer diversity can predict consistent changes
in consumer turnover across sites, habitats, and biomes that are not explained by shared abiotic
responses.

While associations among taxa may reflect shared environmental responses not captured

by the abiotic or biotic variables included here (e.g., land use and microhabitat features,
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invertebrate biodiversity), it is also widely recognized that taxonomic groups are not isolated
from one another in processes of species assembly, and through niche dynamics biodiversity can
beget biodiversity (Burghardt et al. 2009). Only through continued investigation of the role of the
biotic environment, by parsing the ecological and evolutionary patterns among species’
environmental tolerances and co-occurrences within and across taxa (e.g., with tools like
phylogenetic generalized linear mixed models; (Gallinat and Pearse 2021), can we better
understand the role of the abiotic and biotic environments in fundamental ecology as well as

conservation practice.
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676 Table 1. Correlation among taxonomic, phylogenetic, and functional richness and turnover for
677 plants, mammals, and birds across NEON sites. We compared each biodiversity metric to all
678 others to estimate the extent to which they captured similar biodiversity pattern and process

679 across 38 sites in the US. Relationships among metrics differed between richness (upper right of
680 each table, noted with o) and turnover (lower left of each table, noted with ) and among taxa,
681  with stronger relationships between phylogenetic and functional richness and turnover for both
682 plants and birds, as well as significant positive correlations between taxonomic and functional

683 richness for birds and mammals, that held true for mammal turnover but not for birds.

684
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Figure Legends

Figure 1. Abiotic and biotic predictors of bird phylogenetic diversity across NEON sites. (A)
The locations of 38 NEON sites used in this study, at which plant, bird, and small mammal
assemblages were surveyed in 2017. Colors represent mean annual temperatures (averaged
across 30 years). Four sites, Guanica Forest (GUAN), Delta Junction (DEJU), Lenoir Landing
(LENO) and Woodworth (WOOD) are highlighted to illustrate the relative contributions of
predictors in subsequent panels. (B) Bird phylogenetic diversity has a positive relationship with
temperature (or, the component axis capturing 75% of the variation in climate variables with
strong loadings for temperature variables; red line is a simple linear model). Two sites, GUAN
and DEJU are highlighted as sites with extreme temperatures that fit this relationship. (C) Bird
phylogenetic diversity has a negative relationship with plant phylogenetic diversity. This
relationship explains additional variation in bird phylogenetic diversity for some sites, including
the highlighted sites WOOD and LENO. (D) Photographs representing the contrast of sites with
intermediate plant diversity, where temperature is a stronger predictor of bird diversity, and sites

with intermediate temperatures, where plant diversity is a stronger predictor of bird diversity.

Figure 2. Explanatory power of abiotic, biotic, and combined models of biodiversity richness.
We report R-squared values from multiple linear regression models, including ‘full” models
using all abiotic predictors (PC1, PC2, elevation) and biotic predictors (corresponding
biodiversity measures of other taxa), models using only abiotic predictors, and models using only
biotic predictors. We present results for models of taxonomic, phylogenetic, and functional

diversity of (A) plants, (B) mammals, and (C) birds.
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Figure 3. The abiotic and abiotic predictors of plant, mammal, and bird richness and turnover.
Panels reflect coefficients from models of (A) richness (linear regression), and (B) turnover
(quantile regression), where central points indicate significance (p < 0.05). Each row reflects one
model and each column one predictor; biotic predictors reflect the same biodiversity metric as
the response variable (e.g., models of mammal phylogenetic diversity have inputs of bird and
plant phylogenetic diversity). (A) models of biodiversity richness show plant diversity is strongly
associated with temperature, and the phylogenetic and functional diversity of birds and mammals
are negatively associated with that of plants. (B) models of biodiversity turnover show strong
cross-taxon biotic associations even after accounting for the abiotic environment. All data were

scaled, resulting in coefficients that reflect relative (standard) effect sizes.

Figure 4. Consumer species turnover is best predicted by plant turnover, followed by
environmental differences among sites. (A) Bird species turnover is strongly predicted by plant
turnover, and more weakly predicted by differences in elevation among sites. (B) Mammal
species turnover is best predicted by differences in plant turnover, followed by differences in

precipitation among sites.
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738  Appendices

739  Appendix S1. All R scripts and data products used for analysis are available at

740  https://github.com/gallinamanda/neon-biodiversity and will be included in the supplement as a

741  .zip file.

742

743  Appendix S2. Site information, including site code, name, state, latitude (lat), and longitude
744  (lon), with relative (scaled) measures of taxonomic (tax), phylogenetic (phy), and functional
745  (fun) richness for plants, mammals, and birds. Estimates are based on a bootstrap subsampling
746  approach (see Biodiversity Estimates in Materials and Methods) to standardize sampling among
747  sites. For 25 of 38 sites, this approach resulted in too few mammal species to calculate

748  phylogenetic diversity (those without estimates are labeled “NA” below).

749

750  Appendix S3a. Summary of importance of components in PCA describing the abiotic

751  environmental descriptors of 38 NEON sites. Variables included monthly mean, minimum, and
752  maximum temperatures, precipitation, vapor pressure, cloud cover, frost day frequency, and
753  potential evapotranspiration, accessed from the Climatic Research Unit gridded product CRU TS
754  v.4.03 (Harris et al. 2014). All climatic variables were averaged across the years 1989-2018.
755

756  Appendix S3b. Loadings of abiotic environmental variables onto two principal components.
757

758  Appendix S4. Comparison of estimates of biodiversity from re-sampled data and all available
759  data. Species inventories for plants, mammals, and birds were sampled unevenly across 38

760 NEON sites in 2017; the number of plots surveyed and frequency of sampling at each plot
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differed across and within sites. We used a bootstrap sampling approach to re-sample
assemblages 100 times based on the minimum number of plots sampled at each site (plants: 10,
birds: 5, mammals: 2) and minimum number of dates during which each plot was sampled (1 for
all taxa). Here we compare the average taxonomic, phylogenetic, and functional diversity values
for each taxon, averaged from 100 bootstrap values, with the same diversity measures calculated
using all available species occurrence data regardless of plot and date visitation. Red lines
indicate a 1:1 relationship. Taxonomic, phylogenetic, and functional diversity all follow similar
patterns in both data sets, with taxonomic diversity being lower in the bootstrap values, as is
expected. Phylogenetic and functional diversity control for the number of species, resulting in a
relationship closer to 1:1 between the two data sets. In all cases, relationships between the
bootstrap values and all-data values are weakest for mammals. This is likely due to there being
fewer mammal species overall compared to plants and birds, causing species absences during re-

sampling to result in large differences in phylogenetic and functional composition.

Appendix S5. Explanatory power (R-squared values, reported here as percentages) of richness
models, including models of abiotic residuals predicted by biotic predictors. Values describe
linear regression models including full models using all abiotic predictors (PC1, PC2, elevation),
and biotic predictors (corresponding biodiversity measures of other taxa), models using only
abiotic predictors, models using only biotic predictors, and abiotic model residuals as a function
of biotic predictors (labeled “residual” in the table). We present results for models of taxonomic,

phylogenetic, and functional diversity of plants, mammals, and birds.
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783  Appendix S6. Residuals from mammal and bird abiotic turnover models as a function of plant
784  turnover. For each diversity metric, including taxonomic diversity (Sorensen's Index, left),

785  phylogenetic diversity (PCDp, middle panels), and functional diversity (Functional Dissimilarity,
786  right), residuals from models using only abiotic explanatory variables (environmental PC1, PC2,

787 and elevation) are plotted as a function of plant diversity.
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